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Abstract The article begins with a quantitative version of the martingale central limit
theorem, in terms of the Kantorovich distance. This result is then used in the study
of the homogenization of discrete parabolic equations with random i.i.d. coefficients.
For smooth initial condition, the rescaled solution of such an equation, once averaged
over the randomness, is shown to converge polynomially fast to the solution of the
homogenized equation, with an explicit exponent depending only on the dimension.
Polynomial rate of homogenization for the averaged heat kernel, with an explicit
exponent, is then derived. Similar results for elliptic equations are also presented.
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1 Introduction

1.1 Main results

The main goal of this article is to give quantitative estimates in the homogenization
of discrete divergence-form operators with random coefficients. Writing B for the set
of edges of Z

d , we let ω = (ωe)e∈B be a family of i.i.d. random variables, assumed
to be uniformly bounded away from 0 and infinity, and whose joint distribution will
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280 J.-C. Mourrat

be written P (with associated expectation E). The operator whose homogenization
properties we wish to investigate is

Lω f (x) =
∑

y∼x

ωx,y( f (y) − f (x)) (x ∈ Z
d), (1.1)

where we write y ∼ x when x, y ∈ Z
d are nearest neighbours. For a bounded

continuous f : R
d → R, we consider u(ε) the solution of

⎧
⎪⎨

⎪⎩

∂u(ε)

∂t
= Lωu(ε) on R+ × Z

d ,

u(ε)(0, ·) = f (ε ·) on Z
d ,

(DPEω
ε )

and uε(t, x) = u(ε)(ε−2t, �ε−1x�). There exists a symmetric positive-definite matrix
A (independent of f ) such that the function uε converges, as ε tends to 0, to the
function u solution of

⎧
⎨

⎩

∂u

∂t
= 1

2
∇ · (A∇u

)
on (0,+∞) × R

d ,

u(0, ·) = f on R
d .

(CPE)

The notions of being a solution to (DPEω
ε ) or (CPE), and of the convergence of uε to u,

will be made precise later on. For every α = (α1, . . . , αd) ∈ N
d , we call

∂x
α1
1 ...x

αd
d

f = ∂ |α|1 f

∂xα1
1 · · · ∂xαd

d

(|α|1 = ∑
j α j )

a weak derivative of f of order |α|1, where the derivative is understood in the sense
of distributions.

Here and below, we write �x� for the integer part of x, a ∧ b = min(a, b), a ∨ b =
max(a, b), log+(x) = log(x) ∨ 1, and |ξ | for the L2 norm of ξ ∈ R

d . The main
purpose of this paper is to prove the following theorems.

Theorem 1.1 Let m = �d/2� + 3 and δ > 0. There exist constants Cδ (which may
depend on the dimension) and q such that, if the weak derivatives of f up to order m
are in L2(Rd), then for any ε > 0, t > 0 and x ∈ R

d , one has

|E[uε(t, x)] − u(t, x)|

�
d∑

j=1

‖∂x j f ‖∞ ε + Cδ (t + √
t)

⎛

⎝‖ f ‖2 +
d∑

j=1

‖∂xm
j

f ‖2

⎞

⎠ �q,δ

(
ε2

t

)
, (1.2)

where

�q,δ(u) =

∣∣∣∣∣∣∣∣

u1/4 if d = 1,

logq
+(u−1) u1/4 if d = 2,

u1/2−δ if d � 3.

(1.3)
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Kantorovich distance in the martingale CLT 281

Remark 1.2 The Sobolev embedding theorem ensures that under the assumptions of
Theorem 1.1, the function f is continuously differentiable and the norms ‖∂x j f ‖∞
are finite (see for instance [1, Theorem 5.4]).

Theorem 1.3 Let pω
t (x, y) be the heat kernel associated to Lω, let

pt (x, y) = 1

(2π t)d/2
√

det A
exp

(
− 1

2t
(y − x)T A

−1
(y − x)

)

be the heat kernel associated to 1
2∇ · A∇, and let δ > 0. There exist constants c > 0

(independent of δ), q, Cδ, εδ > 0 such that for any ε > 0, t > 0 satisfying ε/
√

t � εδ

and any x ∈ R
d , one has

∣∣∣ε−d
E

[
pω
ε−2t (0, �ε−1x�)

]
− pt (0, x)

∣∣∣

� Cδ

td/2

(
�q,δ

(
ε2

t

))1/(d+3)

exp

[
−c

( |x |2
t

∧ |ε−1x |
)]

. (1.4)

In particular, for any s > 0, there exists Cδ,s such that for ε small enough,

sup
x∈Rd

sup
t�s

∣∣∣ε−d
E

[
pω
ε−2t (0, �ε−1x�)

]
− pt (0, x)

∣∣∣ � Cδ,s

(
�q,δ(ε

2)
)1/(d+3)

.

Remark 1.4 For a given smooth function f and a fixed t > 0, the right-hand side of
(1.2) is of the order of

∣∣∣∣∣∣

√
ε if d = 1,

logq(ε−1)
√

ε if d = 2,

ε1−δ′
if d � 3,

(1.5)

where δ′ = 2δ > 0 is arbitrary. Similarly, for fixed t and x , the right-hand side of
(1.4) is of the order of

∣∣∣∣∣∣

ε1/8 if d = 1,

logq/5(ε−1) ε1/10 if d = 2,

ε1/(d+3)−δ′′
if d � 3,

(1.6)

where δ′′ = 2δ/(d + 3) > 0 is arbitrary.

Remark 1.5 Similar results concerning elliptic equations are presented in Theo-
rems 7.1 and 7.3 below.

1.2 Context

Homogenization problems have a very long story, going back at least to [34,40].
Rigorous proofs of homogenization for periodic environments were obtained in the
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1960s and 1970s (see [4] for references), and then for random environments with
[31,32,37,42]. Classical methods used to show homogenization typically rely on a
compactness argument, or on the ergodic theorem, both approaches leaving the ques-
tion of the rate of convergence untouched.

For continuous space and periodic coefficients, [28, Corollary 2.7] uses spectral
methods to show that

∣∣∣ε−d pω
ε−2t (0, ε−1x) − pt (0, x)

∣∣∣ � C
ε

t (d+1)/2
.

For random coefficients, available results are much less precise. For continuous space,
[43] gives an algebraic speed of convergence of uε to u for the elliptic problem and
d � 3, without providing an explicit exponent. In [8], the much more general case
of fully nonlinear elliptic equations is considered, and a speed of convergence of a
logarithmic type is proved.

Here, we focus on the convergence of the average of uε to u. This approach has been
considered in [14] for the elliptic problem. There, it is shown that the suitably rescaled
Green function, once averaged over the randomness of the coefficients, differs from
the Green function of the homogenized equation by no more than a negative power of
ε. The exponent obtained is implicit, and depends on the ellipticity condition assumed
on the random coefficients. Similar results for parabolic equations have been derived
in [11].

In contrast, Theorems 1.1 and 1.3 provide explicit exponents, that depend only on
the dimension. I conjecture that the correct order of decay with ε in Theorem 1.1
should be

∣∣∣∣∣∣

√
ε if d = 1,

ε
√| log(ε)| if d = 2,

ε if d � 3.

This differs notably from what is obtained in Theorem 1.1 only when d = 2. On
the other hand, it may well be that the assumption of high regularity on f is only an
artefact of the methods employed.

The fact that

sup
x∈Rd

sup
t�s

∣∣∣ε−d pω
ε−2t (0, �ε−1x�) − pt (0, x)

∣∣∣ a.s.−−→
ε→0

0 (1.7)

is known at least since [3], where the much more difficult case where the random
coefficients are Bernoulli random variables is considered (in this context, the heat
kernel should be considered only within the unique infinite percolation cluster). Yet, for
strictly positive random coefficients, this convergence does not hold if the distribution
of the random coefficients is allowed to have a fat tail close to 0 and when d � 4
[5,6]. Under the same circumstance and when pω is replaced by its average in (1.7),
the convergence fails to hold in any dimension [20] (see however [2, Proposition 7.2]
for a nice way to get around this problem).
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Kantorovich distance in the martingale CLT 283

Under our present assumption of uniform ellipticity, regularity properties of the
average of pω were proved in [12,17] (more on this will come below).

An evaluation of the gap between the average of uε and u naturally calls for estimates
on the size of the random fluctuations of uε around its average. In this direction and for
the elliptic problem, [12] obtains algebraic decay of the variance of uε (integrated over
space). The exponent obtained is implicit, and depends on the ellipticity conditions.1

1.3 Our approach

In order to prove Theorem 1.1, we will use the representation of uε as the expected
value over the paths of a random walk, that we write (Xt )t�0. This random walk has
inhomogeneous jump rates given by the (ωe)e∈B, and Lω is its infinitesimal generator.
For instance, one has

uε(t, 0) = Eω
0

[
f
(
εXε−2t

)]
,

where we write Pω
0 for the distribution of the random walk starting from 0, and Eω

0 for
its associated expectation. The (pointwise) convergence of uε to u is equivalent to the
claim that the random walk, after diffusive scaling, satisfies a central limit theorem.
Quantitative estimates should thus follow if one can provide with rates of convergence
in this central limit theorem.

