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ABSTRACT 

The geometry of room acoustics is such that the reverberant 

signal can be seen as the same waveform emitted from multiple 

locations. In analogy with the rake receiver from wireless com­

munications, we propose several beamforming strategies that 

exploit, rather than suppress, this additional spatio-temporal di­

versity. Unlike earlier work in the frequency domain, time do­

main designs allow to shape the impulse response of the beam­

former. In particular, we can control perceptually relevant pa­

rameters, such as the amount of early echoes or the length of 

the beamformer response. 

Relying on the knowledge of the image sources positions, 

we derive different optimal beamformers. Leveraging percep­

tual cues, we show how to improve interference and noise re­

duction without degrading the perceptual quality. The designs 

are validated through simulation. Using early echoes is shown 

to strictly improve the signal to interference and noise ratio. 

Code and speech samples are available online at http: / / 
lcav.epfl.ch/Robin_Scheibler. 

Index Terms-Beamforming, acoustic rake receiver, time 

domain, precedence effect, room geometry. 

1. INTRODUCTION 

Rake receivers for wireless communication exploit the temporal 

diversity of the multipath fading channel to increase the signal­

to-noise ratio (SNR) [1]. The technique extends to arrays of 

antennas [2, 3]. One can imagine using a similar approach in 

acoustics, exploiting echoes in a reverberant room to improve 

the SNR. Indeed, such techniques have been proposed [4, 5, 6]. 

More recently, Dokmanic et al. developed the concept of acous­

tic rake receiver in more details and proposed several optimal 

and intuitive formulations according to the raking principle [7]. 

A large part of the beamforming literature tends to focus 

on dereverberation and room equalization and assume a de­

tailed knowledge of the room impulse response [ 8, 9, 10]. This 

approach has two main drawbacks. First, it considers all re­

verberation as harmful. Second, the room impulse response is 
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generally difficult to estimate precisely. Instead we are only in­

terested in exploiting the early echoes to improve the desired 

source power versus that of an interferer or ambient noise. 

Psychoacousticians demonstrated that the energy of early 

echoes (within 30 ms to 90 ms of the direct sound) is perceptu­

ally integrated with the direct sound [11]. Thus fully distortion­

less response seems not completely necessary. In fact, different 

works have shown that channel shortening rather than inversion 

leads to practical systems and better behaved filters [12, 13]. 

Moreover, locating just the early reflections is significantly 

easier than full estimation of the room impulse response (RIR). 

In many situations, the shape of the room can be known in ad­

vance from blueprints or measurements [14]. Then knowing 

the location of the real source allows to calculate the positions 

of the echoes. Localizing the direct sound is a well understood 

problem [15]. In ad-hoc deployment, recent works propose a 

calibration step to locate the main reflectors [14, 16, 17, 1 8]. 

Note that there is in fact no necessity to know the room ge­

ometry exactly, the positions of the image sources being suf­

ficient. The echo sorting algorithm from [14] allows to locate 

the main echoes from measured RIR. Another approach is the 

audio camera of [4]. 

In [7], the beamformers are formulated in the frequency 

domain for narrowband sources. To extend the beamformer to 

wideband signals, the short time Fourier transform is applied 

to the signal and the optimization problem is solved for every 

frequency band. While the frequency domain formulation is 

simpler, it does not allow precise control over critical parame­

ters of the beamforming filters. In particular, the beamforming 

filters might be very long and we would like to approximate 

them by short filters. 

This paper brings together the raking principle, geometri­

cal acoustics and perceptual criteria to optimize beamformers 

directly in the time-domain. We present several optimal for­

mulations for raking beamformers. We demonstrate how the 

geometry of early echoes determines the minimum delay nec­

essary for maximal raking. Conversely, we show how the delay 

determines the number of echoes that can be raked. Further, 

we show how relaxing the distortionless requirement accord­

ing to psychoacoustics allows to obtain better behaved beam­

forming filters and higher signal to interference and noise ra­

tio (SINR), while maintaining tight control over pre-echoes. 

Throughout the paper we assume the positions of the principal 
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Fig. 1. Illustration of the image source model and the notation 

of the paper. First (0) and second (0) order image sources of 

So are shown. 

images sources to be known. In practice they can be estimated 

using one of the techniques mentioned earlier. 

This paper is organized as follows. Section 2 introduces 

the notation, the signal model and basics of beamforming. Sec­

tion 3 presents several time-domain formulations of rake beam­

formers. The beamformers are validated through numerical ex­

periments in Section 4. Conclusions are drawn in Section 5. 

