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We study an abstract model for the coevolution between mutating viruses and the adaptive
immune system. In sequence space, these two populations are localized around transiently dominant
strains. Delocalization or error thresholds exhibit a novel interdependence because immune response
is conditional on the viral attack. An evolutionary chase is induced by stochastic fluctuations and
can occur via periodic or intermittent cycles. Using simulations and stochastic analysis, we show
how the transition between these two dynamic regimes depends on mutation rate, immune response,
and population size.

Evolution is commonly pictured as a dynamic process
on a fitness landscape in sequence space. In general,
this landscape depends not only on the genotype but
varies dynamically as a function of the environment and
coevolving interaction partners [1]. Prominent biologi-
cal examples are the coevolutionary dynamics between
the adaptive immune system and virus populations such
as HIV [2, 3] or influenza [4], or between bacteria and
their phages [5]. Continuous evolutionary innovations al-
low the virus to transiently escape immune suppression,
triggering subsequent adaptations of the immune system.
These dynamics can lead to coevolutionary cycles, which
have been generally described in two different forms [4, 6]:
either as an intermittent series of quasistationary states
connected by stochastic jumps, or as periodic and largely
deterministic oscillations. From a modeling perspective,
this highly complex process is determined by three main
features [7]. First, mutation rates are high and popula-
tions are large, which implies large genetic heterogeneity
within the populations [8]. This has often been pictured
in terms of broad quasispecies distributions around peaks
in the fitness landscape [9, 10]. At the same time, contin-
uous adaption and coevolutionary arms races are driven
by strong ecological interactions [6, 11]. These modulate
effective fitness landscapes [2, 12, 13] and lead to nontriv-
ial nonlinear population dynamics. Finally, stochastic ef-
fects in finite populations become especially pronounced
whenever the first two issues are relevant at the same
time [11, 14–16].

Here, we offer a synthetic perspective on these pro-
cesses. In our model [see Fig. 1(a)], we consider a popu-
lation ofN viruses represented by their genotypes (binary
sequences of length L and frequency xi) and replication
rates ri = 1. A small number n of these genotypes cor-
responding to particularly virulent strains have a fitness
advantage α over the unit baseline, giving ri = 1 + α for
i = p, q, . . .. Offspring sequences undergo mutations with
per-base rate µx. In the absence of immune suppression,
and in the stationary state, the viral population localizes
as so-called quasispecies around any of the fittest geno-
types, provided the mutation rate is smaller than Eigen’s
error threshold µc ≈ ln(α + 1)/L [10]. This simple pic-
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FIG. 1: (a) Schematic model for the coevolutionary dynamics
of virus (V) and immune system (IS). The two populations are
subject to mutation and selection (left), but also to ecological
interactions (right). (b) Exemplary trajectories of the rela-
tive frequencies of virulent strains xi (top) and corresponding
antibodies yi (bottom). Regular oscillatory dynamics involv-
ing three strains turn into simpler two-strain oscillations at
T3→2 and finally transition into intermittency at Tint. Genetic
variability within the populations is calculated from the aver-
age pairwise Hamming distance and indicated in gray dashed
lines. (c) Sketch of the dynamics of the full population distri-
butions in sequence space as described in the text.

ture is considerably complicated by the host’s adaptive
immune system, which produces antibodies that recog-
nize and neutralize viruses with matching epitopes [17].
Antibody production is specifically increased and vari-
ability in the binding affinity is introduced when viruses
with matching genotype are encountered [18], in a process
that can be modeled in terms of mutation and selection.
Similar concepts can be used for bacterial immune sys-
tems, where spacer sequences in the host genome comple-
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mentary to genetic elements of a phage take antibodylike
functions [5]. Hence, for the immune system we introduce
a second population of N binary sequences with frequen-
cies yi, mutation rate µy, unit replication rate for unstim-
ulated production, and stimulated antibody production
in the presence of perfectly matching viruses [9, 19]. Eco-
logical interactions then introduce frequency-dependent
fitness terms ∝ xiyi for such matched virus and antibody
pairs. Including these terms leads to a reduction of the
viral load and stimulation of antibody production [Fig.
1(a), right]. In the deterministic limit (N → ∞), our
model is described by [20]

ẋi =
∑

jm
x
ijrjxj − αxiyi − xiφx,

ẏi =
∑

jm
y
ij(1 + γxj)yj − yiφy,

(1)

where i and j run over all 2L sequences. The fitness ad-
vantage α of virulent strains can be suppressed to back-
ground levels by a perfectly adapted immune system,
which undergoes stimulated production at rate γ when
encountering matching viral epitopes. Further, mx

ij =

µ
dij
x (1 − µx)L−dij is the probability of having dij simul-

taneous mutations, where dij is the Hamming distance
between xi and xj . The dilution terms φx/y are obtained
from the conditions

∑
i ẋi = 0 and

∑
i ẏi = 0, respec-

tively, and keep the sizes of the two populations fluctu-
ating around constant values. This constraint applies to
the stationary phase of the adaptive race, while we ignore
some of the effects of a changing viral load [2, 3, 9, 28] and
also neglect immune system memory [29] and unspecific
recognition [17].

To facilitate a systematic study of the effects of de-
mographic noise by means of simulations and theoretical
analysis, our starting point is the underlying stochastic
master equation [20] which has rarely been used in this
context. Its deterministic limit leads to Eq. (1) and con-
nects to established quasispecies theory [10, 19]. Exem-
plary simulation results obtained with the Gillespie algo-
rithm [30] are shown in Fig. 1(b), with parameters in the
coexistence regime discussed below. We readily identify
characteristics of the intermittent coevolutionary dynam-
ics. First, a particularly virulent strain with its associ-
ated quasispecies “cloud” of mutants triggers a specific
immune response (a), leading to a corresponding local-
ization in the antibody sequence space (b). This gives
alternative viral strains that are not under immune at-
tack a fitness advantage, and after a brief “search” period
during which the viral population becomes delocalized,
this new fitness peak is colonized in a “growth” phase
(c), awaiting the adaptive immune response (d). The
delocalization and relocalization dynamics of each pop-
ulation in sequence space are clearly visible as transient
increases in their respective mean pairwise Hamming dis-
tances [Fig. 1(b)]. Intriguingly, this sequence of events
can occur both in the form of regular oscillations as well
as by means of stochastically intermittent cycles [6]. The
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FIG. 2: (a) Regimes of coevolution. High mutation rates µx

of the virus lead to population delocalization, while for lower
mutation rates a regime of coexistence emerges. Intermedi-
ate values lead to a degenerate localization regime for the
virus (see text). (c) Steady-state values for relative frequen-
cies xp = xq and yp = yq as a function of µy with µx = µy

