
Providing Reliable FIB Update Acknowledgments in SDN

Maciej Kuźniar
EPFL

maciej.kuzniar@epfl.ch

Peter Perešíni
EPFL

peter.peresini@epfl.ch

Dejan Kostić
KTH Royal Institute of Technology

dmk@kth.se

ABSTRACT
In this paper, we first show that transient, but grave prob-
lems such as violations of security policies can occur with
real switches even when using consistent updates to Soft-
ware Defined Networks. Next, we present techniques that
are effective in ameliorating this problem. Our key insight
is in creating a transparent layer that relies on control and
data plane measurements to confirm rule updates only when
the rule is visible in the data plane.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internet-
working—Routers; C.4 [Performance of Systems]: Reli-
ability, availability, and serviceability

Keywords
Software-Defined Networking; Reliability; OpenFlow

1. INTRODUCTION
Software Defined Networks (SDNs) enable flexible net-

work configuration by allowing a centralized controller to
manipulate forwarding rules in switch flow tables. The con-
troller reacts to events such as topology changes, traffic en-
gineering decisions, and failures by computing and installing
the new desired network state. This process is referred to
as the network update, and involves issuing commands to
the switches to install the new set of rules and reconfig-
ure the network. The network update process is compli-
cated and if not conducted carefully, may lead to transient
problems such as black holes, forwarding loops, link over-
load, and packets reaching undesired destinations. There
are many approaches that guarantee some correctness prop-
erties [3,8,9,11]. These all split an update into many stages,
and rely on knowing when a particular rule modification
was applied at the switch(es) before issuing further modi-
fications. This necessitates positive acknowledgments con-
firming rule modifications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT’14, December 2–5, 2014, Sydney, Australia.
Copyright 2014 ACM 978-1-4503-3279-8/14/12 ...$15.00.
http://dx.doi.org/10.1145/2674005.2675006 .

S1 S3

S2

PATH
MIGRATION

(a)

 0

 20

 40

 60

 80

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3

%
 o

f fl
ow

s

Broken time [s]

Measurement
precision 4ms

With working acks With OF Barriers

(b)

Figure 1: Consistent network update using a hardware
switch. Despite theoretical guarantees, for most flows switch
S1 gets updated before S2 and the network drops packets for
up to 290 ms. Using our system eliminates this problem.

Unfortunately, in OpenFlow, currently the most popu-
lar SDN protocol, there is no mechanism with a sole pur-
pose of acknowledging rule modifications. Instead, there
exists a Barrier command with a more general functional-
ity.1 However, studies [12] show that OpenFlow switches
do not satisfy the specification in this crucial for correct-
ness aspect. We further verify that this happens even to the
latest-generation switches [7]. This may lead to transient
but grave network problems.

To demonstrate the magnitude of the problem, we pre-
pare a small end-to-end test: We set up a network in a
triangle topology with the hardware switch S2 and two soft-
ware switches S1 and S3 (Figure 1a). We preinstall paths
for 300 IP flows between hosts H1 and H2 going through
switches S1 and S3. Then, we perform an update that mod-
ifies the paths to S1-S2-S3 in a consistent manner, such that
a given packet can follow the old rules only or the new rules
only [11].

Despite using consistent updates, some flows drop pack-
ets for an extended period of time (Figure 1b). A detailed
analysis shows that the switch sends the barrier reply up to
290 ms before the rule modification becomes visible to data
plane traffic. Other switch models not only reply to barriers
too early, but also reorder rule updates across barriers [7].