In [35], it is shown that there exist constants C, q � 0 such that for any ξ of unit
norm,

sup
x∈R

∣∣∣∣PPω
0

[
ξ · Xt

σ(ξ)
√

t
� x

]
− �(x)

∣∣∣∣ � C

∣∣∣∣∣∣∣∣

t−1/10 if d = 1,

logq
+(t) t−1/10 if d = 2,

log+(t) t−1/5 if d = 3,

t−1/5 if d � 4,

(1.8)

where � is the cumulative distribution function of the standard Gaussian random
variable, and σ(ξ) = ξ · Aξ .

This result has two important weak points: (1) the rates are far from the usual
t−1/2 one obtains for sums of i.i.d. random variables, and (2) the theorem only gives
information about the projections of Xt onto a fixed vector. We shall find ways to
overcome these two problems.

The classical approach for the proof of a central limit theorem for the random walk
consists in decomposing it as the sum of a martingale plus a remainder term, and
then show that the martingale converges (after scaling) to a Gaussian random variable,
while the remainder term becomes negligible in the limit.

In view of this, what should be done is clear: we should first find a quantitative
estimate on how small the remainder term is, and second, show that the martingale
converges rapidly to a Gaussian. This is indeed the method used in [35]. The control of

1 A. Gloria has announced improved estimates on this problem.
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the remainder term given there is satisfactory, and the problem lies with the quantitative
central limit theorem for the martingale part.

This quantitative central limit theorem relies on the fact that one can have a sharp
control of the variance of the quadratic variation of the martingale. It is shown that,
after scaling, this variance decays like t−1 when d � 4, which is the best possible
rate. However, given such a control, the quantitative CLT (due to [24,26]) used there
only yields a decay of t−1/5 in this case.

Surprisingly, this exponent 1/5 is best possible in general [36]. To overcome this
obstruction, we derive new quantitative CLT’s for martingales, that will not yield a
Berry-Esseen type of estimate, but rather measure

sup
f ∈L

∣∣∣∣EEω
0

[
f

(
ξ · Xt

σ(ξ)
√

t

)]
−
∫

f d�

∣∣∣∣ ,

where L is a class of functions (this is reminiscent of Stein’s method, see for instance
[10]). When L is the class of bounded 1-Lipschitz functions, the supremum is often
called the Kantorovich(-Rubinstein) distance. We also consider L to be the class of
bounded C2 functions that have first derivative bounded by 1 and second deriva-
tive bounded by k, and call it the k-Kantorovich distance. The martingale CLT’s
obtained hold for general square-integrable martingales, and are of independent
interest.

Once equipped with these quantitative martingale CLT’s, we apply them to the
one-dimensional projections of the random walk (Xt ), and for d � 3, we obtain rates
approaching the i.i.d. rate of t−1/2. To do so, we use estimates derived in [35], most
importantly on the variance of the quadratic variation of the martingale. These in
turn are consequences of the L p boundedness of the corrector (for d � 3, and with
logarithmic corrections for d = 2), and of a spatial decorrelation property of this
corrector, proved in [22, Theorem 2.1 and Proposition 2.1].

In order to obtain Theorem 1.1, we need to carry the information obtained on
the projections of Xt to Xt itself, in a kind of quantitative version of the Cramér-
Wold theorem. This is achieved through Fourier analysis, at the price of requiring the
existence of weak derivatives of higher order.

The key observation that enables to go from Theorem 1.1 to Theorem 1.3 is the high
regularity of the averaged heat kernel. In contrast to the true heat kernel, the averaged
one has a gradient which is bounded by a constant times the gradient of p, as is proved
in [12,17].

The estimates due to [22] are the only place where the assumptions of independence
and uniform ellipticity of the coefficients come into play. In particular, if it is shown
that these estimates are valid for certain correlated environments, then the present
results automatically extend to this context. The present results should also extend to
continuous space with only minor change, as long as the estimates of [22] remain true
in this setting.2

2 A. Gloria, S. Neukamm and F. Otto have announced results in this direction.
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1.4 Organization of the paper

We introduce the (k-)Kantorovich and Kolmogorov distances in Sect. 2. In Sect. 3,
we consider general square-integrable martingales, and derive quantitative CLT’s with
respect to the (k-)Kantorovich distances. We then apply these results to projections of
the random walk Xt in Sect. 4. The homogenization setting is taken up in Sect. 5, and
Theorem 1.1 is proved. Theorem 1.3 is then derived in Sect. 6. Finally, similar results
for the homogenization of elliptic equations are presented in Sect. 7.

2 Distances between probability measures

A function f : R
m → R

n is said to be k-Lipschitz if for any x, y ∈ R
m , one has

| f (y) − f (x)| � k|y − x |. Let ν, ν′ be probability measures on R, and let Fν, Fν′ be
their respective cumulative distribution functions. We define the Kantorovich distance
between ν and ν′ as

d1(ν, ν′) = sup

{∣∣∣∣
∫

f dν −
∫

f dν′
∣∣∣∣ , f bounded and 1-Lip.

}
, (2.1)

and the Kolmogorov distance between ν and ν′ as

d∞(ν, ν′) = sup
x∈R

|Fν′(x) − Fν(x)| = ‖Fν′ − Fν‖∞. (2.2)

The notation for the Kantorovich distance becomes more transparent once we recall
that (see for instance [41, Theorem 1.14 and (2.48)])

d1(ν, ν′) =
∫

|Fν′(x) − Fν(x)| dx = ‖Fν′ − Fν‖1. (2.3)

As we will see below, bounds in the martingale CLT are improved when measured
with the Kantorovich distance instead of the Kolmogorov distance. We now introduce
weaker forms of the Kantorovich distance, for which the rates of convergence will be
even better. For any k ∈ [0,+∞], we define the k-Kantorovich distance as

d1,k(ν, ν′) = sup

{∣∣∣∣
∫

f dν −
∫

f dν′
∣∣∣∣ , f ∈ C2

b(R, R), ‖ f ′‖∞ � 1, ‖ f ′′‖∞ � k

}
,

where C2
b(R, R) is the set of bounded twice continuously differentiable functions from

R to R. For k � k′, one has d1,k � d1,k′ � d1,∞ = d1. Note that if f ∈ C2
b (R, R),

then
∣∣∣∣
∫

f dν −
∫

f dν′
∣∣∣∣ � ‖ f ′‖∞ d1,‖ f ′′‖∞/‖ f ′‖∞(ν, ν′). (2.4)

In the sequel, if X follows the distribution ν and Y the distribution ν′, we may write
d1(X, Y ) to denote d1(ν, ν′), or also d1(X, Fν′) if convenient. If X and Y are defined
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on the same probability space with probability measure P and associated expectation
E , then for any 1-Lipschitz function f , we have

|E[ f (X)] − E[ f (Y )]| � E | f (X) − f (Y )| � E |X − Y |,

and hence

d1(X, Y ) � E |X − Y |. (2.5)

Similarly, if X follows the distribution ν and Y the distribution ν′, we write
d1,k(X, Y ), d1,k(X, Fν′) or d1,k(ν, ν′) as convenient.

3 Martingale CLT

For a square-integrable cadlag martingale (Mt )t∈[0,1] defined with respect to the prob-
ability measure P and the right-continuous filtration (Ft )t�0, we write (〈M〉t )t∈[0,1]
for its predictable quadratic variation,


M(t) = Mt − lim
s→t−

Ms,

and

L2p = E

⎡

⎣
∑

0�t�1

|
M(t)|2p

⎤

⎦ .

Recall that we denote by � the cumulative distribution function of the standard
Gaussian random variable. In [24], the following is proved.

Theorem 3.1 ([24]) For any p > 1, there exists C p (independent of M) such that

d∞(M1,�) � C p

(
L1/(2p+1)

2p + ‖〈M〉1 − 1‖p/(2p+1)
p

)
. (3.1)

Our first result consists in showing that one can get sharper bounds if one replaces
the Kolmogorov distance by the (k-)Kantorovich distance in (3.1).

