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Abstract:  

The graceful and agile movements of animals are difficult to analyze and emulate 

because locomotion is the result of a complex interplay of many components: the central and 

peripheral nervous systems, the musculoskeletal system, and the environment. The goals of 

biorobotics are to take inspiration from biological principles to design robots that match the 

agility of animals, and to use robots as scientific tools to investigate animal adaptive behavior. 

Used as physical models, biorobots contribute to hypothesis testing in fields such as 

hydrodynamics, biomechanics, neuroscience, and prosthetics. Their use may contribute to the 

design of prosthetic devices that more closely take human locomotion principles into account. 

 

Main Text: 

A cat running, climbing, jumping, and rapidly catching moving objects is fascinating to 

watch. Performing these agile motor behaviors requires complex interactions among the central 

nervous system, the peripheral nervous system, the musculoskeletal system and the environment. 

Such good locomotion abilities are fundamental for animals, and also useful for robots. The field 

of biorobotics —the construction of biologically-inspired or biomimetic robots— takes 

inspiration from biological principles to design robots with sensorimotor skills that approach 

those of animals. This has led to fish-like (1–4), snake-like (5–7), cat-like (8–12), and humanoid 

robots (13–15) (Fig. 1) with possible applications in search-and-rescue, environmental 

monitoring, agriculture, transport, and construction.  

Biorobotics is increasingly contributing back to biology in fields such as biomechanics and 

neuroscience. Indeed, biorobots are becoming important scientific tools (4, 16, 17), and can be 

used to investigate locomotion and to test hypotheses about the underlying interactions of body, 

control, and environment. Robots have multiple properties to complement animal studies: Their 

actions are repeatable, they offer access to variables or quantities that would be difficult to 

measure on animals, they can perform movements that are unnatural or dangerous for animals, 

and their morphology can be systematically changed.  Biorobots are providing useful 

contributions to biomechanics (10, 14, 18), neural control of movement (9, 19), prosthetics (20, 

21), and environmental interaction mechanics; such as hydrodynamics (1, 3), and the new field 

of terradynamics, the dynamics of sand and other granular media (22), that was established with 

the use of biorobots. 



 

 

 

Fig. 1. Example of biorobots. (A) RoboTuna (35). (B) Lamprey robot (39). (C) Salamandra robotica (19, 67). (D) 

Sandfish lizard robot (6). (E) StickyBot (56). (F) RHex (22, 54). (G) MIT Cheetah robot (8). (H) CheetahCub (10). 

(I) Cornell biped (74). (J) Miniature flapping wing robot (46). (K) Powered ankle–foot prosthesis controlled by a 

neuromuscular model (20). Permissions: (A) M. Triantafyllou; (B) IOP Publishing; (C, E, G, K) IEEE; (D) The 

Royal Society; (F, I, J) AAAS; (H) A. Sproewitz. 

 

As a first approximation, animal locomotion is based on two key principles: the generation of 

periodic movements using muscles (which is quite different from the rotational movement of 

electromagnetic motors), and the generation of asymmetries in the interaction forces with the 

environment, such that periodic movements of muscles are transformed into a forward 

acceleration (as opposed to back-and-forth movements in place). Depending on the ecological 



 

 

niche, nature has evolved a large variety of different morphologies and ways of generating these 

asymmetries: elongated bodies with traveling waves for swimming, scales in snakes that provide 

asymmetric friction for crawling, and limbs that alternate between (high-friction) stance and 

(low-friction) swing for walking (23, 24). 

Although the underlying principles appear simple at first glance, understanding animal 

locomotion is complex because it is a problem that (i) involves complex dynamic interaction 

among many elements (multiple neurons, muscle fibers, bones, tissues, and all elements in the 

environment), (ii) is therefore high-dimensional, (iii) is highly nonlinear (e.g. doubling the 

contraction of a single muscle at a given time will not lead to a doubling of the locomotion 

speed), and (iv) is multi-disciplinary.  The biomechanics of locomotion requires the investigation 

of all the internal forces in the high-dimensional musculoskeletal system, but also all the 

complex interaction forces with the (unstructured) environment, with the further complication 

that the interaction will change the environment itself such as displacement of water or sand. 

Understanding locomotion therefore requires a systems-level approach that explores the 

interaction of all involved components (23, 25), in addition to studying components in isolation. 

Such an approach comes naturally in robotics, which is by essence the science of integration of 

many components (materials, actuators, sensors, and control loops). Biorobots can play a key 

role in animal locomotion studies thanks to an “understanding by building” approach (26). 

Complementing other reviews in biorobotics (12, 15–17, 25–29), the focus here will be on 

locomotion, on vertebrate animals, and on the use of robots as scientific tools to explore the 

biology of locomotion.  