The consequences of this observation have great impact
–even though provably correct in theory, none of the consis-
tent network update techniques work in practice with buggy

1According to the specification, after receiving a barrier
request, the switch has to finish processing all previously-
received messages before executing any messages after the
barrier request. When the processing is complete, the switch
must send a barrier reply message [1].

http://dx.doi.org/10.1145/2674005.2675006

S1 S2

FIREWALL

Switch B rules:
Y: 10.0.0.1 -> S3
Z: 10.0.0.1 & http -> FIREWALL

Switch A rules:

X: 10.0.0.1 -> S2

Time

Update plan: X after Y, X after Z

Control plane
messages:

Data plane
updates:

XY Z

X-modY-mod

S3

X-ackY-ack Z-ack

Z-mod

for this time http traffic is NOT
going through a FIREWALL

Update execution

Figure 2: If switch B does not report data plane updates
correctly, the theoretically safe update that adds rules for
trusted and untrusted traffic from the same host turns into
a transient security hole.

switches, and all systems that build upon these techniques
are unsafe as well. In particular, buggy behavior may lead to
security violations, broken bandwidth guarantees, or black
holes – an example of the first is depicted in Figure 2. If
the issues that we bring up here are not addressed (e.g., by
adopting one of our schemes) the SDN deployments that are
increasingly taking place in enterprises are in jeopardy.

While an incorrect barrier implementation may be just a
temporary problem and not a fundamental limitation (one
of the tested switches does implement barriers correctly),
we see three main reasons why it should be immediately ad-
dressed. First, there are many solutions that rely on barriers
and it cannot be expected that all switches in a network will
correctly function. Second, even after five major revisions
the OpenFlow specification is unclear – it does not explic-
itly state that the commands must be applied in the data
plane, instead it may be understood that the barrier en-
forces control plane-ordering only. This in turn means that,
unless there is a high pressure from customers, vendors will
have no incentive to provide data plane-level confirmations,
and therefore the problem might not disappear in future
switch generations. Finally, we argue that controllers need
acknowledgments of each rule installation, rather than only
high level barriers [10]. Therefore, we go one step further
than just fixing barriers, and the solutions we propose pro-
vide such fine grained rule update acknowledgments. Pro-
viding this functionality entails a few challenges: i) handling
heterogeneous switches, ii) dealing with the variable delay in
installing rules in the data plane, iii) ensuring low overhead.

In this work, we introduce a transparent layer below an
SDN controller that provides reliable acknowledgments for
rule modifications. In particular, when using our scheme,
the controller can never receive an acknowledgment before a
corresponding rule is installed in the data plane. Our contri-
butions include proposing various methods, including data
plane probing schemes, that achieve the aforementioned goal
depending on switch capabilities. The effect of applying one
of these techniques is visible in Figure 1b: no packets get
dropped. Moreover, we explain how, at the cost of a higher
overhead, such a layer provides barrier-like guarantees to
the controller working with switches that do not implement
barriers correctly.

2. SYSTEM OVERVIEW
We have two main requirements in mind when designing

our system called RUM (Rule Update Monitoring). First,
it needs to work with existing switches and take into ac-

count their capabilities and limitations. Second, the system
should provide reliable barrier commands in a backward-
compatible way without requiring any modifications to the
existing controllers and switches. However, it should allow
the RUM-aware controllers to benefit from fine grained ac-
knowledgments.
Acknowledging rule modifications. The first goal of
the system is to provide reliable rule modification acknowl-
edgments to the OpenFlow-speaking controllers. We design
RUM as a transparent layer between the switches and the
controller that intercepts and modifies the communication
between them similarly to FlowVisor [13] or VeriFlow [5]. In
contrast with these systems, RUM plays a more active role
in the interception, as it can buffer, rate-limit, remove or
add messages. To allow easy deployment and transparency
for controllers that are not designed to work with the fine
grained acknowledgments, RUM adapts existing OpenFlow
messages to convey successful modifications (such notifica-
tions are not available in OpenFlow). Depending on the
required precision and available switch properties, the tech-
niques (Section 3) rely only on the control plane communi-
cation with the tested switch, or may install additional rules
and involve the neighboring switches.
Providing reliable barriers. To provide reliable barri-
ers, RUM intercepts all barrier requests and replies. After
capturing a barrier request, RUM holds off sending the cor-
responding barrier reply and following messages from the
switch until it can ensure that the switch completed all pend-
ing operations. An ability to correctly acknowledge com-
mands issued to the switch is therefore the key to reliable
barriers. Additionally, when working with switches that re-
order modifications across barriers, RUM buffers all com-
mands that the controller sends after the last unconfirmed
barrier. It releases them to the switch after acknowledg-
ing the barrier. The barrier layer uses standard OpenFlow
barrier commands and is therefore transparent to any con-
troller.