Theorem 3.2 For any p > 1, there exists C p (independent of M) such that

d1(M1,�) � C p L1/(2p+1)
2p + 2‖〈M〉1 − 1‖1/2

1 , (3.2)

and for any k � 0,

d1,k(M1,�) � C p L1/(2p+1)
2p + k

2
L1/p

2p + (k ∨ 1)‖〈M〉1 − 1‖1. (3.3)
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Remark 3.3 Naturally, one has ‖〈M〉1 − 1‖1 � ‖〈M〉1 − 1‖p, and the statements are
only interesting when this quantity, and also L2p, are small, so Theorem 3.2 indeed
provides better rates of convergence than Theorem 3.1. It is shown in [36] that it is not
possible to change the exponent p/(2p +1) appearing on the term ‖〈M〉1 −1‖p in the
right-hand side of (3.1) by any higher exponent. It would be interesting to investigate
how sharp (3.2) is in this respect. The term ‖〈M〉1 − 1‖1 appearing on the right-hand
side of (3.3) cannot be improved. Indeed, let (Bs)s�0 be a standard Brownian motion,
and consider the martingale Ms = B(1+ε)s . Since the martingale is continuous, L2p

vanishes, while one has ‖〈M〉1 − 1‖1 = ε. On the other hand, the cosine function has
first and second derivatives bounded by 1, and thus

d1,1(M1,�) � E[cos(B1)] − E[cos(M1)] = e−1/2 − e−(1+ε)/2 ∼ ε

2
(ε → 0),

thus justifying the optimality of the exponent on ‖〈M〉1 − 1‖1.

Remark 3.4 A quantitative martingale CLT expressed in terms of the Kantorovich
distance was already formulated in [38, Theorem 8.1.16]. The terms involved in the
bound are however difficult to estimate in practical situations, in contrast to what is
obtained in Theorem 3.2.

In order to prove Theorem 3.2, we will rely on the following non-uniform version
of Theorem 3.1.

Theorem 3.5 ([24,25]) For any p > 1, there exists C̃ p (independent of M) such that
if L2p + ‖〈M〉1 − 1‖p

p � 1, then for any x ∈ R,

|P[M1 � x] − �(x)| � C̃ p

1 + |x |2p

(
L1/(2p+1)

2p + ‖〈M〉1 − 1‖p/(2p+1)
p

)
.

[25, Theorem 1] is the equivalent statement concerning discrete-time martingales.
Theorem 3.5 can be derived from its discrete-time version by applying the approxima-
tion procedure explained in [24, Section 4] (in [24], locally square-integrable martin-
gales are considered, while we stick here with plainly square-integrable martingales.
There is no loss of generality however, since a locally square-integrable martingale
is in fact a square-integrable one if ‖〈M〉1 − 1‖1 is finite. One can thus skip the
localization procedure at the end of [24, Section 4]).

Proof of Theorem 3.2 We start by proving that there exists C p (independent of M)
such that (3.2) holds. We decompose the proof of this into three steps.
Step I.1. We first prove the claim assuming that

〈M〉1 = 1 a.s. (3.4)

and that L2p � 1. Under this condition, Theorem 3.5 ensures that

|P[M1 � x] − �(x)| � C̃ p

1 + |x |2p
L1/(2p+1)

2p .
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We thus have, after possibly enlarging C̃ p,

d1(M1,�) =
∫

|P[M1 � x] − �(x)| dx � C̃ p L1/(2p+1)
2p ,

which is the desired result.
Step I.2. We now no longer impose that condition (3.4) holds, but keep with the
assumption that L2p � 1. Following an idea probably due to [18], we introduce

τ = sup{t � 1 : 〈M〉t � 1}.

Note that τ is a stopping time, since the filtration is right-continuous, and thus

{τ � t} =
⋂

ε>0

{〈M〉t+ε > 1} ∈ Ft .

We define

〈M〉τ− =
∣∣∣∣
〈M〉1 if 〈M〉1 � 1,

limt→τ−〈M〉t otherwise,

and

Mτ− =
∣∣∣∣

M1 if 〈M〉1 � 1,

limt→τ− Mt otherwise.

Note that 〈M〉τ− � 1. Let (Bs)s�0 be a standard Brownian motion, independent of
the martingale. We define

M̃s =

∣∣∣∣∣∣∣∣

Ms if 0 � s < τ,

Mτ− if τ � s � 1,

Mτ− + Bs−1 if 1 � s � 2 − 〈M〉τ− ,

Mτ− + B1−〈M〉τ− if 2 − 〈M〉τ− � s � 2.

By construction, M̃ is a martingale, and

〈M̃〉2 − 〈M̃〉1 = 1 − 〈M〉τ− ,

hence 〈M̃〉2 = 1. Naturally, the fact that M̃ is defined on [0, 2] instead of [0, 1] plays
no role, and this martingale satisfies condition (3.4) (at time 2). Writing

L̃2p = E

⎡

⎣
∑

0�t�2

|
M̃(t)|2p

⎤

⎦ ,
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we clearly have L̃2p � L2p � 1. We learn from the first step of the proof that

d1(M̃2,�) � C̃ p L̃1/(2p+1)
2p � C̃ p L1/(2p+1)

2p . (3.5)

We now want to use the fact that

d1(M1,�) � d1(M1, M̃2) + d1(M̃2,�) (3.6)

to estimate d1(M1,�). In view of (2.5), we have

d1(M1, M̃2) � E
[∣∣∣M1 − M̃2

∣∣∣
]
.

Note that

M1 − M̃2 = M1 − Mτ + 
M(τ )1〈M〉1>1 − B1−〈M〉τ− ,

and thus

E
[∣∣∣M1 − M̃2

∣∣∣
]

� E [|M1 − Mτ |] + E [|
M(τ )|] + E
[∣∣B1−〈M〉τ−

∣∣] .

Let us write a1 + a2 + a3 for the latter sum, with obvious identifications. We bound
the contribution of each of these terms successively.

a1 � E
[
(M1 − Mτ )

2
]1/2 = E [〈M〉1 − 〈M〉τ ]1/2 ,

since τ � 1 is a stopping time. Now, either τ = 1, in which case 〈M〉1 − 〈M〉τ = 0,
or τ < 1, in which case 〈M〉τ � 1. In both cases, we have

〈M〉1 − 〈M〉τ � |〈M〉1 − 1|,
and thus

a1 � ‖〈M〉1 − 1‖1/2
1 .

As for a2, we have

a2 = E [|
M(τ )|] � E
[
|
M(τ )|2p

]1/(2p)

� L1/(2p)
2p . (3.7)

For the third term, we have

a3 = c E
[
|1 − 〈M〉τ−|1/2

]
� c E

[|1 − 〈M〉τ−|]1/2
,

where c = E[|B1|] � 1. We decompose the last expectation as

E
[|1 − 〈M〉τ−| 1〈M〉1�1

]+ E
[|1 − 〈M〉τ−| 1〈M〉1>1

]
.
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The first term is bounded by ‖1 − 〈M〉1‖1, while the second term is smaller than

E [
〈M〉(τ )] � E
[
(
M(τ ))2

]

(to see this, consult for instance the proof of [27, Theorem 4.2]). The latter is bounded
by

E
[
(
M(τ ))2p

]1/p
� L1/p

2p .

To sum up, we have shown that

d1(M1, M̃2) � ‖〈M〉1 − 1‖1/2
1 + L1/(2p)

2p +
√

‖1 − 〈M〉1‖1 + L1/p
2p

� 2‖〈M〉1 − 1‖1/2
1 + 2L1/(2p)

2p . (3.8)

Since we assume that L2p � 1, we have L1/(2p)
2p � L1/(2p+1)

2p , and equations (3.6),
(3.5) and (3.8) give us that

d1(M1,�) � (C̃ p + 2)L1/(2p+1)
2p + 2‖〈M〉1 − 1‖1/2

1 ,

which is what we wanted to prove.
Step I.3. It remains to consider the case when L2p > 1. It follows from (2.5) that

d1(M1,�) � c + ‖M1‖1,

where c is the L1 norm of a standard Gaussian, c � 1. Moreover,

‖M1‖1 � ‖M1‖2 = ‖〈M〉1‖1/2
1 � (1 + ‖〈M〉1 − 1‖1)

1/2 .

As a consequence, it is always true that

d1(M1,�) � 2 + ‖〈M〉1 − 1‖1/2
1 .

The theorem is thus clearly true when L2p > 1 as soon as C p � 2, and this finishes
the proof of (3.2).

We now proceed to show that there exists C p (independent of M and k) such that
(3.3) holds, and decompose the proof of this fact into two steps.
Step II.1. We assume first that L2p � 1, and consider again the martingale M̃ as
constructed in step I.2. Since 〈M̃〉2 = 1, we know from step I.1 that

d1(M̃2,�) � C̃ p L1/(2p+1)
2p . (3.9)

Let

M2 = Mτ + B1−〈M〉τ− ,
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and observe that

M̃2 = M2 − 
M(τ )1〈M〉1>1.

We have

d1(M2,�) � d1(M2, M̃2) + d1(M̃2,�).

The first term on the right-hand side is smaller than E[|
M(τ )|] by (2.5), and we have
seen in (3.7) that this is smaller than L1/(2p)

2p � L1/(2p+1)
2p . Using also (3.9), we obtain

d1,k(M2,�) � d1(M2,�) � (C̃ p + 1)L1/(2p+1)
2p . (3.10)

Let f ∈ C2
b(R, R) be such that ‖ f ′‖∞ � 1 and ‖ f ′′‖∞ � k. We will show that

∣∣E[ f (M2)] − E[ f (Mτ )]
∣∣ � k

2

(
L1/p

2p + ‖〈M〉1 − 1‖1

)
. (3.11)

Indeed, since f ∈ C2
b(R, R) and ‖ f ′′‖∞ � k, we have

∣∣E
[

f (M2) − f (Mτ ) − (M2 − Mτ ) f ′(Mτ )
]∣∣ � k

2
E
[
(M2 − Mτ )

2
]
.

