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Abstract
We consider the parabolic Anderson model on Zd driven by fractional noise. We prove that it

has a mild solution given by Feynman-Kac representation which coincides with the partition

function of a directed polymer in a fractional Brownian environment. Our argument works in

a unified way for every Hurst parameter in (0,1).

We also study the asymptotic time evolution of this solution. We show that for H ≤ 1/2, almost

surely, it converges asymptotically to eλt for some deterministic strictly positive constant ‘λ’.

Our argument is robust for every jump rate and non-pathological spatial covariance structures.

For H > 1/2 on one hand, we demonstrate that the solution grows asymptotically no faster

than ekt
�

log t , for some positive deterministic constant ‘k’. On the other hand, the asymptotic

growth is lower-bounded by ect for some positive deterministic constant ‘c’.

Invoking Malliavin calculus seems inevitable for our results.

Key words: Parabolic Anderson model, stochastic heat equation, fractional Brownian motion,

Feynman-Kac formula, Lyapunov exponents, Malliavin calculus
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Résumé
Nous considérons le modèle parabolique d’Anderson sur Zd sous l’environnement aléatoire

du bruit fractionnaire. On prouve qu’il a une solution faible donée par la formule de Feynman-

Kac qui coïncide avec la fonction de partition d’un polymère dirigé en milieu aléatoire du

mouvement Brownien fractionnaire. Notre argumentation marche d’une manière unifiée pour

tout paramètre de Hurst dans (0,1).

Ensuite, nous étudions l’évolution temporelle asymptotique de cette solution. Nous montrons

que pour H ≤ 1/2, presque sûrement elle converge asymptotiquement vers eλt , ‘λ’ étant une

constante déterministe et strictement positive. Notre argument est solide pour tous les taux

de saut et toute structure de covariance spatiale non pathologique.

Pour H > 1/2, d’une part, nous démontrons que la solution se développe asymptotiquement

pas plus vite que ekt
�

log t , pour une constante positive et déterministe ‘k’. D’autre part, il est

facilement montré que sa croissance asymptotique a pour une borne inférieure la fonction

exponentiele ect , ‘c’ étant une constante déterministe et strictement positif.

Le calcul de Malliavin semble inévitable pour nos résultats.

Mots clefs : Modèle parabolique d’Anderson, équation stochastique de chaleur, Mouvement

Brownien fractionnaire, Formule de Feynman-Kac, Exposant de Lyapunov, Calcul de Malliavin
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Introduction

The parabolic Anderson model (PAM) is the parabolic partial differential equation

∂

∂t
u(t , x) = κΔu(t , x)+ξ(t , x)u(t , x), x ∈Zd , t ≥ 0, (1)

where κ> 0 is a diffusion constant and Δ is the discrete Laplacian defined by

Δ f (x) := 1
2d

∑
|y−x|=1[ f (y)− f (x)]. The potential {ξ(t , x)}t ,x can be a random or deterministic

field or even a Schwartz distribution.

The parabolic Anderson model, named after Philip Warren Anderson, the American physicist

and Nobel laureate, has applications and connections to problems in chemical kinetics,

magnetic fields with random flow and the spectrum of random Schrödinger operators, to

mention a few. The solution u(t , x) of (1) has also a population dynamics interpretation as the

average number of particles at site x and time t conditioned on a realization of the medium

ξ where the particles perform branching random walks in random media. In this case, the

first right-hand-side term of (1) signifies the diffusion and the second term represents the

birth/death of the particles. For more details, we refer to [17] and [3].

The parabolic Anderson model has been extensively studied, particularly in the last twenty

years. We refer to the classical work of Carmona and Molchanov [3], the survey by Gärtner

and König [17] and to the very recent survey [26]. Many variants of PAM have been studied,

such as the cases where the potential is white Gaussian noise [3, 7], Lévy noise [8], a family

of independent random walks [14], exclusion process and Voter model [15, 16], to mention

a few. It should be noted that the former case is different from the rest, as the white noise is

not a real valued function but a distribution. PAM has also been considered for the case of

continuous space Rd , for example in [6, 4].

The Feynman-Kac formula, named after the American theoretical physicist Richard Feyn-

man and the Polish mathematician Mark Kac, establishes a probabilistic solution to certain

parabolic partial differential equations, particularly the heat equation. This closed-form so-

lution has been proved to be an extremely useful tool in the investigation of these partial

differential equations. So it is natural to expect some Feynman-Kac representation for the PAM

which is a stochastic heat equation. The general form of the Feynman-Kac representation for
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the solution of the PAM is

u(t , x) = Ex
[

uo(X (t ))exp
∫t

0
ξ
(
s, X (t − s)

)
ds
]

,

where uo(·) := u(0, ·) is the initial value at time t = 0, X (·) is a simple random walk of jump rate

κ started at x ∈Zd and independent of ξ, and Ex is expectation with respect to this random

walk.

Carmona and Molchanov in [3] proved that for a deterministic potential ξ such that ξ(·, x) is

locally integrable in t for every x, the Feynman-Kac formula is a solution to PAM if it is finite

for every x and t . They also showed that the Feynman-Kac representation is valid when the

potential is white Gaussian noise.

Fractional Brownian motion (fBM) which is a generalization of Brownian motion, is a suitable

process to incorporate long-range spatial and temporal correlations. Many phenomena in

physics, biology, economy and telecommunications show long range memory [38, 18, 24].

The PAM driven by fractional noise has not been much studied yet. The Feynman-Kac repre-

sentation of the solution to continuous sate-space PAM driven by fractional noise has been

proved for H > 1/2 in [21] and for H > 1/4 in [22]. The asymptotic behavior of the discrete

PAM driven by Riemann-Liouville fractional noise has been considered in [50].

The results of this thesis are in two directions. Firstly, in establishing the Feynman-Kac

representation for the discrete PAM driven by fractional noise in chapter 2. We were able to

extend the results of [22] and [21] to every H ∈ (0,1) for the case of discrete space Zd . Then

in chapter 3, we will study the asymptotic behavior of the Feynman-Kac formula. There we

extend the results of [50] in several ways.

In [50] the following expression over a compact space χ is considered

u(t , x) = Ex
[

e
∫t

0 B X (s)
s ds

]
; x ∈χ , t > 0,

where {B x
. }x∈χ a family of Riemann-Liouville fractional Brownian motions of Hurst parameter

H , and X (·) is a simple random walk on χ with jump rate κ, and Ex is expectation with respect

to the random walk.

They show that E logu(t , x), where E is the expectation with respect to the random environ-

ment, i.e. the fBM field, is almost super-additive (although their proof seems to have some

problems) and hence 1
t E logu(t , x) converges to some non-negative extended-real number

λ. Using some Malliavin concentration inequalities, they show that { 1
nE logu(n, x)}n∈N and

{ 1
n logu(n, x)}n∈N have the same asymptotic behavior and hence 1

nE logu(n, x) converges over

the natural numbers to the same deterministic limit λ. Then for H < 1/2 where the finiteness

of λ is easy to show, its positivity is proved under strong conditions on κ, H and the spatial

covariance. For H > 1/2 they try to show that λ is ∞ and hence logu(n, x) grows faster than

any linear function. In fact they try to show that logu(t , x) grows at least faster than t 2H

log t .

2
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We extend their results and also modify them as follows:

• We consider an unbounded non-compact space, namely Zd .

• We prove an approximate super-additivity of E logu(t , x) which would suffice for our

conclusions.

• We show that the limit behavior of { 1
t logu(t , x)}t∈R+ is the same as { 1

n logu(n, x)}n∈N,

hence filling the gap between discrete and continuous time.

• We prove the strict positivity of λ for any H ∈ (0,1) and without any restriction on κ.

• For H ≤ 1/2 it is easily shown that λ is finite hence completely settling this case.

• For H > 1/2, although we haven’t been able to establish the finiteness of λ, we prove

that logu(t , x) grows no faster than C t
√

log t , for some positive constant C .

3





1 Preliminaries

1.1 Fractional Brownian Motion

A Gaussian random process {Bt }t∈R is called a fractional Brownian motion (fBM) of Hurst

parameter H ∈ (0,1) if it has continuous sample paths and its covariance function is of the

following form:

E
(
Bt Bs

)= RH (t , s) := 1

2
(|t |2H +|s|2H −|t − s|2H ).

The non-negative definiteness of this function was first proved by Schoenberg [43] in a more

general setting. For a proof we refer to [41] for example.

This process was first introduced by Kolmogorov in [25], but the term “Fractional Brownian

motion” was coined by Mandelbrot and Van Ness in [31].

fBM is a self-similar process in the sense that for any α> 0, the process {α−H Bαt ; t > 0} has

the same distribution as {Bt ; t > 0}. Like Brownian motion, fBM has stationary increments

and its sample are almost all nowhere differentiable. Unlike the Brownian motion, fBM doesn’t

have independent increments, is neither a Markov process nor a semi-martingale [34].

A fractional Brownian motion {Bt }t , of Hurst parameter H ∈ (0,1), can be represented as a

Voterra process [34]

Bt =
∫t

0
KH (t , s)dWs , (1.1)

where Ws is a standard Brownian motion and KH (t , s) is a square integrable kernel. Here the

stochastic integration is in Itō sense (for Itō theory we refer to e.g. [39, 27]). For the other

representations of the fractional Brownian motion see e.g. [41, 31, 34].

This integral representation can be used to define stochastic integrations with respect to

fractional Brownian motion as in [34]. It is also useful for our analysis as Itō integrals are

straightforward and easy to work with. For Itō integrals we refer to for example [27] or [39].
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Chapter 1. Preliminaries

The value of KH (t , s) for H > 1/2 is given by

KH (t , s) := cH

∫t

s
(u − s)H− 3

2 (
u

s
)H− 1

2 du ,

and for H ≤ 1/2 is given by

KH (t , s) := c ′H
(( t

s

)H− 1
2 (t − s)H− 1

2 − (H − 1

2
)s

1
2−H
∫t

s
uH− 3

2 (u − s)H− 1
2 du
)

,

where cH and c ′H are positive constants that depend only on H .

For H < 1/2 we have
∂KH

∂t
(t , s) = cH

( t
s

)H− 1
2 (t − s)H− 3

2 ,

where cH := c ′H (H − 1
2 ).

Although ∂KH
∂t is not properly integrable, in fact one can easily show that KH (t , s) is the Cauchy

principle value integral [20, 51] of ∂KH
∂t , i.e.

KH (t , s) = lim
α↓s

∫t

α

∂KH

∂t
(u, s)du +c ′H

(α
s

)H− 1
2 (α− s)H− 1

2 .

This shows that for any 0 < t1 < t2 and any H ∈ (0,1) we have

KH (t2, s)−KH (t1, s) =
∫t2

t1

∂KH

∂t
(u, s)du

= cH

∫t2

t1

(u − s)H− 3
2 (

u

s
)H− 1

2 du .

We will frequently use this equality in chapter 3.

A related process is Riemann-Liouville fractional Brownian motion which has a simpler integral

representation and hence easier to handle than the fBM. A Riemann-Liouville fractional

Brownian motion of Hurst parameter 0 < H < 1 is the process defined by

B̄t =
∫t

0
K̄H (t , s)dWs , (1.2)

with

K̄H (t , s) =
�

2H(t − s)H− 1
2 .

It is a well-known fact that the increments of a fractional Brownian motion with Hurst parame-

ters larger than half are positively correlated and those of a fBM with H < 1/2 are negatively

correlated. Indeed, for disjoint intervals (t1,T1) and (t2,T2) with lengths L1 and L2 respectively

6



1.1. Fractional Brownian Motion

and distance A, i.e. with T1 = t1 +L1, t2 = T1 + A and T2 = t2 +L2, where A ≤ 0, we have

E[(BT1 −Bt1 )(BT2 −Bt2 )] =
= (T2 − t1)2H + (t2 −T1)2H − (t2 − t1)2H − (T2 −T1)2H

= (L1 +L2 + A)2H + (A)2H − (L1 + A)2H − (L2 + A)2H

= 2H(2H −1)
∫L2

0

∫L1

0
(x + y + A)2H−2 dx dy .

So for H > 1/2 the correlation is positive and for H > 1/2 it is negative. In fact this equation

shows other important properties of fBM. First it shows that the correlation depends only on

the interval distances and their lengths so it is translation invariant, which is nothing other

than stationarity of a fBM. Secondly, as 2H −2 is always negative, the integrand is a decreasing

function of A, which means the correlation is a decreasing function of A for H larger than half

and an increasing function of A when H is less than half.

Now let A ⊆ [0,T ] be the union of disjoint intervals {(ti ,Ti )}n
i=1 of lengths {Li }i . Define

L :=∑i Li , the total length of A, and let

S :=
∫T

0
1A(s)dBs =

∑
i

(BTi −Bti ) .

When H > 1/2, as the increments are positively correlated, we have

var (S) = E(S2) ≥∑
i
E[(BTi −Bti )2] =∑

i
(Ti − ti )2H .

When H < 1/2, the increments are negatively correlated, so

var (S) = E(S2) ≤∑
i
E[(BTi −Bti )2] =∑

i
(Ti − ti )2H .

It is also useful to have an upper bound on the variance of S when H > 1/2 and a lower bound

on it for the case H < 1/2.

We construct from A a new set A′ by simply gluing the adjacent intervals together while

keeping their orders. So A′ can be written as
⋃

i (t ′i ,T ′
i ) with T ′

i = t ′i+1. We have

S′ :=
∫T

0
1A′(s)dBs =

∑
i

(BT ′
i
−Bt ′i

) = BT ′
n
−Bt ′1 ,

hence

var (S′) = E[(BT ′
n
−Bt ′1 )2] = (

∑
i

Li )2H

As the correlation of disjoint intervals are translation invariant, and that it is a decreasing

(increasing) function of the distance between the intervals for H > 1/2 (H < 1/2), we have

var (S) ≤ var (S′) for H > 1/2 and var (S) ≥ var (S′) for H > 1/2.

7



Chapter 1. Preliminaries

So in summary we have proved that for H > 1/2∑
i

L2H
i ≤ var (S) ≤ (

∑
i

Li )2H , (1.3)

and for H < 1/2

(
∑

i
Li )2H ≤ var (S) ≤∑

i
L2H

i , (1.4)

The positivity of the correlations is also true for the Riemann-Liouville fBm with H larger than

half. Indeed, for disjoint intervals [t1,T1] and [t2,T2] we have

B̄T1 − B̄t1 =
∫t1

0
[K̄H (T1, s)− K̄H (t1, s)]dWs +

∫T1

t1

K̄H (T1, s)dWs ,

and

B̄T2 − B̄t2 =
∫t2

0
[K̄H (T2, s)− K̄H (t2, s)]dWs +

∫T2

t2

[K̄H (T2, s)− K̄H (t2, s)]dWs .

As the Itō integrals over disjoint intervals are independent, using the Itō isometry we obtain

E
[
(B̄T1 − B̄t1 )(B̄T2 − B̄t2 )

]
= E
(∫t1

0
[K̄H (T1, s)− K̄H (t1, s)]dWs

∫t1

0
[K̄H (T2, s)− K̄H (t2, s)]dWs

)
+E
(∫T1

t1

K̄H (T1, s)dWs

∫T1

t1

[K̄H (T2, s)− K̄H (t2, s)]dWs

)
=
∫t1

0

[
K̄H (T1, s)− K̄H (t1, s)

][
K̄H (T2, s)− K̄H (t2, s)

]
ds

+
∫T1

t1

K̄H (T1, s)
[
K̄H (T2, s)− K̄H (t2, s)

]
ds .

As K̄H is an increasing function of its first argument, it is clear that the integrands are all

positive and hence we obtain the positivity of the correlation.

Now let A ⊆ [0,T ] be again the union of disjoint intervals {(ti ,Ti )}n
i=1 of lengths {Li }i with

L :=∑i Li , the total length of A, and let

S :=
∫T

0
1A(s)dB̄s =

∑
i

(B̄Ti − B̄ti ) .

We would like to show that for H larger than half the variance of S is bounded (up to a positive

multiplicative constant) by L2H .

Let’s first look at the integral over a single interval (ti ,Ti ). We have

B̄Ti − B̄ti =
∫ti

0
(K̄H (Ti , s)− K̄H (ti , s))dWs +

∫Ti

ti

K̄H (Ti , s)dWs

8



1.2. Malliavin Calculus

Defining f (u, s) := ∂
∂u K̄H (u, s) = (H − 1

2 )
�

2H(u − s)H− 3
2 , we have

B̄Ti − B̄ti =
∫ti

0

∫Ti

ti

f (u, s)du dWs +
∫Ti

ti

∫Ti

s
f (u, s)du dWs

=
∫T

0

∫T

s
1(ti ,Ti )(u) f (u, s)du dWs .

So for A =⋃n
i=1(ti ,Ti ), we have

S =
∫T

0
1A(s)dB̄s =

∫T

0

∫T

s
1A(u) f (u, s)du dWs .

Using the Itō calculus, and then Hölder inequality with exponent p = 1
H we have

var (S) =
∫T

0

(∫T

s
1A(u) f (u, s)du

)2
ds .

≤
∫T

0

((∫T

s
1

1
H
A (u)du

)H (∫T

s
f

1
1−H (u, s)du

)1−H
)2

ds

≤ L2H
∫T

0

(∫T

s
f (u, s)

1
1−H du

)2−2H
ds .

It remains to show that last integral is a constant. Indeed, with the change of variables s′ := s
T

and u′ := u
T , we get

∫T

0

(∫T

s
f (u, s)

1
1−H du

)2−2H
ds =

∫1

0

(∫1

s
f (u′, s′)

1
1−H du′

)2−2H
ds′ <∞.

1.2 Malliavin Calculus

The Malliavin calculus, named after Paul Malliavin [45, 30], extends the calculus of variations

from functions to stochastic processes, hence alternatively called the stochastic calculus of

variations. In particular, it allows a differential calculus on the space of random variables.