2. NOTATION AND SIGNAL MODEL 

We denote all matrices by bold uppercase letters, for example 

A, and all vectors by bold lowercase letters, for example x. 
The Euclidean norm of a vector is denoted by 11·11, as in Ilxll � 
(xT x)�. All vectors and matrices are real-valued. 

Suppose that in a room, there is a desired source of sound 

located at So. Sound from this source arrives at the micro­

phones located at (Tm)�=l via the direct path, but also through 

echoes from the walls. We model echoes, or the multi path prop­

agation, by the image source model [19,20]. Image sources are 

simply the mirror images of the real sources across the corre­

sponding walls. 

Denote the signal emitted by the source x[n] (e.g. the 

speech signal). Then all the image sources emit x[n] as well, 

and the signal from the image sources reaches the microphones 

with the appropriate delays, that correspond to delays of the 

echoes. In our application, the essential fact is that echoes cor­

respond to image sources. We denote the image sources po­

sitions by Sk, 1 � k � K, regardless of their generation, or 

the sequence of walls that generates them. This is illustrated 

in Fig. 1. Let K denote the largest number of image sources 

considered. 

Suppose that in addition to the desired signal, there is an 

interferer at the location qo' For simplicity, we consider only 

a single interferer, but in general there could be any number 

of them. The interferer emits the signal z[n], and its image 

sources emit z[n] as well. Similarly as for the desired source, 

qk' 1 � k � K' denote the positions of interfering image 
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sources, where K' is the largest number of interfering image 

sources considered. 

The signal at each microphone can thus be written 

K 

Ym(t) = l)am(sk, t) * x(t)) 
k=O 

K' 

+ 2)am(qk, t) * z(t)) + bm(t) (1) 
k=O 

where am(sk' t) is the channel response between Sk and the 

Tm, and bm(t) is additive white Gaussian noise (AWGN) at 

Tm. In our simple model, we do not consider frequency selec­

tivity of the walls and assume that 

where Tm is the position of the mth microphone and c is the 

speed of sound in air, a( Sk) is an attenuation factor depending 

on the reflection order, and oCt) is the Dirac delta function. We 

discretize the channel response into an FIR filter by convolution 

with an ideal low-pass filter, 

am(Sk,n) = I: am(Sk,U) sine(n -Fs u) du 

_ a(Sk) . (
-F Iisk-Tmll ) -

47rIISk _ Tmll 
SIne n s 

C 
. 

We assume in addition that these discrete filters can be limited 

to length Lh. We can now rewrite (1) in matrix form 

where 

K K' 

Ym = L Am(Sk)X + L Am(qk)Z + bm 
k=O k=O 

Ym [Ym[n], . . .  , Ym[n -Lg + lW, 
x [x[n],x[n - 1], . . .  ,x[n -L + lW, 
Z [z[n], z[n - 1], . . .  , z[n - L + 1W, 

bm [ bm[n], bm[n - 1], . . .  , bm[n -Lg + 1W. 

and Am(Sk) is the Lg x L convolution matrix, with Lg the 

size of the beamforming filter, L = Lh + Lg - 1. It is a 

Toeplitz matrix whose first row is am(sk' n), n = 0, ... , Lh-
1, padded with Lg - 1 zeros, and first column is am (Sk' 0) 
followed by Lg -1 zeros. 

Stacking all the vectors and matrices, indexed by m into a 

single vector and matrix, and dropping the index, we obtain the 

following compact form 

y=Hsx+Hqz+b, 
K K' 

where Hs = Lk=oA(Sk) and Hq = Lk=oA(qk)' The 

mth beamforming filter is gm = [gm [0], . . .  ,gm [Lg -l]f and 

its output at time n can be written as the inner product g�Ym' 
Stacking all M filters in a vector, 9 = [g6' . . .  g'fr_l ]T, the 

sum of all filter outputs is conveniently computed as gT y. The 



responses of the beamformer towards the desired source and 

interferer are 

Us = H;g, Uq = H�g, 
respectively. Finally, the letter T is used to denote the delay (in 

samples) of the beamformer. 