But

E
[
(M2 − Mτ ) f ′(Mτ )

] = E[B1−〈M〉τ− f ′(Mτ )]
= E

[
E[B1−〈M〉τ− | Fτ ] f ′(Mτ )

]
,

and E[B1−〈M〉τ− | Fτ ] = 0 since B and M are independent. On the other hand,

E
[
(M2 − Mτ )

2
]

= E[(B1−〈M〉τ− )2] = E[1 − 〈M〉τ−],

and we have seen in step I.2, while treating the term a3, that

E[1 − 〈M〉τ−] � ‖〈M〉1 − 1‖1 + L1/p
2p .

As a consequence, (3.11) is proved, and thus

d1,k(Mτ , M2) � k

2

(
L1/p

2p + ‖〈M〉1 − 1‖1

)
. (3.12)

We now show that

d1,k(Mτ , M1) � k

2
‖〈M〉1 − 1‖1 (3.13)
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using the same technique. We write

∣∣E
[

f (M1) − f (Mτ ) − (M1 − Mτ ) f ′(Mτ )
]∣∣ � k

2
E
[
(M1 − Mτ )

2
]
,

and observe that

E
[
(M1 − Mτ ) f ′(Mτ )

] = E
[
E[(M1 − Mτ ) | Fτ ] f ′(Mτ )

] = 0,

since M is a martingale and τ a stopping time. On the other hand, we have seen while
treating the term a1 in step I.2 that

E
[
(M1 − Mτ )

2
]

� ‖〈M〉1 − 1‖1,

and thus (3.13) is proved. Combining (3.10), (3.12) and (3.13), we thus obtain

d1,k(M1,�) �
(

C̃ p + 1
)

L1/(2p+1)
2p + k

2
L1/p

2p + k‖〈M〉1 − 1‖1,

and this proves (3.3) for L2p � 1.
Step II.2. We now conclude by considering the case when L2p > 1. We learn from
step I.3 that

d1,k(M1,�) � 2 + ‖〈M〉1 − 1‖1/2
1 .

Since for any x � 0, we have
√

x � 1 + x/2, we thus obtain

d1,k(M1,�) � 3 + 1

2
‖〈M〉1 − 1‖1,

and thus relation (3.3) holds when L2p > 1, provided we choose C p � 3. ��

4 The random walk among random conductances

Let 0 < α � β < +∞, and � = [α, β]B. For any family ω = (ωe)e∈B ∈ �, we
consider the Markov process (Xt )t�0 whose jump rate between x and a neighbour y
is given by ωx,y . We write Pω

x for the law of this process starting from x ∈ Z
d , Eω

x
for its associated expectation. Its infinitesimal generator is Lω defined in (1.1). We
assume that the (ωe)e∈B are themselves i.i.d. random variables under the measure P

(with associated expectation E). We write P = PPω
0 for the annealed measure. It was

shown in [30] that under P and as ε tends to 0, the process
√

εXε−1t converges to a
Brownian motion, whose covariance matrix we write A (in [39], it is shown that under
our present assumption of uniform ellipticity, the invariance principle holds under Pω

0
for almost every ω).

Let ξ ∈ R
d be a vector of unit L2 norm. The purpose of this section is to give sharp

estimates on the k-Kantorovich distance between ξ · Xt/
√

t and �σ(ξ), where we write
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�σ to denote the cumulative distribution function of a Gaussian random variable with
variance σ 2, and σ(ξ) = (ξ · Aξ)1/2.

Theorem 4.1 For any δ > 0, there exists a constant C (which may depend on the
dimension) such that for any k � 0 and any ξ of unit norm, one has

d1,k

(
ξ · Xt√

t
,�σ(ξ)

)
� C (k ∨ 1) �q,δ(t

−1) (4.1)

for some q � 0, where in the left-hand side, ξ · Xt/
√

t stands for the distribution of
this random variable under the measure P, and where �q,δ was defined in (1.3).

Remark 4.2 When d � 3, the exponent of decay in (4.1) can thus be made arbitrarily
close to 1/2, and this is the exponent one gets when considering sums of i.i.d. random
variables with finite third moment.

Remark 4.3 By the same reasoning, one can also prove that there exist constants C
(which may depend on the dimension) and q such that, for any ξ of unit norm, one has

d1

(
ξ · Xt√

t
,�σ(ξ)

)
� C

∣∣∣∣∣∣∣∣∣∣

t−1/8 if d = 1,

logq
+(t) t−1/8 if d = 2,

log1/4
+ (t) t−1/4 if d = 3,

t−1/4 if d � 4,

where again ξ · Xt/
√

t stands for the distribution of this random variable under the
measure P.

The proof of Theorem 4.1 follows a line of reasoning similar to that of [35, Theo-
rem 2.1]. From now on, we fix ξ ∈ R

d of unit norm. The starting point is to approximate
ξ · Xt by a martingale, whose construction we now recall. To begin with, let us write
(θx )x∈Zd to denote the action of translation of Z

d on the space of environments �, so
that for ω ∈ � and x, y, z ∈ Z

d , y ∼ z,

(θx ω)y,z = ωx+y,x+z . (4.2)

Let L be the operator acting on L2(�, P) by

L f (ω) =
∑

|z|=1

ω0,z( f (θz ω) − f (ω)).

This operator comes out naturally as the infinitesimal generator of the Markov process
of the environment viewed by the particle (i.e. the process t �→ θXt ω). One can check
that −L is a positive self-adjoint operator on L2(�, P). We let

d(ω) =
∑

|z|=1

ω0,z ξ · z ∈ L2(�, P)
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be the local drift in the direction ξ , and for every μ > 0, we define φμ ∈ L2(�, P) to
be such that

(μ − L)φμ = d.

The parameter μ > 0 should be thought to be small (ideally, one would like to take it
to be zero, but this is not possible in dimension 2). We decompose ξ · Xt as the sum
Mμ(t) + Rμ(t), where

Mμ(t) = ξ · Xt + φμ(ω(t)) − φμ(ω(0)) − μ

t∫

0

φμ(ω(s)) ds, (4.3)

and

Rμ(t) = −φμ(ω(t)) + φμ(ω(0)) + μ

t∫

0

φμ(ω(s)) ds. (4.4)

The next proposition collects several results, mostly from [35], that will be useful for
our purpose.

Theorem 4.4 The process (Mμ(t))t�0 is a square-integrable martingale under P

(with respect to the natural filtration associated to (Xt )t�0). Letσμ = E[(Mμ(1))2]1/2.
There exist constants C and q such that for any μ > 0, t > 0, the following three
estimates hold:

E

[( 〈Mμ〉t

t
− σ 2

μ

)2
]

� C

∣∣∣∣∣∣

logq
+(μ−1)

(
1/

√
t + μ2

)
if d = 2,

log+(t)/t + μ2 if d = 3,

1/t + μ2 if d � 4,

(4.5)

E[(R1/t (t))
2] � C

∣∣∣∣
logq(t) if d = 2,

1 if d � 3.
(4.6)

∣∣σμ − σ(ξ)
∣∣ � C

∣∣∣∣∣∣∣∣

μ logq(μ−1) if d = 2,

μ3/2 if d = 3,

μ2 log(μ−1) if d = 4,

μ2 if d � 5.

(4.7)

Moreover, for every integer p � 1, there exist constants C and q such that for any
μ > 0, t > 0, one has

1

t p
E

⎡

⎣
∑

0�s�t

(
Mμ(s))2p

⎤

⎦ � C

∣∣∣∣
logq

+(μ−1)/t−p+1 if d = 2,

t−p+1 if d � 3.
(4.8)

In these four estimates, the constants do not depend on the vector ξ ∈ R
d of unit norm.
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Inequality (4.7) was proved in [22, Theorem 1] (see also [21, Theorem 3 with k = 1]
for a slightly different point of view). Inequalities (4.5) and (4.6) correspond respec-
tively to [35, (3.10) and Proposition 3.4]. The last inequality with p = 2 corresponds
[35, (3.11)]; the extension to arbitrary p is straightforward.

Proof of Theorem 4.1 We first treat the case d � 2. We have

d1,k

(
ξ · Xt√

t
,�σ(ξ)

)

� d1,k

(
ξ · Xt√

t
,

Mμ(t)√
t

)
+ d1,k

(
Mμ(t)√

t
,�σμ

)
+ d1,k

(
�σμ,�σ(ξ)

)
,

with the understanding that random variables stand in place of their respective distri-
butions under the measure P. Let us write the three terms in the right-hand side above
as b1 + b2 + b3, and proceed to evaluate each of these terms for the specific choice
μ = 1/t . Considering (2.5), we can bound the term b1 by

d1

(
ξ · Xt√

t
,

M1/t (t)√
t

)
� E

[ |R1/t (t)|√
t

]
� E[(R1/t (t))2]1/2

√
t

,

and inequality (4.6) gives us adequate control of this upper bound.
To handle the term b3, consider a standard Gaussian random variable N . Then σN

has �σ as its cumulative distribution function, hence

d1,k (�σ ,�σ ′) � d1 (�σ ,�σ ′) � E[|σN − σ ′N |] = E[|N |] |σ − σ ′|.