Malliavin’s motivation to initiate the theory was to provide a probabilistic proof of Hörmander’s

sum of squares theorem. Since then the theory has been successfully developed to investigate

the existence and smoothness of a density for the solution of a stochastic differential equation.

See for example [42, 35, 23].

Let (Ω,F ,P ) be a probability space and G a Gaussian linear space on it. Let also H be a Hilbert

space with the isometry W : H → G. Define S as the space of random variables F of the form:

F = f
(
W(ϕ1), . . . ,W(ϕn)

)
,

where ϕi ∈ H, f ∈ C∞(Rn), f and all its partial derivatives have polynomial growth. The

Malliavin derivative of F , ∇F , is defined (see e.g. [21, 23, 35, 42]) as an H-valued random

9



Chapter 1. Preliminaries

variable given by

∇F :=
n∑

i=1

∂ f

∂xi
(W(ϕ1), ...,W(ϕn)).ϕi

The operator ∇ is closable from L2(Ω) into L2(Ω;H) and one defines the Sobolev space D1,2 as

the closure of S with respect to the following norm [21, 23]:

||F ||1,2 =
√

E(F 2)+E(||∇F ||2H).

The divergence operator δ, is the adjoint of the derivative operator ∇, determined by the

duality relationship[21, 23]

E(δ(u)F ) = E(〈∇F,u〉H) for every F ∈D1,2.

The space of H-valued Malliavin derivable L 2 random variables with L 2 derivatives, denoted

by D1,2(H), is contained in the domain of δ, and moreover for any u ∈D1,2(H), we have

E
(
δ(u)2)≤ E

(‖u‖2
H

)+E
(‖∇u‖2

H⊗H

)
. (1.5)

For any random variable F ∈ D1,2 and ϕ ∈ H there holds the following equality called the

change of variable formula [21, 23]:

F B(ϕ) =δ(Fϕ)+〈∇F,ϕ〉H . (1.6)

For more on Malliavin calculus we refer to [23, 35].

Let {B(t , x) ; t ∈R}x∈Zd be a family of independent fractional Brownian motions indexed by

x ∈Zd all with Hurst parameter H .

Following [21], let H be the Hilbert space defined by the completion of the linear span of

indicator functions 1[0,t ]×{x} for t ∈R and x ∈Zd under the scalar product

〈1[0,t ]×{x},1[0,s]×{y}〉H = RH (t , s)δx (y) ,

where δ is the Kronecker delta. For negative t we assume the convention 1[0,t ]×{x} :=−1[t ,0]×{x}.

The mapping B(1[0,t ]×{x}) := B(t , x) can be extended to a linear isometry from H onto the

Gaussian space spanned by {B(t , x) ; t ∈R, x ∈Zd }. This is the only setting to which we will

apply Malliavin calculus in the following chapters.

1.3 Some useful theorems

In this section we assemble some basic results that we will need in the succeeding chapters.

The following lemma allows interchanging integration with a continuous linear operator.

10
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Lemma 1.3.1. Let (M ,M ,μ) be a measure space and B, B ′ be Banach spaces. Let also Λ : B → B ′

be a continuous linear operator and f : M → B a separably-valued measurable function, i.e.

there exists a separable subspace B1 of B such that f ∈ B1 almost surely. If
∫ || f ||B dμ<∞ then

Λ

∫
f dμ=

∫
Λ f dμ .

Proof. As f is separably-valued, there exists [23, 12, 29] a sequence of simple functions {un}n

of the form
∑

i 1Ai hi with Ai ∈M and hi ∈ B with the property that∫
||un − f ||B dμ−→ 0 as n →∞ .

As Λ is linear, it commutes with integration on {un}n . As Λ is continuous we have

||Λ(x)||B ≤C ||x||B ′ for some positive constant C . So∫
||Λ(un − f )||B ′dμ≤C

∫
||(un − f )||B dμ

and also

||Λ
∫

(un − f )dμ||B ′ ≤C ||
∫

(un − f )dμ||B

≤C
∫

||un − f ||B dμ .

Hence Λ commutes with integration for f too.

Let (Ω,F ,P ) be a probability space, H be a Gaussian Hilbert space on it and F (H ) be the

sigma algebra generated by H . The following theorem [48] shows that the distribution of a

Malliavin derivable random variable with bounded derivative has exponentially decaying tails.

We will this theorem in section 3.6 for establishing the quenched limits.

Theorem 1.3.2 (B.8.1 in [48]). Suppose that ϕ ∈D1,p for some p > 1 with ∇φ ∈L∞(Ω;H ), i. e.

||∇ϕ||H is almost surely bounded. Then we have the following tail probability estimate:

P {ω ; |ϕ(ω)−E[ϕ]| > c} ≤ 2exp{
−c2

2 ||∇ϕ||2
L ∞(Ω;H )

} (1.7)

The same way Fubini’s theorem allows the interchange of classical (deterministic) integrals,

stochastic Fubini theorem [49, 37] allows the interchange of a classical integral with an Itō

integral. The following theorem gives two sufficient conditions that imply the possibility of

the interchange. The first one is quite classical [37], and is basically a special case of theorem

1.3.1. The second sufficient condition is a recent one due to Veraar [49].

Theorem 1.3.3. Let W (.) be a standard Brownian motion on the probability space (Ω,F ,P )

, (X ,M ,μ) be a σ-finite measure space and T a positive number possibly +∞. Suppose ψ :

X × [0,T ]×Ω→R is jointly measurable and adapted, in the sense that for all x ∈ X , the process

11



Chapter 1. Preliminaries

ψ(x, ·, ·) is adapted. If either ∫
X

(
E

∫T

0
|ψ(x, t )|2dt

)1/2
dμ(x) <∞

or ∫
X

(∫T

0
|ψ(x, t )|2dt

)1/2
dμ(x) <∞ almost surely,

then the following integrals exist and are equal [49, 37]∫
X

∫T

0
ψ(x, t )dWt dμ(x) =

∫T

0

∫
X
ψ(x, t )dμ(x)dWt .

Separability is a property that enables us to deal with a random process basically as if it has a

countable domain. We need this concept for the two succeeding theorems.

Definition 1.3.1. A random process {X (t)}t∈T on an arbitrary topological space T , is called

separable if T has a dense countable subset D such that almost surely

∀t ∈ T : ∃ {tn}n∈N ⊆ D ; lim
n→∞ tn = t and lim

n→∞X (tn) = X (t )

Dudley’s theorem or Dudley’s entropy bound [46, 29] is a strong tool for bounding the expecta-

tion of the supremum of a family of Gaussian random variables. Although it was Dudley who

defined the metric entropy integral (as an equivalent sum in [10], then explicitly in [11]), it was

Pisier [36] who actually proved the inequality. The proof uses a chaining argument [46].

Theorem 1.3.4 (Dudley). Let {Xt }t∈T be a family of centered Gaussian random variables in-

dexed by some set T and ρ be the pseudo-metric on T defined by ρ(s, t ) :=
√

E(Xt −Xs)2. Then

for any finite subset F ⊆ T we have

E(sup
t∈F

Xt ) ≤ K
∫∞

0

√
log N (ε)dε , (1.8)

where N (ε) is the minimum number of ρ-balls of radius ε required to cover T , and K is a

universal positive constant.

Remark 1.3.1. Inequality (1.8) holds also for any countable subset F ⊆ T . Indeed F being

countable, can be expressed as
⋃

n Fn for some finite increasing sets {Fn}. Using Fatou’s lemma

E(sup
t∈F

Xt ) = E( lim
n→∞sup

t∈Fn

Xt ) = E(liminf
n→∞ sup

t∈Fn

Xt ) ≤ liminf
n→∞ E(sup

t∈Fn

Xt )

Remark 1.3.2. When T has a topological structure and X (.) is separable, Dudley’s theorem can

be expressed in the following stronger form

E(sup
t∈T

Xt ) ≤ K
∫∞

0

√
log N (ε)dε . (1.9)

12
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The reason is that in this case supt∈T Xt = supt∈D Xt and the statement is established using

remark 1.3.1.

Borell’s inequality [28] shows that under some reasonably weak conditions, the supremum of

a family of Gaussian random variables concentrates only around its mean and its probability

tails away from its mean, decay exponentially.

Theorem 1.3.5 (Borell’s inequality). Let T be a countable set and {Xt }t∈T be a family of cen-

tered Gaussian random variables indexed by T with supt∈T Xt < ∞ almost surely. Then [28]

the expectation E(supt∈T Xt ) is finite and for any c > 0

P
(
|sup

t∈T
Xt −E(sup

t∈T
Xt )| ≥λ

)
≤ 2e

− λ2

2σ2
T ,

where σ2
T := supt∈T E(X 2

t ).

This theorem can also be formulated using the median of supremum instead of its mean

[28, 1]. In fact the original result of Borell [2] which is in a much more general and abstract

setting, uses the median.

Remark 1.3.3. For T uncountable, the Borell’s inequality still holds true provided that T is

equipped with a topological structure and {Xt }t∈T is separable with respect to that topology.

The classical well-known Stirling formula gives the asymptotic value of the factorial function.

The following stronger version [40, 13] which gives tight lower and upper bounds on n!,

although not really necessary for our proofs, makes some of our proofs simpler in saving us an

unspecified multiplicative constant everywhere.

Theorem 1.3.6 (Stirling). For any n ∈N we have [40, 13]

(n/e)n
�

2πn e
1

12n+1 ≤ n! ≤ (n/e)n
�

2πn e
1

12n . (1.10)

In particular

(n/e)n
�

2πn ≤ n! ≤ e (n/e)n
�

2πn. (1.11)
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2 Feynman-Kac representation

2.1 Introduction

Consider the following parabolic Anderson model(PAM) on Zd

∂

∂t
u(t , x) =κΔu(t , x)+u(t , x)

∂

∂t
B(t , x) x ∈Zd , t ≥ 0,

where κ> 0 is a diffusion constant, Δ is the discrete Laplacian defined by

Δ f (x) := 1
2d

∑
|y−x|=1[ f (y)− f (x)] and {B(·, x)}x∈Zd is a family of independent fractional Brow-

nian motions(fBM) of Hurst parameter H , indexed by Zd .

As the paths of fBM are like Brownian motion paths, almost surely nowhere differentiable, this

equation doesn’t make sense in the classical sense and hence it should be reformulated in the

following mild sense⎧⎪⎨⎪⎩u(t , x)−u(0, x) =
∫t

0
Δu(s, x)ds +

∫t

0
u(s, x)B(ds, x)

u(0, x) = uo(x)
, (2.1)

where the stochastic integral is Stratonovich type in the sense that the fractional Brownian

motion is approximated by a sequence of smooth processes {Bε}ε and the integral
∫

u dB is

given as the limit of the sequence {
∫

u dBε}ε . We assume that uo(·) is a bounded measurable

function. It should be noted that unlike the Brownian motion for which there are basically two

standard integral types namely Itō and Stratonovich, which are easily related to each other by

an additive ‘correction’ term, for the fractional Brownian motion there are several competing

approaches whose relation to each other has not been fully established yet. We refer to [32]

and [5].

We will show that the following Feynman-Kac representation gives a solution to (2.1):

u(t , x) = Ex
[

uo(X (t ))exp
∫t

0
B
(
ds, X (t − s)

)]
, (2.2)

15
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where X (t ) is a simple random walk with jump rate κ, started at x ∈Zd and independent of the

family {B(·, x)}x∈Zd . Here the stochastic integral is nothing other than a summation. Indeed,

suppose {ti }n
i=1 be the jump times of the time-reversed random walk {X (t − s) , s ∈ [0, t ]}, and

{xi }n
i=0 be the value of {X (t −·)} at time interval [ti , ti+1). Then we have

∫t

0
B
(
ds, X (t − s)

)= n∑
i=0

(
B(ti+1, xi )−B(ti , xi )

)
.

Carmona and Molchanov in their memoir [3] prove that for bounded uo and H = 1/2 i.e. stan-

dard Brownian motion, the Feynman-Kac representation (2.2) solves eqution (2.1). Nualart et

al. proved this result for PAM on Rd driven by fractional noise of Hurst parameter H ≥ 1/2 in

[22] and for H ≥ 1/4 in [21]. Our method is able to prove this property without any restriction

on H due to the fact that in the discrete case one deals with locally constant random walk

instead of Brownian motion which is only locally α-Hölder continuous for α< 1/2.

In section 2.2 we explain the approximation scheme we are going to use. There we outline our

methodology without delving much into technicalities. We show that the problem reduces

to demonstrating the converge of three expressions uε, V1,ε and V2,ε. In section 2.3, using

only elementary probability we prove that the piecewise-constant integrals with respect to

the approximation processes proposed in section 2.2, approach the integral with respect

to fractional Brownian motion. The proposition 2.3.1 serves as the building block of our

arguments.

The remaining chapters are devoted to the showing the convergence of uε, V1,ε and V2,ε.

2.2 Setting

As explained in the previous section we aim to approximate the fractional Brownian motions

with a family of smooth Gaussian processes. There are basically two natural ways to approx-

imate a (fractional) Brownian motion: The so-called Wong-Zakai approximation scheme

[47, 52] which is the piecewise linear approximation of (fractional) Brownian motion paths.

The second natural scheme is as follows: The time derivative of a fractional Brownian motion

does not exist in the classical sense but only in the distributional sense. The idea is to approxi-

mate the ‘derivative’ of the fractional Brownian motion and then integrate it. Indeed we define

the approximate derivative of B(·, x) as Ḃε(·, x)

Ḃε(t , x) := 1

2ε

(
B(t +ε, x)−B(t −ε, x)

)
. (2.3)

Proposition 2.3.1 shows in particular that the integral of this family of Gaussian processes

converges to fractional Brownian motion.

While the first scheme doesn’t seem to be easy to work with, the second one has been proved to

be very suitable in our setting where we use the Wiener space technics and Malliavin calculus
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[21].

Now let first replace in equation (2.1), the fBM family {B(·, x)}x∈Zd by a family of absolutely

continuous functions {Ξ(·, x)}x∈Zd , or equivalently replace the family of fractional noises

{ ∂
∂t B(·, x)}x∈Zd by a family of locally integrable functions {ξ(·, x)}x∈Zd whereΞ(t , x) =∫t

0 ξ(s, x)ds

for every x and t . Carmona and Molchanov in [3] showed that the Feynman-Kac formula

F (Ξ) := Ex
[

uo(X (t ))exp
∫t

0
Ξ
(
ds, X (t − s)

)]= Ex
[

uo(X (t ))exp
∫t

0
ξ(s, X (t − s)ds

]
solves the PAM driven by the potential {ξ(·, x)}x∈Zd if this expression is finite for every x and t .

If we approximate the fractional Brownian motions by the sequence of families {Bε(·, x)}x∈Zd

where every Bε(·, x) is a random process with absolutely continuous sample paths that con-

verges to B(·, x), we expect that F (Bε) should also converge F (B). On the other hand, if we

denote by uε the solution of equation (2.1) with B replaced by Bε, we also expect that uε

should converge to the solution of (2.1) with the integral understood in the Stratonovich sense.

The reason is that for the stochastic differential equations with Brownian motion or more

generally semi-martingale terms, if the Brownian motions are approximated by a sequence

of absolutely continuous processes, the sequence of solutions converge to the Stratonovich

solution of the original differential equation [44, 37]. Note that for each path of an absolutely

continuous processes, a solution in the classical sense exists due to the its differentiability.

The above intuitive explanation suggests that if this Feynman-Kac representation is possible

only if the integration is in Stratonovich sense.

So we consider the approximation scheme of equation (2.3). In the rest of this chapter without

any loss of generality, we assume κ= 1.

Let

uε(t , x) := Ex
[

uo(X (t ))exp
∫t

0
Ḃε

(
s, X (t − s)

)
ds
]

, (2.4)

where Ḃε is defined in (2.3).

By lemma 2.4.4, we have E|uε(t , x)| <∞ for every x and t . So almost surely, uε(t , x) is finite for

every x and t . On the other hand, the sample paths of Ḃε are locally integrable. So by the above

mentioned theorem of Carmona and Molchanov [3] the field {uε(t , x)}x,t solves the following

equation⎧⎪⎨⎪⎩
∂uε

∂t
=Δuε+uεḂε

uε(0, x) = uo(x) .
(2.5)

We aim to show that (2.2) gives a solution to (2.1) with the Stratonovich integral
∫t

0 u(s, x)B(ds, x)

17
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defined in the following natural manner which was also used in [21].

Definition 2.2.1. For a random field u = {u(t , x); t ∈R, x ∈Zd }, the Stratonovich integral∫t

0
u(s, x)B(ds, x)

is defined [21] as the following L 2 limit (if it exists)

lim
ε→0

∫t

0
u(s, x)Ḃε

(
s, x
)
ds .

Using the same methodology of [21] we will show that the Stratonovich integral of the Feynman-

Kac formula (2.2) exists and moreover it satisfies (2.1).

Indeed equation (2.5) can be integrated to

uε(t , x)−uo(x) =
∫t

0
Δuε(s, x)ds +

∫t

0
uε(s, x)Ḃε(s, x)ds . (2.6)

Once we show that uε (given by (2.4)) converges to u (given by (2.2)) in L 2 sense and uni-

formly in t ∈ [0,T ] as ε goes down to zero, along with equation (2.6), it would imply the L 2-

convergence of
∫(

uεḂε

)
to some random variable. If moreover one shows that

∫(
uεḂε−uḂε

)
converges in L 2 to zero, it would imply the convergence of

∫(
uḂε

)
and hence the existence of

the Stratonovich integral
∫

u dB . But this means that u satisfies equation (2.1).

Let

g ε
s,x (r, z) := 1

2ε
1[s−ε,s+ε](r )δx (z) . (2.7)

It is easy to show that g ε
s,x (r, z) is in H defined in section 1.2, and moreover

B(g ε
s,x ) = Ḃε(s, x) .