3. DATA PLANE ACKNOWLEDGMENTS
RUM aims to acknowledge rule modifications as soon as

the new rule is active in a switch data plane, but not sooner.
Because different switches have different limitations and ca-
pabilities, we discuss several possible solutions to the prob-
lem at hand.

3.1 Control-plane only techniques
The first class of techniques uses control plane information

only and requires modeling the switch behavior.
Using OpenFlow barrier commands. Relying on bar-
rier messages is a natural way to receive acknowledgments in
OpenFlow, therefore, we present it as a baseline. A switch
must send a barrier reply message only after it finishes pro-
cessing all previous commands. However, our measurements
show that some switches respond to a barrier immediately,
before the modifications were applied to the data plane, and
as a result the data plane is often between 100 and 300 ms
behind what may be assumed based on barrier replies [7].
This confirms previous measurements [12] indicating that
barriers cannot be trusted and should not be used as rule
update confirmations.

While one can imagine using other OpenFlow commands
instead of barriers (e.g., using statistics requests), we believe
such an approach does not solve the underlying problem —

the reply from the switch is still based on its control plane
view and/or it does not have enough temporal granularity
(e.g., flow statistics might be updated only once per second).
Therefore, in the rest of this section we introduce techniques
that still rely on the barriers, but take into account the data
plane delay.
Delaying barrier acknowledgments. The first tech-
nique relies on experiments prior to deployment. If the max-
imum time between the barrier reply and the rule modifica-
tion being applied is bounded and can be measured, RUM
waits for this time after receiving a reply before confirming
earlier modifications.

The main drawback of this method is that it requires pre-
cise delay measurements or overestimation. We observe that
in practice the delay depends on many, often difficult to pre-
dict factors and therefore providing strong guarantees is dif-
ficult [7]. For example, if the data plane is typically delayed
by up to 100 ms, but there are cases of a 300-ms delay, one
needs to always wait for 300 ms. Even then, in hard to pre-
dict corner cases, the delay may reach several seconds, which
is impractical to use as the upper bound. Therefore, wait-
ing for a timeout after each barrier has a negative impact
on update performance and rule modification rate.
Adaptive delay. Adaptive timeout improves the perfor-
mance of the previous technique, but requires even more
detailed measurements to develop a precise switch model.
Based on such models and knowing the rate at which a con-
troller issues modification commands, RUM estimates when
a particular rule modification will take place in the switch.
Thus, the timeout is adjusted accordingly. However, this
method requires building detailed switch performance mod-
els, which is difficult [7].

3.2 Data plane probes
The basic idea of data plane probes is to inject special

packets into the network and use these packets, as well as
special probing rules, to monitor which rules are active in
the data plane. There are two aspects of OpenFlow barrier
commands: (i) a switch should respond with a barrier reply
after it processed all previous commands, and (ii) a switch
should never reorder commands separated by barriers. In
practice some switches violate either the first of these prop-
erties (because they process commands in the control plane,
but push the rules to the data plane later), or both. The
two techniques presented in this section are design to work
correctly with such two classes of switches.

3.2.1 Sequential probing
If a switch violates only the first barrier property (re-

sponds to barriers too early) two modifications separated
by a barrier are never reordered in the data plane. There-
fore, a strawman solution follows each real rule modification
with a barrier and an additional rule installation for prob-
ing. By the time the probing rule is determined to be active
(i.e., it forwards a probing packet), the original rule must
be in place as well.

Implementation-wise, the probing rule matches only the
specially selected probe packets and has a high priority so
that no other rule can override it. The probing rule sends the
matching packets to the controller. RUM then repetitively
injects probe packets (using a PacketOut message) into the
switch forwarding pipeline and when the probe arrives back
to RUM, it means that the probe rule is installed and there-

PacketOut:
pkt=probe

match(probe) -> fwd(ctrl)match(probe) -> fwd(C)

A B C

RUM

Figure 3: Probing the data plane at switch B. The controller
(RUM) sends a probe packet from switch A to switch B. If
B installed the probing rule, it forwards the packet to switch
C which sends it back to the controller.

fore the corresponding real rule is active as well. Finally,
after probing rule is confirmed, it is no longer needed and
can be removed.