Since E[|N |] � 1, the term b3 is bounded by |σ1/t −σ(ξ)|. We can thus use inequality
(4.7) (with μ = 1/t), which is much better than what we need for our purpose.

We now turn to the term b2. For any p > 1, we introduce

L2p(t) = 1

t p
E

⎡

⎣
∑

0�s�t

|
M1/t (t)|2p

⎤

⎦ .

Theorem 3.2 tells us that if L2p(t) � 1, then b2 is smaller than

(
C p + k

2

)
(L2p(t))

1/(2p+1) + (k ∨ 1)

∥∥∥∥
〈M1/t 〉t

t
− σ1/t

∥∥∥∥
1
.

Inequality (4.8) ensures that

L2p(t) � C

∣∣∣∣∣
logq

+(t) t−p+1 if d = 2,

t−p+1 if d � 3,
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for some constants C and q depending on p. In particular, it is always true that L2p(t)
tends to 0 as t tends to infinity. We fix p large enough so that

p − 1

2p + 1
>

1

2
− δ. (4.9)

With such a choice for p, we have (L2p(t))1/(2p+1) = o(tδ−1/2).
Finally, inequality (4.5) gives us that

∥∥∥∥
〈M1/t 〉t

t
− σ1/t

∥∥∥∥
2

2
� C

∣∣∣∣∣∣

logq
+(t) t−1/2 if d = 2,

log+(t) t−1 if d = 3,

t−1 if d � 4.

Since

∥∥∥∥
〈M1/t 〉t

t
− σ1/t

∥∥∥∥
1

�
∥∥∥∥
〈M1/t 〉t

t
− σ1/t

∥∥∥∥
2
,

this finishes the proof of Theorem 4.1 for d � 2 and t large enough, and it is easy to
see that the left-hand side of (4.1) is bounded for smaller t . The one-dimensional case
is obtained in a similar way, following [35, Section 9]. ��

5 Homogenization

We consider the discrete parabolic equation with random coefficients

{
∂u

∂t
= Lωu on R+ × Z

d ,

u(0, ·) = f on Z
d ,

(DPEω)

where f : Z
d → R, Lω is the operator defined in (1.1), and by Lωu(t, x), we under-

stand Lωu(t, ·)(x). Note that Lω is the discrete analog of a divergence form operator.
For a fixed ω ∈ �, we say that u is a solution of (DPEω) if it is continuous on

[0,+∞) × Z
d , has continuous time derivative there (in other words, u(·, x) is in

C1(R+, R) for every x ∈ Z
d ), and satisfies the identities displayed in (DPEω).

Proposition 5.1 For any ω ∈ � and any bounded initial condition f , there exists a
unique bounded solution u of (DPEω), and it is given by

u(t, x) = Eω
x [ f (Xt )]. (5.1)

This is a very well known result. Checking that (5.1) is indeed a solution is a direct
consequence of the definition of the Markov chain. To see uniqueness, take ũ a bounded
solution of (DPEω). Letting M̃s = ũ(t − s, Xs), one can show that (M̃s)0�s�t is a
martingale under Pω

x for any x ∈ Z
d , and as a consequence,
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ũ(t, x) = Eω
x [M̃0] = Eω

x [M̃t ] = Eω
x [ũ(0, Xt )] = Eω

x [ f (Xt )],

which is the function defined in (5.1).
For a symmetric positive-definite matrix A, we consider the equation (CPE) given

in the introduction. We say that u is a solution of (CPE) if it is continuous on R+ ×R
d ,

has a continuous first derivative in the time variable and continuous first and second
derivatives in the space variable on (0,+∞)×R

d , and satisfies the identities displayed
in (CPE).

Proposition 5.2 For any bounded continuous initial condition f , there exists a unique
bounded solution u of (CPE), and it is given by

u(t, x) = Ex [ f (Bt )], (5.2)

where, under the measure Px , Bt is a Brownian motion with covariance matrix A that
starts at x.

Again, this result is standard. It is proved in the same way as Proposition 5.1, with
the help of Itô’s formula.

Remark 5.3 The boundedness assumption in Propositions 5.1 and 5.2 could be
changed for being subexponential. More precisely, let f : Z

d → R be such that
for any α > 0, | f (x)| = O(eα|x |). Then there exists a unique solution u of (DPEω)
such that, for any α > 0 and any t � 0, sups�t |u(s, x)| = O(eα|x |). The boundedness
condition was merely chosen for convenience.

We now define rescaled solutions of the parabolic equation with random coeffi-
cients. For a bounded continuous function f : R

d → R, we let u(ε) be the bounded
solution of (DPEω) with initial condition given by the function x �→ f (εx), and for
any t � 0 and x ∈ R

d , we let

uε(t, x) = u(ε)(ε−2t, �ε−1x�) = Eω
�ε−1x�[ f (εXε−2t )]. (5.3)

It is well understood (see for instance [4, Chapter 3]) that the probabilistic approach
yields pointwise convergence of uε to the solution of the homogenized problem. The
following result is folklore (see also [33] where the homogenization of random oper-
ators in continuous space is obtained using the probabilistic approach).

Theorem 5.4 There exists a symmetric positive-definite matrix A (independent of f )
such that for every t � 0 and x ∈ R

d , we have

uε(t, x)
(prob.)−−−→
ε→0

u(t, x), (5.4)

where u is the bounded solution of (CPE) with initial condition f .
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Proof Recall that we write (θx ) to denote the translations on �, see (4.2). The distri-
bution of X under Pω

x is the same as the one of X + x under Pθx ω
0 (both are Markov

processes with the same initial condition and the same transition rates). Using this
observation in (5.3), we obtain that

uε(t, x) = E
θ�ε−1x�ω
0 [ f (εXε−2t + xε)],

where xε = ε�ε−1x�.
Since the measure P is invariant under translations, uε(t, x)has the same distribution

as

Eω
0 [ f (εXε−2t + xε)]. (5.5)

It is proved in [15,30] that for some symmetric positive-definite A (independent of
f ), the quantity in (5.5) converges in probability to E0[ f (Bt + x)] as ε tends to 0,
where B is a Brownian motion with covariance matrix A. ��
Remark 5.5 It would be interesting to replace the convergence in probability in (5.4) by
an almost sure convergence. Note that almost sure convergence for x = 0 is equivalent
to an almost sure central limit theorem for the random walk, and this is proved in [39].
Theorem 5.4 contrasts with for instance [28, Theorem 7.4], where weak convergence
of an analogue of uε is proved, but for almost every environment.

We start the proof of Theorem 1.1 with two lemmas with a Fourier-analytic flavour.

Lemma 5.6 Let Z be a random variable with distribution ν,N be a standard
d-dimensional Gaussian random variable independent of Z, and σ > 0. If f is
in L2(Rd), then

E[ f (Z + σN )] = (2π)−d
∫

Rd

exp

(
−σ 2|ξ |2

2

)
f̂ (ξ)ν̂(ξ) dξ,

where

f̂ (ξ) =
∫

eiξ ·x f (x) dx, (5.6)

and

ν̂(ξ) =
∫

e−iξ ·x dν(x).

Remark 5.7 The definition of the Fourier transform given in (5.6) only makes sense
for f ∈ L1(Rd), but as is well known, the Fourier transform can then be extended to
functions in L2(Rd) by continuity.
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Proof Recall that we always assume f to be bounded. In order to prove the proposition,
it suffices to prove it for functions f ∈ L1(Rd), since we can then conclude by a density
argument.

Let us write

gσ (x) = 1

(2πσ 2)d/2 exp

(
−|x |2

2σ 2

)
.

Note first that

ĝ1/σ (x) = exp

(
−|x |2

2σ 2

)
= (2πσ 2)d/2gσ (x). (5.7)

The distribution of Z +σN has a density (with respect to Lebesgue measure) at point
z which is given by

∫
gσ (z − x) dν(x)

(5.7)= (2πσ 2)−d/2
∫

ĝ1/σ (z − x) dν(x)

= (2πσ 2)−d/2
∫

eiξ ·(z−x)g1/σ (ξ) dξ dν(x)

= (2πσ 2)−d/2
∫

eiξ ·zg1/σ (ξ)ν̂(ξ) dξ.

As a consequence (and using the fact that ν̂ is bounded), we have

E[ f (Z + σN )] = (2πσ 2)−d/2
∫

f (z)eiξ ·zg1/σ (ξ)ν̂(ξ) dξ dz

= (2πσ 2)−d/2
∫

g1/σ (ξ) f̂ (ξ)ν̂(ξ) dξ.