So by the change of variable formula (1.6) we have

uε(s, x)Ḃε(s, x)−u(s, x)Ḃε(s, x) = ũε(s, x)B(g ε
s,x )

=δ(ũε(s, x)g ε
s,x )+〈∇ũε(s, x), g ε

s,x〉H ,

where ũε := uε−u.

Hence it suffices to show that V1,ε := ∫t
0 δ(ũε(s, x)g ε

s,x )ds and V2,ε := ∫t
0 〈∇ũε(s, x), g ε

s,x〉H ds

both converge to zero as ε goes to zero. In sections 2.4, 2.5 and 2.6 we will deal with the

convergence of uε, V1,ε and V2,ε.
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2.3 Approximation rate

In this section we prove the following theorem that establishes the approximation of B(ds)

by Ḃε(s)ds. In the proof we will use some ideas of [21] as well as simple properties of random

walk.

Proposition 2.3.1. Let t , T , t1, t2, ..., tN be some positive real numbers with t0 := 0 < t1 <
·· · < tN < tN+1 := t ≤ T and X (·) a jump function on [0, t ] with values in Zd and jump times

{t1, ..., tN }, i.e. X (s) = xi ∈Zd for s ∈ (ti , ti+1]. Then

E
∣∣∣∫t

0
Ḃε

(
s, X (s)

)
ds −

∫t

0
B
(
ds, X (s)

)∣∣∣2 ≤C N 2εmin{2H ,1} ,

where C is a constant depending only on T and H and

∫t

0
B
(
ds, X (s)

)= N∑
i=0

(
B(ti+1, xi )−B(ti , xi )

)
.

Proof. First we show that for every t1 and t2, t1 < t2 ≤ T , and any fractional Brownian motion

B(·) with Hurst parameter H ∈ (0,1) we have

E
∣∣∣B(t2)−B(t1)−

∫t2

t1

Ḃε(θ)dθ
∣∣∣2 ≤Cεmin{2H ,1} , (2.8)

where Ḃε is the symmetric ε-derivative of W :

Ḃε(t ) := 1

2ε

(
B(t +ε)−B(t −ε)

)
and C is some positive constant depending only on T and H . We have to calculate and bound

E
∣∣∣B(t2)−B(t1)−

∫t2

t1

Ḃε(θ)dθ
∣∣∣2 = E

∣∣∣B(t2)−B(t1)
∣∣∣2

+
∫t2

t1

∫t2

t1

E
[

Ḃε(θ)Ḃε(η)
]

dθdη−2
∫t2

t1

E
[(

B(t2)−B(t1)
)
Ḃε(θ)

]
dθ .

(2.9)

Let S1 and S2 be the first and second terms on the right hand side of this equation and S3 be

the third term without its −2 factor.

Using the following equality

E
[(

B(a)−B(b)
)(

B(c)−B(d)
)]= 1

2

[
|a −d |2H +|b −c|2H −|a −c|2H −|b −d |2H

]
we have:

S1 = |t2 − t1|2H ,

S2 =
∫t2

t1

∫t2

t1

1

8ε2

[
|s −η+2ε|2H +|η− s +2ε|2H −2|s −η|2H

]
dηds
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and

S3 = 1

4ε

∫t2

t1

[
|t2 −θ+ε|2H +|θ− t1 +ε|2H −|t2 −θ−ε|2H −|θ− t1 −ε|2H

]
dθ .

We will show that both S2 and S3 converge to |t2 − t1|2H .

Step I: Limiting behavior of S2

By a change of variable we can replace the integration interval with [0, t2−t1] with the integrand

remaining intact. But as the integrand is symmetric in s and η, we may calculate the integral

over a triangular surface hence getting:

S2 = 2

8ε2

∫t2−t1

0

∫s

0

[
|s −η+2ε|2H +|η− s +2ε|2H −2|s −η|2H

]
dηds .

By a change of variable of γ= s −η we get:

S2 = 1

4ε2

∫t2−t1

0

∫s

0

[
|γ+2ε|2H +|γ−2ε|2H −2|γ|2H

]
dγds . (2.10)

We will show that S2 converges to |t2 − t1|2H with the following rate of convergence for H < 1
2∣∣S2 −|t2 − t1|2H

∣∣≤ 4(2ε)2H (2.11)

and ∣∣S2 −|t2 − t1|2H
∣∣≤Cε (2.12)

for H > 1
2 . Here C is some constant depending only on T and H . For the simplicity of notation

let t := t2 − t1. Defining g (s) :=∫s
0 |r |2H dr , (2.10) can be written as:

S2 = 1

4ε2

∫t

0

[
g (s +2ε)+ g (s −2ε)−2g (s)

]
ds . (2.13)

As g ′ is continuous everywhere and g ′′(r ) = 2H sgn(r )|r |2H−1 is continuous everywhere except

for the origin when H < 1
2 and everywhere when H ≥ 1

2 , this equation can be written as:

S2 = 1

4

∫1

−1

∫1

−1

∫t

0
g ′′(s +ξε+ηε)ds dξdη . (2.14)

Let Δ := ξε+ηε and first suppose that H < 1
2 .

Case i) Δ≥ 0: ∣∣∣∣∫t

0

(
g ′′(s +Δ)−2H s2H−1)ds

∣∣∣∣= 2H
∫t

0

(
s2H−1 − (s +Δ)2H−1)ds

= [t 2H − (t +Δ)2H ]+Δ2H ≤Δ2H .
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Case ii) −t <Δ< 0:∫t

0

(
g ′′(s +Δ)−2H s2H−1)ds =−2H

∫−Δ

0

(
(−s −Δ)2H−1 + s2H−1)ds

+2H
∫t

−Δ
(
(s +Δ)2H−1 − s2H−1)ds .

(2.15)

The first term equals −2|Δ|2H and the second term equals (t +Δ)2H − t 2H +Δ2H which is

bounded by 2|Δ|2H .

Case iii) Δ≤−t :∣∣∣∣∫t

0

(
g ′′(s +Δ)−2H s2H−1)ds

∣∣∣∣= 2H
∫t

0

(
(−s −Δ)2H−1 + s2H−1)ds

≤ 2H
∫−Δ

0

(
(−s −Δ)2H−1 + s2H−1)ds = 2|Δ|2H .

(2.16)

Noting that |Δ| < 2ε, inequality (2.11) is proved.

Now we consider the case of H ≥ 1
2 .

Case i) Δ≥ 0:∫t

0

(
g ′′(s +Δ)−2H s2H−1)ds = 2H

∫t

0

(
(s +Δ)2H−1 − s2H−1)ds

= 2H
∫t

0

∫Δ

0
(2H −1)(s +α)2H−2dαds

= 2H
∫Δ

0

(
(t +α)2H−1 −α2H−1)dα .

(2.17)

As 2H − 1 < 1 we have (t +α)2H−1 −α2H−1 ≤ t 2H−1 which shows that the above integral is

bounded by 2H t 2H−1|Δ| and hence by 2HT 2H−1|Δ|.
Case ii) −t <Δ< 0: Equation (2.15) remains valid with its first term bounded by 2|Δ|2H which

is smaller than 2|Δ|, assuming |Δ| < 1. As 2H −1 > 0, the absolute value of the second term

equals:

2H
∫t

−Δ
(
s2H−1 − (s +Δ)2H−1)ds = 2H

∫0

Δ

∫t

−Δ
(s +α)2H−2(2H −1)ds dα

= 2H
∫0

Δ

[
(α+ t )2H−1 − (−Δ+α)2H−1]dα

≤ 2H
∫0

Δ
(t +Δ)2H−1 ≤ 2H t 2H−1|Δ| ≤ 2HT 2H−1|Δ| .

The last inequality is true because 2H −1 < 1. So we get the bound (2+2HT 2H−1)|Δ|.
Case iii) Δ≤−t : Equation (2.16) works without any change and we get the bound 2|Δ|2H ≤ 2|Δ|.

Noting |Δ| ≤ 2ε the proof of inequality (2.12) is complete with C = 22H (2+2HT 2H−1).

In the H ≥ 1
2 regime we can establish the following alternative bound which will be used in

21



Chapter 2. Feynman-Kac representation

section 2.4∣∣S2 −|t2 − t1|2H
∣∣≤ 2|t2 − t1|(2H +1)ε2H−1 . (2.18)

It is shown case by case

• For case i), using the first equality in equation (2.17) and noting (s +Δ)2H−1 − s2H−1 ≤Δ2H−1

we have the bound 2H tΔ2H−1.

• For case ii), the second term on the right hand side in (2.15) can be bounded by

2H(t −|Δ|)|Δ|2H−1 ≤ 2H t |Δ|2H−1 and the first term by 2|Δ|2H ≤ 2t |Δ|2H−1.

• In case iii), using the first equality in (2.16) it can be bounded by 4H t |Δ|2H−1.

So we have the bound 2t (2H +1)|Δ|2H−1 ≤ 2t (2H +1)ε2H−1.

Step II: Limiting behavior of S3

By setting t := t2 − t1 and two changes of variables, S3 can be written as

2

4ε

∫t

0

(
|θ+ε|2H −|θ−ε|2H

)
dθ = 1

2ε

∫t

0

∫+ε

−ε
2H |θ+α|2H−1dαdθ .

So

(S3 − t 2H ) = 1

2ε

∫+ε

−ε

∫t

0
2H
(|θ+α|2H−1 −θ2H−1)dθdα . (2.19)

Let’s first assume ε≤ t . Let’s break this integral into three sub-integrals:∫+ε

0

∫t

0
· · ·+

∫0

−ε

∫−α

0
· · ·+

∫0

−ε

∫t

−α
· · ·

and call them A, B and C , respectively.

We bound these terms separately for H ≤ 1
2 and H > 1

2 .

First suppose H ≤ 1
2 .

|A| = 1

2ε

∫+ε

0

∫t

0
2H
[
θ2H−1 − (θ+α)2H−1]dθdα

= 1

2ε

∫+ε

0

[
α2H − (α+ t )2H + t 2H ]dα

≤ 1

2ε

∫+ε

0
α2H dα = 1

2(2H +1)
ε2H .

(2.20)
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For the second term we have

|B | ≤ 1

2ε

∫0

−ε

∫−α

0
2H
[
θ2H−1 + (−θ−α)2H−1]dθdα

= 1

ε

∫0

−ε
(−α)2H dα= 1

2H +1
ε2H .

Finally:

|C | = 1

2ε

∫0

−ε

∫t

−α
2H
[
(θ+α)2H−1 −θ2H−1]dθdα

= 1

2ε

∫0

−ε
[
(t +α)2H − t 2H + (−α)2H ]dα

≤ 1

2ε

∫0

−ε
(−α)2H dα = 1

2(2H +1)
ε2H .

So for H ≤ 1
2 :

|S3 − t 2H | ≤ 2

2H +1
ε2H .

Now for H > 1
2 : we again examine each of the terms:

|A| = 1

2ε

∫+ε

0

∫t

0
2H
[
(θ+α)2H−1 −θ2H−1]dθdα

= H

ε

∫+ε

0

∫t

0

∫α

0
(2H −1)(θ+ξ)2H−2dξdθdα

= H

ε

∫+ε

0

∫α

0

[
(t +ξ)2H−1 −ξ2H−1]dξdα

≤ H

ε

∫+ε

0

∫α

0
t 2H−1dξdα = 1

2
H t 2H−1ε .

(2.21)

As equation (2.3) remains valid for H > 1
2 , we have:

|B | ≤ 1

2H +1
ε2H ≤ 1

2H +1
ε .

For |C | we use the same trick as in (2.21):

|C | = 1

2ε

∫0

−ε

∫t

−α
2H
[
θ2H−1 − (θ+α)2H−1]dθdα

= H

ε

∫0

−ε

∫−α

0

∫t

−α
(2H −1)(θ+ξ)2H−2 dθdξdα

= H

ε

∫0

−ε

∫−α

0

[
(t +ξ)2H−1 − (ξ−α)2H−1]dξdα

≤ H

ε

∫0

−ε

∫−α

0
(t +α)2H−1dξdα

≤ H

ε

∫0

−ε

∫−α

0
t 2H−1dξdα = 1

2
H t 2H−1ε .

(2.22)
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Chapter 2. Feynman-Kac representation

Now we address the case where ε> t . Here we need to break the integral in (2.19) into four

sub-integrals: ∫+ε

0

∫t

0
· · ·+

∫0

−t

∫−α

0
· · ·+

∫0

−t

∫t

−α
· · ·+

∫−t

−ε

∫t

0
· · ·

Let’s call the terms as A′, B ′, C ′, D ′, respectively.

One can check easily that the same procedures used for bounding A and C work for A′ and C ′.
For B ′ and D ′ we have

|B ′| ≤ 1

2ε

∫0

−t

∫−α

0
2H
[
θ2H−1 + (−θ−α)2H−1]dθdα ,

and

|D ′| ≤ 1

2ε

∫−t

−ε

∫t

0
2H
[
θ2H−1 + (−θ−α)2H−1]dθdα

≤ 1

2ε

∫−t

−ε

∫−α

0
2H
[
θ2H−1 + (−θ−α)2H−1]dθdα .

Hence

|B ′|+ |D ′| ≤ |B |

So in brief the same bounds found above for |S3 − t 2H | for the case ε≤ t remain valid for the

case ε> t too. So inequality (2.8) is proved.

Now we turn back to the proof of proposition 2.3.1. we have:

E
∣∣∣∫t

0
Ḃε

(
s, X (s)

)
ds −

∫t

0
B
(
ds, X (s)

)∣∣∣2
≤ E
{( N∑

i=0

∣∣∣B(ti+1)−B(ti )−
∫ti+1

ti

Ḃε(θ)dθ
∣∣∣)2}

≤C1(N +1)2εmin{2H ,1} ≤C2N 2εmin{2H ,1} .

2.4 Convergence of uε

In this section, using simple random walk properties we prove that ũε and its Malliavin

derivative both converge to zero in L 2.

Proposition 2.4.1. ũε := uε−u converges to 0 in D1,2 uniformly in [0,T ], i.e.

sup
s∈[0,T ]

E
[|ũε(s, x)|2 +‖∇ũε(s, x)‖2

H

]−→ 0 as ε ↓ 0.

Let X : [0,T ] → Zd be a piecewise constant function on the lattice Zd with jump times
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2.4. Convergence of uε

t1 < t2 < ·· · < tN . Let also t0 := 0 and tN+1 := T . For any given δ > 0 we may chop up [0,T ]

into calm periods and rough ones. A calm period is defined as an interval in which all the

consecutive jumps are at least δ apart, and a rough period as one in which all the consecutive

jumps are at most δ apart. We additionally require that these intervals begin with a jump and

end with another.

We also define R as the number of jumps in [0,T ] that are within δ distance of their previous

one. In other words, R is defined to be the cardinality of {i | ti − ti−1 < δ, ti ≤ T }

Lemma 2.4.2. Consider a Poisson process with intensity λ and let R(=RT ) be defined for any

sample path of the Poisson process as above. Then for any given δ> 0, we have

P(R ≥ n) ≤ (Cδ)n ,

where C is a constant that depends only on T and λ.

Proof. Let A be the event of having at least one jump in [0, t ] which is within δ of a previous

one and B be the event of having at least one jump in [0,δ]. Let also N (t) be the number of

jumps in [0, t ] and t0 := 0. We have

P(A∪B) ≤
∞∑

k=1
P(tk − tk−1 < δ and tk−1 < t )

=
∞∑

k=1
P(tk − tk−1 < δ | tk−1 < t )P(tk−1 < t )

= (1−e−λδ)
∞∑

k=1
P(tk−1 < t )

= (1−e−λδ)
∞∑

k=0
P(N (t ) ≥ k)

= (1−e−λδ)
(
E (N (t ))+1

)
.

Using the fact that the expectation of N (t) is λt and noting the inequality 1− e−λδ ≤λδ, we

get P(A∪B) ≤Ctδ, where Ct =λδ(1+ tλ). In particular Ct is increasing in t .

Now we define σ1 as the first jump time that is within δ of the previous one, i.e.

σ1 := inf{tk > 0 ; tk − tk−1 < δ}. Having defined σn we define σn+1 as the first jump time after

σn that is within δ of the previous one, i.e. σn+1 := inf{tk >σn ; tk − tk−1 < δ}. We have

P(σi+1 < T |σi ) ≤
⎧⎨⎩0 if σi ≥ T

CT−σi if σi < T .

As Ct is an increasing function in t we have the following uniform bound:

P(σi+1 < T |σi ) ≤ (CT δ)1{σi<T } .
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Chapter 2. Feynman-Kac representation

So

P(σi+1 < T ) = E
[
P(σi+1 < T |σi )

]≤ (CT δ)P(σi < T ) .

So by induction

P(σk < T ) ≤ (CT δ)k .

Now noticing that R ≥ n implies σn < T we get

P(R ≥ n) ≤ P(σn < T ) ≤ (CT δ)n .

Lemma 2.4.3. For a Poisson process of intensity λ and for any given δ > 0, let L be the total

length of its rough periods in [0,T ] and K be the number of rough periods in [0,T ]. Then there

exists a constant C depending only on T and λ such that

P(K ≥ n) ≤ (Cδ)n

and

P(L ≥ nδ) ≤ (Cδ)n

Proof. As L < Rδ and K ≤ R, any of L ≥ nδ or K ≥ n implies R ≥ n. The result follows from the

previous lemma.

Now we are ready to prove the following lemma.

Lemma 2.4.4. For any p ≥ 1, there exists M > 0 such that E|uε(t , x)|p is bounded uniformly in

(ε, t , x) ∈ (0, M ]× [0,T ]×Zd . E|u(t , x)|p is also bounded uniformly in (t , x) ∈ [0,T ]×Zd .

Proof. First consider E|u(t , x)|p .

E|u(t , x)|p ≤ ‖uo‖p
∞Ex E exp

[
p
∫t

0
B
(
ds, X (t − s)

)]
= ‖uo‖p

∞Ex exp
(p2

2
var
[∫t

0
B
(
ds, X (t − s)

)])
.