There are, however, technical details of the strawman so-
lution that make it impractical and require improvements.
First, from the correctness perspective, it assumes that the
PacketOut processing and probe rule matching are performed
in hardware. Unfortunately, this might not be the case –
rules sending packets to the controller are often kept in soft-
ware and may start forwarding traffic before the previous
hardware rules are pushed into the data plane. As such, we
modify our solution to use hardware-only probing rules – we
use two additional switches2 as depicted in Figure 3.

Second, inserting one probe rule after each normal rule
is prohibitively expensive. Instead, we notice that a single
probe rule installed after a batch of several rule modifica-
tions acknowledges the whole batch at the same time. This
way the probing overhead gets amortized over more rules at
the expense of a longer acknowledgment delay. Moreover,
the probe rules can be optimized even more – instead of in-
stalling a new probe rule for each batch and then deleting it,
we use a single probing rule which rewrites a particular field
in the packet header (e.g., ToS or VLAN) with a version
number of this probing rule. Then, we just update the rule
to write the new version number to the probe packet header.
RUM recognizes the last version of probe rule based on the
probing packet headers it receives back.
Multi-switch deployment. The approach described so
far requires setting up different probe rules matching dif-
ferent packets for each probed switch, because otherwise
forwarding the probe packet on the next switch will inter-
fere with probe collection on that switch. We overcome this
problem by choosing two header fields H1 and H2 to be used
by probing. These can be any rewritable fields in a packet
header. Additionally, we reserve two special values of H1; we
call these values preprobe and postprobe. In our solution, all
switches install a high priority probe-catch rule that sends
all packets with H1 == postprobe to the controller. We also
install one probing rule per each switch. It matches packets
with H1 == preprobe and rewriting them to post-probes
while also storing the per-switch unique probe rule version
in H2 (H1 ← postprobe, H2 ← ver). To do the probing,
RUM sends a probe packet with H1 = preprobe inside a
PacketOut message through switch A towards switch B as
depicted in Figure 4.

This technique comes with two sources of overhead. First,
a switch needs to install the probe rules which reduces its us-
able rule update rate. Further, the probe rules are probed by
data plane packets, which affects the neighboring switches’

2In principle, switches A and C can be the same switch. We
keep them separated for the presentation purposes.

A B C

RUM

PacketOut:
H1=pre

H2=undef

match(H1=post,H2=*)
-> fwd(ctrl)

match(H1=pre,H2=*) ->
set(H1=post,H2=ver),fwd(C)

extract H2 to identify current
version of probe rule in data plane

Figure 4: Network-wide probing solution. There are two
rules preinstalled at each switch and only the version of the
probing rule is updated over time.

PacketOut:
IPsrc=Rs,IPdst=Rd

H=Sc

match(IPsrc=*,IPdst=*,H=Sc)
-> fwd(ctrl)

match(IPsrc=Rs,IPdst=Rd,H=*)
-> fwd(C)

A B C

RUM

Figure 5: Probing for a rule matching IP packets with source
Rs and destination Rd. A probe packet matches the tested
rule at B and a send-to-controller rule at C.

control planes though the PacketOut and PacketIn mes-
sages. Thus, there is a trade-off between notification delay
and the usable update rate.

3.2.2 General probing
The final strategy addresses the problem of switches that

reorder rule modifications despite the use of barriers. In
such a case, confirming that the last update took place is in-
sufficient to acknowledge all previous updates. Specifically,
it means that we cannot rely on probe rules described pre-
viously. Instead RUM needs to confirm each modification
separately, where a modified rule may match an arbitrary
set of header fields.