Since

(2πσ 2)−d/2g1/σ (ξ) = (2π)−d exp

(
−σ 2|x |2

2

)
,

this proves the lemma. ��
Lemma 5.8 For any integer m � 0, there exists a constant Cm such that if the weak
derivatives of f up to order m are in L2(Rd), then

∫ (
1 + |ξ |2m

) ∣∣∣ f̂ (ξ)

∣∣∣
2

dξ � Cm

⎛

⎝‖ f ‖2
2 +

d∑

j=1

‖∂xm
j

f ‖2
2

⎞

⎠ .

Proof See [19, Theorem 8]. ��
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Proof of Theorem 1.1 Let t > 0. We saw in the proof of Theorem 5.4 that

E[uε(t, x)] = EE
θ�ε−1x�ω
0 [ f (εXε−2t + xε)]

= E[ f (εXε−2t + xε)],

where in the last line, we used the fact that the measure P is translation invariant, and
we recall that we write E for EEω

0 and xε for ε�ε−1x�. Note that

∣∣∣E[ f (εXε−2t + xε)] − E[ f (εXε−2t + x)]
∣∣∣ �

d∑

j=1

‖∂x j f ‖∞ ε,

which is the first term in the right-hand side of (1.2) (a “lattice effect”). We now focus
on studying the difference

∣∣∣E[ f (εXε−2t + x)] − E0[ f (Bt + x)]
∣∣∣,

where we recall that E0[ f (Bt + x)] = Ex [ f (Bt )] = u(t, x). Possibly replacing f by
f ( · + x), we may as well suppose that x = 0. Let σ > 0 be a small parameter, N be
a standard d-dimensional Gaussian random variable, independent of everything else,
and write ft = f (

√
t ·). Since ft is bounded and continuous, we have

E[ f (εXε−2t )] = E

[
ft

(
ε√
t

Xε−2t

)]
= lim

σ→0
E

[
ft

(
ε√
t

Xε−2t + σN
)]

. (5.8)

Similarly,

E0[ f (Bt )] = E0[ f (
√

t B1)] = E0[ ft (B1)] = lim
σ→0

E0[ ft (B1 + σN )], (5.9)

where we slightly abuse notation by using the same N to denote a standard Gaussian
(independent of everything else) under both the measures E0 and E. The random
variable σN is introduced for regularization purposes, and in particular will enable
us to use Lemma 5.6.

Let us write νε for the distribution of

ε√
t

Xε−2t

under the measure P, and ν0 for the distribution of B1 under E0. Note that

ν̂ε(ξ) = E

[
exp

(
i |ξ | ε ξ · Xε−2t√

t |ξ |
)]

.
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The function x �→ ei |ξ |x has first derivative bounded by |ξ | and second derivative
bounded by |ξ |2. In view of (2.4), we obtain from Theorem 4.1 that

∣∣ν̂ε(ξ) − ν̂0(ξ)
∣∣ � C |ξ | (|ξ | ∨ 1) �q,δ

(
ε2

t

)
.

Using Lemma 5.6, we thus obtain that

∣∣∣∣E
[

ft

(
ε√
t

Xε−2t + σN
)]

− E0[ ft (B1 + σN )]
∣∣∣∣

� (2π)−d
∫

Rd

exp

(
−σ 2|ξ |2

2

) ∣∣∣ f̂t (ξ)

∣∣∣
∣∣ν̂ε(ξ) − ν̂0(ξ)

∣∣ dξ

� C �q,δ

(
ε2

t

)∫ ∣∣∣ f̂t (ξ)

∣∣∣ |ξ | (|ξ | ∨ 1) dξ,

where C does not depend on σ . We can thus take the limit σ → 0 in this inequality
and use (5.8) and (5.9) to obtain

∣∣∣∣E
[

ft

(
ε√
t

Xε−2t

)]
− E0[ ft (B1)]

∣∣∣∣

� C �q,δ

(
ε2

t

)∫ ∣∣∣ f̂t (ξ)

∣∣∣ |ξ | (|ξ | ∨ 1) dξ

︸ ︷︷ ︸
. (5.10)

Since f̂t (ξ) = t−d/2 f̂ (ξ/
√

t), we can perform a change of variables on the integral
underbraced above:

∫ ∣∣∣ f̂t (ξ)

∣∣∣ |ξ | (|ξ | ∨ 1) dξ = √
t
∫ ∣∣∣ f̂ (ξ)

∣∣∣ |ξ | (
√

t |ξ | ∨ 1) dξ.

Note that |ξ |(√t |ξ | ∨ 1) � (
√

t + 1)(|ξ |2 + 1). Hence, the integral above is bounded
by

(t + √
t)
∫ ∣∣∣ f̂ (ξ)

∣∣∣ (|ξ |2 + 1) dξ.

Let m = �d/2� + 3. By the Cauchy–Schwarz inequality, this integral is bounded by

(∫
(|ξ |2 + 1)2

1 + |ξ |2m
dξ

)1/2 (∫ (
1 + |ξ |2m

) ∣∣∣ f̂ (ξ)

∣∣∣
2

dξ

)1/2

.
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Since 2m − 4 > d, the first term of this product is finite, while Lemma 5.8 gives us
that the second term is bounded by

√
Cm

⎛

⎝‖ f ‖2
2 +

d∑

j=1

‖∂xm
j

f ‖2
2

⎞

⎠
1/2

�
√

Cm

⎛

⎝‖ f ‖2 +
d∑

j=1

‖∂xm
j

f ‖2

⎞

⎠ .

Recalling (5.10), we thus get that

∣∣∣∣E
[

ft

(
ε√
t

Xε−2t

)]
− E0[ ft (B1)]

∣∣∣∣

� C (t + √
t)

⎛

⎝‖ f ‖2 +
d∑

j=1

‖∂xm
j

f ‖2

⎞

⎠ �q,δ

(
ε2

t

)
,

and this finishes the proof. ��

6 Heat kernel estimates

The heat kernel pω
t (x, y) is defined so that (t, y) �→ pω

t (x, y) is the unique bounded
solution to (DPEω) with initial condition f = 1x . The heat kernel is symmet-
ric: pω

t (x, y) = pω
t (y, x), and by translation invariance of the random coefficients,

E[pω
t (x, y)] = E[pω

t (0, y − x)].
The aim of this section is to prove Theorem 1.3. In order to do so, we will need a

regularity result on the averaged heat kernel. For f : Z
d → R and 1 � i � d, we

write

∇i f (x) = f (x + ei ) − f (x),

where (ei )1�i�d is the canonical basis of R
d . The following result was proved in [12,

Theorem 1.4], and then elegantly rederived in [17, (1.4)].

Theorem 6.1 ([12,17]) Let

qt (x) = E
[

pω
t (0, x)

]
. (6.1)

There exist C, c1 > 0 such that for any t > 0 and any x ∈ Z
d , one has

|∇i qt (x)| � C

t (d+1)/2
exp

(
−c1

( |x |2
t

∧ |x |
))

.

We also recall the following upper bound on the heat kernel, taken from [16, Propo-
sition 3.4] (see also [9, Section 3] for earlier results in this context).
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Theorem 6.2 ([16])

(1) There exist constants C, c such that for any t � 0 and any x ∈ Z
d ,

pω
t (0, x) � C

1 ∨ td/2 exp (−Dct (x)),

where

Dt (x) = |x | arsinh

( |x |
t

)
+ t

⎛

⎝
√

1 + |x |2
t2 − 1

⎞

⎠ .

(2) In particular, there exists c2 > 0 such that for any x ∈ Z
d ,

pω
t (0, x) � C

1 ∨ td/2 exp

(
−c2

( |x |2
t

∧ |x |
))

.

Proof of Theorem 1.3 We decompose the proof into three steps.

Step 1. Possibly lowering the value of c2 > 0, we have that for any x ∈ R
d ,

p1(0, x) � C exp
(
−c2|x |2

)
, (6.2)

∂ p1(0, ·)
∂xi

(x) � C exp
(
−c2|x |2

)
(1 � i � d). (6.3)

Equation (6.2) and part (2) of Theorem 6.2 thus ensure that (possibly enlarging C),

∣∣∣ε−d qε−2(�ε−1x�) − p1(0, x)

∣∣∣ � C exp
(
−c2(|x |2 ∧ |ε−1x |)

)
. (6.4)

Moreover, Theorem 6.1 remains true if we lower the value of the constant c1 > 0 in
such a way that c2 � c1/2

√
d.

Step 2. We now show that there exist c > 0 (independent of δ), εδ > 0 and Cδ such
that, for any ε � εδ and any x ∈ R

d , one has

∣∣∣ε−d qε−2(�ε−1x�) − p1(0, x)

∣∣∣ � Cδ

(
�q,δ(ε

2)
)1/(d+3)

exp
(
−c(|x |2 ∧ |ε−1x |)

)
.

