000202164 001__ 202164
000202164 005__ 20190812205809.0
000202164 037__ $$aCONF
000202164 245__ $$aSampling Spherical Finite Rate of Innovation Signals
000202164 269__ $$a2015
000202164 260__ $$c2015
000202164 336__ $$aConference Papers
000202164 520__ $$aSampling schemes on the sphere require O(L^2) samples to perfectly sample and reconstruct a signal with bandwidth L. If the signal in question is a low-pass observation of a finite collection of spikes or rotations of a known function, we can use less samples. We propose an algorithm that improves over the best known finite rate of innovation (FRI) sampling scheme on the sphere by a factor of approximately four. Further, we show how multiple sound source localization (SSL) by a spherical microphone array can be transformed into a spherical FRI sampling problem. We certify the effectiveness of the proposed algorithm by using it to solve the SSL problem.
000202164 700__ $$0244456$$g203497$$aDokmanic, Ivan
000202164 700__ $$aLu, Yue M.
000202164 7112_ $$dApril 19-24, 2015$$cBrisbane, Australia$$aInternational Conference on Acoustics, Speech, and Signal Processing (ICASSP)
000202164 773__ $$tProceedings of the 40th International Conference on Acoustics, Speech, and Signal Processing$$q5962-5966
000202164 8564_ $$zPublisher's version$$yPublisher's version$$uhttps://infoscience.epfl.ch/record/202164/files/DokmanicL14.pdf$$s1655182
000202164 909C0 $$xU10434$$pLCAV$$0252056
000202164 909CO $$ooai:infoscience.tind.io:202164$$qGLOBAL_SET$$pconf$$pIC
000202164 917Z8 $$x203497
000202164 917Z8 $$x203497
000202164 917Z8 $$x203497
000202164 917Z8 $$x190838
000202164 937__ $$aEPFL-CONF-202164
000202164 973__ $$rNON-REVIEWED$$sPUBLISHED$$aEPFL
000202164 980__ $$aCONF