In this strategy, we need to reserve a header field H that
is not used in the network, meaning that all normal rules
have it wildcarded and no packet has it set to a value used
by RUM (e.g., VLAN, MPLS or ToS depending on the de-
ployment). At the beginning, each switch i gets assigned
a unique value Si of field H. Each switch i then installs a
high priority probe-catching rule that sends all packets that
match on H == Si to the controller. Figure 5 shows a sce-
nario where RUM confirms the installation of the rule that
matches packets with an IP source Rs and IP destination Rd

and forwards them to switch C. Assuming the action of the
probed rule is to send the traffic to switch C, we use switch
C with its probe-catch rule matching on H == Sc to receive
the probes. To create the probe packet, RUM computes
an intersection of the probed rule on switch B and probe-
catch rule on switch C. In our example, the probe packet
has IPsrc = Rs, IPdst = Rd, H = Sc and arbitrary re-
maining header fields. This probe gets injected through any
neighbor of switch B (e.g., switch A). As soon as the tested
rule gets installed, the controller observes the probe packet
coming from switch C inside a PacketIn message. The same
method can detect rule deletions (probes stop arriving at the
controller) or rule modifications (probes reach the controller
from a different neighbor of B or have header fields modified
to new values in case of header rewriting rules).
Overlapping rules. The previous, simplified description
does not take into account the fact that there is more than
one rule installed at a given switch. When creating a probe

packet for a particular rule, RUM needs to take into account
other rules such that the probe does not get forwarded by
any other, already installed rule. In particular, probe gen-
eration needs to address two issues.

First, the generated probe packet must not match any
higher-priority rule which overlaps with the probed rule.
While finding a probing packet that hits exactly the tested
rule is NP in a general case, others [4,17] show that in prac-
tice the problem can be solved quickly for real forwarding
tables. Second, the generated probe packet must have a dif-
ferent forwarding action (i.e., either a different output port
or a different rewrite action) than the lower-priority rule
matching the probe when the probed rule is not installed yet
(otherwise we cannot distinguish if the packet was processed
by the probed rule or the lower-priority rule). Note that as a
special case, we can probe for rules dropping packets if there
exists an overlapping lower-priority which does not drop the
packets (a common case of ACLs and forwarding rules com-
bination). If no suitable probe exists, RUM falls back to one
of the control plane-based techniques. For example, if the
probed rule is fully covered by higher priority rules, or if it
covers other, already installed lower priority rules that have
exactly the same actions, probing cannot reveal when the
rule got installed.
Reducing the number of switch-specific values. This
technique relies on using a header field and values that are
unused by the live traffic in the network. Because there
may be few such fields and values, it is essential to reduce
the number of required values. However, to prevent the
tested switch from sending the probe directly to the con-
troller, each two adjacent switches need to have different
identifiers. Thus, instead of using a network-wide unique
value of Si for each switch i, one can solve an instance of
the vertex coloring problem for which there are well known
heuristics [15].

4. PROTOTYPE
We implement a RUM prototype that works as a TCP

proxy between the switches and the controller. The switches
connect to the proxy as if it was a controller, and the proxy
then connects to a real controller using multiple connections,
impersonating the switches. This design allows us to modu-
larly compose RUM as a chain of proxies to add functionality
and freely replace components. For example, a barrier layer
built on top of the acknowledgment layer is just another
proxy. We implement the proxies using the POX platform.

In the current implementation we assume IP-only traffic
and rely on the ToS field for probing. Because there are only
64 ToS values, we need to periodically recycle them in longer
experiments. Moreover, we assume that the rules do not
overlap,3 and therefore, selecting a probing packet degrades
to using the same source and destination addresses as in the
rule’s match.

While the OpenFlow specification lacks messages to con-
firm that a rule modification was successfully applied, it de-
fines error messages used when something goes wrong. We
reuse an error message with a newly defined (unused) error
code for positive acknowledgments. Alternatively, one could
potentially add vendor-specific messages to the protocol.