(above) or µx = 0.05 (below). Solid lines are solutions of
Eq. (2) and dots are simulation results. Panels (a) and (c)
are for γ = α, while (b) and (d) show analogous result for
γ = 10α, where L = 8, n = 2, and α = 10.

former occurs when the large genetic diversity within the
population extends across the valleys between different
fitness peaks and signifies periodic shifts in the extent to
which these peaks are populated [12]. The latter case
indicates that adaptation proceeds stochastically via the
random discovery of previously unpopulated fitness peaks
by relatively tightly localized populations.
Steady-state regimes: coexistence for mutation rates

below interdependent error thresholds. We use a reduced
deterministic version of the model to determine station-
ary states and the associated error thresholds. We re-
strict the analysis to the populations of the n virulent
strains xp,q,... and their respective antibodies yp,q,..., and
lump all mutant sequences together in the so-called er-
ror tail [31]. The high-dimensional system (1) is then
reduced to [20]

ẋp =
[
Qx (1 + α)− αyp − φ̄x

]
xp,

ẏp =
[
Qy (1 + γxp)− φ̄y

]
yp,

(2)

where p runs over the n strains which are coupled by the
corresponding dilution terms φ̄x/y. Qx/y = (1 − µx/y)L

are the quality factors. A straightforward stability anal-
ysis of fixed points in this system with respect to µx/y as
bifurcation parameters yields the phase diagrams of Fig.
2.

As expected, we recover the classical result that the
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viral population localizes around a fitness peak only if
Qx > Qc ≡ (α+ 1)

−1
, with increasing genetic variabil-

ity (i.e., the width of the population distribution) for
larger mutation rate µx. However, antibodies are local-
ized only (1) if their mutation rate µy is small enough,
(2) if their production rate γ is high enough and (3) if
the virus attack is specific enough (i.e., tightly localized).
These interdependent requirements are an inevitable con-
sequence of ecological interactions, and they translate
into the condition Qy = {(γ/αn) [Qx(α+ 1)− 1] + 1}−1
as the analytical limit for the coexistence regime (blue
dashed lines in Fig. 2). Only in this regime do we
find the intriguing oscillatory dynamics shown in Fig.
1 that will be discussed below. Finally, in a some-
what model-specific “degenerate” regime bounded by
Qy = {(γ/α) [Qx(α+ 1)− 1] + 1}−1, the virus popula-
tion can stably localize about several fitness peaks simul-
taneously such that none of these quasispecies is suffi-
ciently tight to trigger a specific response of the immune
system, which thus remains delocalized. The fixed points
of the approximate system (2) coincide closely with the
mean steady-state concentrations obtained by stochas-
tic simulation of the full system (1) [see Figs. 2(c) and
2(d)]. Interestingly, for α = γ and symmetric mutation
rates µx,y ≡ µ, the critical condition of coexistence can
be approximated by µ ≈ (1/2L) ln (α/2) for large α and
L, which generalizes a comparable result for mutualistic
frequency-dependent fitness [32] to the case of antagonis-
tic interactions. This correspondence also suggests that
the error thresholds derived here should be largely un-
changed if recognition between the two population toler-
ates some mismatches [33].

Noise-driven oscillations in the coexistence regime.
Performing a linear stability analysis in the coexistence
regime reveals that the oscillations seen in the simu-
lations are caused by n − 1 pairs of purely imaginary
eigenvalues. Numerical solutions of the deterministic
Eqs. (2) show complex but regular oscillations involving
all n strains with slow amplitude variations controlled
by higher-order nonlinearities (see Fig. S1 in the Sup-
plemental Material [20]). Results from stochastic sim-
ulations, however, suggest that such complex patterns
quickly give rise to simpler oscillations involving only two
strains, which at a later time transition into intermit-
tency (cf. Fig. 1). Investigating the case n > 2 by simu-
lations below, we restrict further analysis to n = 2. Also,
here we only display more compact analytical results for
the case γ = α (see the Supplemental Material [20] for
general results). Our analysis exploits that in the coex-
istence regime mutation rates µx/y . lnα/L are small
compared to the error thresholds and can be used as ex-
pansion parameters. To obtain the nonlinearities that
control oscillation amplitudes, we expand Eq. (2) to first
order and transform to polar normal form on the two-

dimensional stable manifold [20]:

u̇ = −4

5
L [µx (α+ 1) + µy]u2, (3a)

ϕ̇ =
α

2
− L

2
(α+ 1)(µx + µy) +O(u), (3b)

where u is a squared radial coordinate indicating de-
viations from the coexistence fixed point and ϕ mea-
sures the phase of the oscillations. Equation (3a) ex-
hibits a weak geometric decay of the oscillation ampli-
tude O(u2µx) � 1, which makes the fixed point only
marginally stable and thus vulnerable to stochastic fluc-
tuations [34–36]. Notably, the oscillation frequency of
Eq. (3b) depends mainly on the fitness advantage α, and
is only weakly slowed down by mutations. In this de-
terministic regime, the quasispecies distribution in se-
quence space is broad enough that the time required to
shift to a new fitness peak is dominated by the growth of
the subpopulation already on the new peak (with a rate
α) rather than the search for this new peak in the first
place (via mutations). We note that this effect is even
stronger if the two fitness peaks are close in sequence
space, i.e., if direct mutations between them are not ig-
nored as in Eq. (2). In contrast, when the coexistence
regime displays intermittent dynamics, because the rele-
vant sequence space is not already inhabited by the virus
population, the dynamics are inherently stochastic and
mutation rates can be too small for the virus to explore
enough sequence space to escape immune suppression in
time. This would correspond to an adaptation threshold
as found in a previous study [19]. However, as shown
more formally below, this situation is incompatible with
the presence of deterministic dynamics, which is an as-
sumption of standard quasispecies theory. Instead, pop-
ulation genetics models should be used [11, 13].