 

Swimming 

Swimming involves complex interactions between a deformable body (e.g. a fish 

undulating its body and/or flapping its fins) and water motion. The interaction forces generate 

complex water displacements, and can lead to surprising behavior, such as a dead trout 

swimming upstream when placed downstream of a fixed cylinder (30), or Gray’s paradox: Using  

an estimated drag coefficient of a rigid body, Gray concluded that the ratio between drag power 

and muscle power appeared too large by almost an order of magnitude for a dolphin to reach its 

observed swimming speed (31, 32). It is now known that fish swimming strongly depends on the 

interaction of the body with vortices (i.e. spinning motion of water), in particular periodic 

patterns of vortices called Karman streets, and that fish “exert precise and effective control of the 

flow around their bodies to extract energy from waves, turbulence and even their own wakes” 

(32). Gray’s paradox therefore appears to be due to an overestimation of the drag because of the 

rigid body assumption as well as an underestimation of the peak muscle power of dolphins  (32, 

31). 

Biorobotics can play an important role in exploring the underlying physical phenomena, 

and in testing hypotheses about the mechanisms of fish swimming (1, 4, 33).  It can also benefit 

from the impressive swimming skills of fishes in terms of agility [e.g. the ability to rapidly turn 

without losing much speed (32)] and energy efficiency [e.g. the ability of eels to swim thousands 

of kilometers with little or no food (34)]. Different types of robotic devices have been used in 

these studies: (i) robotic devices with actuated fins that are attached to a fixed or (externally) 

moving basis, typically in a flow tank (32); (ii) robotic devices that are self-propelled while 



 

 

being attached to a low-friction rail (Fig. 1A) (1, 35); or (iii) freely moving fish-like robots (2–4, 

36–40).  

A self-propelled robotic pectoral fin was used in studies of the interaction between 

deformable fins and water (1). Three different fin motions were compared, while recording 

interaction forces with water at the base of the fin. One of the motions, ‘cup and sweep’, closely 

resembled the motion of a sunfish and led to the highest thrust forces. The forces closely match 

predicted force patterns from a computational fluid dynamics simulation based on the actual 

movements of the sunfish pectoral fins (41) and were in agreement with particle image 

velocimetry analyses of water flow around the fish (1). The authors also designed a device made 

of two foils to investigate the interaction between dorsal and anal fins (first foil) and the caudal 

fin (second foil). It was shown that the interaction of two foils can be beneficial for thrust 

enhancement, with the first foil shedding a distinct vortex wake that markedly alters incoming 

flow to the second foil and causes increased leading edge suction, in agreement with predictions 

from a computational study (42). 

 

Some fishes, like the glass knifefish, perform fin movements that generate forces in other 

directions than necessary for forward locomotion, sometimes even against it, which looks like a 

waste of energy (2). The hypothesis is that these movements are performed to enhance the 

control of locomotion, and to reduce the trade-off between stability (e.g. the ability to keep a 

steady speed and heading) and maneuverability (the ability to accelerate and turn) that animals 

and robots face. The glass knifefish uses a single elongated ventral fin to hover and rapidly 

change direction (Fig. 2A). The fin performs undulatory movements in opposite directions along 

different parts of the body, typically with two inward-traveling waves that meet at a nodal point 

(Fig. 2C). It was observed that the position of the nodal point was modified depending on the 

speed of swimming, moving towards the tail for higher forward speed. This was then tested 

using a mathematical model and a robot (Fig. 2B), and it was found that the resulting thrust force 

varied linearly with the shift of the nodal point. It was also found that the counteracting waves 

lead to a passive damping effect that helps rejecting perturbations of swimming velocities (that 

could be due to perturbations of the water around the robot), and that can be adjusted by the 

frequency of the undulation. Together these two mechanisms nicely enhance both the 

maneuverability (by shifting the nodal point) and stability (by adjusting the damping) of glass  

knifefish swimming relative to a swimming mode that uses a single wave along the whole fin 

with changes of frequency for changing direction. The increase of maneuverability is especially 

striking for small-amplitude movements. 

 



 

 

 

Fig. 2. A biomimetic robot that emulates the hovering performance of the glass knifefish (2). (A and B) To mimic 

the kinematics of the glass knifefish (A), the motorized fin was programmed to produce two inward-traveling waves 

that meet at a nodal point (B). (C) Experiments with the fish and robot were explained by a computational model. 

By shifting the nodal point and altering the frequency of the undulation, both the direction of thrust and the damping 

of perturbations can be adjusted, offering a way to simultaneously adjust maneuverability and stability respectively. 

Permission: N. Cowan. 