Finally, the hardware switch we use does not support pri-
orities but takes the rule installation order to define the rule

3 Except a low priority drop-all and high priority probe rules

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0 50 100 150 200 250 300

Ti
m

e
[s

]

Flow number
timeout

adaptive 200
adaptive 250

barriers (baseline)

Figure 6: Flow update times when using control-plane only
techniques. The reliability depends on correct estimation of
the switch performance.

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0 50 100 150 200 250 300

Ti
m

e
[s

]

Flow number

sequential general no wait

Figure 7: Flow update times with probing. There are no
packet drops and the overhead of the general technique is
negligible compared to the best achievable update time.

importance. Therefore, we carefully place the low priority
rules early, and make sure that other rules do not hide the
high priority ones.

5. EVALUATION
We evaluate RUM in the same end to end experiment as

presented before, and using a hardware OpenFlow switch
(HP 5406zl) that incorrectly implements barriers.4 Further,
we use low level benchmarks to analyze the properties and
trade-offs in our techniques. Admittedly, these are just small
scale experiments. However, a large scale test would require
a testbed built of hardware switches because emulators use
software switches that perform differently than the real ones.
We do not have access to such a testbed.

5.1 End to end experiment
We first show that the presented techniques solve the

dropped packets problem described in Section 1. The setup
is as in Section 1 and we send data plane traffic at a rate of
250 packets/s per flow (75000 packets/s in total). We use
the previously described control plane-only techniques and
in Figure 6 plot the times when the last data plane packet
following the old path and the first packet going along the
updated path arrives at the destination. The area between
the two lines visually represents the periods when packets
get dropped.5

4 The precise characteristics can be found in [7].
5 If the delay between the two packets is lower than our
measurement precision, we plot a single line.

 0
 50

 100
 150
 200
 250
 300

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Fl
ow

 ra
nk

Delay [s]

Incorrect
behavior

barriers (baseline)
adaptive 250

general
sequential

adaptive 200
timeout

Figure 8: Delay between data plane and control plane ac-
tivation. Using barriers leads to incorrect behaviors, con-
trol plane techniques increase the update time and the data
plane techniques strike a balance.

An update with barrier messages is the fastest, but be-
cause the barrier replies are arriving too soon, rules at switch
S1 get updated before rules at switch S2 are in place, which
leads to extensive periods of packet drops (a total of 6000-
7500 packets got lost in each of multiple runs of this experi-
ment). The three visible steps in flow installation times are
an artifact of the way how the switch synchronizes the data
and control plane [7].

Using a 300-ms timeout solves a packet drop problem,
but increases the average time it takes before a flow starts
following a new path from 592 ms to 815 ms. Finally, while
the 300-ms timeout is sufficient when there are up to 300
rules in the switch flow table, it becomes too short when the
table occupation grows [7].

Based on the measurements, we set the adaptive timeout
to assume that a switch performs 200 and 250 rule mod-
ifications per second. We see that the technique offers a
stable performance over time, however when flow table oc-
cupancy increases and the assumed update rate is overesti-
mated (250), the acknowledgments arrive too early and the
network starts dropping packets.

Figure 7 shows the results of the same experiment but
when using the data plane probing techniques, which guar-
antee no packet drops. For comparison, we plot the result
when all flow modifications are issued at once to all the
switches (no wait). It shows the shortest update duration
one can get, limited only by the slowest switch update rate,
but also offers no theoretical consistency guarantees. The
sequential probing technique requires additional rule modifi-
cations (we modify a probing rule after every 10 real mod-
ifications). This fact is noticeable, because the data plane
synchronization steps [7] are more frequent which hurts the
update performance. On the other hand, the general probing
technique does not require additional rule updates, but only
sending and receiving data plane probes. If probing up to
30 oldest flow modifications at once, every 10 ms, the flows
get updated almost as quickly as the lower bound.