Noise determines if dynamics are periodic or intermit-
tent. We can characterize how stochastic noise controls
the transition between periodic and intermittent adaptive
dynamics by means of stochastic averaging. This tech-
nique enables a systematic derivation of effective one-
dimensional Fokker-Planck equations in relevant sub-
spaces of more complex high-dimensional nonlinear dy-
namics such as those arising in evolutionary game the-
ory [37]. It is based on the time scale separation between
slow radial and fast azimuthal dynamics in Eq. (3): ϕ
evolves on fast time scales (ϕ̇ ∝ α), while u changes much
more slowly (u̇ ∝ µLu2). Using this observation, we can
derive effective coefficients governing the evolution of the
probability distribution P (u, t) of the radial variable by
averaging the angular dynamics over one oscillation pe-
riod [20]. To leading order, we get

∂tP = −∂u
[(
−a1u2 +

a2
N

)
P
]

+
1

N
∂2u (a2uP ) , (4)

with a1 = 4
5L[µx (α+ 1) + µy] and a2 = 1

16

{
4 + 3α −

µxL [(4/α) + 11 + 7α] − µyL [(4/α) + 7 + 3α]
}

. Note
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that in the deterministic limit N → ∞ we recover
Eq. (3a). For a finite population, we now find the deter-
ministic decay∝ a1u2 towards the coexistence fixed point
in competition with a stochastic outward drift ∝ (a2/N),
which destabilizes the fixed point and leads to a finite os-
cillation amplitude 〈u〉 =

√
(2/π) (a2/a1N) . As muta-

tion rates get small, expected oscillation amplitudes grow
as [(α + 1)µx + 4µy]−1/2, eventually hitting the borders
of the concentration simplex. This indicates the tran-
sition from regular oscillations to intermittent behavior:
during large-amplitude oscillations the fittest virus geno-
types are temporarily lost from the population and are
only much later recovered through spontaneous muta-
tions.

A more detailed understanding of this transition is ob-
tained by estimating the lifetime of the regular oscilla-
tions. To this end, we use the bounds on the radial vari-
able umax = 1

8 −O(µL), where the populations are fully
localized about only one peak. The chances of observing
a transition to intermittent behavior are estimated from
the mean first passage time (MFPT) Tint from u = 0 to
u = umax under Eq. (4). Using standard methods [38],
we find the result [20]

Tint = N
umax

a2
F̃

(
Na1u

2
max

2a2

)
, (5)

where F̃ (x) is the generalized hypergeometric function

2F2(1/2, 1; 3/2, 3/2;x). Equation (5) can be brought into
scaling form by defining N∗ =

(
2a2/a1u

2
max

)
and T ∗ =

N∗ (umax/a2). To compare this result to simulations, we
plot the rescaled MFPT (Tint/T

∗) = (N/N∗) F̃ (N/N∗)
(see Fig. 3). The nearly perfect data collapse for different
parameter choices validates our analytical approach.

WhileN∗ measures the population size at the crossover
from periodic to intermittent dynamics, T ∗ denotes the
corresponding typical duration of the transition. For
large populations (N > N∗), we find Tint ∼ N−1/2eN/N∗

;
this almost exponential growth of the MFPT indicates
that the dynamics are effectively deterministic and inter-
mittent behavior extremely unlikely. For N < N∗, we
find Tint ∼ N and the dynamics thus easily transition
into intermittency. This distinction based on the scaling
of Tint with N has recently been suggested in the con-
text of game theory [35]. In our case, however, finite
mutation rates prevent permanent extinction of subpop-
ulations and stabilize regular oscillatory behavior even
in small populations, because the deterministic decay in
Eq. (3a) is strengthened and the critical population size
N∗ ∝ (µxL)−1 is reduced. Thus, even for small popula-
tions, mutations can act as a driving force for the stabi-
lization of regular oscillations, which a posteriori justifies
assumptions underlying quasispecies theory and general-
izes previous observations [14]. In contrast, from results
for general γ (see Fig. S2 in the Supplemental Mate-
rial [20]), we find that a strong immune response (i.e.,

T
in
t

(a)

(b) (c)

T
in
t

Tint

T
in
t

FIG. 3: Mean time until transition from regular oscillations
to intermittency. Dashed lines are from the analytical re-
sult (5). (a) Rescaled simulation data for L = 8, α = γ = 10
and different choices of µx/y collapse onto a universal curve
(unscaled data shown in the inset). (b) Transition times de-
crease for increasing γ [parameters otherwise as in (a)]. (c)
For n = 3 virulent strains, the transition time T3→2 until one
strain is lost is much shorter than Tint, especially for large
populations.

γ > α) promotes early transitions into intermittency [cf.
Fig. 3(b)], since both N∗ and T ∗ increase with γ. How-
ever, these parameters are insensitive against the precise
value of µy [cf. Fig. 3(a)]; this suggests that effective
immune suppression is achieved via a strong stimulated
response rather than high adaptive flexibility. Indeed, ex-
treme antibody secretion rates have been reported in the
literature [39]. Finally, we support our choice of limiting
the analysis to n = 2 strains by simulating a system with
n = 3 strains, measuring the time T3→2 until one strain
is lost as well as the subsequent Tint until the remain-
ing two strains transition to intermittency. As shown in
Fig. 3(c), the state with all three strains present is short
lived compared to the two-strain oscillations, especially
in the relevant deterministic regime of larger population
size. Hence, apart from numerical prefactors the general
trend captured in Eq. (5) also describes systems with
larger n.

Conclusions. We have analyzed a model for the co-
evolutionary dynamics of virus and immune system,
combining simulations with nonlinear deterministic and
stochastic analysis. Starting from the established qua-
sispecies treatment of this problem, we explicitly intro-
duced interactions between the populations. These lead
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to interdependent error thresholds, because a focused im-
mune defense against a specific viral strain is impaired
for large genetic variability in the virus population. Fur-
ther, we performed a rigorous analysis of stochastic ef-
fects in the coexistence regime: regular yet noise-induced
oscillatory behavior for large populations, large mutation
rates, and weak immune response turn into stochastic
intermittent cycles for smaller populations, smaller mu-
tation rates and strong immune response. Our simula-
tions indicate that the reverse transition from intermit-
tency towards regular oscillations is a rare event occur-
ring on time scales well beyond Tint. It cannot easily
be analyzed within our reduced two-dimensional model
as it will depend on the entire population structure. Fi-
nally, we note that our abstract model based on quasis-
pecies theory focuses on the dynamics of genetic variabil-
ity within populations of constant size. This assumption
is of course violated for some biological scenarios, where
immune response modulates the viral load [2, 9, 28] and
may well lead to extinction of the virus [3, 40]. We expect
that more detailed models including these and other ef-
fects relevant in biological situations [17, 29] will also be
amenable to theoretical analysis based on the stochastic
averaging techniques used here.
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I. STOCHASTIC MODEL

A. Reaction Network

Let N be the desired population size for both virus and immune system (IS) populations. We define

m
x/y
ij = µ

dij
x/y(1− µx/y)L−dij ,

where dij is the bitwise Hamming distance between sequences σ
x/y
i and σ

x/y
j (number of bits differing between

sequences). Note that m
x/y
ii = Qx/y, the so called quality factor as also defined in the main text.