(6.5)

Let f be a positive smooth function on R
d with support in [−1, 1]d and such that∫

f = 1. We define, for any r > 0, the function fr : x �→ r−d f (r−1x).
Let u(ε) be the bounded solution of (DPEω) with initial condition fr (ε ·) (we keep

the dependence of u(ε) in r implicit in the notation). By linearity, we have

u(ε)(t, x) =
∑

z∈Zd

fr (εz) pω
t (z, x).
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Letting uε(t, x) = u(ε)(ε−2t, �ε−1x�), we obtain

uε(t, x) =
∑

z∈Zd

fr (εz) pω
ε−2t (z, �ε−1x�). (6.6)

Let u be the bounded solution of (CPE) with initial condition fr . Observing the proof
of Theorem 1.1, we get that for any δ > 0, there exists C such that

|E[uε(1, x)] − u(1, x)|

�
d∑

j=1

‖∂x j fr‖∞ ε + C �q,δ(ε
2)

∫ ∣∣∣ f̂r (ξ)

∣∣∣ (|ξ |2 + 1) dξ. (6.7)

Scaling relations ensures that ‖∂x j fr‖∞ is bounded, up to a constant, by r−(d+1),

while f̂r (ξ) = f̂ (rξ). As a consequence,

∫ ∣∣∣ f̂r

∣∣∣ = r−d
∫ ∣∣∣ f̂

∣∣∣ ,
∫ ∣∣∣ f̂r (ξ)

∣∣∣ |ξ |2 dξ = r−(d+2)

∫ ∣∣∣ f̂ (ξ)

∣∣∣ |ξ |2 dξ,

and the integrals on the right-hand side are finite since f is smooth (see Lemma 5.8).
To sum up, for some constant C and any r � 1, we have

|E[uε(1, x)] − u(1, x)| � C
(
ε r−(d+1) + �q,δ

(
ε2
)

r−(d+2)
)

. (6.8)

The solution u can be represented in terms of the heat kernel as

u(1, x) =
∫

fr (z)p1(z, x) dz = p1(0, x) +
∫

fr (z)(p1(z, x) − p1(0, x)) dz,

where we used the fact that
∫

fr = 1. For z ∈ R
d such that ‖z‖∞ � r � 1 and up to a

constant, |p1(z, x) − p1(0, x)| is bounded by re−c2|x |2 by (6.3). Since fr has support
in [−r, r ]d , we arrive at

∣∣u(1, x) − p1(0, x)
∣∣ � C r exp

(
−c2|x |2

)
. (6.9)

On the other hand, if z ∈ Z
d is such that ‖z‖∞ � ε−1r , then

∣∣∣E[pω
ε−2(z, �ε−1x�)] − qε−2(�ε−1x�)

∣∣∣ � dε−1r sup
‖z‖∞�ε−1r

1�i�d

|∇i qε−2(�ε−1x� − z)|
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We now argue that there exists c3 > 0 (independent of δ) such that, uniformly over
r � 1 and x ∈ R

d , one has

sup
‖z‖∞�ε−1r

1�i�d

|∇i qε−2(�ε−1x� − z)| � C

εd+1 exp
[
−c3

(
|x |2 ∧ |ε−1x |

)]
. (6.10)

Theorem 6.1 tells us indeed that the left-hand side of (6.10) is smaller than

C

εd+1 exp

⎡

⎢⎣−c1 inf
‖z‖∞�ε−1r

1�i�d

( |�ε−1x� − z|2
ε−2 ∧ |�ε−1x� − z|

)
⎤

⎥⎦ .

For any r � 1 and ‖x‖∞ � 2, the infimum above is larger than

|x |2 ∧ |ε−1x |
2
√

d
,

so (6.10) holds in this case, with c3 = c1/2
√

d . To control smaller values of ‖x‖∞, it
suffices to enlarge the constant C in (6.10). To sum up, we have shown that

∣∣∣E[pω
ε−2(z, �ε−1x�)] − qε−2(�ε−1x�)

∣∣∣ � C εd r exp
[
−c3

(
|x |2 ∧ |ε−1x |

)]
.

In the sum on the right-hand side of (6.6), only C(ε−1r)d terms are non-zero, and
‖ f ‖∞ � r−d , so

∣∣∣∣∣∣
E[uε(1, x)] −

∑

z∈Zd

fr (εz) qε−2(�ε−1x�)
∣∣∣∣∣∣
� C r exp

[
−c3

(
|x |2 ∧ |ε−1x |

)]
.

Observe also that

εd
∑

z∈Zd

fr (εz) =
(ε

r

)d ∑

z∈Zd

f
(ε

r
z
)

.

This is a Riemann approximation of
∫

f = 1, hence

∣∣∣∣∣∣
εd
∑

z∈Zd

fr (εz) − 1

∣∣∣∣∣∣
� C

ε

r
,

and we are thus led to
∣∣∣E[uε(1, x)]−ε−d qε−2(�ε−1x�)

∣∣∣�C
(

r exp
[
−c3

(
|x |2 ∧ |ε−1x |

)]
+ ε

r

)
. (6.11)
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Combining (6.8), (6.9), (6.11) and the fact that c2 � c3 = c1/2
√

d , we obtain that up
to a constant,

∣∣∣ε−d qε−2(�ε−1x�) − p1(0, x)

∣∣∣

is bounded by

ε

rd+1 + �q,δ

(
ε2
)

rd+2 + r exp
[
−c3

(
|x |2 ∧ |ε−1x |

)]
+ ε

r
,

uniformly over r � 1. Since for ε small enough, one has ε � �q,δ

(
ε2
)
, the above is

bounded, up to a constant, by

�q,δ

(
ε2
)

rd+2 + r exp
[
−c3

(
|x |2 ∧ |ε−1x |

)]
, (6.12)

uniformly over r � 1. Choosing

rd+3 = �q,δ(ε
2) exp

[
c3

(
|x | ∧ |ε−1x | ∧ Mε

)]
,

where

Mε = − log(�q,δ(ε
2))

c3

is here to ensure that r � 1, we obtain that the expression in (6.12) is smaller than

(
�q,δ(ε

2)
)1/(d+3)

exp

[
−c3

(
1 − 1

d + 3

)(
|x | ∧ |ε−1x | ∧ Mε

)]
.

This proves (6.5) when |x |∧|ε−1x | � Mε. Otherwise, we use the bound (6.4), together
with the fact that c2 � c3, to get

∣∣∣ε−d qε−2(�ε−1x�) − p1(0, x)

∣∣∣

� C exp
(
−c3(|x |2 ∧ |ε−1x |)

)

� C exp

(
−c3

(
1 − 1

d + 3

)
(|x |2 ∧ |ε−1x |) − c3

d + 3
Mε

)

� C
(
�q,δ(ε

2)
)1/(d+3)

exp

(
−c3

(
1 − 1

d + 3

)
(|x |2 ∧ |ε−1x |)

)
.

Hence, (6.5) holds also in this case, and we can always choose c = c3(1−1/(d +3)).
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Step 3. We now extend the result to any time t > 0. The heat kernel of the continuous
operator satisfies the scaling relation

pt (0, x) = t−d/2 p1(0, x/
√

t),

while we can write

ε−d qε−2t (�ε−1x�) = t−d/2 (ε/
√

t)−d q(ε/
√

t)−2(�(ε/√t)−1 (x/
√

t)�).

For εδ and Cδ given by step 2, as soon as ε/
√

t � εδ , one thus has

∣∣∣ε−d qε−2t (�ε−1x�) − pt (0, x)

∣∣∣

� Cδ

td/2

(
�q,δ

(
ε2

t

))1/(d+3)

exp

[
−c

( |x |2
t

∧ |ε−1x |
)]

,

which is the claim of the theorem. ��

7 Homogenization of elliptic equations

In this last section, we state and prove the counterparts of Theorems 1.1 and 1.3 for
the homogenization of elliptic equations. For f : R

d → R bounded continuous, we
consider the unique bounded solution of

(ε2 − Lω)v(ε) = ε2 f (ε ·) on Z
d . (DEEω

ε )

Using integration by parts, one can check that

v(ε)(x) =
+∞∫

0

e−t u(ε)(ε−2t, x) dt, (7.1)

where u(ε) is solution of (DPEω
ε ). For x ∈ R

d , we let vε(x) = v(ε)(�ε−1x�), so that

vε(x) =
+∞∫

0

e−t uε(t, x) dt. (7.2)

The function vε converges pointwise, as ε tends to 0, to v the bounded solution of

(
1 − 1

2
∇ · A∇

)
v = f on R

d , (CEE)
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and one has

v(x) =
+∞∫

0

e−t u(t, x) dt, (7.3)

where u is the solution of (CPE). Equipped with the representations (7.2)–(7.3), it is
straightforward to derive the following result from Theorem 1.1.