 

Flying 

There is currently a boom in flying robots, in particular robots with rotating wings such 

as quadropters and fixed-wing robots (43). Self-propelled flapping-wing robots, also called 

ornithopters, are less common (44).  They range from miniature robots (45–47) to the SmartBird 

by Festo (a flying robot inspired by the herring gull),  toys (such as a flying pigeon-like robot by 

E-Bird and the Flytech Dragonfly by WowWee), and large-scale ornithopters capable of carrying 

a person (48). 



 

 

Flapping-wing robots have been very useful as physical models to investigate insect and 

bird flying. Similarly to Gray’s paradox for swimming, the wings of insects appear unable to 

generate sufficient lift when maintained statically in air flows at constant velocities (in the same 

range of velocities as those of flapping) (49), which suggests that the flapping and rotational 

movements of the wings as well as the vortices shed by the wings are important to generate the 

lift forces necessary for flight (50). Taking advantage of the similarities of fluid dynamics in air 

and in water, studies of the physics of insect flapping wings have used dynamically scaled 

robotic wings in mineral oil (i.e. with adjusted dimensions, frequencies, and oil viscosity to 

match the Reynolds number of the insect flight)  (50). By equipping the actuated wings with 

force sensors, it was possible to investigate how lift can be generated by flapping wings, and it 

was found that insect flight could be explained by the interaction of three mechanisms: delayed 

stall (during stroke), rotational circulation, and wake capture during stroke reversal (50). The 

mechanisms of wake capture in which a wing benefits from the vortices generated by the 

previous stroke, are similar to those found with fish robots (42). Furthermore, by simply 

modifying the timing of the rotational movements, the direction of forces can be adjusted and 

hence the direction of flying can be modulated, both for left-right yawing and up-down 

movements. These changes of timing resemble the changes of movements observed during 

steering behaviors in Drosophila (50). Similarly, it was found that yaw movements can be 

obtained with small adjustments of the stroke plane angle and the stroke amplitude (51), and that 

forward speed could be regulated by wing movements that alter pitch (52). Like the findings of 

the glassfish study described above, propulsion and steering are therefore closely merged and 

obtained by subtle modulations of propulsive movements; this is quite different from most fixed-

wing and propeller-based underwater robots where some motors are dedicated for propulsion and 

others for steering (e.g. using rudders).  

Although flying based on flapping-wings is currently outperformed by propeller-based 

flying for robots of the weight of birds or more, it is well-suited for robots of the size and weight 

of insects. An impressive miniature 80-milligram flapping wing robot has been designed (45, 46) 

(Fig. 1J). The authors note that “conventional technologies for macroscale aircraft propulsion 

and manufacturing are not viable for millimeter-scale robots because of inefficiencies that arise 

from force scaling, suggesting a biologically inspired solution based on flapping wings”. The 

robot could exhibit stable hovering and simple flight maneuvers. The rotational motion of the 

wings was obtained by combining active flapping with passive pitch rotation thanks to passive 

compliant flexures. The resulting movements resembles those described above (50) and similarly 

generate sufficient lift forces for flight. For future work, the authors note that such robots could 

be used to study the mechanics and control of insect flying, and may enable the measurement of 

forces and torques during free flight that could be difficult to simulate in scaled models. 

 

Crawling and terradynamics 

Many animals locomote on granular media such as dry sand or gravel. Granular media 

are complex media that can exhibit both solid-like and fluid-like features (22, 53). Some animals 

can even swim through sand; the sandfish lizard uses a large-amplitude traveling wave (53) not 

unlike the swimming of water snakes. The modeling of locomotion in granular media has led to 

the new field of terradynamics in which robots play a big role (6, 22). More generally a range of 

snake robots have been constructed that, like their biological counterparts, perform motion 

through multiple contacts with the environment (5, 7). 



 

 

High-speed x-ray imaging revealed that the lizard swims in sand by means of body 

undulations without the help of limbs. Making the hypothesis that the animal swims in a so-

called “frictional fluid” in which grain-grain and grain-animal friction determine drag and thrust 

forces, the authors developed an empirical model of sand swimming that shares similarities with 

swimming in liquids with low Reynolds-numbers (e.g. with negligible inertia effects),  but with a 

mechanism for drag that is frictional (i.e. velocity-independent) instead of viscous (53). The 

model showed good agreement with the experiments and could predict the wave efficiency and 

optimal kinematics. A robot model of the lateral undulations of the lizard was later developed to 

further validate the model (Fig. 1D) (6). The robot was useful for systematic testing of different 

types of body undulations, in particular with different ratios between amplitude and wavelength. 

The robot proved to be a good match with the empirical model. Interestingly, they both obtained 

maximal speeds when the ratio between amplitude and wavelength was 0.2, the same as that 

used by the sandfish. 