3. TIME-DOMAIN RAKE BEAMFORMERS 

3.1. Minimum Variance Distortionless Response Rake 

Beamformer 

A time-domain flavour of the classic Capon minimum variance 

distortionless response (MV DR) beamformer [21] is given bi, 

minimize lElgT Yl2 subject to g
T h.,. = 1, 

9 

where h.,. is the Tth column of H s. The constraint forces unit 

response towards the desired source. The value of T determines 

the delay of the beamformer and should be larger than the lat­

est arriving echoes that we would like to rake. The objective 

can be developed into lElgT Yl2 = gT Ryyg where Ryy is the 

covariance matrix of y, 

Ryy = H sRxxH; + H qRzzH� + Rbb, 
where in turn Rxx, Rzz, and Rbb are the covariance matrices 

of x, Z, and the noise. The optimization problem becomes 

minimize g
T Ryyg subject to g

T h.,. = 1 (2) 
9 

and is solved for 

gR-MvDR = R:;;: h.,. (h� R:;;: h.,. ) 
-1 

. 

Assuming samples from both sources are independent and 

identically normally distributed, and that the noise is AWGN, 
i.e. Rxx = (1�1, Rzz = (1;1, and Rbb = (1;,J, (2) can be 

rewritten 

minimize (1; IIus l12 + (1; IIuql12 + (1; IIg l12 
9 

subject to Us [T] = 1, Us = H;g, uq = H�g, 
where Us [T] is the Tth element of Us. From this form, it is 

clear that the optimal beamformer will balance distortionless 

response towards desired source, interference cancellation, and 

noise suppression. For a fixed Lg, adding more image sources 

will increase Lh and consequently the number of constraints in 

the optimization problem. Reducing so the feasible set might 

decrease the noise suppression performance of the beamformer. 

Finally, using our geometric interpretation it is possible to 

know precisely how many echoes can be exploited. Because the 

response is distortionless, the output of the beamformer should 

be the desired source with a delay T (not considering model 

inaccuracies). This means that only echoes arriving within the 

time T of the direct sound can be used to improve the source 

power. Knowing the propagation speed of sound translates 

into a geometrical criterion on which image sources can be in­

cluded. All image sources within distance Iiso - Tm II + CT / Fs 
of the microphone array can be used, C being the speed of 

sound, and Fs the sampling frequency. 

I Although the response is not truly distortionless, we follow the 
definition of the time-domain M V DR beam former of Benesty et al [10]. 
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3.2. Perceptually motivated Rake Beamformer 

Psychoacoustics studies show that early echoes contribute to 

perceived power, and speech intelligibility. Lochner and Burger 

[11] describe precisely how much reverberation is perceptually 

beneficial. As determined for speech signals, echoes arriving 

within 30 ms of the direct sound are fully integrated, while 

those arriving within 95 ms are still partially integrated. Echoes 

arriving later than 35 ms are noticeable. 

In regard of these results, we can partially relax the dis­

tortionless requirement. We define the perceptually motivated 

rake beamformer with the following four criteria. 

• Minimize the interference and noise power. 

• Zero response before T (i.e. no pre-echoes). 

• Unit response at T. 

• Zero response after T + K, where K rv 35 ms. 

The optimal such beamformer is found by the quadratic pro­

gram, 

minimize g
T K nqg subject to g

T fI s = t5�, 
9 

where Knq = HqRzzHJ + Rbb, the matrix fIs contains 

the columns 1 to T and K + 1 to L of H s, and 15.,. is the vector 

with a one at position T and all other entries zero. Note that 

an alternative formulation including all zero forcing constraints 

directly in the objective exists. The solution of this program is 

-1 A AT -1 A -1 
gR-P = Knq Hs(Hs Knq Hs) 15.,.. 

A similar criterion as for Rake MV DR beamformer applies 

as to which image sources can be used constructively. Thanking 

to the relaxation, image sources up to distance Iiso - Tmll + 
c( T + K) / Fs can be included in the optimization. 

3.3. Maximum SINR Rake Beamformer 

The signal to interference and noise ratio (SINR) is defined as 

(3) 

where Kx = HsRxxH;. This quantity can be opti­

mized directly by solving the generalized eigenvalue problem 

Kxg = )"Knqg, and the maximizer is given by the gen­

eralized eigenvector corresponding to the largest generalized 

eigenvalue. This will however not yield a practical beam­

former. Because no constraint is imposed on the response 

towards the desired source, its signal can be arbitrarily dis­

torted. Nevertheless, this gives an upper bound on achievable 

SINR. 

