SUPPORTING INFORMATION

An Efficient Drug Metabolism Strategy Based on Microsome-Mesoporous Organosilica Nanoreactors

Xiaoni Fang,¹ Peng Zhang,¹ Liang Qiao,² Xiaoyan Feng,¹ Xiangmin Zhang,¹ Hubert H. Girault,² Baohong Liu,^{1*}

¹Department of Chemistry, Institutes of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China

²Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

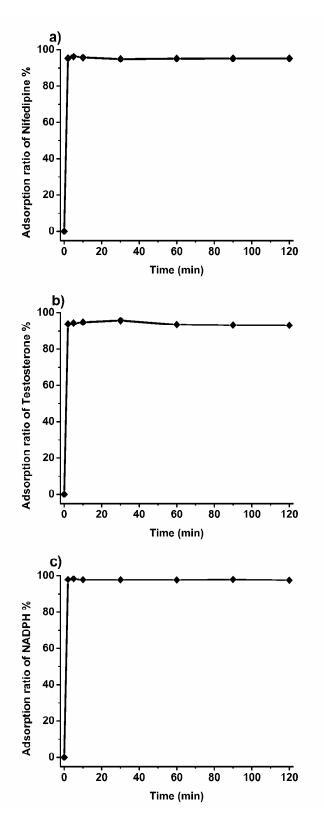
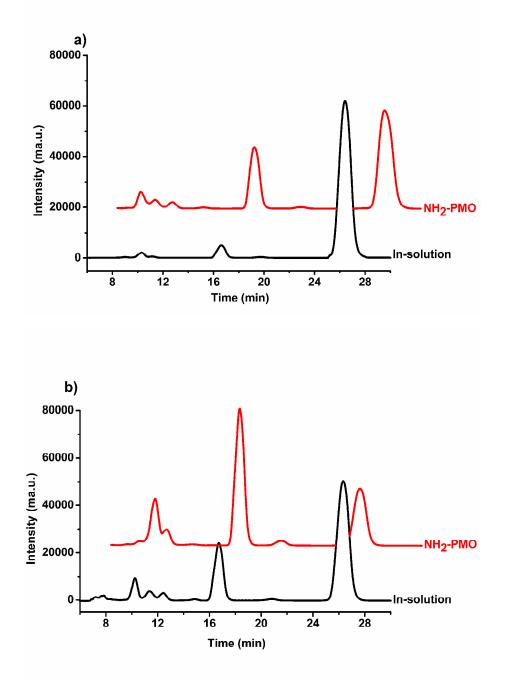
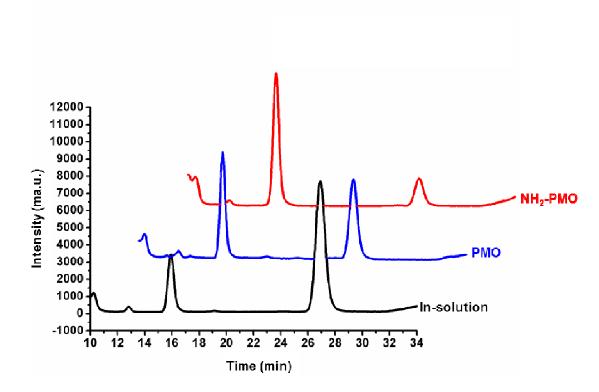
*E-mail: <u>bhliu@fudan.edu.cn</u>.

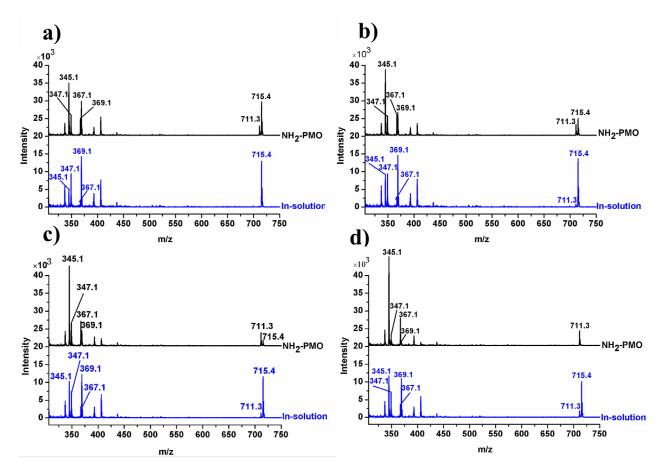
Experimental Section.