The same group extended their terradynamics model to predict interaction forces induced 

by arbitrarily-shaped legs and bodies moving freely in granular media (22). A RHex-like robot 

(54) with six  rotary legs was tested with different types of leg shapes in different types of 

granular media (Fig. 1F). The authors obtained a remarkable match between experimental data 

and the model, for instance in terms of the interaction forces of rotating legs of different shapes 

with the granular media, and in terms of locomotion speeds of the robot with different leg shapes 

and different stride frequencies. Such a terradynamics model can be useful to understand how 

lizards run in the sand (55) and to design leg shapes and control laws for robots that move in 

sand and gravel. 

 

Climbing 

Climbing has also been studied in robots (56–60), in particular the impressive climbing 

abilities of gecko lizards that exhibit directional dry adhesion under their feet (61). On the basis 

of an analysis of the feet and the small hairs that provide directional adhesive to the gecko, the 

toes of a lizard-like robot (Fig. 1E) were equipped with arrays of small-angled polymer hair 

manufactured using shape deposition (56). Despite being at least two orders of magnitude larger 

than gecko hairs, this led to similar directional adhesion that was sufficient to carry the robot on 

vertical surfaces of glass or other smooth surfaces. Together with the compliance of the feet, the 

robotic toes adhere to a surface when pulled toward the ankle, and are easily released when 

pulled in the other direction. Relative to non-directional adhesives, the foot required much less 

pulling force to detach from the surface. This explains the ease and rapidity with which geckos 

can climb on walls and ceilings (61). For proper climbing, the robot required movements and 

postures such that feet are always pulled towards each other—something that has been also 

observed in geckos that reorient their feet as they climb in different directions. 

 

Quadruped walking and running 

A range of quadruped (8–12, 62) and multi-legged robots (54, 63) have been constructed 

to date, including robots developed by companies for which no scientific reports exist (e.g. 

BigDog and WildCat by Boston Dynamics); see (12, 15) for reviews. Many of these were 

designed to emulate the walking and running skills of tetrapods, such as climbing over complex 



 

 

uneven terrain and crossing terrain with limited footholds (e.g., stones in a river); they benefit 

from the advantages offered by discrete contacts with the ground versus continuous contacts 

through wheels or tracks, 

One drawback of many legged robots is their low energy efficiency, as illustrated for 

instance by their large costs of transport (CoT, the ratio of power consumption to the product of 

weight and speed), a dimension-less measure of energy efficiency for locomotion (8).  Several 

principles for reducing these energy costs were proposed by Kim and colleagues (8, 18): the 

“employment of high torque density motors, low impedance transmission, energy regenerative 

electronics and a design architecture that minimizes the leg inertia”. The last principle has led the 

authors to design a lightweight leg that followed the hypothesis that vertebrate legs are organized 

such that bones carry only compressive loads while the muscles, tendons and ligaments carry 

tensile loads, in order to reduce bending torques (64). The robotic legs were constructed using 

Kevlar cables for tendons and lightweight bone-like structures made of foam-core composite 

fabrication (Fig. 1G). By using the principle of tendon–bone co-location, stress on the bone 

during a stride could be reduced by up to 59% relative to a leg configuration without tendon (18). 

Combined with actuators that have low gear ratios (and therefore low friction) and electronics 

that allow recapture of energy when the motor brakes, the robot is capable of fast locomotion 

(2.51 m/s) at a CoT of 0.51; according to the authors this is significantly lower than that of 

BigDog (estimated CoT of 15) and is comparable to running animals at the same scale.  

In related work, it was shown that replicating the pantograph-like structure of a mammal 

limb and approximating its viscoelastic properties (Fig. 1H) can lead to surprisingly robust and 

dynamics gaits purely with open-loop control (10) . Relatively big perturbations such as walking 

down a step did not require sensory feedback nor complex closed-loop control but were in fact 

dampened-out by the mechanical properties of the robot. Similar mechanical self-stabilization 

mechanisms have been identified in running cockroaches (65). 

Quadruped robots have also been used for testing hypotheses related to the neural control 

of motion, for instance in the cat (9) and the salamander (19). The salamander uses an 

anguilliform swimming gait in water and a walking trot gait on the ground. The locomotor 

patterns are generated by neural circuits in the spinal cord called central pattern generators.  Gait 

transitions between the two modes of locomotion can be induced in a decerebrated animal by 

electrical stimulation of a region in the brainstem, with walking-like patterns at low stimulation, 

and swimming-like patterns at high stimulation (66). This illustrates that spinal cord circuits not 

only can produce well-coordinated movements but can even generate gait transitions under 

simple descending control signals. A salamander-like robot (Fig. 1C, 3A) was used to test the 

hypothesis that the salamander central pattern generator is based on an ancestral lamprey-like 

swimming neural circuit for its axial musculature extended during evolution by specialized and 

slower neural oscillators for the limbs (19). The model and the robot could replicate the gait 

transition induced by electrical stimulation. It also provided an explanation of why walking gaits 

(Fig. 3B) are systematically performed at lower frequencies than swimming gaits (Fig. 3C) in the 

animal.  Finally the robot demonstrated that the particular body-limb coordination used by 

salamander on the ground is the one among several options that optimizes its locomotion speed 

(67).  