Possible reactions for our network of virus particles σxi (i ∈ 1, ..., 2L) with absolute population numbers nx =
(nx1 , ..., n

x
2L) and IS particles σyi (i ∈ 1, ..., 2L) with absolute population numbers ny = (ny1, ..., n

y
2L

) are defined as
follows:

∗Present address: Laboratory of Computational Neuroscience, EPF Lausanne, 1015 Lausanne, Switzerland.
†Electronic address: benedikt.obermayer@mdc-berlin.de; Present address: Max-Delbrück-Center for Molecular Medicine, 13092 Berlin,
Germany.
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1. Virus error prone reproduction: σxj → σxj + σxi at rate (per unit time)

Rxij = mx
ijrj .

The virus fitness landscape is defined by rj = 1 + α if σxj is a virulent strain, otherwise rj = 1

2. IS error prone (stimulated) reproduction: σyj → σyj + σyi at rate (per unit time)

Ryij(n
x) = my

ij(1 +
γ

N
nxj ).

Normalization by N ensures the proper scaling with system size and thus the proper deterministic limit Eq. (1).

3. Virus suppression by IS : σxi → ∅ at rate (per unit time)

Di(n
y) =

α

N
nyi .

Normalization by N as explained above.

4. Dilution fluxes: σxi → ∅ at rates (per unit time) proportional to the mean excess productions

R̄x(nx,ny) =
1

N

∑

j

(rj −
α

N
nyj )nxj (S1)

R̄y(nx,ny) =
1

N

∑

j

(1 +
γ

N
nyj )nxj (S2)

This type of dilution reproduces the dilution flux proposed by Eigen [1] in the deterministic limit and has been
shown [2] to keep population sizes fluctuating around the desired magnitude N . As long as α � N we can
assume that R̄x ≥ 0, especially for small mutation probabilities, since then nyj � 1 only if σxj is a virulent
strain, for which rj = α+ 1. For all parameter ranges and reactions used to generate simulation results for this
publication (also including higher mutation probabilities) the case R̄x < 0 did not occur.

These reactions were implemented in the framework of Gillespie [3] to generate all realizations of the stochastic
dynamics in this publication. All simulations used α = 10 and L = 8.

B. Master equation & Fokker-Planck equation

The master equation of the reaction network as defined in the last section can be straightforwardly stated as below.
ei is the i-th unit vector and indices are assumed to run from 1 to 2L if not stated otherwise.

∂tP (nx,ny, t) =
∑

i

{
∑

j 6=i
Rxijn

x
j +Rxii (nxi − 1)


P (nx − ei,n

y, t)

+


∑

j 6=i
Ryij(n

x)nyj +Ryii(n
x) (nyi − 1)


P (nx,ny − ei, t)

+
[
Di(n

y) + R̄x(nx + ei,n
y)
]

(nxi + 1)P (nx + ei,n
y, t)

+ R̄y(nx,ny + ei) (nyi + 1)P (nx,ny + ei, t)

−


∑

j

Rxijn
x
j +Di(n

y)nxi + R̄x(nx,ny)nxi


P (nx,ny, t)

−


∑

j

Ryij(n
x)nyj + R̄y(nx,ny)nyi


P (nx,ny, t)

}
. (S3)

We now derive a Fokker-Planck equation from the master equation (S3) by a Kramers-Moyal expansion [4]. We change
variables from absolute numbers nx,ny to concentrations x = (x1, ..., x2L) ≡ 1

N nx and y = (y1, ..., y2L) ≡ 1
N ny. Note
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that due to the scaling of the reaction rates as chosen above, the frequency dependent reaction rates above transform
as

Ryij(n
x) = my

ij(1 + γxj) ≡ R′yij(x),

Di(n
y) = αyi ≡ D′i(y),

R̄x(nx,ny) =
∑

j

(rj − αyj)xj ≡ φx(x,y),

R̄y(nx,ny) =
∑

j

(1 + γxj)yj ≡ φy(x,y).

Denoting ∆ = 1
N and ∆i = ∆ei, the master equation (S3) now becomes:

∂tP (x,y, t) =N
∑

i

{
∑

j 6=i
Rxijxj +Rxii (xi −∆)


P (x−∆i,y, t)

+


∑

j 6=i
R′yij(x)yj +R′yii (x) (yi −∆)


P (x,y −∆i, t)

+ [D′i(y) + φx(x + ∆i,y)] (xi + ∆)P (x + ∆i,y, t)

+ φy(x,y + ∆i) (yi + ∆)P (x,y + ∆i, t)

−


∑

j

Rxijxj +D′i(y)xi + φx(x,y)xi


P (x,y, t)

−


∑

j

R′yij(x)yj + φy(x,y)yi


P (x,y, t)

}
.

For N large enough we can treat x and y as continuous variables. The Kramers-Moyal expansion then consists of
an expansion of the right-hand side up to ∆2. This then yields the Fokker-Planck equation (δik = 1 if i = k and 0
otherwise)

∂tP (x,y, t) = −
∑

i

{∂xi
[Axi P (x,y, t)] + ∂yi [Ayi P (x,y, t)]}

+
1

2N

∑

i,k

{∂xi
∂xk

[BxikP (x,y, t)] + ∂yi∂yk [ByikP (x,y, t)]} , (S4)

Axi =
∑

j

mx
ijrjxj − αxiyi − xiφx(x,y),

Ayi =
∑

j

my
ij(1 + γxj)yj − yiφy(x,y),

Bxik = δik
∑

j

mx
ijrjxj + αxiyi + xiφx(x,y),

Byik = δik
∑

j

my
ij(1 + γxj)yj + yiφy(x,y).

These correspond to a set of 2 · 2L coupled nonlinear Itō stochastic differential equations (SDE) [4]:

dxi = Axi dt+
1√
N
CxiidW

x
i , i ∈ {1, ..., 2L}

dyi = Ayi dt+
1√
N
CyiidW

y
i , i ∈ {1, ..., 2L}, (S5)

where Cx/y is a diagonal matrix satisfying B
x/y
ii =

(
C
x/y
ii

)2
and W

x/y
i are independent Wiener processes with zero

mean and unit variance. We thus see that in the deterministic limit N → ∞ we recover the deterministic equations
of the main text Eqs. (1).
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C. Mean pairwise Hamming distance

For a given distribution n = (n1, ..., n2L) of sequences in a population, the mean pairwise Hamming distance is
defined by

dpairwise =




2L∑

i=0

ni



−2

2L∑

i,j=0

ninjdij ,

where dij is the bitwise Hamming distance between sequences σ
x/y
i and σ

x/y
j (number of bits differing between

sequences). For the gray dashed lines displayed in Fig. Fig. 1(b) of the main text, the value of dpw is further

normalized by the maximal mean pairwise Hamming distance of L
2 (for a uniform distribution of sequences).