So it is enough to find a uniform bound on var
[∫t

0 B
(
ds, X (t − s)

)]
. For any sample path X (·) of

simple random walk on Zd let t1 < t2 < ·· · < tN be the jump times of the reversed path X (t −·)
and x1, x2, ..., xN+1 be its values. Let also t0 := 0 and tN+1 := t . We have

var
[∫t

0
B
(
ds, X (t − s)

)]= var
[N+1∑

i=1

∫ti

ti−1

B
(
ds, xi

)]
= var

[N+1∑
i=1

B(ti , xi )−B(ti−1, xi )
]

.
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2.4. Convergence of uε

For H ≥ 1
2 we have

var
[N+1∑

i=1
B(ti , xi )−B(ti−1, xi )

]
≤ (N +1)

N+1∑
i=1

var
[
B(ti , xi )−B(ti−1, xi )

]
= (N +1)

N+1∑
i=1

(ti − ti−1)2H ≤ (N +1)t 2H .

As N is a Poisson random variable, Eexp(C N ) is finite for any constant C .

For H ≤ 1
2 we use the well-known property that disjoint increments of a fractional Brownian

motion with Hurst parameter less than half are negatively correlated. So we have

var
[N+1∑

i=1
B(ti , xi )−B(ti−1, xi )

]≤ N+1∑
i=1

var
[
B(ti , xi )−B(ti−1, xi )

]
=

N+1∑
i=1

(ti − ti−1)2H ≤ (N +1)1−2H t 2H .

In the last inequality we have used the fact that for H ≤ 1
2 , the expression x2H

1 +x2H
2 +·· ·+x2H

m

achieves its maximum when all xi ’s are equal and the maximum is hence m1−2H (
∑

i xi )2H .

Again as N is Poisson, Eexp(C Nα) is finite for any constants C and α≤ 1.

Now let us consider E|uε(t , x)|p

E|uε(t , x)|p ≤ ‖uo‖p
∞Ex E exp

[
p
∫t

0
Ḃε

(
s, X (t − s)

)
ds
]

= ‖uo‖p
∞Ex exp

(p2

2
var
[∫t

0
Ḃε

(
s, X (t − s)

)
ds
]) (2.23)

Again we need to distinguish between H larger and less than half.

When H is larger than a half, var
(∫t2

t1
Ḃε(s)ds

)
being equal to S2 introduced in section 2.3, is

bounded by (t2 − t1)2H +2(t2 − t1)(2H +1)ε2H−1 by inequality (2.18). With the above notation

var
[∫t

0
Ḃε

(
s, X (t − s)

)
ds
]= var

[N+1∑
i=1

∫ti

ti−1

Ḃε(s, xi )ds
]

≤ (N +1)
N+1∑
i=1

var
(∫ti

ti−1

Ḃε(s, xi )ds
)

≤ (N +1)
N+1∑
i=1

(
(ti+1 − ti )2H +2(ti+1 − ti )(2H +1)ε2H−1

)
≤ (N +1)

(
t 2H +2(2H +1)ε2H−1t

)
.

Again we get a multiple of N and hence a finite bound.
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Chapter 2. Feynman-Kac representation

When H ≤ 1
2 , the situation is more complicated. Let {ti }N

i=1 be the increasingly ordered jump

times of {X (t − s) ; s ∈ [0, t ]} with additional convention of t0 := 0 and tN+1 := t . We decompose

[0, t ] into calm and rough periods of X (t −·) with respect to δ= 2ε. Let increasingly enumerate

the set of indices {i ; ti − ti−1 ≥ δ} as {tik }k . In other words, we single out and enumerate

those time intervals [ti −1, ti ] whose length is larger than or equal to δ = 2ε. It is evident

that such intervals constitute the calm periods. Let also {Yk }k be the integral of Ẇε(·, xik ) over

the time interval [tik−1, tik ], i.e. Yk :=∫tik
tik−1

Ẇε(s, xik )ds. Let also Z be the sum of the integrals

over all rough periods. Using equation (2.23), Cauchy-Schwartz and the simple inequality

E(X +Y )2 ≤ 2EX 2 +2EY 2, we have

E|uε(t , x)|p ≤ ‖uo‖p
∞Ex exp

(p2

2
E(Z +∑

k
Yk )2 )

≤ ‖uo‖p
∞
[
Ex exp

(
2p2E(Z 2)

)]1/2[
Ex exp

(
2p2E (

∑
k

Yk )2 )]1/2.

Once again we will use the negativeness of the covariance of disjoint increments of a fractional

Brownian motion with Hurst parameter less than half.

First we consider the integral over the rough periods, i.e. the first term above. Let I be the

union of all the rough intervals in [0, t ].

We notice that for α,β ∈ [0, t ], and a fractional Brownian motion B(·) of Hurst parameter

H ≤ 1/2 we have

EḂε(α)Ḃε(β) ≤ 0 for |α−β| ≥ 2ε ,

which is nothing but the negative correlation of non-overlapping increments of a fBM, and

|EḂε(α)Ḃε(β)| ≤ 4(4ε)2H

(2ε)2 for |α−β| < 2ε ,

which is easily followed by a simple calculation.

This shows that for α,β ∈ [0, t ], there are only two possibilities: either Ḃε

(
α, X (t −α)

)
and

Ḃε

(
β, X (t −β)

)
have negative correlation or they are uncorrelated, depending on whether
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2.4. Convergence of uε

X (t −α) is the same as X (t −β) or not. So we have

E(Z 2) = E
[∫

I
Ḃε

(
α, X (t −α)

)
dα
∫

I
Ḃε

(
β, X (t −β)

)
dβ
]

=
∫
α∈I

∫
β∈I

E
[
Ḃε

(
α, X (t −α)

)
Ḃε

(
β, X (t −β)

)]
dβdα

≤
∫
α∈I

∫
β∈I

E
[
Ḃε

(
α, X (t −α)

)
Ḃε

(
β, X (t −β)

)]
1|α−β|<2εdβdα

≤
∫
α∈I

∫
β∈I

|E(Ḃε(α)Ḃε(β)
)|1|α−β|<2εdβdα

≤
∫
α∈I

∫
β∈I

2ε2H

ε2 1|α−β|<2εdβdα

= 2ε2H

ε2

∫
α∈I

(4ε)dα ≤ 8ε2H−1L ,

where L is the total length of rough periods, i.e. the length of I .

So

Ex exp
(
2p2E(Z 2)

)≤ Ex exp
(
16p2ε2H L/ε

)
.

As L/ε has exponential tail by lemma 2.4.3, the above expectation is finite for ε small enough.

For the second term, E(
∑

k Yk )2, observe that the length of each time interval [tik−1, tik ] is

larger than 2ε which means the distance of every two non-neighboring such intervals is at

least 2ε. But this means that only consecutive Yk ’s can be positively correlated because for

any two intervals I1 and I2 that are at least 2ε apart, the integrals
∫

I1
Ḃε(s)ds and

∫
I2

Ḃε(s)ds

are negatively correlated which in turn is a consequence of the negative correlation of disjoint

intervals of a fractional Brownian motion with H ≤ 1
2 . So

E
[
(
∑
k

Yk )2]≤ E(Y 2
1 )+2E(Y1Y2)+E(Y 2

2 )+2E(Y2Y3)+E(Y 2
3 )+ ...

+2E(Yn−1Yn)+E(Y 2
m)

≤ 2E(Y 2
1 )+3E(Y 2

2 )+3E(Y 2
3 )+ ...+3E(Y 2

n−1)+2E(Y 2
m)

≤ 3
∑
k
E(Y 2

k ) .

In the first inequality we have used the fact that for non-consecutive Yi and Y j , their covariance

E(Yi Y j ) is negative and in the last inequality we have used 2E(X Y ) ≤ E(X 2)+E(Y 2). Using

equation (2.11) we have

var

[∫ti+1

ti

Ḃε(s)ds

]
≤ (ti+1 − ti )2H +4(2ε)2H .

So noting m ≤ N , where N denotes the number of jumps in [0, t ] and using the fact that

x2H
1 + x2H

2 + ·· · + x2H
m is bounded by m1−2H (

∑
i xi )2H for H ≤ 1

2 which is a consequence of
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concavity of (·)2H , we get

E
[
(
∑
k

Yk )2]≤ 3
m∑

k=1
[(tik − tik−1)2H +4(2ε)2H ]

≤ 3m1−2H [
m∑

k=1
(tik − tik−1)]2H +12m(2ε)2H

≤ 3(N +1)1−2H t 2H +12(N +1)(2ε)2H .

PROOF OF PROPOSITION 2.4.1. We give the same argument used in [21].

Since uo is bounded, for simplicity and without any loss of generality we drop it from now on.

Let X (·) be an arbitrary but fixed sample path of the simple random walk on Zd started at x,

following [21] we define:

g ε
s,x (r, z) := 1

2ε
1[s−ε,s+ε](r )δx (z) (2.24)

g X
s,x (r, z) := 1[0,s](r )δX (s−r )(z) (2.25)

g ε,X
s,x (r, z) :=

∫s

0

1

2ε
1[θ−ε,θ+ε](r )δX (s−θ)(z)dθ (2.26)

It can be easily shown that g ε
s,x (r, z), g X

s,x and g ε,X
s,x are all in the Hilbert space H introduced in

chapter ??, and moreover

B(g ε
s,x ) = Ḃε(s, x)

B(g X
s,x ) =

∫s

0
B
(
dθ, X (s −θ)

)
and

B(g ε,X
s,x ) =

∫s

0
Ḃε

(
θ, X (s −θ)

)
dθ.

For p ≥ 1 arbitrary, using the inequalities |ea−eb | ≤ (ea+eb)|a−b| and (a+b)n ≤ 2n−1(an+bn)
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2.4. Convergence of uε

and also Hölder’s and Jensen’s inequalities we get

E|uε(t , x)−u(t , x)|p

= E|Ex(eB(g ε,X
t ,x ) −eB(g X

t ,x ))|p
≤ Ex E|eB(g ε,X

t ,x ) −eB(g X
t ,x )|p

≤ Ex
(
E
(
eB(g ε,X

t ,x ) +eB(g X
t ,x ))2p

)1/2
Ex
(
E|B(g ε,X

t ,x )−B(g X
t ,x )|2p

)1/2

≤C
(
Ex E
(
e2pB(g ε,X

t ,x ) +e2pB(g X
t ,x )))1/2

Ex E|B(g ε,X
t ,x )−B(g X

t ,x )|2 ,

(2.27)

where in the second inequality we have used the fact that for Gaussian random variables all

the n-norms are equivalent to 2-norm.

So by applying lemma 2.4.4 and proposition 2.3.1 we obtain

sup
t∈[0,T ]

E|ũε(t , x)|2 −→ 0 as ε ↓ 0.

For the convergence of ∇ũε, we use the fact that for a separably-valued D1,2-valued random

variable f ∈L 1(X ;D1,2) with X a probability space independent of the underlying Gaussian

space of D1,2, we have E∇ f =∇E f provided that E(‖ f ‖D1,2 ) <∞, where the expectations are

taken with respect to X . This follows from lemma 1.3.1.

So we have

∇uε(t , x) = Ex [g ε,X
t ,x eB(g ε,X

t ,x )]

∇u(t , x) = Ex [g X
t ,x eB(g X

t ,x )] .

So
E‖∇uε(t , x)−∇u(t , x)‖2

H

= E‖Ex[g ε,X
t ,x eB(g ε,X

t ,x ) − g X
t ,x eB(g X

t ,x )]‖2
H

≤ 2EEx[eB(g ε,X
t ,x )‖g ε,X

t ,x − g X
t ,x‖2

H

]
+2EEx[|eB(g ε,X

t ,x ) −eB(g X
t ,x )|2‖g X

t ,x‖2
H

]
.

If we apply the Schwartz inequality and note that ‖g ε,X
t ,x − g X

t ,x‖2
H

= E|B(g ε,X
t ,x )−B(g X

t ,x )|2, along

with fact that for Gaussian random variables all norms are equivalent to the 2-norm, using

equation (2.27), lemma 2.4.4 and proposition 2.3.1 we get

sup
t∈[0,T ]

E‖∇ũε(t , x)‖2
H −→ 0 as ε ↓ 0.
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2.5 Convergence of V1,ε

For V1,ε we use basically the same proof as in [21]. As one can easily show that∫t

0
‖ũε(s, x)g ε

s,x‖D1,2(H )ds <∞ ,

where D1,2(H ) denotes the Sobolev space of H -valued L 2 random variables with L 2 Malli-

avin derivatives, we can apply lemma 1.3.1 to get:

V1,ε =δ(ψε) ,

where

ψε :=
∫t

0
ũε(s, x)g ε

s,x ds.

So using inequality (1.5), we have

E
(|V1,ε|2

)= E
(
δ(ψε)2)≤ E

(‖ψε‖2
H

)+E
(‖∇ψε‖2

H ⊗H

)
.

For the first right hand side term we have

E
(‖ψε‖2

H

)
=
∫t

0

∫t

0
E
(
ũε(s1, x)ũε(s2, x)

)〈g ε
s1,x , g ε

s2,x〉ds1ds2

≤ M1

∫t

0

∫t

0
|E(Ḃε(s1, x)Ḃε(s2, x)

)|ds1ds2 ,

where M1 = sups∈[0,t ]E|ũε(s, x)|2. Here taking the integration out of the inner product is

justified by once more using lemma 1.3.1.∫t
0

∫t
0 |E
(
Ḃε(s1, x)Ḃε(s2, x)

)|ds1ds2 being the same as the term S2 in equation (2.9), is uniformly

upper-bounded using equations (2.11) and (2.12). On the other hand, M1 goes to zero as ε ↓ 0.

So it follows that E
(‖ψε‖2

H

)
converges to zero.
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For the second term, applying lemma 1.3.1 to the derivative operator and inner product we get

E
(‖∇ψε‖2

H ⊗H

)
= E〈∇

∫t

0
ũε(s1, x)g ε

s1,x ds1,∇
∫t

0
ũε(s2, x)g ε

s2,x ds2〉

= E〈
∫t

0
∇(ũε(s1, x)

)⊗ g ε
s1,x ds1,

∫t

0
∇(ũε(s2, x)

)⊗ g ε
s2,x ds2〉

= E

∫t

0

∫t

0
〈∇(ũε(s1, x)

)⊗ g ε
s1,x ,∇(ũε(s2, x)

)⊗ g ε
s2,x〉ds1ds2

=
∫t

0

∫t

0
E〈∇(ũε(s1, x)

)
,∇(ũε(s2, x)

)〉〈g ε
s1,x , g ε

s2,x〉ds1ds2

≤ M2

∫t

0

∫t

0
|〈g ε

s1,x , g ε
s2,x〉|ds1ds2

= M2

∫t

0

∫t

0
|E(Ḃε(s1, x)Ḃε(s2, x)

)| ,
where M2 = sups∈[0,t ]E‖∇ũε(s, x)‖2

H
.

The same argument given for the first term above shows that E
(‖∇ψε‖2

H ⊗H

)
also converges to

zero as ε goes down to zero.

2.6 Convergence of V2,ε

Establishing the convergence of V2,ε is more involved. First applying lemma 1.3.1 to u and uε

for the derivative operator we get

∇uε(s, x) = Ex [uo(X (s)) eB(g ε,X
s,x )g ε,X

s,x ]

and

∇u(s, x) = Ex [uo(X (s)) eB(g X
s,x )g X

s,x ] .

Let

AX (s, x) := uo(X (t )) eB(g X
s,x )

and

Aε,X (s, x) := uo(X (s)) eB(g ε,X
s,x ) .

Hence we have

V2,ε =
∫t

0
〈∇uε(s, x)−∇u(s, x), g ε

s,x〉ds

=
∫t

0
Ex[〈AX (s, x)g X

s,x − Aε,X (s, x)g ε,X
s,x , g ε

s,x〉
]
ds

=
∫t

0
Ex[〈(AX − Aε,X )g ε,X , g ε〉+〈AX (g X − g ε,X ), g ε〉]ds

=
∫t

0
Ex [(AX − Aε,X )〈g ε,X , g ε〉]+

∫t

0
Ex [AX 〈g X − g ε,X , g ε〉]ds .
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Let

P1,ε :=
∫t

0
Ex [(AX − Aε,X )〈g ε,X , g ε〉]ds

and

P2,ε :=
∫t

0
Ex [AX 〈g X − g ε,X , g ε〉]ds .

So we will show in two steps that each of these terms converge to zero in L 2.

Step I: Convergence of P1,ε. For the first term, using Hölder inequality for 1
p + 1

q = 1 we have

Ex |(AX − Aε,X )〈g ε,X , g ε〉| ≤ (Ex |AX − Aε,X |q)1/q(
Ex |〈g ε,X , g ε〉|p)1/p .

In fact equation (2.27) also proves that for any p ≥ 1

sup
s∈[0,t ]

EEx |AX (s, x)− Aε,X (s, x)|p −→ 0 as ε ↓ 0.

So if we can show that Ex |〈g ε,X , g ε〉|p is bounded by some constant which depends only on H

and t we are done because then

E
(∫t

0
Ex[(AX − Aε,X )〈g ε,X , g ε〉]ds

)2
≤ E
(∫t

0
[Ex |AX − Aε,X |q ]1/q [Ex |〈g ε,X , g ε〉|p ]1/p ds

)2
�
∫t

0
E [Ex |AX − Aε,X |q ]2/q ds ,

where � means less than up to a positive constant.