 



 

 

 
Fig. 3. Salamandra robotica, a salamander robot that can swim and walk, was designed to test hypotheses about the 

organization of salamander spinal circuits and the mechanisms of gait transition (19, 67). (A) The water-proof robot 

is equipped with eight motors for spine undulations, and four motors, one per leg, for leg rotation. (B) Comparison 

of the walking trot gait of the robot (left) and the salamander, as recorded with x-ray videos (right). (C) Comparison 

of the swimming gait of the robot (left) and the salamander (right) (67).  

 

The mechanisms of inter-limb coordination, and in particular the respective role of neural 

coupling versus mechanical coupling, have also been investigated using a quadruped robot (68). 

It was shown that stable gaits could be generated without direct coupling between limb 

oscillators, and with only indirect coupling through sensory feedback and mechanical coupling, 

similar to what has been observed in the stick insect (69). The robot was a useful tool to 

demonstrate that different gaits could be obtained depending on the mass distribution in the 

robot. When the mass was placed more in the front as in camels or more to the rear as in 

monkeys, the same gaits emerged as in their biological counterparts. 

 

Biped locomotion  

Two broad classes of biped and humanoid robots can be distinguished: (i) robots that are 

designed to be versatile, and (ii) passive-dynamic robots that are designed to be energy-efficient.  

Versatile robots use multiple high-torque actuators and sophisticated control algorithms to 

carefully control all joints at any given time. This has led to impressive machines such as Asimo 

(Honda), Qrio (SONY), Atlas (Boston Dynamics), Shaft’s biped, and HRP (AIST and Kawada 



 

 

Industries); see (15) for a review. However, from a biomechanical point of view, these robots are 

far from human-like because they require actuation to perform any motion, as opposed to human 

walking that relies extensively on natural dynamics of the musculoskeletal system (such as 

pendulum-like swinging movements of the limb). Such robots are therefore highly inefficient 

from an energy point of view. 

Passive-dynamic walking robots are more human-like in terms of biomechanical aspects 

and energetics, and are interesting tools for exploring the biomechanics of human locomotion 

(13, 14, 70). This type of locomotion is called passive because it relies on passive dynamical 

properties of the body such as free swinging motions (as opposed to motions that are actuated at 

all times), and dynamic because it is dynamically stable (i.e. a notion of stability over time) as 

opposed to statically stable (i.e. with the center of gravity remaining at any time over the support 

polygons shaped by the contact points of the feet on the ground). Note that most versatile robots 

also perform dynamic locomotion. 

Inspired by ramp-walking toys and abstracting walking as a wheel without a rim, McGeer  

(14) using nonlinear stability analysis and by building prototypes demonstrated how a passive-

dynamic walking machine could be constructed to get down a ramp without actuation and 

control. With a well-tuned body morphology made of two straight legs with round feet, swinging 

motions of the limbs and stable walking could be obtained thanks to gravity and inertia alone, 

without the need for careful control of limb motions. This led to a paradigm shift in biped 

locomotion, going away from trajectory-based control towards locomotion that is tightly based 

on passive properties of the body, much like humans are believed to do (71–73).  

For instance, a more human-like 3D passive-dynamic walker with knees and counter-

swinging arms produced strikingly human-like features (13). Subsequent developments included 

the addition of actuation to remove the necessity of a ramp, and of learning algorithms to learn 

suitable control policies online, i.e. while walking (74). This has led to three robots (the Cornell, 

Delft, and MIT bipeds) that “use less control and less energy than other powered robots, yet walk 

more naturally, further suggesting the importance of passive-dynamics in human locomotion” 

(74). The Cornell biped (Fig. 1I) was designed to minimize energy loss that happens in human 

and robot walking when the foot hits the ground and when actuators actively brake movements 

and perform negative work. By completely avoiding negative work, the  robot could walk with a 

low CoT of ~0.2, which is equivalent to human walking (CoT of 0.2) and is an order of 

magnitude lower than Honda’s Asimo (estimated CoT of 3.2). Further the locomotion of the 

robots required very little control effort relative to trajectory-based control. The Cornell and 

Delft bipeds used very simple control laws directly linking ground contact sensors to on/off 

motor commands sent once per step. The MIT biped used online reinforcement learning to 

optimize a control policy during locomotion. Because the intrinsic mechanical stability 

simplified the learning problem, the learning was sufficiently rapid that the robot could 

continuously adapt to the terrain during walking. This work showed that with the right 

mechanics, human locomotion is energy-efficient and possibly less difficult to control than 

originally thought. The passive-dynamic walking robot Ranger (1 meter high, 9.9 kg) could walk 

65km over 31 hours on a single battery charge (~ 500 W•hours, CoT of 0.28) —an impressive 

feat (75).  