4. NUMERICAL EXPERIMENTS 

In this section, we assess the performance of the three rake 

beamformers described. First, we inspect the beampatterns ob­

tained. Then, the gain of using additional sources is evaluated 

in terms of output SINR. We use the same simulation setup as in 

[7]. For sound propagation simulation we use up to 10th order 
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Fig. 2. Beampatterns of (A) Rake MV DR, and (B), (C) Rake 

Perceptual, in a 4 x 6 m room containing the desired source 

(.) and an interferer (_). In (C), the interferer is in the direct 

path of the desired source. First order image sources are also 

displayed. The darker/red and light/yellow lines are for 800 Hz 

and 1600 Hz, respectively. 

reflections (220 image sources). The sampling frequency is 8 

kHz. Samples from both sources are assumed to be zero-mean 

independent and identically distributed and the noise is AWGN 

so that 

where I is the identity matrix and (J"� = (J"; = 1. 

4.1. Beampatterns 

We consider a 4 by 6 m room with a source of interest at (1, 

4.5) and a linear array of eight microphones equally spaced by 

8 cm, parallel to the x-axis and centered at (2,1.5), the origin 

being the lower left corner of the room. The beamforming fil­

ters length is 50 ms (L9 = 400 at 8 kHz) with a delay of 20 ms. 

The noise variance at the microphones is fixed at (J"� = 1O-? 

Beampatterns for both Rake MV DR and Rake Perceptual with 

an interferer placed at (2. 8, 4.3) are shown for 800 Hz and 

1600 Hz in Fig. 2. The diagram in the figure shows the beam­

patterns for Rake Perceptual when the interferer is placed in the 

direct path of the desired source at (1.5,3). We observe that in 

that case, the beamformer completely ignores the direct sound 

and focuses on the reflections. Such a scenario could not be 

handled by a beamformer only considering the direct sound. 

4.2. SINR gain from raking 

The SINR gain from raking is investigated through Monte­

Carlo simulation. We consider the same room and beamform­

ing filters length as in Section 4.1, but pick source and interferer 

positions uniformly at random. At each run, the SINR accord­

ing to (3) is computed for Rake MV DR, Rake Perceptual, and 

Rake MaxSINR. Even though Rake MaxSINR is not practical, 

it gives an upper bound on the SINR gain that can be expected. 

The same number of image sources K = K' = 0, . . .  ,9 is 

used for the source and the interferer. The noise variance is 

fixed so that the SNR of the direct path of the desired source is 

10 dB at the center of the array or (J"� = 10-1 (411" lisa - 1'11)-2 
where l' = M-1 L�':� Tm is the center of the array. The 

beamforming filters length is fixed to 30 ms (i.e. L9 = 240) 

and the delay is 20 ms. 
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Fig. 3. Median output SINR computed according to (3) against 

the number of image sources K used in the optimization. The 

same number of image sources is used for the desired source 

and the interferer. The ambient noise SNR is fixed to 10 dB 

with respect to the direct path of the desired source and the 

center of the microphone array. The grey area contains 50% of 

the Rake MaxSINR outcomes. 

The outcome of the simulation is depicted in Fig. 3. Each 

point is the result of 10000 outcomes. For every beamformer 

considered, adding more sources results in a net increase in 

SINR. Adding just the 1 st order reflections, or 5 sources, rakes 

in 3.5 dB and 5.7 dB improvement in SINR for Rake MV DR 

and Rake Perceptual, respectively. Rake MaxSINR shows that 

at most 11 dB improvement can be expected. We also observe 

that the extra degrees of freedom of Rake Perceptual are very 

beneficial as it is consistently 4 to 5 dB above Rake MV DR 

when image sources are used. 

5. CONCLUSION 

Drawing inspiration from the rake receiver we developed time­

domain beamforming designs exploiting temporal and spatial 

diversity of an acoustic signal in a reverberant environment. We 

proposed two beamformers, one based on the classic MV DR 

beamformer and another perceptually motivated with relaxed 

constraints on the beamformer response. We show in numer­

ical experiments that even short filters are enough to suppress 

an interferer, even when it is in the direct path of the desired 

source. Through Monte-Carlo simulation, we show that rak­

ing signal from more sources results in a net increase of the 

SINR for all designs proposed, the perceptually motivated de­

sign beating the distortionless design by around 5 decibels. 

Although the Rake Perceptual beamformer seems to per­

form well, it only minimizes the power from the interferer. In 

further work, we would also like to maximize the desired source 

power in a perceptually relevant manner. Another goal is to in­

vestigate in more details the relationship between filter length, 

delay, and performance. A crucial step will be to validate the 

designs experimentally. 
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