So either q > 2, where we get
∫t

0 [EEx |AX − Aε,X |q ]2/q ds as an upper bound or q ≤ 2, where we

get the upper bound
∫t

0 EEx |AX − Aε,X |2 ds.

Let {ti }n
i=1 be the jump times of the path X (·) up to time s, t0 := 0 and tn := s. Let then J be the

set of indices j for which X (·) stays at site x in the time interval [t j , t j+1]. Now applying the

definitions (2.24)-(2.26) we get

〈g ε,X , g ε〉 = 〈∑
i∈J

∫s−ti

s−ti+1

1

2ε
1[θ−ε,θ+ε]dθ ,

1

2ε
1[s−ε,s+ε]〉

= 1

4ε2

∑
i∈J

∫s−ti

s−ti+1

〈1[θ−ε,θ+ε] , 1[s−ε,s+ε]〉dθ

= 1

4ε2

∑
i∈J

∫s−ti

s−ti+1

E[(Bθ+ε−Bθ−ε)(Bs+ε−Bs−ε)]dθ

= 1

8ε2

∑
i∈J

∫ti+1

ti

[
(γ+2ε)2H +|γ−2ε|2H −2γ2H ]dγ .
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We split this expression into two terms

Γ1 := 1

8ε2

∫t1

0

[
(γ+2ε)2H +|γ−2ε|2H −2γ2H ]dγ (2.28)

and

Γ2 := 1

8ε2

∑
i∈J ,i≥2

∫ti+1

ti

[
(γ+2ε)2H +|γ−2ε|2H −2γ2H ]dγ .

For the first term, using the same reasoning as in (2.13) and (2.14), we have

Γ1 = 1

8

∫1

−1

∫1

−1
f ′′(t1 +ξε+ηε)dξdη , (2.29)

where f (s) :=∫s
0 |r |2H dr and hence f ′′(r ) = 2H sgn(r )|r |2H−1.

Letting Δ := ξε+ηε and noting that t1 is exponentially distributed, we have

Ex | f ′′(t1 +Δ)|p ≤ 2H
∫s

0
|t1 +Δ|(2H−1)p dt1 .

As we can restrict ourselves to ε≤ 1 and hence |Δ| ≤ 1 and as 0 < s < t , we have∫s

0
|t1 +Δ|(2H−1)p dt1 ≤

∫t+1

−1
|t1|(2H−1)p dt1 .

So if we choose p > 1 such that (2H −1)p >−1, we get a finite bound on Ex | f ′′(t1 +Δ)|p and

hence a bound on Ex |Γ1|p that only depends on t and H .

Now for the second term, Γ2, let

f ε(γ) := 1

4ε2

[
(γ+2ε)2H +|γ−2ε|2H −2γ2H ] . (2.30)

We have | f ε(γ)| ≤ 18γ2H−2 because either γ≤ 4ε which implies that |γ−2ε|2H ≤ (2ε)2H and

(γ+2ε)2H ≤ (6ε)2H and hence | f ε|(γ) ≤ 18γ2H−2 or γ> 4ε in which case we may write f ε(γ) as

the following

f ε(γ) = 1

4

∫1

−1

∫1

−1
2H(2H −1)(γ+ξε+ηε)2H−2 dξdη . (2.31)

Letting again Δ := ξε+ηε, we have |Δ| ≤ 2ε and so

(γ+Δ)2H−2 ≤ γ2H−2(1+Δ/γ)2H−2 ≤ 22−2Hγ2H−2 ,

which gives | f ε(γ)| ≤ 8γ2H−2.

So we have

Γ2 �
∫s

t1

| f ε(γ)|dγ�
∫s

t1

γ2H−2 dγ .

So Γ2 is bounded (up to a constant) by either t 2H−1
1 for H < 1

2 , or s2H−1 for H > 1
2 . The case
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Chapter 2. Feynman-Kac representation

H = 1
2 can also be treated easily using the inequality ln(x) � xα for any α positive. So as

(2H −1)p >−1, Ex |Γ2|p can be bounded by a constant only dependant on t and H . So this

competes the proof showing that Ex |〈g ε,X , g ε〉|p ≤ C , for some p > 1 and C a constant only

dependant on t and H .

Step II: Convergence of P2,ε. For establishing the convergence of P2,ε we will use the domi-

nated convergence theorem.

In ‘step I’ we showed that

〈g ε,X , g ε〉 = 1

2

∑
i∈J

∫ti+1

ti

f ε(r )dr ,

where f ε is defined in (2.30).

Now let {ti }n+1
i=0 and J be as in ‘step I’, i.e. {ti }n

i=1 be the jump times of the path X (·) up to time s,

t0 := 0 and tn := s and J the set of indices j for which X (·) stays at site x in the time interval

[t j , t j+1]. So we have

〈g X , g ε〉 = 〈1[0,s](r )δX (s−r )(z) ,
1

2ε
1[s−ε,s+ε](r )δx (z)〉

=∑
i∈J

〈1[s−ti+1 , s−ti ] ,
1

2ε
1[s−ε , s+ε]〉

=∑
i∈J

1

4ε

[|ti+1 +ε|2H −|ti +ε|2H +|ti −ε|2H −|ti+1 −ε|2H ]
= 1

4ε

(|t1 +ε|2H −|t1 −ε|2H )+ 1

2

∑
i∈J ,i>1

∫ti+1

ti

hε(r )dr ,

(2.32)

where

hε(r ) := 2H

2ε

[|r +ε|2H−1 − sgn(r −ε)|r −ε|2H−1] .
We will show that 〈g X , g ε〉 − 〈g ε,X , g ε〉 converges to zero. For doing so we shall show that

[ 1
4ε

(|t1 +ε|2H −|t1 −ε|2H
)− 1

2

∫t1
0 f ε(r )dr ] converges to zero and that every

∫ti+1
ti

(hε− f ε)(r )dr

also converges to zero.

By equations (2.28) and (2.29), we have∫t1

0
f ε(r )dr = 1

4

∫1

−1

∫1

−1
2H sgn(r +ξε+ηε)|r +ξε+ηε|2H−1 dξdη .

So for a fixed positive t1 this converges to 2H t 2H−1
1 . On the other hand 1

4ε

(|t1+ε|2H −|t1−ε|2H
)

also converges to 1
2 2H t 2H−1

1 .

For
∫ti+1

ti
(hε− f ε)(r )dr , we will show that hε− f ε converges to zero and then apply the domi-

nated convergence to the integral.
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Using (2.31) it can be easily shown that

lim
ε↓0

f ε(r ) = 2H(2H −1)r 2H−2 .

By simply recognizing the definition of derivative we have

lim
ε↓0

hε(r ) = 2H(2H −1)r 2H−2 .

So it remains to find an integrable ε-independent upper bound. As shown in the paragraph

following (2.30), f ε(r ) is bounded by 18γ2H−2 and for hε(r ), restricting ε to be less than
ti1
2 ,

where i1 is the first index in J after 1, we have for all r ≥ ti1

hε(r ) = 1

2
2H(2H −1)

∫1

−1
|r +uε|2H−2 du . (2.33)

But then as |r +uε|2H−2 ≤ ( r
2 )2H−2 it gives 8r 2H−2 as an upper bound on hε. This completes

the proof for convergence to zero of 〈g X , g ε〉−〈g ε,X , g ε〉.

Now, for applying the dominated convergence theorem to P2,ε we only need to find an ε-

independent upper bound G on 〈g X , g ε〉−〈g ε,X , g ε〉 having the property that E
(∫t

0 Ex (G)
)2 <∞.

For 〈g ε,X 〉−〈g ε,X , g ε〉 such an upper bound has been established in step I above. It remains to

find an upper bound on 〈g X , g ε〉.

For 2H −1 ≥ 0 the situation is quite trivial because using equation (2.32) we easily get

〈g X , g ε〉 = 1

2

∑
i∈J

∫ti+1

ti

hε(r )dr .

When 2H −1 ≥ 0, equation (2.33) remains valid for any value of ε and r . As for any ε≤ 1 we

have ∫1

−1
|r +uε|2H−2 du ≤

∫t+1

−1
|u|2H−2 du ,

hence we get an upper bound dependant only on t and H.

So we consider now the case of 2H −1 < 0. For 2H < 1 and any r > 0 we have

ρ(r ) := 1

4ε

(|r +ε|2H −|r −ε|2H )≤ 2r 2H−1.

This is true because either r ≤ 2ε in which case

ρ(r ) ≤ 1

4ε

(
(3ε)2H −ε2H )

≤ ε2H−1 ≤ 2r 2H−1 ,
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or r > 2ε, where we have

ρ(r ) ≤ 1

4

∫1

−1
2H (r +εu)2H−1 dr

≤ 1

4

∫1

−1
(

r

2
)2H−1 dr ≤ r 2H−1 .

So by (2.32) we have

|〈g X , g ε〉| ≤ 2
∑
i∈J

(t 2H−1
i + t 2H−1

i+1 ) ≤ 2N t 2H−1
1 ,

where N is the number of jumps in [0, t ].

Applying the Hölder inequality with 1
p + 1

q + 1
r = 1 we have

Ex |AX 〈g X , g ε〉|� (Ex |AX |q )1/q (Ex N r )1/r (Ex t (2H−1)p
1 )1/p .

So we just need to pick a p > 1 with (2H−1)p+1 > 0, in which case the exponential distribution

of t1 implies

Ex t (2H−1)p
1 ≤

∫s

0
t (2H−1)p

1 dt1 = s(2H−1)p+1 ≤ t (2H−1)p+1 .

In fact the proof of lemma 2.4.4 also shows that for any q ≥ 1, EEx |AX |q is uniformly bounded

in 0 ≤ s ≤ t . As N has a Poisson distribution Ex N r is also finite.
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Chapter 3. Asymptotic Behavior

3.1 Introduction

In this chapter we study the exponential behavior of the solution to parabolic Anderson model

(PAM) driven by fractional noise.

Let (ΩX ,F X , (F X
t )t≥0,PX ) be a complete filtered probability space with PX being the proba-

bility law of the simple (nearest-neighbor) symmetric random walk on Zd indexed by t ∈R≥0,

started from the origin. We denote the jump rate of the random walk by κ , the corresponding

expectation by EX and a random walk sample path by X (·).

We consider

u(T ) := EX
[

exp
∫T

0
dB X (t )

t

]
, (3.1)

where {B x
t ; t ≥ 0}x∈Zd is a family of independent fractional Brownian motions (fBM) with

Hurst parameter H indexed by Zd and independent of the random walk. Here the stochastic

integral is nothing other than a summation. Indeed, suppose {ti }n
i=1 are the jump times of

the random walk {X (s) , s ∈ [0, t ]}, and for each i , {xi }n
i=0 is the value of {X (·)} at time interval

[ti , ti+1). Then we have ∫t

0
B
(
ds, X (s)

)= n∑
i=0

(
B(ti+1, xi )−B(ti , xi )

)
.

We also define

U (T ) := E logEX
[

exp
∫T

0
dB X (t )

t

]
, (3.2)

where “E” is expectation with respect to the fBM’s.

Sometimes when there is no loss of generality and for the sake of simplicity we let κ= 1.

Our goal is to show that u(t ) behaves asymptotically as eλt for some positive constant λ. For

H ≤ 1/2 we show this property in a very general setting. However, the situation for H > 1/2 is

more complicated. Here we just managed to show that u(t ) grows asymptotically slower than

eλ1t
�

log t for some λ1. This along with the fact that it grows faster than eλ2t for some positive

constant λ2, strengthen the conjecture that the asymptotic behavior is exactly as eλt , for some

positive λ. This remains an open problem.

The case of Brownian motion, i.e. H = 1/2 was proved by Carmona and Molchanov in [3] using

simple subadditivity properties and independent increments of the Brownian motion. These

arguments do not apply to the general case of H ∈ (0,1).

Viens and Zhang in [50], study the PAM driven by Riemann-Liouville fractional noise (1.2)

with the space variable x running through a compact space χ. For H ≤ 1/2, and under some

strong conditions on H , κ and spatial covariance, they prove that { 1
n logu(n)}n∈N converges
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to some deterministic positive number. For H > 1/2, they try to prove that logu(t) grows

asymptotically faster than t 2H

log t , which is in contrast with our results.

We consider the PAM driven by fractional noise over Zd . Although we assume that the frac-

tional Brownian motions associated to different sites of Zd are independent, our results

remain valid for much more general spatial covariance structures.

In section 3.2, we demonstrate that the main contribution to U (t ) comes from those random

walk occurrences that have restricted number of jumps over the time period [0, t ]. This

basically turns our setup to the compact setting. We denote by Û (t) the part of U (t) that

comes from this kind of random walk occurrences.

In section 3.3, we show that the asymptotic behavior of {Û (t)}t∈R+ is not different from its

behavior over the positive integers, i.e. when t ∈Z+. Hence we can confine our attention to

this latter case.

In Section 3.4, we develop a Lipschitz inequality that will serve as a building block for all our

subsequent arguments.

In section 3.5, we prove an approximate super-additivity for Û (·). This would then imply the

convergence of 1
t Û (t ) as t goes to infinity.

Section 3.6 is devoted to the quenched asymptotic behavior. In mathematical physics termi-

nology the quenched statements are those statements that are formulated almost surely. Here

we seek the almost sure behavior of logu(t) when t approaches infinity. In this section we

show that logu(·) has the same asymptotic behavior as Û (·). In particular we obtain limits over

the positive real t ’s instead of integers.

In section 3.7, we establish a strictly positive asymptotic lower bound on { 1
t Û (t )}t , for any κ

and H ∈ (0,1). Hence along with the super-additivity result, it shows that Û (t) grows in t at

least as fast as λt for some strictly positive λ.

Section 3.8 deals with finding an asymptotic upper bound on { 1
t Û (t )}t . Although for the case

of H ≤ 1/2 we easily find a finite asymptotic upper bound which settles the question for this

case, we didn’t manage to get such a finite upper bound for H > 1/2. In this latter case we

instead, established for { 1
t Û (t)}t , the asymptotic upper bound C t

√
log t for some positive

constant C .
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3.2 Approximation via constraining the number of jumps

In this section we justify the approximation via restricting the random walk to have a limited

number of jumps. We show that the greatest contribution comes from the random walk paths

that have a restricted number of jumps.

For T ≥ 1, let A be the event that the number of jumps of the random walk in the time interval

[0,T ] is less than T 2 for H > 1/2, and less than βκT for H ≤ 1/2, where β := max{e6,κ−1}.

Define Û (T ) as follows

Û (T ) := E logEX [e∫T
0 dB X (t )

t 1A

]
.

Proposition 3.2.1. For any real positive function f : R+ →R+ that grows at least as fast as a

linear function, we have

limsup
t→∞

Û (t )

f (t )
= limsup

t→∞
U (t )

f (t )
,

and

liminf
t→∞

Û (t )

f (t )
= liminf

t→∞
U (t )

f (t )
.

Proof. We would like to show that U (T ) is close to Û (T ). We denote by SX the integral∫T
0 dB X (t )

t . Using the inequality log (1+a) ≤ a and then Cauchy-Schwarz we have

U (T )−Û (T ) = E log
(
1+ EX

[
eSX 1A c

]
EX
[
eSX 1A

] )
≤ E
(EX
[
eSX 1A c

]
EX
[
eSX 1A

] )
≤
√

E
(
EX
[
eSX 1A c

])2√
E
(
EX
[
eSX 1A

])−2
,

where A c is the complement of A .

As x−2 is convex, we have

E
(
EX [eSX 1A

])−2 ≤ p−3
A

EEX [e−2SX 1A

]≤ p−3
A

EX [e2var (SX )1A

]
,

where p
A

is the probability of A .

For the other term, again by Cauchy-Schwarz we have

E
(
EX [eSX 1A c

])2 ≤ p
A c EE

X [e2SX 1A c
]≤ p

A c E
X [e2var (SX )1A c

]
,

where p
A c is the probability of A c .

i) For H > 1/2:

In this case we have

var (SX ) ≤ T 2H .
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So

EX [e2var (SX )1A

]≤ p
A

e2T 2H
and EX [e2var (SX )1A c

]≤ p
A c e2T 2H

hence

U (T )−Û (T ) ≤ p−1
A

p
A c e2T 2H

.

For a Poisson random variable N with mean λ we have the following tail probability bound

[33]

P (N ≥ n) ≤ e−λ(
eλ

n
)n for n >λ . (3.3)

Using this bound, for T ≥κe2 we have

p
A c ≤ e−κT (

eκT

T 2 )T 2 ≤ e−κT e−T 2
,

which implies p
A
≥ 1/2. Hence

0 ≤U (T )−Û (T ) ≤ 2e−T 2
e2T 2H ∼O (e−T ). (3.4)

ii) For H ≤ 1/2: In this case we have

var (SX ) ≤ n(
T

n
)2H ,

where n is the number of jumps in [0,T]. So

EX [e2var (SX )1A

]≤ EX [e2n1−2H T 2H
1A

]≤ EX [e2(βκT )1−2H T 2H
1A

]
≤ e2(βκ)1−2H T p

A
,

and
EX [e2var (SX )1A c

]≤ EX [e2n( T
n )2H

1A c
]≤ EX [e2n(βκ)−2H

1A c
]

≤ EX [e2n1A c
]= e−κT

∑
n>βκT

(κT )n

n!
e2n ≤ e−κT ee2κT ,

where we have used the fact that βκ≥ 1.

Finally using β≥ e6 and Poisson tail probability bound (3.3) we have

p
A c ≤ e−κT (

eκT

βκT
)βκT ≤ e−κT e−5βκT ,

which also implies p
A
≥ 31/32.

Hence

0 ≤U (T )−Û (T ) ≤ (31/32)−1 exp{(βκ)1−2H T −κT /2+e2κT /2−5βκT /2}

∼O (e−T ) ,
(3.5)
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where we have used β≥ e6 and βκ≥ 1.

So in any case and using 1
f (T ) ∼O (1) we have

Û (T )

f (T )
≤ U (T )

f (T )
≤ Û (T )

f (T )
+O (e−T ) .

The statement follows by taking liminf and limsup.
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3.3 Quantization

In this section we show that restricting the time to be integer valued does not affect the

generality of the our results on the asymptotic behavior of Û (t) and hence of U (t). Our

super-additivity arguments in section 3.5 hold only for the discretized time.