The interaction between passive-dynamic walking and neuronal control with simulated 

synaptic plasticity has been further explored (76). It was shown that a robot maintained in the 

sagittal plane could walk with high speed and could learn to walk on different terrains with only 



 

 

a few learning iterations. The authors concluded that “the tight coupling of physical with 

neuronal control, guided by sensory feedback from the walking pattern itself, combined with 

synaptic learning may be a way forward to better understand and solve coordination problems in 

other complex motor tasks” (76). 

The versatile and passive-dynamic approaches can to some extent be merged in robots 

that exploit torque-control in addition to position-control (77–81). Such robots typically use 

whole-body model-based control together with optimization algorithms. By taking into account 

natural dynamics in the dynamic model of the robot, and by adding energy criteria in the 

optimization it is in principle possible to generate locomotion that is both versatile and energy-

efficient. Torque-controlled robots also offer the opportunity to easily test biomechanical 

hypotheses without having to rebuild all the mechanics (82). They can emulate muscle models 

using active impedance, while the real physics is still taking care of the part that is difficult to 

simulate part, i.e. the contacts and interactions with the environment. 

 

Active exoskeletons and prostheses  

Active exoskeletons (for limb support) and prostheses (for limb replacement) are fields in 

which robotics, biomechanics, and human motor control converge (83). In order to restore or 

augment human locomotion a series of actuated exoskeletons have been designed, including 

BLEEX (84), HAL (85), Sarcos’ exoskeleton, MIT Exoskeleton (86), MINDWALKER (87), and 

RoboKnee (88); see (83, 89) for reviews. Several can be bought as commercial products, such as 

the ReWalk from ReWalk Robotics and Ekso from Ekso Bionics. Potential users are soldiers, 

workers, or persons with a locomotor handicap (for instance due to a spinal cord lesion).  

To reduce the size and weight of fully actuated exoskeletons, researchers have 

investigated the energetics of human locomotion. Closely linked to the passive-dynamics 

walking studies mentioned above, numerical models and optimization have shown that purely 

passive exoskeletons made of elastic tendons should in principle be capable of reducing the 

metabolic cost of locomotion for specific movements (90). Such ideas have led to the design of 

exoskeletons for helping to carry load with little actuation—for instance in an exoskeleton 

equipped with springs at the hip and ankle, and a variable damper at the knee (86).  

Going even further, it is possible to harvest energy from human walking. One examples is 

the use of a knee brace that collects energy at specific movements during the walking cycle, 

during late swing when knee muscles normally perform negative work to prevent hitting the 

joint-angle limit (91). Such a device can produce an average of 5 watts of electricity, with little 

extra effort by the wearer. Alternative methods include harvesting the energy lost in shoe soles at 

impacts with the ground (92) or in periodic movements of backpacks (93). 

Similarly to exoskeletons, powered prostheses for ankles and knees have been developed 

and have become commercial products from companies such as Ottobock, Össur, and 

SpringActive. An interesting approach used a simulated neuromuscular model to drive a 

powered ankle–foot prosthesis (Fig. 1K) (20). The controller was based on a simulated Hill-type 

muscle with a positive force feedback reflex, replicating the reflexive muscle response based on 

feedback signals from muscle spindles and Golgi tendon organs in human walking (94). 

Compared to other approaches that play a fixed torque pattern, the motivation is to adjust the 

torque produced by the prosthesis depending on the slope of the terrain and the size of steps. The 



 

 

system was tested with a transtibial amputee walking on level ground, and up and down a ramp. 

It was found that the energy provided by the prosthesis was adapted to the type of terrain and 

was directly correlated to the ground slope angle. Also the gait characteristics were close to those 

of intact locomotion in terms of the measured ankle torque and ankle angle profiles. In 

subsequent work, it was found that the approach could successfully be used for speed adaptation 

(95) and that it decreases metabolic cost by 8% and increases preferred walking speed by 23 % 

relative to using a passive-elastic prosthesis (21). 

 

Conclusion, future prospects and implications.  

Biorobotics is an exciting research area with two main objectives: (i) taking inspiration 

from biological principles to design robots that match the agility of animals, and (ii) using robots 

as scientific tools to investigate animal adaptive behavior. 

