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Figure 1: Our facial animation retargeting system learns a mapping from motion capture data to arbitrary character parameters.

Abstract

This paper presents a system for facial animation retargeting that al-
lows learning a high-quality mapping between motion capture data
and arbitrary target characters. We address one of the main chal-
lenges of existing example-based retargeting methods, the need for
a large number of accurate training examples to define the corre-
spondence between source and target expression spaces. We show
that this number can be significantly reduced by leveraging the in-
formation contained in unlabeled data, i.e. facial expressions in the
source or target space without corresponding poses. In contrast
to labeled samples that require time-consuming and error-prone
manual character posing, unlabeled samples are easily obtained as
frames of motion capture recordings or existing animations of the
target character. Our system exploits this information by learning
a shared latent space between motion capture and character param-
eters in a semi-supervised manner. We show that this approach is
resilient to noisy input and missing data and significantly improves
retargeting accuracy. To demonstrate its applicability, we integrate
our algorithm in a performance-driven facial animation system.

1 Introduction

Creating realistic facial animations is a complex task that usually
requires a significant time commitment of highly skilled animators.
Recent developments in facial motion capture systems allow speed-
ing up this process by accurately capturing the performance of an
actor, thereby shifting the complexity of facial animation towards
retargeting. However, mapping the captured performance onto a
virtual avatar is a highly non-trivial task, especially when the tar-
get character is not a close digital replica of the actor, as for ex-
ample in the movie King-Kong. Low-level automatic methods are
bound to fail, since establishing the correspondence between facial
expressions of largely different characters requires high-level se-
mantic knowledge of their expressions spaces. A common strategy
is thus to provide a set of explicit point correspondences between
these two spaces. For example, for a given recorded smile of the ac-
tor, an animator would create a semantically matching smile of the
virtual target character. Given a set of such labeled pairs, retarget-
ing essentially becomes a problem of scattered data approximation,
i.e., extrapolating the explicit correspondences into the entire ex-
pression space. The main difficulty in this type of example-based
retargeting is creating the examples. Typically a large number of
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correspondences needs to be established to adequately capture the
subtleties of facial expressions. In addition, posing a character to
match a recorded expression can be very difficult, as subtle motions,
e.g. a slight raise of the eyebrows, are often overlooked. These mi-
nor inaccuracies can quickly lead to noticeable disturbances in the
animations of the target character.

Contribution. In this paper, we present a novel example-based
retargeting approach that significantly reduces the number of re-
quired training examples. Our method learns a shared latent space
between motion capture and character parameters to represent their
underlying common structure. Given a small set of manually spec-
ified correspondences between actor performance and target char-
acter expressions, the latent space is learned in a semi-supervised
manner by using these labeled key poses, as well as the complete
actor performance and previous animations of the target character.
By adding this additional information we can increase the learning
accuracy and stability, while the number of required training exam-
ples is reduced. We demonstrate that our system is resilient to noise
and missing data, and can deal with high dimensional representa-
tions common in production-level facial rigs.

Related Work. Practical acquisition and motion capture sys-
tems have recently become robust, accurate, and affordable
[Bradley et al. 2010; Beeler et al. 2011; Weise et al. 2011;
Bouaziz et al. 2013] leading to a wider usage in professional
and semi-professional productions. Since the seminal work of
Williams [1990], numerous methods have been devoted to facial
animation retargeting [Pighin and Lewis 2006]. Among those meth-
ods, approaches based on correspondences between motion capture
markers and target characters [Bickel et al. 2007; Ma et al. 2008;
Seol et al. 2012] have been successful when the actor and the ani-
mated faces are geometrically similar. Related to those approaches,
[Noh and Neumann 2001; Sumner and Popovi¢ 2004] use dense
correspondences between a source and a target mesh in order to re-
target facial expression using vertex or triangle motion transfer. Nu-
merous facial tracking and retargeting systems [Huang et al. 2011;
Weise et al. 2011; Seol et al. 2012] use a blendshape representa-
tion based on Ekman’s Facial Action Coding System [Ekman and
Friesen 1978]. However, because of the linearity of the blendshape
model, reproducing subtle non-linear motion is difficult.