II. DETERMINISTIC APPROXIMATION

A. Error-tail approximation

We will simplify the high dimensional system (S5) by applying the error-tail approximation [5, 7], under the simple
virus fitness landscape of only a few virulent strains xp, xq, xr, .... In the case of only two virulent strains xp is the
concentration of sequence (0, ..., 0) and xq is the concentration of sequence (1, ..., 1). We define S = p, q, r, ... to be the
set indices of virulent strains. For a start we restrict the analysis to the equations for xi, i ∈ S and the matching immune
system (IS) sequences yi, i ∈ S only. Let the error-tails of the respective populations be xe =

∑
k 6∈S xk = 1−∑i∈S xi

(note that
∑2L

k=1 xk = 1) and ye accordingly. The restricted system (S5) then reads:

dxi = Axi dt+
1√
N
CxiidW

x
i ,

dyi = Ayi dt+
1√
N
CyiidW

y
i , (S6)

for indices i ∈ S.
The error-tail approximation now consists of considering only mutations from the virulent strains and matching IS

sequences into the error tail, explicitly neglecting back mutations. While this approximation is analytically valid only
for L → ∞ and µx, µy → 0, it has been successfully applied even for relatively short lengths L and larger mutation
probabilities [6]. Since the Hamming distance between the considered sequences is maximal, we can also neglect
mutations between them. With these considerations the coefficients read (i ∈ S):

Axi =
[
Qx(1 + α)− αyi − φ̄x

]
xi,

(Cxii)
2 =

[
Qx(1 + α) + αyi + φ̄x

]
xi,

Ayi =
[
Qy(1 + γxi)− φ̄y

]
yi,

(Cyii)
2 =

[
Qy(1 + γxi) + φ̄y

]
yi. (S7)

Here we have again introduced the quality-factor Qx/y = (1−µx/y)L. The error-tail approximated dilution fluxes are
given below – there, frequency dependent fitness terms in the error-tail, i.e. terms ∼ xiyi for i /∈ S, are neglected:

φ̄x =
∑

i∈S
(1 + α− αyi)xi + xe = 1 + α

∑

i∈S
(1− yi)xi,

φ̄y =
∑

i∈S
(1 + γxi)yi + ye = 1 + γ

∑

i∈S
xiyi.

In the deterministic limit N → ∞ the 2 ∗ n dimensional system (S6) with coefficients (S7) gives the reduced system
Eqs. (2) of the main text.

B. Coexistence fixpoints and bifurcations

In the coexistence regime introduced in the main text, the system of equations (S6) admits the following set of
fixed points in the deterministic limit (N →∞). Let the number of virulent strains be n ≡ |S|, then the coexistence
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fixed point is given by (i ∈ S)

xi = xm ≡
Qy
(
1− γ

n

)
+Qx

(
γ
α + γ

)
− γ

α − 1 +
√
D

2γ (n−Qy)
,

yi = ym ≡
Qy
(
1 + γ

n

)
+Qx

(
γ
α + γ

)
− γ

α − 1−
√
D

2γ
,

D =
4γ

n
(1−Qy)(n−Qy) +

[
Qy

(
1− γ

n

)
+Qx

(
γ +

γ

α

)
− 1− γ

α

]2
. (S8)

If Qy <
[
γ
αn (Qx(α+ 1)− 1) + 1

]−1
the IS coexistence solution ym becomes negative, unstable and yi = 0 for i ∈ S

becomes the stable fixed point for the IS. The total virus concentration xmax =
∑
i∈S xi is then restricted by the virus

mutation rate via xmax = Qx(α+1)−1
α . For Qx = Qc the analytical prediction of the virus concentration vanishes,

xmax = 0, which is the transition into the delocalized regime (see main text), where now also xi = 0 for i ∈ S.
While the solutions xmax =

∑
i∈S xi and yi = 0 for i ∈ S represents a line of fixed points, not the whole line

is stable. For n = 2 it can easily be shown (by evaluating the Jacobian of the system (S6) for N → ∞) that for[
γ
α (Qx(α+ 1)− 1) + 1

]−1 ≤ Qy ≤
[
γ
2α (Qx(α+ 1)− 1) + 1

]−1
(i.e. in the degenerate regime of Fig. 2) the stable

segment of the line is given by

xp =
xmax

2
(1±∆),

xq =
xmax

2
(1∓∆),

∆ ≤ 2(1−Qy)

Qy (Qx(α+ 1)− 1)

α

γ
− 1. (S9)

For Qy =
[
γ
2α (Qx(α+ 1)− 1) + 1

]−1
(blue dashed lines in Fig. 2) it holds that ∆ = 0 and only the point xp = xq is

stable. As now either Qx or Qy are decreased (by increasing the mutation probabilities µx, µy) the size of the line of

degenerate stable fixed points increases until at Qy =
[
γ
α (Qx(α+ 1)− 1) + 1

]−1
(red dashed lines in Fig. 2) it holds

that ∆ = 1 and all combinations of virus concentrations with xmax = xp + xq are (meta) stable.
In the insets of Fig. 2 the red solid lines show the stable branch of fixed points given by Eq. (S8) to the left of

the dashed blue vertical line. To the right of the dashed blue vertical line we plot in solid red the center of the the
degenerate line of fixed points xp = xq = xmax

2 . Dots display the average and 95% confidence interval of the temporal
means of 40 concentration trajectories (N = 2500). Due to the symmetry of concentrations, only trajectories of xp
and yp are used. Note that due to fluctuations in stochastic simulations the temporal mean of concentrations stays
very close to the line xp = xq even in the virus only regime, although the variability across runs increases.