Although the two objectives share many common aspects and methods, they also differ in 

some subtle but important points. First, the evaluation of success is different. A contribution to 

robotics (i.e. to the first objective) will be considered successful if it provides a method that is 

better (according to some performance metric such as speed or energy efficiency of locomotion) 

or simpler to implement than alternative methods. The RHex robot (54) is a nice example of such 

a contribution. A contribution to biology (second objective) will be considered successful if it 

contributes to a scientific theory either by formulating new hypotheses, proposing new 

experimental methods, validating experiments against animal data, and/or providing new theories 

(e.g. mathematical formulation)—for instance, the studies of terradynamics of the sandfish lizard 

(6, 53) and of the tradeoff between stability and maneuverability in the glassfish (2). It is 

important for a project to properly define which of the two (or sometimes both) objectives it is 

aiming at. Otherwise there is the risk that a project does not contribute to robotics (because it 

does not outperform other methods) nor to biology (because it does not satisfy scientific 

standards of well-established hypotheses, methods, and experiments).  

A second important point is the choice of the level of abstraction and which features of an 

animal should be replicated in the robot. Researchers are mostly aware that animal locomotion is 

not “optimal” in any sense, but just “good enough” from an evolutionary perspective, and that 

animals and evolution need to satisfy many constraints such as growth, reproduction, 

metabolism, etc. , that are not relevant for robot locomotion. Therefore it is important to only 

replicate the key relevant features. For instance, a multi-segmented leg can be approximated with 

a rotary leg driven by a single rotational motor (19, 54, 96), and a simple wheeled robot with an 

active tail can be a useful tool to investigate active tail stabilization in lizards (97). To formalize 

the choice in the level of abstraction, Full and colleagues introduced the useful concepts of 

templates and anchors (25, 98).   A template is “the simplest model (least number of variables 

and parameters) that exhibits a targeted behavior” (98). For instance the spring-loaded inverted 

pendulum model of running (99) is a template.  An anchor is a more elaborate model that takes 

into account many more aspects of the musculoskeletal and the nervous systems (e.g. with multi-

segmented legs, multiple muscles, and multi-layered neural control loops). Depending on the 

type of scientific questions, the right level of abstraction between template and anchor should be 

carefully chosen [see (16, 25) for in-depth discussions]. 

 



 

 

From robotics to biology 

Biorobots can give something back to biology. Like numerical models that are now 

routinely used in any field of science, robots can become part of the scientific cycle of making 

hypotheses and predictions, testing them in experiments, and iteratively adjusting them towards a 

scientific theory (16).  

Robots can be programmed to make repeatable, parameterized experiments (1). They can 

be equipped with multiple sensors to monitor relevant variables/quantities that would be difficult 

to measure on an animal [e.g. internal forces, see (11, 62)]. Their morphology can be modified in 

systematic ways (22). They can perform movements that would be dangerous for animals. They 

can perform movements that animals typically not do (1, 67), allowing one to explore whether 

animal movements are optimizing some criteria [see the salamander study that showed that the 

walking trot gait of salamander optimizes speed (67)]. Given today’s computer and 

communication technologies, they can be controlled by numerical models (controllers) that 

replicate some parts of the central nervous system in great detail. With the right type of actuators 

and materials, they can properly approximate visco-elastic properties of the musculo-skeletal 

system [e.g. with virtual muscles and torque-controlled motors (82), or with muscle-like 

actuation (70)]. In short, robots can be used to perform some experiments that would be difficult 

or even impossible to make with animals. In the long run, they could even reduce the need for 

some types of animal experimentation. 

Webb extensively discussed the use of robots as physical models and proposed seven 

dimensions (relevance, level, generality, abstraction, structural accuracy, performance match, 

and medium) to characterize and compare models (16). As pointed out by Long, the 

classification is not perfect (e.g. the dimensions are rather qualitative and lack scales) but is very 

useful to challenge “researchers to explicitly justify their use of robots to make and test 

biological hypotheses” (4). 

 

Why use robots and not simply numerical simulation? 

Robots and numerical simulations are complementary, and in many cases numerical 

simulations precede robotic experiments (6, 19). There is a long history of mathematical and 

numerical models of animal locomotion (25); biped locomotion has been modeled using simple 

abstract models (i.e. templates) like the spring-loaded inverted pendulum model (99) as well as 

by complex neuromechanical (anchor) models (94). 

Robots are better than numerical simulations when real (as opposed to simulated) physics 

is important. This is often the case with locomotion that involves complex physical interactions 

with the environment: eswimming in water (1–3), crawling on sand (6), and walking on mud or 

gravel. Mechanical simulations are now very good at computing the dynamics of articulated rigid 

bodies but are less good at correctly simulating compliant structures and interaction forces with a 

complex environment. Such problems are very complex for various reasons: They involve 

complex geometries, complex physics, deformations of whole structures, multiple materials, 

non-stationary phenomena with often abrupt changes, and induced changes in the environment 

(e.g. motion of water, sand, or gravel). For instance consider a salamander robot that swims in 

water in contact with a rocky ground, then crosses mud and climbs over a grassy terrain. 