Proposition 3.3.1. For any real positive function f : R+ →R+ that grows at least as fast as a

linear function, we have

limsup
t→∞

Û (t )

f (t )
= limsup

n→∞
n∈N

Û (n)

f (n)
,

and

liminf
t→∞

Û (t )

f (t )
= liminf

n→∞
n∈N

Û (n)

f (n)
.

Proof. For t ≥ 1, we define At to be the event that as in the last section, the random walk

has at most N := t 2 or N :=βκt jumps on the interval [0, t ] depending if H > 1/2 or H ≤ 1/2

respectively, where β := max{e6,κ−1}. For 0 < t1 < t2 define Ct1,t2 to be the event that the

random walk has no jump on the interval (t1, t2]. Let n ∈N be the largest integer not greater

than t , i.e. n := �t�, and for any x ∈Zd denote ΔB x
n,t := B x

t −B x
n . We have

û(t ) := EX [e∫t
0 dB X (s)

s 1At

]≥ EX [e∫n
0 dB X (s)

s 1An 1Cn,t e
∫t

n dB X (s)
s
]

= EX [e∫n
0 dB X (s)

s 1An 1Cn,t eΔB X (n)
n,t
]

≥ EX [e∫n
0 dB X (s)

s 1An 1Cn,t e inf|x|≤N ΔB x
n,t
]

= EX [e∫n
0 dB X (s)

s 1An 1Cn,t

]
e inf|x|≤N ΔB x

n,t

= EX [e∫n
0 dB X (s)

s 1An

]
PX (Cn,t )e inf|x|≤N ΔB x

n,t .

So we have

Û (t ) = E log û(t ) ≥ Û (n)−κ(t −n)+E inf
|x|≤N

ΔB x
n,t .

Now as

E inf
|x|≤N

ΔB x
n,t =−E sup

|x|≤N
ΔB x

n,t

and noticing that for x, y ∈Zd , x �= y

var (ΔB x
n,t −ΔB y

n,t ) = 2var (ΔB x
n,t ) = 2(t −n)2H ,

So by Dudley’s theorem we have

E sup
|x|≤N

ΔB x
n,t ≤ K

∫�
2(t−n)H

0

√
log(2N +1)d

= K (t −n)H
√

2d log(2N +1) ≤ K ′
√

log(n).
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It should be noted that one can show by elementary probability tools that the expectation

of the maximum of n Gaussian random variables is bounded by K
√

logn for some positive

constant K , and the whole machinery of Dudley’s theorem 1.3.4 is not needed at all. But

we apply Dudley’s theorem even for the finite case simply in order to have a single uniform

argument for both finite and infinite supremums.

So we have

Û (t ) ≥ Û (n)−K
√

log(n) .

We can similarly show that

Û (n +1) ≥ Û (t )−K
√

log(t ) .

So we have

Û (n)−K
√

log(n) ≤ Û (t ) ≤ Û (n +1)+K
√

log(t ) ,

and hence if {Û (n)
n }n∈N converges, Û (t )

t also converges to the same limit.
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3.4 Lipschitz continuity of residues of fBM increments

In this section we consider the following stochastic process

Yn(u) :=
∫n

0
(u − s)H− 3

2 (
u

s
)H− 1

2 dWs ,

and establish its Lipschitz continuity. This will play a vital role in the succeeding sections.

Indeed for n ∈N≥1 and n +1 ≤ t1 < t2 we have

Bt2 −Bt1 =
∫n

0

(
KH (t2, s)−KH (t1, s)

)
dWs +Zn,t2 , (3.6)

where Zn,t2 is measurable with respect to the sigma field generated by

{Ws −Wn ; s ∈ [n, t2]}.

Applying the stochastic Fubini theorem 1.3.3 to the first right hand side term of (3.6) we get∫n

0

(
KH (t2, s)−KH (t1, s)

)
dWs =

∫n

0

∫t2

t1

(u − s)H− 3
2 (

u

s
)H− 1

2 du dWs

=
∫t2

t1

Yn(u) du .

For k,n ∈N≥1 and u ∈ [n +k,n +k +1] we define the process Yn,k as Yn,k (u) := Yn(u).

We denote by � and � respectively, equality and inequality up to a positive constant that only

possibly depends on H .

Proposition 3.4.1. Let k,n ∈N≥1 and u, v ∈ [n +k,n +k +1]. Then

E
[
Yn,k (u)−Yn,k (v)

]2 � (1+ k

n
)2H−1k2H−4 (u − v)2, (3.7)

and

E
(
Yn,k (u)

)2 � (1+ k

n
)2H−1k2H−2 . (3.8)

Proof. Without loss of generality we may assume that u ≤ v . Using the Itō isometry for

stochastic integrals we have

E
[
Yn,k (u)−Yn,k (v)

]2 =∫n

0

(
(u − s)H− 3

2 (
u

s
)H− 1

2 − (v − s)H− 3
2 (

v

s
)H− 1

2

)2
ds

≤ 2(I1 + I2) ,

where

I1 :=
∫n

0
(

u

s
)2H−1

(
(u − s)H− 3

2 − (v − s)H− 3
2

)2
ds ,

and

I2 :=
∫n

0
(v − s)2H−3

(
(

u

s
)H− 1

2 − (
v

s
)H− 1

2

)2
ds .
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We use several times the following inequality which holds for any 0 <α<β and H < 1

|αH −βH | �
∫β

α
γH−1dγ� |β−α|αH−1. (3.9)

We break I1 and I2 into integrals over [0, n
2 ] and [ n

2 ,n] so that I1 = I1a + I1b and I2 = I2a + I2b

and will bound these terms.

Using inequality (3.9) we have

|(u − s)H− 3
2 − (v − s)H− 3

2 |� |u − v |
(u − s)

5
2−H

. (3.10)

Applying (3.10) we get

I1b =
∫n

n
2

(
u

s
)2H−1

(
(u − s)H− 3

2 − (v − s)H− 3
2

)2
ds

� (u − v)2
∫n

n
2

(
u

s
)2H−1(u − s)2H−5 ds.

But for n
2 < s and u < n +k +1, when H > 1/2 we have

(
u

s
)2H−1 ≤ (

n +k +1

n/2
)2H−1 � (1+ k

n
)2H−1

and when H ≤ 1/2 we have

(
u

s
)2H−1 ≤ (

n +k

n
)2H−1 .

So

I1b � (u − v)2 (1+ k

n
)2H−1

∫n

n
2

(u − s)2H−5 ds

� (u − v)2(1+ k

n
)2H−1k2H−4.

For I1a , using the fact that u2H−1 � (n+k)2H−1, and that for s < n
2 we have u−s ≥ k+n/2� k+n

and applying the inequality (3.10) we get

I1a =
∫ n

2

0
(

u

s
)2H−1

(
(u − s)H− 3

2 − (v − s)H− 3
2

)2
ds

� (u − v)2 u2H−1
∫ n

2

0

1

s2H−1(u − s)5−2H
ds

� (u − v)2 (n +k)2H−1(n +k)2H−5
∫ n

2

0
s1−2H ds

= (u − v)2 (n +k)4H−6 n2−2H ≤ (u − v)2 (n +k)2H−4

≤ (u − v)2 k2H−4.
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For I2 we need the following inequality which is a special case of inequality (3.9)

|(u − s)H− 1
2 − (v − s)H− 1

2 |� |u − v |
(u − s)

3
2−H

. (3.11)

For I2a , as we have v − s ≥ k +n/2� k +n for s ≤ n/2, using inequality (3.11) we get

I2a =
∫ n

2

0
(v − s)2H−3

(
(

u

s
)H− 1

2 − (
v

s
)H− 1

2

)2
ds

� (n +k)2H−3
∫ n

2

0

(
(

u

s
)H− 1

2 − (
v

s
)H− 1

2

)2
ds

� (n +k)2H−3
∫ n

2

0

(u − v)2

s2 (
u

s
)2H−3 ds

� (u − v)2 (n +k)2H−3(n +k)2H−3
∫ n

2

0
s1−2H ds

� (u − v)2(n +k)4H−6n2−2H

≤ (u − v)2(n +k)4H−6(n +k)2−2H

≤ (u − v)2k2H−4 .

For I2b , applying (3.11) we have

I2b =
∫n

n
2

(v − s)2H−3
(
(

u

s
)H− 1

2 − (
v

s
)H− 1

2

)2
ds

�
∫n

n
2

(v − s)2H−3 (u − v)2

s2 (
u

s
)2H−3 ds

≤ (u − v)2(n +k)2H−3
∫n

n
2

s1−2H (v − s)2H−3 ds .

But as for n/2 ≤ s ≤ n we have s1−2H � n1−2H , we get

I2b � (u − v)2(n +k)2H−3n1−2H
∫n

n
2

(v − s)2H−3 ds

� (u − v)2(n +k)2H−3n1−2H k2H−2.

So

I2b � (u − v)2(1+ k

n
)2H−1k2H−4

So this completes the proof of Hölder continuity.

Now for the variance bound using the similar technics used above we have

E[(Yn,k (u))2] =
∫n

0
(

u

s
)2H−1(u − s)2H−3 ds = J1 + J2 ,
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where

J1 : =
∫n/2

0
(

u

s
)2H−1(u − s)2H−3 ds � (n +k)2H−3

∫n/2

0
(

u

s
)2H−1 ds

� (n +k)2H−3(n +k)2H−1
∫n/2

0
s1−2H ds

� (n +k)4H−4n2−2H � (1+ k

n
)2H−2k2H−2

and

J2 :=
∫n

n/2
(

u

s
)2H−1(u − s)2H−3 ds � (1+ k

n
)2H−1

∫n

n/2
(u − s)2H−3 ds

� (1+ k

n
)2H−1k2H−2 ds, .
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3.5 Super-additivity

In this section we will show that {Û (n)}n∈N, although not super-additive, has some super-

additivity properties and this way we prove that {Û (n)
n }n∈N converges to some positive extended-

real number λ.

Theorem 3.5.1. The sequence {Û (n)
n }n∈N converges to some positive extended real number

λ ∈ [0,+∞].

While {Û (n)}n∈N is not super-additive in general as it is in the Brownian motion case, we seek

some approximate super-additivity. Although the super-additivity arguments in Viens and

Zhang [50] seem to have some problems, their idea of recognizing an approximate super-

additivity is a major observation. We will build our argument by following some of their

ideas.

Let { f (n)}n∈N be a sequence of real numbers and {ε(n)}n∈N a sequence of non-negative

numbers with the property that

(i) lim
n→∞

ε(n)

n
= 0; (ii)

∞∑
n=1

ε(2n)

2n <∞ .

Then { f (n)}n∈N is called almost super-additive relative to {ε(n)}n∈N if

f (n +m) ≥ f (n)+ f (m)−ε(n +m)

for any n,m ∈N. We have the following theorem [50, 9]

Theorem 3.5.2. Let { f (n)}n∈N be almost super-additive relative to {ε(n)}n∈N as defined above.

(1) If supn
f (n)

n <+∞, then limn→∞
f (n)

n exists and is finite.

(2) If supn
f (n)

n =+∞, then { f (n)
n } diverges to +∞.

Lemma 3.5.3. For any n,m ∈N0 we have

Û (n +m +1) ≥ Û (n)+Û (m)−cκ,H (m +n)H
√

log(m +n) ,

Proof of Lemma. Take arbitrary n,m ∈N0 and without loss of generality assume that n ≥ m.

Let An be the event that the random walk on the time interval [0,n) has no more jumps than

Nn

Nn :=
⎧⎨⎩n2 for H > 1/2

βκn for H ≤ 1/2,

where β := max{e6,κ−1} and similarly Bm be the event that the random walk has at most Nm

jumps on the interval [n +1,n +m +1). Let also C be the event that the random walk has no
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jump on the interval [n,n +1). We have

Û (m +n +1)−Û (n) ≥ E logEX
( e

∫n
0 dB X (t )

t 1An

EX [e
∫n

0 dB X (t )
t 1An ]

e
∫n+m+1

n dB X (t )
t 1Bm∩C

)
. (3.12)

Let F be the sigma field generated by the random walk up to time n. Then the right-hand-side

of the above equation would be equal to

EX
( e

∫n
0 dB X (t )

t 1An

EX [e
∫n

0 dB X (t )
t 1An ]

EX
(
e
∫n+m+1

n dB X (t )
t 1Bm∩C |F

))
. (3.13)

For any t ≥ n, let X̃ (t) := X (t)−X (n). By the Markov property of the random walk, and then

the fact that {X̃ (t )}t≥n is independent of F we have

EX (e∫n+m+1
n dB X̃ (t )

t 1Bm∩C |F )= EX (e∫n+m+1
n dB X (t )

t 1Bm∩C |X (n)
)

= EX (e∫n+m+1
n dB X̃ (t )+X (n)

t 1Bm∩C |X (n)
)

= EX̃ (e∫n+m+1
n dB X̃ (t )+X (n)

t 1Bm∩C

)
= EX̃ (e∫n+m+1

n dB X̃ (t )+Y
t 1Bm∩C

)
,

where Y := X (n).

Let {Ŵ x }x∈Zd be a family of independent standard Brownian motions, which is independent

of the random walks X (·) and X̃ (·), the fractional Brownian motions {B x }x∈Zd and hence their

corresponding Brownian motions {W x }x∈Zd appearing in their integral representation. For

any x ∈Zd define W̃ x
s as

W̃ x
t :=

⎧⎨⎩Ŵ x
t for 0 ≤ t ≤ n

W x
t −W x

n +Ŵ x
n for t > n .

It is easily verified that W̃ x is itself a standard Brownian motion.

We define the following family of fractional Brownian motions indexed by Zd

B̃ x
t :=
∫t

0
KH (t , s)dW̃ x

s . (3.14)

It is clear that for t ≥ n

B̃ x
t =
∫n

0
KH (t , s)dŴ x

s +
∫t

n
KH (t , s)dW x

s .

Let Ĝ[0,n] be the sigma field generated by {Ŵ x
s ; s ∈ [0,n] , x ∈Zd } and G[n,∞) the sigma field

generated by {W x
s −W x

n ; s ∈ [n,∞) , x ∈Zd }. Also denote by Go the sigma field generated by

{W x
s ; s ∈ [0,n] , x ∈ Zd }. It is evident that for any t ≥ n the process B̃ x

t is measurable with

respect to G1 := Ĝ[0,n] ∨G[n,∞) where ∨ denotes the smallest sigma field containing the both.
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So
∫n+m+1

n+1 dB̃ X̃ (t )+y
t is also measurable with respect to G1 which is independent of Go .

Now denote by EY the expectation with respect to the random variable Y with the following

distribution

P(Y = y) = EX
( e

∫n
0 dB X (t )

t 1An

EX [e
∫n

0 dB X (t )
t 1An ]

1X (n)=y

)
: y ∈Zd .

So equations (3.12) and (3.13) imply

Û (m +n +1)−Û (n) ≥ E log EY
(
EX̃ (e∫n+m+1

n dB X̃ (t )+Y
t 1Bm∩C

))
≥ EEY log EX̃ (e∫n+m+1

n dB X̃ (t )+Y
t 1Bm∩C

)
.

(3.15)

Now let {ti }i , ti ≥ n +1, be the jump times of the random walk after time t = n +1, and for

every i let xi be the position of the random walk on the time interval [ti , ti+1). Then we have∫n+m+1

n+1
dB X̃ (t )+Y

t =
∫n+m+1

n+1
dB̃ X̃ (t )+Y

t +ΔX ,

where

ΔX :=∑
i

∫n

0

(
KH (s, ti+1)−KH (s, ti )

)
dW xi

s

−∑
i

∫n

0

(
KH (s, ti+1)−KH (s, ti )

)
dW̃ xi

s .

By the definition of KH and using the stochastic Fubini we have∫n

0

(
KH (s, ti+1)−KH (s, ti )

)
dW xi

s = cH

∫n

0

∫ti+1

ti

(u − s)H− 3
2 (

u

s
)H− 1

2 du dW xi
s

= cH

∫ti+1

ti

∫n

0
(u − s)H− 3

2 (
u

s
)H− 1

2 dW xi
s du

= cH

∫ti+1

ti

Y xi
n (u)du ,

and similarly ∫n

0

(
KH (s, ti+1)−KH (s, ti )

)
dW̃ xi

s = cH

∫ti+1

ti

Ỹ xi
n (u)du ,

where

Ỹ xi
n (u) =

∫n

0
(u − s)H− 3

2 (
u

s
)H− 1

2 dW̃ xi
s .

So

ΔX = cH

∫n+m+1

n+1
Y X (u)

n (u)du −cH

∫n+m+1

n+1
Ỹ X (u)

n (u)du

≥ cH

m∑
k=1

inf
|x|≤Nn+Nn

u∈[n+k,n+k+1]

Y x
n (u)−cH

m∑
k=1

sup
|x|≤Nn+Nn

u∈[n+k,n+k+1]

Ỹ x
n (u) .
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On the event C we also have∫n+1

n
dB X̃ (t )+Y

t = B Y
n+1 −B Y

n

≥ inf
|y |≤Nn

(B y
n+1 −B y

n ) .

So on the event Bm ∩C we have∫n+m+1

n
dB X̃ (t )+Y

t =
∫n+1

n
dB X̃ (t )+Y

t +
∫n+m+1

n+1
dB̃ X̃ (t )+Y

t +ΔX

≥
∫n+m+1

n+1
dB̃ X̃ (t )+Y

t + inf
|y |≤Nn

(B y
n+1 −B y

n )

+cH

m∑
k=1

inf
|x|≤Nn+Nn

u∈[n+k,n+k+1]

Y x
n (u)−cH

m∑
k=1

sup
|x|≤Nn+Nn

u∈[n+k,n+k+1]

Ỹ x
n (u) .