For the UV-HPLC analysis of nifedipine sample, the mobile phase consisted of solvent A: 5% methanol in water; and solvent B: 95% methanol in water. The LC run started with 55% B continued for 25 min, followed by a gradient to 80% B in 10 min, and then back to 55% B with a gradient in 5 min. At the end of the run, the column was allowed to equilibrate at 55% B for 5min. Absorbance at 254 nm was recorded.

For the UV-HPLC analysis of testosterone sample, the mobile phase consisted of solvent A: 5% ACN in water; and solvent B: 95% ACN in water. The LC run started with 5% B, followed by a gradient to 50% B in 10 min, then to 90% B in 30 min, and back to 5% B by a gradient in 5 min. Absorbance at 244 nm was recorded.

Electrospray ionization mass spectrometry (ESI-MS) was run on a 6460 QQQ mass spectrometer operated in positive ion mode under the conditions: gas temperature $350 \,^{0}$ C, gas flow 5 L/min, nebulizer gas pressure $310.275 \,$ kPa (45.0 psi), sheath gas temperature $250 \,^{0}$ C, sheath gas flow 11.0 L/min, capillary voltage: 4000 V (for positive mode) / -3500 V (for negative mode), Nozzle voltage: 500 V, collision energy 30 V.


Figure S1. Adsorption ratio of a) nifedipine, b) testosterone and c) NADPH by NH_2 -PMO as a function of time. The experiment conditions are the same as the metabolic reactions.

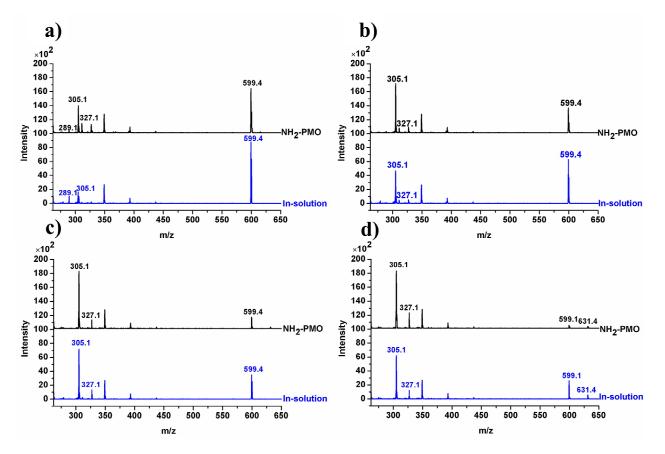

Figure S2. UV-HPLC chromatograms of nifedipine sustained-release tablets oxidation by human liver CYP3A4 microsomes with and without the assistance of NH₂-PMO nanoreactor monitored at 254 nm at a) 2 min and b) 10 min. The nifedipine was observed at $t_R \approx 27$ min. The metabolite of nifedipine was observed at $t_R \approx 16$ min.

Figure S3. UV-HPLC chromatograms of PMO-assisted drug metabolism at 30 min. The nifedipine substrate was observed at $t_R \approx 27$ min. The metabolite of nifeipine was observed at $t_R \approx 16$ min.

Figure S4. Mass spectra of nifedipine oxidation by human liver CYP3A4 microsomes with and without the assistance of NH₂-PMO at different time: a) 2 min, b) 10 min, c) 30 min, d) 60 min. The peaks of dehydronifedipine: $m/z = 345.1 \text{ [M+H]}^+$, $m/z = 367.1 \text{ [M+Na]}^+$ and $m/z = 711.3 \text{ [2M+Na]}^+$; the peaks of nifedipine: $m/z = 347.1 \text{ [M+H]}^+$, $m/z = 369.1 \text{ [M+Na]}^+$ and $m/z = 715.4 \text{ [2M+Na]}^+$.

Figure S5. Mass spectra of testosterone oxidation by human liver CYP3A4 microsomes with and without the assistance of NH₂-PMO at different time: a) 2 min, b) 10 min, c) 30 min, d) 120 min. The peaks of OH-T: $m/z = 305.1 \text{ [M+H]}^+$, $m/z = 327.1 \text{ [M+Na]}^+$ and $m/z = 631.4 \text{ [2M+Na]}^+$; the peaks of testosterone: $m/z = 289.1 \text{ [M+H]}^+$ and $m/z = 599.4 \text{ [2M+Na]}^+$.