Properly formulating all the underlying equations of motion and boundary conditions is 



 

 

tremendously hard. Finally, as visible from the many impressive robots designed by hobbyists, 

constructing a robot allows for tinkering—itself a powerful iterative design process based on 

intuition that can lead to impressive constructions and that is quite different from creating a 

numerical model on a computer (13). 

There are however a number of difficulties in using robots for investigating animal 

locomotion that should not be underestimated [as discussed in (29) and briefly reported here]. It 

is difficult to properly replicate the biomechanical properties of animal musculoskeletal system 

(e.g. the same number of degrees of freedom, the viscoelastic properties, and the mass 

distribution). There is therefore a tradeoff between the benefits of real physics and the risk of 

designing a robot that has significantly different dynamics from that of the modeled animal. This 

relates to choosing the right level of abstraction between anchors and templates (25, 98). Also 

some biological sensor modalities such as touch and proprioception are still difficult to properly 

replicate with current sensor technology. Finally, using robots is sometimes more cumbersome 

than using numerical simulation because robots are less adjustable, require a large overhead and 

expertise for construction and maintenance, and are less amenable to extensive experiments. 

 

Future challenges and opportunities 

There remain multiple challenges that roboticists and biologists can tackle together. Some 

of the main challenges include designing and controlling robots that are really field-ready, 

designing robots capable of multimodal locomotion, studying non-steady-state behavior, and 

quantifying and achieving agility.  

Apart from a few exceptions [e.g. (7, 67) and robots from BostonDynamics such as RHex (54) 

and BigDog], most biorobots are not yet field-ready; they are not sturdy enough to resist water, 

dust, mud, and falls, and cannot adapt their locomotion to complex environments. A lot of 

scientific and engineering work is still needed to make robots field-ready, not only in terms of 

mechanics and actuation [e.g. with muscle-like variable impedance actuators (70, 100)], but also 

in terms of integrating multimodal sensing for perceiving unstructured terrain (e.g. identifying 

the right footholds for walking and climbing), adding better proprio- and tactile information (e.g. 

to identify when stuck), and improving control. An interesting approach towards sturdiness and 

more animal-like mechanical properties comes from the rising field of soft-robotics [see (101) 

for a review], with the design of robust robots that can move in multiple terrains and survive 

harsh conditions (102). Progress towards outdoor tests will not only help to make robots more 

useful for applications in search-and-rescue, environmental monitoring, agriculture, transport, 

and construction, but will also help (and be guided by) research on animal locomotion in their 

natural ecological niches. 

Unlike their biological counterparts (103) few robots are capable of multimodal 

locomotion, the ability to switch between different gaits and motor behaviors (e.g. a cat running, 

jumping, crawling, climbing, standing up, etc.). Exceptions include RHex (and AQUA its aquatic 

version) that can walk and swim (54, 104), and the salamander robot than can swim, crawl, and 

walk (19). For many outdoor applications, the ability to perform multimodal locomotion will be 

important for crossing many types of environments without getting stuck. Interesting scientific 

questions remain to be addressed with robots to better understand the interplay (and necessary 

trade-offs) of morphology, energetics, and control in multimodal locomotion. 



 

 

Studying non-steady state behavior is difficult. Except possibly for flying (50, 51), most 

studies in biology and in robotics have so far focused on steady-state behavior, e.g. analyzing 

periodic gaits of straight-line locomotion at a given speed. The main reason for this is that 

making experiments and collecting data for steady-state behavior is much easier than for non-

steady-state behavior. But freely-moving animals are rarely in steady-state: they continuously 

accelerate/decelerate, turn, switch between gaits and different motor behaviors, superimpose 

motor behaviors, etc. From a dynamical systems point of view, they are mostly in transient mode 

rather than in steady-state. Biorobots being more amenable to experiments than animals can 

become key tools to study non-steady state locomotion. 

Related to this, there is still a lack of quantitative metrics to measure agility, both in 

animals and in robots. Steady-state locomotor performance can be assessed using measures such 

as speed of locomotion normalized by body length, the cost of transport, the Froude number, and 

the Stroudhal number (24). But the concept of agility still has to be properly defined and 

quantified. For instance it would be very useful to define normalized agility scores that assess 

and compare how well an animal or a robot turns, accelerates, jumps, stands-up, etc. A useful 

attempt to quantify versatility for robots (defined as the ability to cross different types of 

terrains) can be found in (105). This represents an exciting opportunity for roboticists and 

biologists to define various agility metrics together, not only for assessing existing animals and 

robots, but also for setting targets for the design of the next generations of biorobots. 
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