Our system is most closely related to example-based methods
[Deng et al. 2006; Song et al. 2011; Kholgade et al. 2011] that
do not require any similarity between the source and the target
face. The main difference to existing solutions is that our approach



Figure 2: Our algorithm learns a shared latent space Z from a space X of motion capture parameters and a space Y of character parameters.
Gaussian Process Regressors (GPR) are used to model the mappings from the latent space onto the observation spaces. In order to train the
GPRs only few pairwise correspondences between X and Y need to be specified. A key feature of our algorithm is that we also incorporate

unlabeled data points for which no correspondence is given.

supports non-linear retargeting of motion capture data and exploits
unlabeled data to improve the retargeting accuracy with a reduced
number of training examples.

The core of our facial animation retargeting system is based on re-
cent works on Gaussian Process Latent Variable Models (GPLVM)
[Lawrence 2004]. GPLVM was used successfully for human body
tracking [Urtasun et al. 2006], retargeting [ Yamane et al. 2010] and
inverse kinematics [Grochow et al. 2004]. Recently, GPLVM has
been extended to support multiple observation spaces [Ek 2009],
missing data [Navaratnam et al. 2007] and constrains over the la-
tent space [Urtasun et al. 2007; Wang et al. 2008]. In our work we
enhance the shared GPLVM [Ek 2009] with a prior over latent con-
figurations allowing to preserve local distances of the observation
spaces. This prior takes its roots in manifold alignment [Ham et al.
2005] and Gaussian random fields [Zhu et al. 2003; Verbeek and
Vlassis 2006].

2 Learning

Classical example-based retargeting establishes a mapping from the
source to the target space by computing an interpolation function
from the point-wise correspondences defined by the labeled ex-
amples. Our method is based on one key observation: unlabeled
frames can provide valuable information to establish this mapping.
With unlabeled frames we mean poses in the captured sequence for
which no corresponding expression for the target has been speci-
fied. For motion capture data, these unlabeled data points are abun-
dant, since typically many hundreds of frames are recorded and
only few are manually labelled. The main advantage of incorporat-
ing unlabeled data is that they provide important information about
the local structure of the expressions space, which leads to better
alignment of source and target spaces when computing the map-
ping. We can even go further and also incorporate unlabeled expres-
sions of the target character, which help to constrain the mapping
function by defining the space of semantically correct expressions
of the target. Unlabeled target character samples are often available
in the form of pre-existing animations that, for example, have been
generated by an artist.

We employ shared GPLVM [Ek 2009] to learn a mapping between
motion capture and character parameters. The main hypothesis here
is that both parameter spaces are (non-linearly) generated from a
common low-dimensional manifold. Shared GPLVM (sGPLVM)
learns a shared latent space by training Gaussian Process Regres-
sors (GPR) to model the generative mappings from the latent space
onto the observation spaces as illustrated in Figure 2. Gaussian Pro-
cess Regressors can be trained robustly from small training sets and
their parameters can be learned by maximizing the marginal likeli-
hood of the training data. This is more efficient than techniques that
use cross-validation to infer the parameter values when the training

set is small, since the training dataset does not need to be reduced
further [Rasmussen and Williams 2006].

2.1 Shared GPLVM Learning

Assume we are given two sets of corresponding observations X =
T T
[X1,...,Xs]" and Y = [y;,...,¥,] , where x; € R% and
y; € R% . In our retargeting system X represents the space of
source motion capture parameters and Y the space of target virtual
T

character parameters. Let Z = [zi, o ,zn] ,z; € R% denote the
corresponding (unknown) shared latent points. We model the gen-
erative mapping from the latent space onto the observation spaces
with Gaussian processes using the conditional probabilities
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The vector ® = {61, 62,03} defines the parameters of the kernel
Kz, & given as
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where K775 is the element located at the ¢-th line and j-th column
of the kernel matrix Kz & and d;,; is the Kronecker delta. Learning
a shared GPLVM amounts to estimating the latent positions and
kernel parameters by maximizing

argmax P(Z|X,Y) = argmax P(X|Z)P(Y|Z)P(Z). (4)
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Semi-supervised learning. An important benefit of the shared
GPLVM is that it can directly incorporate extra data points that do
not need to be in correspondence. We can thus learn the shared