C. Normal form

1. Eigenvalues of coexistence fixed point

To investigate the deterministic stability of the system (S6), we consider the eigenvalues of its Jacobian at the
coexistence fixed point (cf. Eqs. (S8)). It can be readily verified for small n that the eigenvalues are given by:

λs1/2 =
1

2

[
−2nx(α+ y(γ − α)) + (α+ 1)Qx +Qy(γx+ 1)− αy − 2±

√
Ds

]
,

λck,1
= λ̄ck,2

=
1

2

[
−nx(α+ y(γ − α)) + (α+ 1)Qx +Qy(γx+ 1)− αy − 2±

√
Dc

]
,

Ds =2γx
[
2αn2x(y − 2)y − (α+ 1)Qx(Qy − 2ny)−Qy(−2αnx+ 2ny + αy) +Q2

y

]

+ [α(2nx(y − 1) +Qx − y) +Qx −Qy]
2

+ γ2x2(Qy − 2ny)2,

Dc =− 2γx
[
(α+ 1)Qx(Qy − ny) + αQy(nx(y − 1) + y) + nQyy + αny(−nxy + nx+ y)−Q2

y

]

+ [α(nx(y − 1) +Qx − y) +Qx −Qy]
2

+ γ2x2(Qy − ny)2. (S10)

where k ∈ {1, ..., n− 1}. For parameters in the coexistence phase, λs1/2 are 2 eigenvalues with negative real parts and

λck,1
and λck,2

are 2(n − 1) pairs of conjugate complex eigenvalues with zero real parts. The system will thus relax
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on to the 2(n− 1) dimensional center manifold spanned by the eigenvectors associated to the eigenvalues λck,1/2
and

the dynamics there will be determined by the nonlinear dynamics of the system.
To gain some understanding we expand these eigenvalues for small mutation rates µx, µy to arrive at:

λs1 =− α
(

1− 1

n

)
+ µxL(α+ 1)− Lµy

α

n

(
n

γ
+ 1

)
+O(µ2

x, µ
2
y, µxµy),

λs2 =− γ

2
+ µxLγ

1 + 1
α

n− 1
− Lµy

(γ
n

+ 1
)

+O(µ2
x, µ

2
y, µxµy),

λck,1
= λ̄ck,2

=i
√
αγ

[
1

n
− L

n− 1

{
µx
2

(
1 +

1

α

)
+
µy
2

(
2

(
1− 1

n

)
+

1

γ
(n− 1)

)}]
+O(µ2

x, µ
2
y, µxµy). (S11)

We see that the oscillation speed, to leading order, is given by
√
αγ

n , while the decay to the center manifold is governed
by α and γ.

2. Calculation of eigenvectors

As shown in the last section, the system has a 2(n − 1) dimensional center manifold. It is thus essential to
incorporate the effects of nonlinear terms in order to determine stability properties of the coexistence fixed point,
which will involve the diagonalization of the Jacobian. For n = 2 it is possible to calculate analytically a linear
transformation T, which diagonalizes the Jacobian of the system of equations (S6) evaluated at the coexistence fixed
point xp = xq = xm and yp = yq = ym (cf. Eqs. (S8). To make this expression analytically tractable for the later
calculations, we approximated the transformation for small mutation rates as the Rayleigh-Schrödinger perturbation
[8] of the Jacobian up to first order in µx and µy. The four approximated eigenvalues of the Jacobian at the fixed
point are computed as

λs1 = −α
2

+ L(α+ 1)µx − L
α

2

(
2

γ
+ 1

)
µy < 0,

λs2 = −γ
2

+ Lγ

(
1

α
+ 1

)
µx + L

(
1 +

γ

2

)
µy < 0,

λc1 = λ̄c2 = i

√
αγ

2

(
1− L (µx + µy)− Lµx

1

α
− Lµy

1

γ

)
, (S12)

where terms O(µ2
x, µ

2
y, µxµy) have been omitted and the bar indicates the complex conjugate. Note that this result

calculated from perturbation theory coincides exactly with the series expansion of Eqs. (S11) for n = 2, thereby
validating this approach. The advantage of using the perturbation theory lies in the calculation of approximated
eigenvectors, which give the transformation T we will need in the following.

For the sake of simplicity, the main text frequently uses α = γ. Since in this case the unperturbed Jacobian (for
µx = µy = 0) has two degenerate eigenvalues equal to α

2 , the perturbation theory for this choice of parameters results
in a different transformation [8] and thus slightly different approximated eigenvalues. For completeness we give these
eigenvalues here, and note that in the following they will lead to exactly the same results as the more general theory
for α 6= γ.

λα=γs1/2
= −α

2
+ L(α+ 1)µx ±

L

2

√
(α+ 2)2µ2

y − 4(α+ 1)µxµy < 0,

λα=γc1 = λ̄α=γc2 = i

(
α

2
− L

2
(µx + µy)(α+ 1)

)
. (S13)

3. Transformation to normal form

As stated in the main text, we restrict the following analysis to the case of n = 2. Introducing the notation
p = (xp, xq, yp, yq)

T and pm = (xm, xm, ym, ym)T , we denote the corresponding coordinates of the eigensystem as
functions of the original coordinates (shifted to the fixed point) by

(s1, s2, c1, c2)T = T−1(p− pm).
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Here, s = (s1, s2)T are the coordinates corresponding to the two negative eigenvalues λs1/2 (the stable manifold) and

c = (c1, c2)T are the coordinates corresponding to the two conjugate and purely imaginary eigenvalues λc1/2 (the

center manifold). Note that c1 = c̄2, i.e. the center manifold coordinates are complex conjugates. This yields the
transformed system of stochastic differential equations for the center manifold :

dc = [Ac + f(c, s)] dt+
1√
N

D(c, s)dV. (S14)

Here, f is a nonlinear function, A is the diagonal matrix with entries (λc1 , λc2) and V a two dimensional Wiener
process with zero mean and unit variance. D is defined by the new noise covariance matrix B = DTD, which can be
calculated by the Itô chain rule [4] from the old diagonal covariance matrix C with entries (Cx11, C

x
22, C

y
11, C

y
22) [9] as:

Dij = (∇ci(xp, xq, yq, yq))T C (∇cj(xp, yp, yp, yq)) .

As above, the derived expressions for all coefficients are valid only for small mutation rates, so terms O(µ2
x, µ

2
y, µxµy)

are dropped. Finally, the dependence on the variables s can be removed by applying the center-manifold theorem
[10]. This yields a parametrization s = h(c), which reduces Eqs. (S14) to a closed two-dimensional system of
conjugate complex stochastic differential equations. Keeping the notation the same, we give here only the functions
and coefficients for the case α = γ, since the general case is rather lengthy and does not yield any particular insight.
These are (note that c2 = c̄1):

dc = [Ac + f(c)] dt+
1√
N

C(c)dV, (S15)

f1(c1, c2) =
2

5
{L
[
c31(3 + i) + c1c

2
2(1 + 3i) + c21c2(1 + 2i)(1 + i) + c32(1− 2i)(1 + i)

]
· [(α+ 1)µx − µy]

+ α
[
c21c2(1 + 2i)(2 + i) + c32(1− 2i)(2− i)