Theorem 7.1 Let m = �d/2� + 3 and δ > 0. There exist constants Cδ (which may
depend on the dimension) and q such that, if the weak derivatives of order m of f are
in L2(Rd), then for any ε > 0 and x ∈ R

d , one has

|E[vε(x)] − v(x)| �
d∑

j=1

‖∂x j f ‖∞ ε + Cδ

⎛

⎝‖ f ‖2 +
d∑

j=1

‖∂xm
j

f ‖2

⎞

⎠ �q,δ

(
ε2
)
.

Remark 7.2 Note that on the other hand, it does not look so simple to deduce The-
orem 1.1 from Theorem 7.1. A possibility for doing so may be to try to devise a
quantitative version of [29, Theorem IX.2.16].

One can also consider the Green function Gω
ε (x, y), the unique bounded function

such that

(ε2 − Lω)Gω
ε (x, ·) = 1x .

Letting G(x, y) be the Green function associated to equation (CEE), we can write the
counterpart of Theorem 1.3.

Theorem 7.3 Let d � 2 and δ > 0. There exist constants c > 0 (independent of δ),
q, Cδ such that for any ε > 0 and any x ∈ εZ

d\{0}, one has

∣∣∣ε2−d
E

[
Gω

ε (0, ε−1x)
]

− G(0, x)

∣∣∣

� Cδ

|x |d−2

[(
�q,δ

(
ε2

|x |2
))1/(d+3)

e−c|x | + e−c|ε−1x |
]

. (7.4)

When d = 1, there exist C, c > 0 such that for any ε > 0 and any x ∈ εZ, one has

∣∣∣ε E

[
Gω

ε (0, ε−1x)
]

− G(0, x)

∣∣∣ � C
[
ε1/8e−c|x | + e−c|ε−1x |] .

Remark 7.4 The orders of magnitude, as ε tends to 0, of the right-hand side of (7.1)
and (7.4), are given respectively by (1.5) and (1.6).
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Proof Our starting point is the fact that

Gω
ε (x, y) = ε−2

+∞∫

0

e−t pω
ε−2t (x, y) dt,

while

G(x, y) =
+∞∫

0

e−t pt (x, y) dt

Recall first that Theorem 1.3 ensures that there exist c > 0, Cδ, εδ > 0 such that
whenever t � (ε/εδ)

2, one has

∣∣∣ε−d
E[pω

ε−2t (0, �ε−1x�)] − pt (0, x)

∣∣∣

� Cδ

td/2 �
1/(d+3)
q,δ

(
ε2

t

)
exp

[
−c

( |x |2
t

∧ |ε−1x |
)]

. (7.5)

The difference of interest
∣∣∣ε2−d

E

[
Gω

ε (0, �ε−1x�)
]

− G(0, x)

∣∣∣

is bounded by

+∞∫

0

e−t
∣∣∣ε−d

E[pω
ε−2t (0, �ε−1x�)] − pt (0, x)

∣∣∣ dt. (7.6)

Let η = (ε/εδ)
2 ∨ (ε|x |). If t � η, then the integrand above is bounded, up to a

constant, by

e−t

td/2 �
1/(d+3)
q,δ

(
ε2

t

)
exp

[
−c

|x |2
t

]
.

In order to control the integral in (7.6), it thus suffices to bound the following three
quantities:

+∞∫

0

e−t

td/2 �
1/(d+3)
q,δ

(
ε2

t

)
exp

[
−c

|x |2
t

]
dt, (7.7)

η∫

0

ε−d
E[pω

ε−2t (0, �ε−1x�)] dt, (7.8)
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η∫

0

pt (0, x) dt. (7.9)

We start with the integral in (7.7), which is the only non-negligible one. To begin with,
note that for any γ , a change of variables gives us the identity

+∞∫

0

e−t

tγ
e−c|x |2/t dt = |x |2−2γ

+∞∫

0

e−s|x |2

sγ
e−c/s ds, (7.10)

and moreover, provided γ > 1,

+∞∫

0

e−s|x |2

sγ
e−c/s ds � e−c|x |/2

1/|x |∫

0

e−c/2s

sγ
ds + e−|x |

+∞∫

1/|x |

e−c/s

sγ
ds

� Ce−c|x |/2, (7.11)

for some large enough C (and c � 2). We have thus shown that, for γ > 1,

+∞∫

0

e−t

tγ
e−c|x |2/t dt � C |x |2−2γ e−c|x |/2. (7.12)

When d � 3, we have �q,δ(u) = u1/2−δ , so that the integral in (7.7) is bounded, up
to a constant, by

|x |2−d �
1/(d+3)
q,δ

(
ε2

|x |2
)

e−c|x |/2. (7.13)

When d = 2, the argument requires some minor modifications, due to presence of a
logarithmic factor in �q,δ . One should consider instead integrals of the form

+∞∫

0

e−t

tγ
logq ′

+
(

t/ε2
)

e−c|x |2/t dt = |x |2−2γ

+∞∫

0

e−s|x |2

sγ
logq ′

+
(

s|x |2/ε2
)

e−c/s ds,

for some q ′ � 0 and γ > 1 (in fact, γ = 1 + 1/20). This last integral is bounded by

ε2/|x |2∫

0

e−s|x |2

sγ
e−c/s ds +

+∞∫

ε2/|x |2

e−s|x |2

sγ
logq ′ (

s|x |2/ε2
)

e−c/s ds
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For the first integral, (7.11) gives us an upper bound. Inequality (7.11) also enables us
to bound the second integral, using the fact that

logq ′ (
s|x |2/ε2

)
� 2q ′ (

logq ′ (|x |2/ε2
)

+ logq ′
(s)
)

.

These observations thus guarantee that (7.7) is also bounded by (7.13) when d = 2.
We now turn to the evaluation of the integral in (7.8). Since, for z � 0, one has

arsinh(z) = log(z + √
1 + z2) � log(1 + z), and using part (1) of Theorem 6.2, one

can bound the integral in (7.8) (up to a constant) by

η∫

0

ε−d exp

(
−|ε−1x | log

(
1 + |ε−1x |

cε−2t

))
dt.

A change of variables shows that this is equal to

ε|x |
c

ε−d

η′∫

0

exp
(
−|ε−1x | log (1 + 1/s)

)
ds, (7.14)

where

η′ = cη

ε|x | = cε−2
δ

|ε−1x | ∨ c.

Since we consider only x ∈ εZ
d\{0}, the parameter η′ is uniformly bounded, indepen-

dently of the value of x and ε. The integral in (7.14) is thus bounded (up to a constant)
by

ε1−d |x |(1 + η−1)−|ε−1x | = |x |2−d |ε−1x |d−1(1 + η−1)−|ε−1x |

� C |x |2−d exp
(
−c|ε−1x |

)
.

This finishes the analysis of the integral in (7.8), and there remains only to consider
the integral in (7.9). This integral is bounded by a constant times

η∫

0

t−d/2e−c|x |2/t dt

for some small enough c > 0. A change of variables enables one to rewrite this integral
as
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|x |2−d

η|x |−2∫

0

u−d/2e−c/u du � |x |2−d exp

(
− c

2η|x |−2

) η|x |−2∫

0

u−d/2e−c/2u du.

(7.15)

Moreover,

η|x |−2 = ε−2
δ

|ε−1x |2 ∨ 1

|ε−1x | � C ′

|ε−1x | � C ′

for some large enough C ′, uniformly over ε > 0 and x ∈ εZ
d\{0}. The right-hand

side of (7.15) is thus bounded by

|x |2−d exp

(
−|ε−1x |

C ′

) C ′∫

0

u−d/2e−c/2u du.

We thus obtained the required bound on (7.9), and this finishes the proof of Theorem 7.3
for d � 2.

For the one-dimensional case, the analysis must be slightly adapted. We need to
bound the integrals appearing in (7.7), (7.8) and (7.9). The analysis of the integrals in
(7.8) and (7.9) can be kept without change, except that only the case x ∈ εZ\{0} was
considered above, while here we want to consider also x = 0. But this is a very easy
case, since the upper bound t−1/2 on the heat kernels is integrable close to 0. As for
the integral in (7.7), it is equal to

ε1/8

+∞∫

0

e−t

tγ
e−c|x |2/t dt,

where γ = 1/2 + 1/16 < 1. The integral above is uniformly bounded over x such
that |x | � 1. Otherwise, as noted in (7.10), we have

+∞∫

0

e−t

tγ
e−c|x |2/t dt = |x |2−2γ

+∞∫

0

e−s|x |2

sγ
e−c/s ds,

and we can bound the last integral by

e−c|x |
1/|x |∫

0

e−s

sγ
ds + e−|x |/2

+∞∫

1/|x |

e−s/2

sγ
ds,

where in the second part, we used the fact that for |x | � 1 and s � |x |−1, we have
s|x |2 � |x |/2 + s/2. We have thus shown that the integral in (7.7) is bounded, up to

123



Kantorovich distance in the martingale CLT 313

a constant, by

ε1/8
(
|x |2−2γ + 1

)
e−c|x |,

uniformly over x ∈ R, and this finishes the proof for d = 1. ��
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