GPLVM using X = [X7, X% o]" and Y = [Y},0,YZ]", where
labeled pairs are denoted by X; € R'*% and Y; € R'™*%, and
unlabeled samples are given by X, € R™*% Y, € R"*% with
the o indicating the missing correspondences (see Figure 2).

By using smooth mappings from the latent space to the observation
spaces, SGPLVM ensures that close points in the latent space re-
main close in the observation spaces. However, the inverse is not
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Figure 3: Our method retargets accurately the facial expressions of the actor. With a small number of labels SVR has tendency to damp
the facial expressions. In our examples, GPR gives results similar or slightly less accurate than sGPLVM, which we further improve in our

method by incorporating unlabeled data.
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Figure 4: A quantitative comparison of different learning ap-
proaches shows the root mean square (RMS) distance to the ground
truth as a function of the number of training examples.

necessarily true, i.e., points close in the observation spaces may be
far apart in the latent space. In order to preserve the local topolog-
ical structure of X and Y in the latent space, we therefore define
a prior based on local linear embedding (LLE) [Roweis and Saul
2000] over the latent configurations. LLE assumes that each data
point of the observation spaces and its neighbors are close to a lo-
cally linear patch on the manifold. The local geometry of these
patches can then be encoded by linear coefficients w;; that recon-
struct each data point from its neighbors. By enforcing that the
reconstruction of each latent point from its neighbors follows the
same set of coefficients than their corresponding high dimensional
point, the local structure of the observation spaces can be preserved
in the latent space. We model this concept with a prior over the
latent configuration using a Gaussian process

P(Z) = ! =T (—%tr (LZZT)), 5)
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where L = MTM +1I and M is a matrix in which each line encodes
one reconstruction constraint and is defined as
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In the formulation above, A»%/ denotes a block a the matrix A go-
ing from column ¢ to column 5 and
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N; are the indices of the k-nearest neighbor of u; and the coeffi-
cients w;; are defined as

w;; = arg min ||ju; —

Z wijung s.t. Z wi; =1. (8)
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Incorporating this prior of the local structure of the observation
spaces helps to better constrain the position of the points with miss-
ing correspondences in the latent space. We also found that it helps
increase the robustness of the training to bad initialization of the
latent coordinates.

2.2 Computing the Mapping Function

The mapping from motion capture parameters to character param-
eters is done in two steps. We first solve for the latent position z;,
given the motion capture observation X;. We call this part source
mapping. Given the latent position z*, the subsequent rarget map-
ping part solves for the character parameters y”*.

Source mapping. The source mapping not only solves for the
latent position zj;, but also for the most likely capture parameters xj,
given the observation X, the optimized motion capture parameters
Xj,_ of the previous frame, and the training data X and Z. Thus we
optimize

arg max P(Xy, Zg|X5_1, Xk, X, Z). 9)
XZ'ZZ
We approximate the above probability density function by assum-

ing that z, is independent of Xj,_{, X, X, and Z. This allows us to
reformulate the optimization as

a’rgma‘xp(xz‘z;;vXzflyikyxyz)P(z;;% (10)
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which can be extended to
arg max P(Xy, X, _1, Xk |2k, X, Z) P(z},). 11)
xz,zz

By further assuming that X5, and x;,_; are independent of z;,, X, and
Z given x;;, and Xy, is independent of x7,_; given Xj;, we obtain our
final optimization objective



arg max P(Xy |z, X, Z) P(Xx X)) P(X5_1 X5 ) P(zz).  (12)
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The likelihoods P(Xx|xj) and P(xj_,|x}) represent closeness to
the observation and temporal smoothness, respectively, and are
modeled by two Gaussian distributions as