]
},

f2(c1, c2) =f1(c1, c2),

B11 = B22 =c41L

(
1

5
+

2

5
i

)
[(α+ 1)µx − µy] + c42L

(
1

5
− 2

5
i

)
[(α+ 1)µx − µy]

+ c21

(
−iα

4
+ L

(
1

10
− 1

20
i

)[
µx

(
(1 + 4i)(α+ 1) +

4

α
+ 4

)
+ µy

(
4

α
+ 3

)])

+ c22

(
i
α

4
+ L

(
1

10
+

1

20
i

)[
µx

(
(1− 4i)(α+ 1) +

4

α
+ 4

)
+ µy

(
4

α
+ 3

)])

− 2

5
c21c

2
2L [(α+ 1)µx + µy] +

1

16
[L(α+ 1)(µx + µy)− α]

B12 = B21 =− c41L
(

1

5
+

2

5
i

)
[(α+ 1)µx + µy]− c42L

(
1

5
− 2

5
i

)
[(α+ 1)µx + µy]

+ c21

(
−iα

4
− L

(
1

10
− 1

20
i

)[
µx

(
7α+

4

α
+ 11

)
− µy

(
4

α
+ 3

)])

+ c22

(
i
α

4
− L

(
1

10
+

1

20
i

)[
µx

(
7α+

4

α
+ 11

)
− µy

(
4

α
+ 3

)])

+ c21c
2
2

2

5
L [(α+ 1)µx + µy] +

1

16

(
4 + 3α− L

[
µx

(
7α+

4

α
+ 11

)
+ µy

(
3α+

4

α
+ 7

)])

We continue by transforming the system into polar coordinates u = c1 · c2 (squared radius) and ϕ = 1
2i log c1

c2
.

From the latter definition it is quite straightforward to derive a differential equation of the phase variable ϕ in the
deterministic limit:

dϕ

dt
=

√
αγ

2
− L

2

√
γ

α
(α+ 1)µx −

L

2

√
α

γ
(γ + 1)µy − u ·

√
α

γ

(
(α+ γ) + 2L

(α+ 1)(α+ 2γ)

α+ 4γ
µx + 2L

(2α+ γ)

4α+ γ
µy

)
+ g(ϕ).

(S16)

where g(ϕ) is a function containing terms proportional to exp(iϕ)k, k ∈ ±{2, 4}, which will drop out after stochastic
averaging (see below).
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This term reduces for α = γ to the same result as the one calculated from the slightly differing approximated
eigensystem for this case (see section II C 2):

dϕ

dt
=
α

2
− L

2
(α+ 1)(µx + µy)− u · 2

(
α+

3

5
L [µx(α+ 1) + µy]

)
+ g(ϕ), (S17)

Moving on to the radial variable for α = γ, according to the Itô chain rule [4] Eq. (S15) transforms to:

du = [a(u, ϕ) + b(u, ϕ)] dt+
√
Du(u, ϕ)dW, (S18)

a(u, ϕ) =u2 (−a1 + g(ϕ)) ,

b(u, ϕ) =
a2
N

+ u2L
2

5N
[µx(α+ 1) + µy] + g(ϕ),

D(u, ϕ) =u
2a2
N

+ u2L
1

5N

[
µx

(
4

α
+ 7 + 3α

)
+ µy

(
4

α
+ 3

)]
+ g(ϕ),

a1 =
4

5
L [(α+ 1)µx + µy] , (S19)

a2 =
1

16

[
4 + 3α− µxL

(
4

α
+ 11 + 7α

)
− µyL

(
4

α
+ 7 + 3α

)]
, (S20)

where g(ϕ) again are terms proportional to exp(iϕ)k, k ∈ ±{2, 4} and W is a Wiener process with zero mean and unit
variance.

For α 6= γ we arrive at the following, more general expressions for a1, a2:

a1 =4αL

(
α+ 1

α+ 4γ
µx +

µy
4α+ γ

)
, (S21)

a2 =
1

16

[(
2

α
+ 3

)
γ + 2− µxL

(α+ 1)(α(7γ + 2) + 2γ)

α2
− µyL

(γ + 1)(α(3γ + 2) + 2γ)

αγ

]
. (S22)

The coefficients of the higher order terms u2 also change, but will not be stated since they are unused in the following.
Simple substitution shows that these expressions reduce to the corresponding simpler expressions given in Eqs. (S19)
and (S20) for the special case α = γ.

III. STOCHASTIC ANALYSIS

A. Separation of timescales & stochastic averaging

As discussed in the main text, the (stochastic) differential equations (S17) and (S18) admit a separation of time
scales. As is evident from the deterministic terms, ϕ evolves on O(1), while u shows slow geometric decay u̇ ∝ −u2.
This is also evident in simulations, where changes in amplitude happen over the course of several oscillation cycles.
We can therefore assume u to be stationary during one oscillation cycle, and average all coefficients over one period

of ϕ (see [9] for an extended discussion). More precisely, we integrate the coefficients as 1
2π

∫ 2π

0
dϕ.

The functions g(ϕ) above are introduced as symbolic placeholders for functions consisting of linear combinations of
terms proportional to exp(iϕ)k, k ∈ ±{2, 4}. These are assumed to be the only dependencies on ϕ. Thus, for these

functions it holds that 1
2π

∫ 2π

0
g(ϕ)dϕ = 0. Further, all terms independent of ϕ will be left unchanged.

After integration, Eqs. (S17) and (S18) to leading order read as follows (for α 6= γ):

dϕ

dt
=

√
αγ

2
− L

2

√
γ

α
(α+ 1)µx −

L

2

√
α

γ
(γ + 1)µy,

du =
[
−a1u2 +

a2
N

]
dt+

√
2u
a2
N
dW. (S23)

The coefficients a1 and a2 are given in Eqs. (S19) and (S20), or Eqs. (S21) and (S22) for α 6= γ. This system
corresponds [4] to the Fokker-Planck equation given in Eq. (4) of the main text. Note that for N →∞ this reduces
to the deterministic system Eq. (3) of the main text.

Finally, instead of the ad hoc transformation to polar coordinates, it is also possible to analytically derive nonlinear
coordinate transformations that reduce the system (S15) to the normal form of a Poincare-Andronov-Hopf bifurcation
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(see e.g. [10]). This rather lengthy calculation yields the same coefficients for the deterministic system as the polar
coordinates, along with additional correction terms ϕ̇ ∝ u2 for the frequency equation (S17) (verified by simulation
results, not shown).