Plugging this inequality into equation (3.15) we get

Û (m +n +1)−Û (n) ≥ EEY log EX̃ (e∫n+m+1
n+1 dB̃ X̃ (t )+Y

t 1Bm∩C

)
+E inf

|y |≤Nn

(B y
n+1 −B y

n )+cH

m∑
k=1

E inf
|x|≤Nn+Nn

u∈[n+k,n+k+1]

Y x
n (u)

−cHE
m∑

k=1
sup

|x|≤Nn+Nn
u∈[n+k,n+k+1]

Ỹ x
n (u)

For t ≥ n +1, let X ′(t ) := X (t )−X (n +1). Then we have

EEY log EX̃ (e∫n+m+1
n+1 dB̃ X̃ (t )+Y

t 1Bm∩C

)
= EEY log EX̃ (e∫n+m+1

n+1 dB̃ X ′(t )+Y
t 1Bm∩C

)
= EEY log EX ′(

e
∫n+m+1

n+1 dB̃ X ′(t )+Y
t 1Bm

)+ logP(C ) .

Let EGo := E(·|Go) be the conditional expectation on the sigma field Go . As
e
∫n

0 dB X (t )
t 1An

EX [e
∫n

0 dB X (t )
t 1An ]

is

measurable with respect to Go , the expectations EY and EGo can be interchanged by Fubini’s

theorem. So

EEY log EX ′(
e
∫n+m+1

n+1 dB̃ X ′(t )+Y
t 1Bm

)
= EEGo E

Y log EX ′(
e
∫n+m+1

n+1 dB̃ X ′(t )+Y
t 1Bm

)
= EEY EGo log EX ′(

e
∫n+m+1

n+1 dB̃ X ′(t )+Y
t 1Bm

)
.

But EX ′(
e
∫n+m+1

n+1 dB̃ X̃ (t )+Y
t 1Bm

)
has the same distribution as EX

(
e
∫m

0 dB X (t )
t 1Am

)
. So we have

EGo log EX̃ (e∫n+m+1
n+1 dB̃ X̃ (t )+Y

t 1Bm

)= Û (m) .
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Hence we get the following conclusion

Û (m +n +1)−Û (n) ≥ Û (m)− ε̂(n,m) ,

where

ε̂(n,m) :=−E inf
|y |≤Nn

(B y
n+1 −B y

n )−cH

m∑
k=1

E inf
|x|≤Nn+Nn

u∈[n+k,n+k+1]

Y x
n (u)

− logP(C )+cHE
m∑

k=1
sup

|x|≤Nn+Nn
u∈[n+k,n+k+1]

Ỹ x
n (u)

= E sup
|y |≤Nn

(B y
n+1 −B y

n )+cH

m∑
i=1

E sup
|x|≤Nn+Nn

u∈[n+k,n+k+1]

Y x
n (u)

− logP(C )+cHE
m∑

k=1
sup

|x|≤Nn+Nn
u∈[n+k,n+k+1]

Ỹ x
n (u) .

We are going to bound these terms applying Dudley’s theorem 1.3.4.

For y1, y2 ∈Zd with |y1|, |y2| ≤Nn and y1 �= y2 we have

E
[(

B y1

n+1 −B y1
n
)− (B y2

n+1 −B y2
n
)]2 = E

(
B y

n+1 −B y
n
)2 +E

(
B y

n+1 −B y
n
)2 = 2.

So by Dudley’s theorem 1.3.4 we have

E sup
|y |≤Nn

(B y
n+1 −B y

n ) ≤ K
∫2

0

√
logNn dε≤ c ′κ,H

√
logn ,

where K is a universal constant and c ′κ,H is some positive constant that can only possibly

depend on κ and H .

For l ∈N, let {ui }l
i=1 be the l equally-spaced points on the interval (n +k,n +k +1). Then for

any u ∈ [n +k,n +k +1] there exists a ui with |u −ui | ≤ 1
2l . Using the proposition 3.4.1 on the

Hölder continuity of Yn and noting that k ≤ m ≤ n, for every x ∈Zd we have

E
[
Y x

n (u)−Yn(ui )
]2 ≤ cH k2H−4 (u −ui )2 ≤ cH k2H−4 1

(2l )2

and

E
(
Y x

n (u)
)2 ≤CH k2H−2 ,

where cH and CH are some universal positive constants that can only possibly depend on H .

This means that for 0 < ε< c ′H k H−2, where c ′H :=�
cH /2, we can cover

{Y x
n (u) ; u ∈ [n +k,n +k +1], x ∈Zd , |x| ≤Nn +Nm} by (Nn +Nm)

c ′
H k H−2

ε ε-balls.

For c ′H k H−2 ≤ ε<C ′
H k H−1, where C ′

H := �
2CH , this set can be covered by Nn +Nm ε-balls.

And finally for ε≥C ′
H k H−1, the whole set can be cover with one single ball. So once again by
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Dudley’s theorem 1.3.4 we have

E sup
|x|≤Nn+Nn

u∈[n+i ,n+i+1]

Y x
n (u) ≤ K

∫c ′
H k H−2

0

√
log
(
(Nn +Nm)

c ′H k H−2

ε

)
dε

+K
∫C ′

H k H−1

c ′
H k H−2

√
log(Nn +Nm)dε

≤ k H−1c ′′κ,H

√
log(n +m) .

So
m∑

k=1
E sup

|x|≤Nn+Nn
u∈[n+i ,n+i+1]

Y x
n (u) ≤ c ′′κ,H

√
log(n +m)

m∑
k=1

k H−1

≤ c ′′κ,H mH
√

log(n +m)

In the same way we have

m∑
k=1

E sup
|x|≤Nn+Nn

u∈[n+i ,n+i+1]

Ỹ x
n (u) ≤ c ′′κ,H mH

√
log(n +m) .

As we additionally have P(C ) = e−κ, we obtain

ε̂(n,m) ≤ cκ,H mH
√

log(n +m) .

Proof of Theorem 3.5.1. Applying the above lemma we can easily see that {Û (n − 1)}n∈N is

almost-super-additive with respect to ε(n) := cκ,H nH
√

log(n). Then theorem 3.5.2 implies that

{Û (n−1)
n }n∈N converges to some positive extended real number and hence so does {Û (n)

n }n∈N.
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3.6. Quenched limits

3.6 Quenched limits

In this section we consider the quenched limits.

We recall the notations

u(t ) = EX
[

e
∫t

0 dB X (s)
s

]
,

û(t ) := EX [e∫t
0 dB X (s)

s 1At

]
,

and

Û (t ) := E log û(t )

where At , as in previous sections, denotes the event that the random walk has at most Nt

jumps in the time interval [0, t ].

In the first proposition we show that the convergence of {Û (n)
n }n∈N to strictly positive λ implies

the convergence of { log û(n)
n }n∈N to λ. Then in the second proposition we show that this result

in its turn implies that { logu(t )
t }t∈R+ converges to λ as t goes off to +∞.

Proposition 3.6.1. For any real positive function f : R+ →R+ that grows at least as fast as a

linear function we have

lim
n→∞
n∈N

(Û (n)

f (n)
− log û(n)

f (n)

)
= 0.

Proof. We will apply theorem 1.3.2 which provides concentration bounds on Malliavin deriv-

able random variables.

For X (·), an arbitrary but fixed sample path of the random walk and t ∈R, let g X
t :R×Zd −→R

be the function defined as

g X
t (s, x) := 1[0,t ](s)1X (s)(x).

With the notions introduced in section 1.2 it can be easily seen that g X
t is in H and moreover

B(g X
t ) =

∫t

0
dB X (s)

s ,

which shows that

∇
∫t

0
dB X (s)

s = g X
t .

Hence we have

∇û(n) = EX [e∫n
0 dB X (s)

s 1An g X
n

]
and

∇
(
log û(n)

)
= 1

û(n)
∇û(n) = 1

û(n)
EX [e∫n

0 dB X (s)
s 1An g X

n

]
.
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For X1(·) and X2(·), independent random walks having the same law as X (·), we have

||∇û(n)||2H =
〈
EX [e∫n

0 dB X (s)
s 1An g X

n

]
, EX [e∫n

0 dB X (s)
s 1An g X

n

]〉
H

=
〈
EX1
[
e
∫n

0 dB
X1(s)
s 1A 1

n
g X1

n
]

, EX2
[
e
∫n

0 dB
X2(s)
s 1A 2

n
g X2

n
]〉

H

= EX1EX2

[
e
∫n

0 dB
X1(s)
s 1A 1

n
e
∫n

0 dB
X2(s)
s 1A 2

n
〈g X1

n , g X2
n 〉H

]
≤ EX1EX2

[
e
∫n

0 dB
X1(s)
s 1A 1

n
e
∫n

0 dB
X2(s)
s 1A 2

n
||g X1

n ||H ||g X2
n ||H

]
≤
(
EX
(
e
∫n

0 dB X (s)
s 1An ||g X

n ||H
))2

.

But we have

||g X
n ||2H = E

(∫n

0
dB X (s)

s

)2.

So for H > 1/2 we have

||g X
n ||2H ≤ n2H ,

and for H ≤ 1/2 and under An

||g X
n ||2H ≤Nn(

n

Nn
)2H ≤ n (βκ)1−2H .

The fact that ||g X
n ||H has an upper bound that doesn’t depend on the random walk leads to

the following bound

||∇
(
log û(n)

)
||2 ≤ ||g X

n ||2H .

So by theorem 1.3.2 we have

P
(
|log û(n)−Û (n)| > 2nH

√
logn

)
≤ 2e−2logn = 2n−2.

As the right-hind-side of this inequality is summable we can apply Borel-Cantelli lemma to

conclude that almost surely there exists N such that for any n ∈N with n ≥ N we have

|log û(n)−Û (n)| ≤ 2nH
√

logn ,

which along with the assumption on the growth rate of f (·) implies the almost sure limit

lim
n→∞

log û(n)

f (n)
− Û (n)

f (n)
= 0.

Proposition 3.6.2. For any real positive function f : R+ →R+ that grows at least as fast as a

linear function we have

limsup
t→∞

logu(t )

f (t )
= limsup

n→∞
n∈N

log û(n)

f (n)
,
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3.6. Quenched limits

and

liminf
t→∞

logu(t )

f (t )
= liminf

n→∞
n∈N

log û(n)

f (n)
.

Proof. For l ,n ∈N, let {ti }l
i=1 be the l uniformly spaced points on the interval (n −1,n). It is

evident that for any x ∈Zd and for any t ∈ [n −1,n], there exists a ti with |t − ti | ≤ 1
2l . Then we

have

E
(
(B x

t −B x
n )− (B x

ti
−B x

n )
)2 = E

(
B x

t −B x
ti

)2 = 1

(2l )2H
.

So for 0 < ε < 2−H we can cover the set {B x
t −B x

n ; t ∈ [n −1,n]} by l = 1
2ε1/H ε-balls and for

2−H ≤ ε the whole set can be covered by a single element. So by Dudley’s theorem we have

E
(

sup
n−1≤t≤n

(B x
t −B x

n )
)
≤ K
∫2−H

0

√
log

1

2ε1/H
= K1 ,

where K and K1 are some universal constants.

We also have E(B x
t −B x

n )2 ≤ 1 for every t ∈ [n −1,n]. So by Borell’s inequality 1.3.5, for any

k ∈N0 and any n large enough we have

P
(

sup
n−1≤t≤n

(B x
t −B x

n ) ≥ (k +2)(d +1)logn
)

≤ e−2(k+2)(d+1)logn = n−2(k+2)(d+1) .

So
P
( ⋃
|x|≤Nn nk

{ sup
n−1≤t≤n

(B x
t −B x

n ) ≥ (k +2)(d +1)logn}
)

≤ (2Nnnk +1)d n−(k+2)(d+1) ≤ n−(k+2) ,

and hence
P
( ⋃

k∈N0

⋃
|x|≤Nn nk

{ sup
n−1≤t≤n

(B x
t −B x

n ) ≥ (k +2)(d +1)logn}
)

≤∑
k

n−(k+2) ≤ 2n−2 .

By Borel-Cantelli lemma, almost surely there exists N1 such that for any n ≥ N1 and for every

k ∈N0 we have

sup
|x|≤Nn nk

sup
n−1≤t≤n

(B x
t −B x

n ) ≤ (k +2)(d +1)logn

which is equivalent to

inf
|x|≤Nn nk

inf
n−1≤t≤n

(B x
n −B x

t ) ≥−(k +2)(d +1)logn

For any t ∈R+ and k ∈N0, let At ,k be the event that the number of jumps of the random walk

on [0, t ] is larger than Nnnk but less than Nnnk+1, where n := �t� is the smallest integer not
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less than t . We use the following notations

ûk (t ) := EX
[

e
∫t

0 dB X (s)
s 1At ,k

]
,

and

û(t ) := EX
[

e
∫t

0 dB X (s)
s 1At

]
.

For H > 1/2 we have

Eûk (n) = EX
[

1An,kEe
∫n

0 dB X (s)
s

]
≤ P(An,k )e

1
2 n2H

As in this case Nn = n2, by the Poisson tail probability bound 3.3 we have

P(An,k ) ≤ (
eκn

nk+2
)nk+2

.

For H ≤ 1/2, where Nn =βκn, we have

Eûk (n) = EX
[

1An,kEe
∫n

0 dB X (s)
s

]
≤ E
[

1An,k e
1
2 J ( n

J )2H
]

≤ P(An,k )e
1
2Nn nk+1( n

Nn nk+1 )2H

,

where J is the number of jumps of the random walk on [0,n].

For this case again by the Poisson tail probability bound 3.3 we have

P(An,k ) ≤ (
eκn

βκnk+1
)βκnk+1

.

So in both the cases, for n large enough and every k ∈N0 we have

Eûk (n) ≤ e−2nk+2
.

So by Markov’s inequality for n large enough and every k ∈N0 we easily get

P
(
ûk (n) ≥ e−nk+2

e−(k+1)(d+1)logn
)
≤ n−(k+2) ,

and hence

P
( ⋃

k∈N0

{ûk (n) ≥ e−nk+2
e−(k+1)(d+1)logn}

)
≤ 2n−2 .

As the right hand side of this inequality is summable, Borel-Cantelli lemma implies that almost

surely there exists N2 such that for any n ≥ N2 and for any k ∈N0 we have

ûk (n) ≤ e−nk+2
e−(k+1)(d+1)logn .

Using the same technic as above we can easily show that almost surely there exists N3 such

that for any n ≥ N3 we have

inf
|x|≤Nn

inf
n−1≤t≤n

(B x
t −B x

n−1) ≥− logn .
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3.6. Quenched limits

For t1, t2 ∈R+ let Ct1,t2 be the event that the random walk has no jump in the time interval

[t1, t2].

For any k ∈N0 and any integer n ≥ max{N1, N2, N3} We have

ûk (n) ≥ EX
[

e
∫n

0 dB X (s)
s 1At ,k 1Ct ,n

]
≥ e inf|x|≤Nn nk infn−1≤t≤n (B x

n−B x
t )
EX
[

e
∫n

0 dB X (s)
s 1At ,k 1Ct ,n

]
≥ e−(k+2)(d+1)lognEX

[
e
∫n

0 dB X (s)
s 1At ,k 1Ct ,n

]
= e−(k+2)(d+1)logn P(Ct ,n) ûk (t )

hence

ûk (t ) ≤ eκe(k+2)(d+1)logn ûk (n) ≤ e−nk+2
eκ ≤ eκe−n2(k+1) .

In the same way we have

û(t ) ≤ eκe(k+2)(d+1)logn û(n) = eκn(k+2)(d+1) û(n) ,

and

û(t ) ≥ eκe− logn û(n −1) .

So using the inequality log(α+1) ≤α we have

κ− logn + log û(n −1) ≤ logu(t ) = log
(
û(t )+

∞∑
k=0

ûk (t )
)

≤ log
(
eκn(k+2)(d+1) û(n)+eκ

∞∑
k=0

e−n2(k+1)
)

≤ log
(
eκn(k+2)(d+1) û(n)+eκe−n2

)
≤ log û(n)+Δn

where

Δn := κ+ (k +2)(d +1)logn +n−(k+2)(d+1) û(n)−1e−n2
.

This, along with the fact that { log û(n)
n }n converges to some strictly positive number (possibly

+∞ for H > 1/2), proves the assertion of the proposition for any positive function f (t ) growing

at least as fast as the identity function.
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Chapter 3. Asymptotic Behavior

3.7 Lower Bound

In this section we prove the positivity of λ = lim Û (n)
n for any H ∈ (0,1) and any κ. This is

a much stronger result than what has been proved in [50] where they prove the positivity

of λ under quite strong conditions on the covariance structure of the fBM’s and only when

H ∈ (Ho ,1/2] and κ< κo for some Ho and κo . Although we assume the independence of the

fractional Brownian motions associated to different sites of Zd , our argument for the proof

of the following theorem holds true for much more general setting on the spatial covariance

structure.

Theorem 3.7.1. λ= lim Û (n)
n is strictly positive for any H ∈ (0,1) and any κ.

The following well-known lemma (see for example [13, 19]), which is a corollary to the reflec-

tion principle, shows that the probability on a simple random walk started from the origin, of

returning to the origin for the first at time 2m, decays only polynomially in m, in contrast to

the first impression that it would decay exponentially.

Lemma 3.7.2 (First return to the origin). Let {Sn}n be a discrete-time random walk on Z

starting off the origin, i.e. Sn =∑n
k=1 Xk where Xi ∈ {−1,+1} and S0 = 0. Let ν2m be number of

different ways for the random walk to visit the origin for the first time at time 2m, i.e. S2m = 0

but Sk �= 0 for any k ∈ {1, · · · ,2m −1}. We have

ν2m = 1

2m −1

(
2m

m

)

Proof of Theorem 3.7.1. For the d-dimensional simple random walk X (·) on Zd , Let πi be

the projection to the i -th coordinate; In other words if X = (xi )i , then for each i we have

xi :=πi oX .