P(Rk|x) = N (Re|xi, ooT), (13)
P(xi_1[x7) = N (x5_1[x5, 07 T). (14)

The two probabilities P(xj;|z;,, X, Z) and P(z},) act as priors over
motion capture parameters and latent position and are defined as

P(xj|zi, X, Z) = N (xi |, o5 1), (15)
1=Ky 5 Xke (2}), (16)
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where ks (z;,) is a vector whose i-th element is ke (z},z;) and
P(z;) = N(z;|0,I). One advantage of this formulation is that
missing dimensions of X, can be retrieved during the optimization
by setting 2 = oo in Equation 13 for these dimensions.

Target mapping. The second step of the mapping process is to
find the character parameters y* given the latent position z* by max-
imizing

argmax P(y;|z;,Y,Z) = Ky 5, YKka, (z}). (18)
Yk

Implementation. In our implementation, we first mean center
the observation spaces and rescale them by dividing by their max-
imum variance. For the learning phase, we empirically found
® = {1,1,100} to be good initial kernel parameters for the op-
timization for all our examples. We fix o2 and o2 by estimating
the noise level of the motion capture system [Weise et al. 2011] and
chose £ = 8 nearest neighbors for LLE and 8 dimensions for the
latent space. The latent coordinates are initialized using the semi-
supervised manifold alignment technique presented in [Ham et al.
2005]. For the mapping phase, we initialize X, with the motion cap-
ture observation Xy, and z;, with the latent position corresponding to
the closest x; to X;,. We use scaled conjugate gradient [Moller 1993]
as optimizer and minimize the negative logarithm of the probabili-
ties.
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Figure 5: Unlabeled data points help to increase retargeting accu-
racy, in particular when working with few training examples.

Figure 6: Resilience to noise. Our learning approach is able to
compute accurate marker positions (bottom row) by automatically
correcting the noisy input points (top row).

3 Evaluation

For our evaluation experiments, we use the faceshift tracking sys-
tem (www.faceshift.com). Given a recorded sequence of a human
actor, this system produces an animated 3D mesh represented in a
blendshape basis that matches the actor’s performance. We select a
set of vertices on the mesh as marker positions to generate motion
capture input and perform a retargeting of these marker points onto
the blendshape basis of the animated target character. This setup
allows measuring and comparing the performance of our algorithm
since the blendshape parameters provided by the tracking system
can be treated as ground truth for the evaluation. Note that all other
retargeting sequences use target characters (the models shown in
Figure 1, see also video) for which no such ground truth data is
available.

Comparison. We compare our algorithm with Support Vector
Regression (SVR) [Drucker et al. 1996], Gaussian Process Regres-
sion (GPR) [Williams and Rasmussen 1995] and the supervised
shared GPLVM (sGPLVM) [Ek 2009]. We recorded sequences of
approximatively 2000 frames of different actors. The different al-
gorithms are applied 20 times over those sequences by random se-
lection of labelled and unlabeled points, using 100 unlabeled data
points for both observation spaces. The averaged results shown in
Figures 3 and 4 demonstrate that our algorithm improves the re-
targeting accuracy by up to 20%, especially when the number of
labeled expression correspondences is small. As demonstrated in
the accompanying video, our algorithm preserves motion dynamics
significantly better than the other approaches.

Unlabeled points. Figure 5 illustrates the effect of using unla-
beled points for establishing the retargeting mapping function. As
the curves indicate, when using about 50 unlabeled points we can
achieve the same retargeting accuracy with 20 training examples as
with 30 examples and no additional unlabeled points. Compared
to the time-consuming and error-prone labeling, the latter come es-
sentially for free, allowing for significant savings in manual labor.
Unlabeled points are particularly useful for small sets of manually
specified examples as the given correspondences do not span the
full animation space.