We originally send packets belonging to each of the up-
dated flows every 4 ms and observe no drops. To verify that
there are no transient periods shorter than 4 ms when pack-
ets are dropped, we randomly select a single flow ten times
and send traffic for the flow at 10000 packets a second. Once
again we observe no drops.
Barrier Layer Performance. To validate the overhead of
a full barrier layer, we rerun the same experiment with our
reliable barrier layer introduced before and sending a bar-

rier after every 10 flow modifications. When a switch does
not reorder modifications across barriers, the total update
time and the particular curve of flow update times is the
same as for the normal sequential probing technique. On
the other hand, if the switch can reorder modifications and
RUM needs to buffer them to ensure correct ordering, the
overhead is big and the total update time is twice that of
the general probing technique. Understandably, this time
increases even more (up to 5 times) if the barriers are more
frequent (up to a barrier after each command).

5.2 Low level benchmarks
After observing that RUM achieves its main high level

goal - allowing for reliable network updates with consis-
tency guarantees even on unreliable switches, we analyze
how changing variables in each technique affects various as-
pects of the update.

The setup in the next two experiments is the same. Ini-
tially, there is a single, low priority drop-all-packets rule at
the switch. Then, a controller modifies R rules in the switch
in a way that at most K modifications are unconfirmed at
any time. When a modification confirmation comes, the con-
troller issues a new update. Meanwhile, we send data plane
traffic matching the modified rules again at a rate of 250
packets/s for each rule.
Data plane delay. First, we measure when packets match-
ing a particular rule start arriving at the destination (data
plane activation) and when the controller receives a confir-
mation that the rule was installed (control plane activation).
In Figure 8 we plot the delay between the data plane and
control plane activations for various techniques for R = 300
and K = 300 (send all rules at once). All values below
zero mean incorrect behavior and positive values cause a
delay during an update. Thus, the ideal behavior would
be a vertical line at x = 0. We see that, as mentioned in
the introduction, barrier replies arrive even 300 ms before
the rule gets applied. Using a 300-ms timeout fixes the cor-
rectness problem in this case, but is very inefficient – for
the median the update wastes 230 ms on each barrier. The
adaptive timeout technique achieves very good results, how-
ever, it requires precise models, otherwise the delay can fall
below zero (possible inconsistencies). Finally, both probing
techniques never incur a negative delay and, accordingly, are
within 70 ms and 30 ms after the data plane modification
for 90% of modifications.
Impact of probing rules. A technique that relies on in-
stalling probing rules to confirm that previous modifications
took place requires finding a balance between the frequency
of such confirmations and measurement precision. In this
experiment we issue R = 4000 modifications and vary the
number of modifications after which RUM sends a probing
rule, as well as the number of allowed, unconfirmed modifi-
cations (K). Table 1 shows that the usable modification rate
(rate of real modifications, not counting probes) is propor-
tional to the number of rules probed at once and is usually
close to the expected rate. When the number of allowed un-
confirmed messages is low compared to the number of rules
confirmed at once, the controller does not receive the con-
firmations quickly enough to saturate the switch.
Number of probes a switch can process. Sending data
plane probes requires a switch to process two types of mes-
sages. First, an injecting switch receives a PacketOut and
forwards a probe packet to the required port. Then, the re-

Probing frequency K = 20 K = 50 K = 100
after 1 update 51% 51% 51%
after 2 updates 64% 68% 68%
after 5 updates 74% 86% 86%
after 10 updates 76% 93% 94%
after 20 updates 74% 95% 98%

Table 1: Usable rule update rate with the sequential probing
technique (normalized to a rate with barriers).

ceiving switch gets the packet, encapsulates it in a PacketIn
message, and sends it to the controller. In the previous ex-
periments, we used software switches as sending and receiv-
ing switches. Here, we instead benchmark the performance
of a real hardware switch. We measure the PacketOut rate
by issuing 20000 PacketOut messages and observe when the
corresponding packets arrive at the destination. Similarly,
we install a rule forwarding all traffic to the controller and
inject traffic to the switch to measure the PacketIn rate. The
rates are 7006 PacketOut/s and 5531 PacketIn/s, averaged
over 5 runs. Both of these values are sufficient to allow RUM
to probe the rules frequently.

Finally, our additional experiments show that process-
ing PacketIn requests in parallel with rule modifications has
minimal impact on the rule modification throughput—new
rate is over 96% of the original rate without any other mes-
sages. Similarly, processing PacketOut messages in parallel
with rule modifications decreases the rule update rate by
at most 13% for the ratio of PacketOut messages to rule
modifications up to 5:1.