Let T := 2md/κ with m ∈N. For any k ∈N0, let Bk be the event that the random walk X (·)
has the following property: for each i ∈ {1, · · · ,d}, the i -th projection, i.e. πi oX be zero at time

kT , make 2m jumps in the time interval
(
kT, (k +1)T

)
and at its 2m-th jump returns to the

origin for the first time. It is clear that then for each i , πi oX doesn’t change sign in the time

interval
(
kT, (k +1)T

)
.

We have
Û (nT )

nT
≥ 1

nT
E logEX

(
e
∫nT

0 dB X (s)
s

n−1∏
k=0

1Bk

)
.

But

EX
(
e
∫nT

0 dB X (s)
s

n−1∏
k=0

1Bk

)
= P
(
X (T ) = 0

)
EX
(
e
∫nT

0 dB X (s)
s

n−1∏
k=0

1Bk

∣∣∣X (T ) = 0
)

= P
(
X (T ) = 0

)
EX
(
e
∫T

0 dB X (s)
s 1B0

∣∣∣X (T ) = 0
)
EX
(
e
∫nT

T dB X (s)
s

n−1∏
k=1

1Bk

∣∣∣X (T ) = 0
)

= EX
(
e
∫T

0 dB X (s)
s 1B0

)
EX
(
e
∫nT

T dB X (s)
s

n−1∏
k=1

1Bk

∣∣∣X (T ) = 0
)

.
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Continuing this procedure, by induction we have

EX
(
e
∫nT

0 dB X (s)
s

n−1∏
k=0

1Bk

)
=

n−1∑
k=0

E logEX
(
e
∫(k+1)T

kT dB X (s)
s 1Bk

∣∣∣X (kT ) = 0
)

.

So we have
Û (nT )

nT
≥ 1

nT

n−1∑
k=0

E logEX
(
e
∫(k+1)T

kT dB X (s)
s 1Bk

∣∣∣X (kT ) = 0
)

= 1

T
E logEX

(
e
∫T

0 dB X (s)
s 1B0

)
where we have used the time invariance of the random walk and the random environment, i.e.

the fBM’s.

Taking the limit when n goes to ∞ we obtain

λ≥ 1

T
E logEX

(
e
∫T

0 dB X (s)
s 1B0

)
.

So it suffices to show the positivity of the right-hand-side of this inequality.

Let D be the set of all possible paths of a 2md-step discrete-time random walk on Zd started

at the origin with the property that their projections over each coordinate make exactly 2m

jumps and at its 2m-th jump returns to the zero for the first time. As B0 is an event that

concerns only the number of jumps and the positions of the random walk and not its jump

times, conditional on the number of jumps it is independent of the jump times. Let Et be the

expectation with respect to the jump times conditioned on the event that number of jumps

are 2md , i.e. the expectation with respect to the jump times t1, · · · , t2md which are uniformly

distributed on (0,T ). Let also pm be the probability that a simple random walk has 2md jumps

in the time interval [0,T ].

We have

EX
(
e
∫T

0 dB X (s)
s 1B0

)
= pm

1

(2d)2md

∑
j∈D

Et
(
e
∫T

0 dB
X j (s)
s

)
.

Where X j represents the paths of the continuous-time random walk whose position path is

the same as j ∈D. For each path j in D it is evident that − j ∈D. So let D/2 be a subset of

D with the property that from each pair ( j ,− j ) contains only one; In other words it is the

equivalence class of D under the relation j ∼ i ⇐⇒ j =±i . Then we have

EX
(
e
∫T

0 dB X (s)
s 1B0

)
= pm

1

(2d)2md

∑
j∈D/2

Et
(
e
∫T

0 dB
X j (s)
s +e

∫T
0 dB

−X j (s)
s

)
,
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hence

E logEX
(
e
∫T

0 dB X (s)
s 1B0

)
= log pm +E log

1

(2d)2md

∑
j∈D/2

Et
(
e
∫T

0 dB
X j (s)
s +e

∫T
0 dB

−X j (s)
s

)
≥ log pm + 2

|D|
∑

j∈D/2
EtE log

|D|
(2d)2md+1

(
e
∫T

0 dB
X j (s)
s +e

∫T
0 dB

−X j (s)
s

)
= log pm + log

|D|
(2d)2md+1

+ 2

|D|
∑

j∈D/2
EtE log

(
e
∫T

0 dB
X j (s)
s +e

∫T
0 dB

−X j (s)
s

)
.

If Y1 :=∫t2md
t1

dB
X j (s)
s and Y2 :=∫t2md

t1
dB

−X j (s)
s we have

e
∫T

0 dB
X j (s)
s +e

∫T
0 dB

−X j (s)
s = e

∫t1
0 dB

X j (s)
s +∫T

t2md
dB

X j (s)
s (eY1 +eY2 )

≥ e
∫t1

0 dB
X j (s)
s +∫T

t2md
dB

X j (s)
s emax{Y1,Y2}.

As Y1 and Y2 are independent identically distributed zero-mean normal random variables we

have

Emax{Y1,Y2} = E
( |Y1 −Y2|+Y1 +Y2

2

)= σ�
π

,

where σ2 is the variance of Y1. So we have

EtE log
(
e
∫T

0 dB
X j (s)
s +e

∫T
0 dB

−X j (s)
s

)
≥ Et(σ/

�
π) .

Let Δ := t1 + (T − t2md ), i.e. the total amount of time that the random walk spends at the origin

during the time interval [0,T ]. As t1, · · · t2md are uniformly distributed in (0,T ), it is clear that

Et(Δ) = 2 T
2md+1 .

When H ≤ 1/2, as the increments are negatively correlated, staying in a single site gives a lower

bound on the variance, i.e. σ2 ≥ (T −Δ)2H . But for any 0 ≤α≤ T , we have αH ≥ (αT )T H . This

shows that in this case we have σ≥ (T−Δ
T

)
T H and hence

Et(σ) ≥ Et(T −Δ

T

)
T H = 2md −1

2md +1
T H � mH .

When H > 1/2, as the increments are positively correlated, visiting every site for no more than
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once gives a lower bound on the variance, i.e. σ2 ≥∑2md
i=2 (ti − ti−1)2H and hence

Et(σ) ≥ Et

√√√√2md∑
i=2

(ti − ti−1)2H

≥ Et

√√√√(2md −1)1−2H
(2md∑

i=2
(ti − ti−1)

)2H

= (2md −1)1/2−H Et(2md∑
i=2

(ti − ti−1)
)H

≥ (2md −1)1/2−H Et(∑2md
i=2 (ti − ti−1)

T

)
T H

≥ (2md −1)1/2−H (2md −1

2md +1

)
T H ��

m .

where we have used αH ≥ (αT )T H which is true for any α ≥ 0 and 0 < H < 1, and also the

following inequality that is easily proved by Hölder’s inequality and holds for any H ≥ 1/2 and

αi ≥ 0, i = 1, · · · , N
N∑

i=1
α2H

i ≥ N
( 1

N

N∑
i=1

αi
)2H .

Hence we have shown that

E logEX
(
e
∫T

0 dB X (s)
s 1B0

)
≥ log pm + log

|D|
(2d)2md+1

+C mγ ,

where C is some positive constant and γ := 1/2 for H > 1/2 and γ := H for H ≤ 1/2.

Pm is the probability that a Poisson random variable with average κT = 2md hast 2md jumps.

So by Stirling formula (1.3.6) we have

pm = e−2md (2md)2md

(2md)!
≥ 1

2e
�
πmd

hence

log pm �− logm .

For determining |D|, first we notice that there are
( 2md

2m ···2m

)= (2md)!
(2m)!d

different ways of distribut-

ing the 2md jumps uniformly between the d coordinates. For each i = 1, · · · ,d , there are ν2m

different possible excursions for πi oX such that it starts from zero, makes 2d jumps and at its

2d-th jump returns to zero for the first time. So we have

|D| = (2md)!

(2m)!d
νd

2m = (2md)!

(2m)!d
(2m)!d

(m)!2d

1

(2m −1)d
= (2md)!

(m)!2d

1

(2m −1)d
.

By Stirling’s formula we have
(2md)!

(m)!2d
� (2d)2md

m2d−1/2
,
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and hence

log
|D|

(2d)2md+1
�− logm .

This shows that

E logEX
(
e
∫T

0 dB X (s)
s 1B0

)
≥−C1 logm +C mγ ,

which guarantees the positivity of this expression for m large enough and hence completing

proof.
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3.8 Upper Bounds

In this section we will establish upper bounds on Û (T ). For H ≤ 1/2 this upper bound is linear

in T which shows that λ is finite. For H ≥ 1/2 the problem is much more complicated and

what we have been able to show is that Û (T ) and hence U (T ) grow slower than T
√

log(T ).

This is in contrast to a result of Viens and Zhang in [50] asserting that U (T ) grows faster than
T 2H

logT .

Our arguments hold true for much more general spatial covariance structures than indepen-

dent fractional Brownian motions associated to each site of Zd .

Theorem 3.8.1. For H ≤ 1/2, the limit limT→∞ Û (T )
T =λ is finite.

Proof. By convexity of log and using Jensen’s inequality and then by the negative correlation

of the fBMs’ increments we have

Û (T ) ≤ logEX
(
Ee
∫T

0 dB X (s)
s 1AT

)
= logEX

(
e

1
2 var (

∫T
0 dB X (s)

s )1AT

)
≤ logEX

(
e

1
2

∑n
i=0(ti+1−ti )2H

1AT

)
,

where {ti }i are the jump times of the random walk X (·) in (0,T ), including the end points, and

n is the number of jumps. Then as the function (·)2H would be concave, by Jensen’s inequality

we have
1

n +1

∑
i

(�ti )2H ≤
(∑

i �ti

n +1

)2H =
( T

n +1

)2H
.

But as under the event AT the number of jumps is smaller than NT =βT , we have

Û (T ) ≤ logEX
(

e
1
2 (n+1)1−2H T 2H

1AT

)
≤ logEX

(
e

1
2 (βT+1)1AT

)
≤ 1

2
(βT +1).

This shows that λ= limT→∞ Û (T )
T is finite.

When H > 1/2, we apply a more elaborate method.

Theorem 3.8.2. For H > 1/2, we have Û (n)� n
√

logn.

Proof. We chop up the interval [0,n] into n subintervals and decompose each integral
∫l+1

l dB X (s)
s

into two parts: the residue part, that comes from the Brownian motions up to time l −1 and

the innovation part that comes from the Brownian motions in the interval [l −1, l +1]. We

expect the innovation part to be the main contribution to the integral, and the residue part to

be reasonably small.
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We begin by the Volterra representation (1.1) of a fBM. For l ∈N≥2 and l ≤ t1 < t2 ≤ l +1, we

have

Bt2 −Bt1 =
∫l−1

0

(
KH (t2, s)−KH (t1, s)

)
dWs +Zt2 −Zt1 , (3.16)

where

Zt :=
∫t

l−1
KH (t , s)dWs . (3.17)

For 0 ≤ t ≤ 2 we also define Zt by

Zt :=
∫t

0
KH (t , s)dWs . (3.18)

Applying the stochastic Fubini theorem 1.3.3 to the first right-hand-side term of (3.16) we have

∫l−1

0

(
KH (t2, s)−KH (t1, s)

)
dWs = cH

∫l−1

0

∫t2

t1

(u − s)H− 3
2 (

u

s
)H− 1

2 du dWs

=
∫t2

t1

Yl (u) du ,

(3.19)

where

Yl (u) := cH

∫l−1

0
(u − s)H− 3

2 (
u

s
)H− 1

2 dWs . (3.20)

Applying this procedure to the family {B x }x∈Zd , there exists a family of independent standard

Brownian motions {W x }x∈Zd such that

B x (t ) =
∫t

0
KH (t , s)W x (ds) .

So for each site x ∈Zd , the processes Y x
l and Z x can be defined as above.

Back to the integral
∫n

0 dB X (s)
s , it can be easily verified that

∫n

0
dB X (t )

t =
∫n

0
dZ X (t )

t +
n−1∑
l=2

∫l+1

l
Y X (t )

l (t )dt . (3.21)

Our goal is to show that in some sense the first term grows linearly in n and the second term

grows no faster than n
√

logn.

By adding and subtracting a reasonably small artificial term to
∫n

0 dZ X (t )
t we may turn it into a

summation of mostly independent terms and hence getting a linear upper bound.

Indeed, let {W̃ l ,x }x∈Zd , l∈N0
be a family of independent standard Brownian motions, indepen-

dent of any process introduced so far, in particular independent of the random walk X (.),
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the fractional Brownian motions {B x }x∈Zd and hence their corresponding Brownian motions

{W x }x∈Zd appearing in their integral representation. For any l ∈N≥2 and x ∈Zd define Ŵ l ,x

as

Ŵ l ,x :=
⎧⎨⎩W̃ l ,x

s for s ∈ [0, l −1]

W x
s −W x

l−1 +W̃ l ,x
l−1 for s ∈ (l −1,∞) .

and for l = 0,1, define Ŵ l ,x :=W x .

It is easily verified that Ŵ l ,x is itself a standard Brownian motion and hence the following

expression

B̂ l ,x
t :=

∫t

0
KH (t , s)dŴ l ,x

s =
∫l−1

0
KH (t , s)dW̃ l ,x

s +
∫t

l−1
KH (t , s)dW x

s , (3.22)

is a fractional Brownian motion of Hurst parameter H .

Note also that for any x ∈Zd and l ≤ t < l +1, we have

Z x
t =
∫t

l−1
KH (t , s)dW x

s .

By the same procedure as in equations (3.16) through (3.20), for any t ∈ [l , l +1) we have∫l+1

l
dZ X (t )

t =
∫l+1

l
dB̂ l ,X (t )

t −
∫l+1

l
Ŷ X (t )

l (t )dt ,

where

Ŷ x
l (t ) := cH

∫l−1

0
(u − s)H− 3

2 (
u

s
)H− 1

2 dW̃ l ,x
s for t ∈ [l , l +1) .

We therefore have ∫n

0
dZ X (t )

t =
n−1∑
l=0

∫l+1

l
dB̂ l ,X (t )

t −
n−1∑
l=2

∫l+1

l
Ŷ X (t )

l (t )dt .

This along with (3.21) implies∫n

0
dB X (t )

t =
n−1∑
l=0

∫l+1

l
dB̂ l ,X (t )

t −
n−1∑
l=2

∫l+1

l
Ŷ X (t )

l (t )dt +
n−1∑
l=2

∫l+1

l
Y X (t )

l (t )dt .

So we have

Û (n) = E logE
(
e
∫n

0 dB X (t )
t 1An

)
≤ E logEe

∑n−1
l=0

∫l+1
l dB̂ l ,X (t )

t +
n−1∑
l=2

E
(

sup
|x|≤n2

l≤u≤l+1

|Ŷ x
l (u)|+ sup

|x|≤n2

l≤u≤l+1

|Y x
l (u)|

) (3.23)

First we find an upper bound on the first right-hand-side term. Here we need an easy ob-
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servation. Let σ̃l be the sigma field generated by {W̃ l ,x
s ; s ∈ [0, l −1] , x ∈Zd } and σl be the

sigma field generated by {W x
s −W x

l−1 ; s ∈ (l −1, l +1] , x ∈Zd }. It is evident by (3.22) that for

any l ≤ t < l +1 the process B̂ l ,x
t is measurable with respect to σl ∨ σ̃l where ∨ denotes the

smallest sigma field containing the both. So
∫l+1

l dB̂ l ,X (t )
t is also measurable with respect to

σl ∨ σ̃l . As σl ∨ σ̃l and σk ∨ σ̃k are independent for |k − l | ≥ 2, this shows that
∫l+1

l dB̂ l ,X (t )
t and∫k+1

k dB̂ l ,X (t )
t are independent for |k − l | ≥ 2. Hence, using the inequality EX Y ≤ 1

2 (EX 2 +EY 2),

we have

var
n−1∑
l=0

∫l+1

l
dB̂ l ,X (t )

t ≤ 3
n−1∑
l=0

var
∫l+1

l
dB̂ l ,X (t )

t .

We also notice that

var
∫l+1

l
dB̂ l ,X (t )

t ≤ 1,

which follows from the positive correlation of increments of fMB implying that the upper

bound is obtained when the random walk stays in a single site on the whole time interval

[l , l +1). This can be equivalently deduced from (1.3) and the inequality
∑

i α
2H
i ≤ (

∑
i αi )2H

which is true for all H ≥ 1/2 and αi ≥ 0. Hence we have

E
(
e
∑n−1

l=0

∫l+1
l dB̂ l ,X (t )

t

)
= e

1
2 var

∑n−1
l=0

∫l+1
l dB̂ l ,X (t )

t

≤ e
3
2

∑n−1
l=0 var

∫l+1
l dB̂ l ,X (t )

t

≤ e
3
2 n ,

Now turn to the second right-hand-side term of term equation (3.23).

Applying Dudley’s theorem as stated in remark 1.3.2, for any l ∈N≥2 we have

E
(

sup
|x|≤n2

l≤u≤l+1

|Y x
l (u)|

)
≤ K
∫∞

0

√
log N (ε)dε ,

where K is a universal constant.

Using proposition 3.4.1, for any u, v ∈ [l , l +1] we have

E
[
Yl (u)−Yl (v)

]2 � (u − v)2.

Particularly the upper bound doesn’t depend on l .

So with the same argument given in section 3.5, it follows that there are positive numbers M1

and M2 depending only on H , such that N (ε)� 1
ε for 0 < ε≤ M1, N (ε) � n2d for M1 ≤ ε< M2

and finally N (ε) = 1 for ε> M2 and. So there exists a positive constant M such that for any l

E
(

sup
|x|≤n2

l≤u≤l+1

|Y x
l (u)|

)
≤ K1

√
logn.
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The same is true for Ŷ x
l

E
(

sup
|x|≤n2

l≤u≤l+1

|Ŷ x
l (u)|

)
≤ K2

√
logn.

Hence we have

Û (n) ≤ 3/2n +K n
√

logn,

where K is a positive constant that doesn’t depend on anything other than H .
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