Noise and missing data. One advantage of our formulation is
its robustness to noise (Figure 6) and missing data (Figure 7). Our



Figure 7: Missing markers can be handled by our retargeting sys-
tem. The optimization jointly retrieves the location of the missing
markers (green) and the target character parameters.

system models a probability distribution function over motion cap-
ture parameters and latent positions allowing to retrieve the most
probable set of markers given the possible noisy or incomplete in-
put observation.

Character posing. The resilience of our algorithm to missing
data is not limited to the input space. We can exploit the regulariza-
tion of our probabilistic framework to also complete missing data
in the target space, which offers a simple but effective approach to
character posing. The animator can specify only a subset of the
target animation parameters and our algorithm will automatically
infer the most probable pose matching the specified values (see Fig-
ure 8). This type of guided character posing is particularly advanta-
geous for complex animation models, where many parameters only
induce subtle pose variations that are thus difficult to specify, but
nevertheless important for the expression.

Discussion and Limitations. When the number of examples is
small, example-based retargeting methods have a tendency to infer
a wrong correlation between parts of the face as for example mouth
open and eyebrows up. This effect is reduced in our approach by
taking into account unlabeled data. One additional solution is to
split the face (e.g. upper part and lower part) and to learn the re-
targeting independently for those parts, similar to recent linear 3D
face models [Tena et al. 2011].

In our work, we use a set of key poses, rather than sequences, to
learn the retargeting function. Learning a latent dynamical system
as in [Wang et al. 2008] with different motion style is challeng-
ing especially with a small set of sequences. Nevertheless, motion
sequences can additionally be used in our approach by taking into
account temporal closeness when building the matrix in Equation 6.

A drawback of the Gaussian Process Regressor model is its time
complexity, which is O(N®) for the training phase and O(N?)
for evaluating the mapping, where NV is the number of points in
the training data. Sparse approximations [Lawrence et al. 2003;
Lawrence 2007] allow to reduce the training complexity to a more
manageable O(k*N) where k is the number of active points re-
tained in the sparse representation. In practice, our current imple-
mentation supports realtime retargeting for a training set of a few
hundred data points for each observation space. The training time
of our system for 40 examples and 100 unlabeled points is around
1-2 minutes and the mapping between 30 to 40ms.

In our current implementation the dimension of the latent space is
chosen empirically. Recent works in non-linear dimensionality re-
duction [Geiger et al. 2009; Salzmann et al. 2010] introduced a rank
prior that allows to automatically determine the dimension of the
latent space. This work should also be applicable for our approach.

Figure 8: Character posing can be simplified by optimizing for
the missing animation parameters. In these examples, the animator
only needs to specify 2-3 animation parameters (left) and the system

automatically infers the most likely pose matching this input (right),
activating about 20 additional blendshape parameters.

4 Conclusion

We have introduced a novel statistical approach to high-quality fa-
cial animation retargeting that achieves better results than other
non-linear regression techniques. By leveraging the information
contained in unlabeled data, a key novelty in our retargeting ap-
proach, we can reduce the number of required training examples.
We have shown that our approach is well suited to retargeting facial
animations from motion capture data, as posing a character is time
consuming, while unlabeled data is easily obtained by tracking the
actor. Since our method implicitly learns a low-dimensional repre-
sentation, our system has no difficulty dealing with complex, high-
dimensional input or output data commonly used in studio produc-
tions. At the same time, the robustness of our approach to noise
and missing data makes the method particularly suitable for low-
cost motion capture systems. In addition, our method can simplify
character posing by exploiting the correlation between the different
character parameters.

We believe that the main features of our approach will be applicable
in other retargeting applications and see several avenues for future
research. A promising idea is to further explore manifold align-
ment algorithms [Yang et al. 2008; Wang and Mahadevan 2009;
Zhai et al. 2010] to define a prior over latent configurations and for
the initialization of the shared GPLVM. Our statistical framework
is also well suited for active learning. We expect further improve-
ments in retargeting accuracy when automatically suggesting new
poses for labeling based on an online analysis of the uncertainty of
the current retargeting mapping function.
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