B. Equilibrium distribution

The stochastic differential equation (S23) corresponds [4] to the Fokker-Planck equation:

∂tP (u, t) =− ∂u [α (u)P (u, t)] +
1

2
∂2u [D (u)P (u, t)] (S24)

with α (u) = −a1u2 +
a2
N

and D (u) = 2
a2
N
u

Assuming the radius can grow without bounds, this admits an equilibrium distribution. We set Eq. (S24) to zero,
and integrate twice, which yields:

logP (u) =

∫
2α(u)− ∂uD(u)

D(u)
du = −Na1

2a2
u2 + c⇒ P (u) = N exp

(
−Na1

2a2
u2
)
,

where N is an integration constant that can be chosen to normalize the distribution P (u) to one. This yields

N =
√

2Na1
a2π

. The finite expectation value of this distribution can be calculated as:

〈u〉 =

∫ ∞

0

uP (u)du =

√
2

π

a2
a1N

, (S25)

which is the value given in the main text.

C. Mean extinction time

According to [11] the mean first passage time from u = 0 to u = umax is given by

T = 2

∫ umax

0

dy

ψ (y)

∫ y

0

dz
ψ (z)

D (z)
,

with

ψ (x) = exp

(∫ x

0

dt
2α (t)

D (t)

)
.

We begin by calculating ψ:
∫ x

0

dt
2α (t)

D (t)
= lim

ε→0

∫ x

ε

dt

(
1

t
−N a1

a2
t

)
= lim
ε→0

(
log

x

ε

)
−N a1

a2

x2

2

ψ(x) = exp

(
−N a1

a2

x2

2

)
lim
ε→0

x

ε
.

We proceed by calculating the inner integral of T

∫ y

0

dz
ψ (z)

D (z)
= lim

ε→0

1

ε

N

2a2

∫ y

0

dz exp

(
−N a1

a2

z2

2

)
= lim
ε→0

1

ε

√
N

2a1a2

√
π

2
Erf

(√
Na1
2a2

y

)
,

which finally gives us the mean first passage time

T = lim
ε→0

√
π

√
N

2a1a2

∫ umax

0

dy
1

y
Erf

(√
Na1
2a2

y

)
exp

(
N
a1
a2

y2

2

)

=
√
π

√
N

2a1a2

∫ √
Na1
2a2

umax

0

dx
1

x
Erf (x) exp

(
x2
)

= umax
N

a2
2F2

(
1/2, 1; 3/2, 3/2;

Na1
2a2

u2max

)
.
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Where 2F2 (1/2, 1; 3/2, 3/2;x) is the generalized hypergeometric function. We define

N̄ =
N

N∗
with N∗ =

2a2
a1u2max

and T̄ =
T

T ∗
with T ∗ =

2

a1umax

to arrive at the universal expression

T̄ = N̄2F2

(
1

2
, 1;

3

2
,

3

2
; N̄

)
.

The scaling of N∗ and T ∗ depends on the parameters of the system as well as the maximal amplitude of oscillations
umax which represents the boundary at which oscillations lead to the extinction of one of the involved sequences.

The expression for umax given in the main text is derived from the value of the nonlinearly transformed radial
variable as a function of the concentration on the virulent virus strains and corresponding immune system sequences
(to first order in the mutation rates):

u(xp, xq, yp, yq) =
γ(xp − xq)2 (2αγ + γ(α+ 1)Lµx − α(γ + 1)Lµy)

2
+ α(yp − yq)2 (2αγ − γ(α+ 1)Lµx + α(γ + 1)Lµy)

2

64α3γ2
.

(S26)

As can be seen from the differences, this variable becomes maximal if the distribution in each population is maximally
asymmetric, e.g. if xp = xmax, xq = 0 and correspondingly yp = ymax, yq = 0. The maximal values under the given
mutational loads (and a fitness advantages of α, as assumed in the main text) xmax and ymax can be determined from

standard quasispecies theory as xmax = Qx(α+1)−1
α and ymax =

Qy(α+1)−1
α . For small mutation rates and large α and

γ this yields:

umax '
α+ γ

16α
+
L (α(α− 3γ)µy − γ(α+ γ)µx)

16α2γ
− L(α+ γ) (µx + µy)

16α
. (S27)

However, in the given scenario of oscillations around the coexistence fixed point (see Eq. (S8)) xp = xq = xm one
virulent virus strain, e.g. xq, hits a zero concentration if the other strain has the value of xmax = 2xm (assuming
xp +xq = const., which is a valid assumption under the error-tail approximation). Similarly, the maximal asymmetry
during oscillations in the immune system population is, e.g., yp = ymax = 2ym, yq = 0. Using these values in Eq.
(S26) gives a correction factor of umax,corr = βumax with values β depending on the mutation rate, ranging between
≈ 0.91− 0.99. These are then used to rescale the curves in the plots of Fig. 3.

For the numerical estimation of the time to transition from regular adaptive cycles to intermittent switching in
simulations, we initialized the populations equally and fully localized (xp = xq = yp = yq = 0.5) and recorded the
time at which one of the virulent virus sequences was lost from the population and the immune system stabilized at
the sequence corresponding to the other virulent sequence (i.e. the equilibrium between intermittent adaptive shifts
of the population composition). This process was repeated for the indicated combinations of mutation probabilities
and system sizes for between 80 and 360 times (small sample sizes are due to excessively long simulation times). The
data points in plots in Fig. 3 show the mean escape times, with error bars indicating the 0.95 confidence interval of
the mean.

D. Limits

Expanding the expected oscillation amplitude 〈u〉 =
√

2
π

a2
a1N

for large values of α, γ as well as small mutation rates,

we can approximate

〈u〉 ' 1

4

√
3

2π

γ(α+ 4γ)

α2LµxN
. (S28)

Similarly, with N∗ = 2 a2
a1u2

max
and T ∗ = 2

a1umax
, we get

N∗ ' 24γ(α+ 4γ)

(α+ γ)2Lµx
(S29)

T ∗ ' 8(α+ 4γ)

α(α+ γ)µxL
. (S30)
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FIG. S1: Deterministic solutions of Eqs. (2) of the main text for n = 2 (left), n = 3 (middle), or n = 4 virulent strains (right),
respectively. Simple oscillations for n = 2 are replaced by more complex yet periodic patterns for n > 2. Parameters are
α = 10, γ = 15, µx = 0.005, µy = 0.001 and L = 8.
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FIG. S2: Mean time until transition from regular oscillations to intermittency for varying mutation rates and increased γ = 1.5α.
Rescaling correctly reproduces the effects of increased γ, since the curves still collapse to the universal curve. Inset shows
unscaled waiting times which are reduced w.r.t. Fig. 3 of the main text.
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