6. RELATED WORK AND CONCLUSIONS
SOFT [6] identifies inconsistencies in the way OpenFlow

switches respond to commands, but cannot ensure that the
rules are installed in the data plane.

To the best of our knowledge, our work is the first to
look at the network update consistency from the practical
point of view, using the real switches. There is a large body
of work that guarantees particular properties during an up-
date [3,8,9,11,14], but they all assume correctly-functioning
switches. We show that this assumption does not hold and
propose a workaround that allows the aforementioned solu-
tions to work correctly.

ATPG [17] is a system that determines and injects packets
that exercise all rules in a network. It is however an end to
end solution designed to work on a coarser granularity than
RUM. Its main goal is testing network correctness in a stable
state, not during an update.

Oflops [12] is a study that benchmarks switches in a con-
trolled environment and reports some of the problems we
describe in this work. In contrast, we propose a solution to
these problems.

Finally, there are efforts to build switch models [2, 16].
This work can be help RUM to better estimate timeouts
and optimize the probing.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers who provided excel-

lent feedback. The research leading to these results has
received funding from the European Research Council un-
der the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement 259110.

8. REFERENCES
[1] OpenFlow Switch Specification.

http://www.openflow.org/documents/

openflow-spec-v1.0.0.pdf.

[2] D. Y. Huang, K. Yocum, and A. C. Snoeren.
High-fidelity switch models for software-defined
network emulation. In HotSDN, 2013.

[3] N. P. Katta, J. Rexford, and D. Walker. Incremental
Consistent Updates. In HotSDN, 2013.

[4] P. Kazemian, G. Varghese, and N. McKeown. Header
Space Analysis: Static Checking for Networks. In
NSDI, 2012.

[5] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. VeriFlow: Verifying Network-Wide Invariants
in Real Time. In NSDI, 2013.

[6] M. Kuźniar, P. Pereš́ıni, M. Canini, D. Venzano, and
D. Kostić. A SOFT Way for OpenFlow Switch
Interoperability Testing. In CoNEXT, 2012.

[7] M. Kuźniar, P. Pereš́ıni, and D. Kostić. What you
need to know about SDN control and data planes.
Technical Report EPFL-REPORT-199497, EPFL,
2014.

[8] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer,
and D. A. Maltz. zUpdate : Updating Data Center
Networks with Zero Loss. In SIGCOMM, 2013.

[9] R. Mahajan and R. Wattenhofer. On Consistent
Updates in Software Defined Networks. In HotNets,
2013.

[10] P. Pereš́ıni, M. Kuźniar, M. Canini, and D. Kostić.
OpenFlow Needs You! A Call for a Discussion about a
Cleaner OpenFlow API. In EWSDN. IEEE, 2013.

[11] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for Network Update. In
SIGCOMM, 2012.

[12] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and
A. W. Moore. Oflops: An open framework for
openflow switch evaluation. In PAM, 2012.

[13] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the
Production Network Be the Testbed? In OSDI, 2010.

[14] S. Vissicchio, L. Vanbever, L. Cittadini, G. Xie, and
O. Bonaventure. Safe Updates of Hybrid SDN
Networks. Technical report, UCL, 2013.

[15] D. J. Welsh and M. B. Powell. An upper bound for
the chromatic number of a graph and its application
to timetabling problems. The Computer Journal,
10(1), 1967.

[16] M. Yu, A. Wundsam, and M. Raju. NOSIX: A
Lightweight Portability Layer for the SDN OS. ACM
SIGCOMM Computer Communication Review, 44(2),
2014.

[17] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic Test Packet Generation. In CoNEXT, 2012.

http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf

	Introduction
	System Overview
	Data plane acknowledgments
	Control-plane only techniques
	Data plane probes
	Sequential probing
	General probing

	Prototype
	Evaluation
	End to end experiment
	Low level benchmarks

	Related Work and conclusions
	Acknowledgments
	References

