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I. INTRODUCTION

The problem of fixed-order dynamic output feedback control of systems subject to polytopic uncertainties is a

challenging issue in the community of robust control theory. Various LMI-based methods have been developed since

the last decade. In this report, we show that most of slack-matrix based methods in the literature implicitly/explicitly

rely on the concept of Strictly Positive Realness (SPRness) of transfer functions presented by KYP Lemma. In fact,

using the SPR property, a fixed-order controller is designed via a solution of a set of Linear Matrix Inequalities

(LMIs), thanks to KYP Lemma.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a linear time-invariant system described by the following dynamical equations:

δ[xg(t)] = Agxg(t) +Bgu(t) +Bww(t)

z(t) = Czxg(t) +Dzuu(t)

y(t) = Cgxg(t)

(1)

where xg ∈ Rn, u ∈ Rni , w ∈ Rr, y ∈ Rno , and z ∈ Rs are the state, the control input, the exogenous input, the

measured output, and the controlled output, respectively. The symbol δ[.] presents the derivative term for continuous-

time and the forward operator for discrete-time systems. It is assumed that polytopic uncertainties affect all the

state space matrices as follows:

Ω = {(Ag(λ), Bg(λ), Bw(λ), Cz(λ), Cg(λ), Dzu(λ))

=

q∑
i=1

λi(Agi , Bgi , Bwi , Czi , Cgi , Dzui)}
(2)
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where λ = [λ1, . . . , λq] belongs to the following unit simplex Λq:

Λq =

{
λ1, . . . , λq

∣∣∣∣∣
q∑

i=1

λi = 1, λi ≥ 0

}
(3)

and matrices Agi , Bgi , Bwi , Czi , Cgi , and Dzui are the i-th vertex of the polytope.

The main objective of this report is to design a robust fixed-order stabilizing controller for the polytopic system

given by:

δ[xc(t)] = Acxc(t) +Bcy(t)

u(t) = Ccxc(t) +Dcy(t)
(4)

where Ac ∈ Rm×m and Bc, Cc, and Dc are of appropriate dimensions. The problem of dynamic output-feedback

controller synthesis can be equivalently transformed to a static output feedback one by creating an augmented

system as follows [1]:

δ[x̄g(t)] = Āg(λ)x̄g(t) + B̄g(λ)u(t) + B̄w(λ)w(t)

z(t) = C̄z(λ)x̄g(t) + D̄zu(λ)u(t)

y(t) = C̄g(λ)x̄g(t)

(5)

where

Āg(λ) =

 Ag(λ) 0

0 0m

 , B̄g(λ) =

 0 Bg(λ)

Im 0


B̄w(λ) =

 Bw(λ)

0

 , C̄g(λ) =

 0 Im

Cg(λ) 0


C̄z(λ) =

[
Cz(λ) 0

]
, D̄zu(λ) =

[
0 Dzu(λ)

]
Closed-loop system Hzw(λ), transfer function from w to z, can be described in state space framework as follows:

δ[x(t)] = A(λ)x(t) +B(λ)w(t)

z(t) = C(λ)x(t)
(6)

where x = x̄g and

K =

 Ac Bc

Cc Dc

 (7)

and

A(λ) = Āg(λ) + B̄g(λ)KC̄g(λ)

B(λ) = B̄w(λ)

C(λ) = C̄z(λ) + D̄zu(λ)KC̄g(λ)

(8)

The remains of this section provide basic lemmas which are used throughout this report.

Lemma 1: (Kalman-Yakubovich-Popov (KYP) Lemma [2]) A transfer matrix H =

 A B

C D

 is SPR if and

only if there exists a symmetric matrix P = PT > 0 such that:
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• For continuous-time systems:  ATP + PA PB − CT

BTP − C −D −DT

 < 0 (9)

• For discrete-time systems:  ATPA− P ATPB − CT

BTPA− C BTPB −D −DT

 < 0 (10)

Lemma 2: The following statements are equivalent [3] and [4]:

1) H =

 A B

C D

 is SPR with Lyapunov matrix P .

2) H−1 =

 A−BD−1C −BD−1

D−1C D−1

 is SPR with Lyapunov matrix P .

As a result, the following inequalities are equivalent:

• For continuous-time systems: ATP + PA PB − CT

BTP − C −D −DT

 < 0

 (A−BD−1C)TP + P (A−BD−1C) −PBD−1 − CTD−T

−D−TBTP −D−1C −D−1 −D−T

 < 0

(11)

• For discrete-time systems: ATPA− P ATPB − CT

BTPA− C BTPB −D −DT

 < 0

 (A−BD−1C)TP (A−BD−1C)− P −(A−BD−1C)TPBD−1 − CTD−T

−D−TBTP (A−BD−1C)−D−1C D−TBTPBD−1 −D−1 −D−T

 < 0

(12)

III. APPLICATION OF STRICTLY POSITIVE REALNESS TO FIXED-ORDER CONTROLLER DESIGN

Strictly Positive Realness (SPRness) plays an important role in fixed-order control design. Recently, some methods

for fixed-order control design of LTI systems have been developed in [3], [5]–[13] (for continuous-time systems)

and in [4], [7], [8], [14]–[18] (for discrete-time case). The proposed methods can be generally classified into two

main frameworks: polynomial and state space form.

A. Polynomial-based Approaches

The main idea behind fixed-order controller design in the polynomial approaches [5], [7], [8] is based on the

strictly positive realness (SPRness) of some transfer functions. The idea is presented as follows: Suppose that ci(s)

is the closed-loop characteristic polynomial at the i-th vertex, for i = 1, 2, . . . , q, then the polytopic system is stable

if the transfer function ci(s)/d(s) for i = 1, 2, . . . , q is a strictly positive real (SPR) transfer function, where d(s)

is a given stable polynomial called central polynomial. Therefore, in order to check the stability of the polynomial
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ci(s), it is sufficient to test the SPRness of the transfer functions ci(s)/d(s); where, the central polynomial d(s)

is given a priori. The SPR transfer functions ci(s)/d(s) with a fixed denominator have the controllable canonical

realization with known matrices A and B. Therefore, the SPRness of ci(s)/d(s) in state space can be parameterized

by some LMIs thanks to KYP Lemma.

The choice of the central polynomial is very important because it affects the control performance as well as the

conservatism of the approach. The main drawback of these approaches is that they are limited to SISO polytopic

systems.

B. State Space-based Approaches

Most of the existing methods available in the literature for fixed-order control design are implicitly based on

the concept of SPRness, where state matrix A is fixed by introducing a central matrix M determined by different

methods, e.g. initial output feedback(s), state feedback controllers, etc. Therefore, the proposed methods can be

generally categorized in three parts:

• Methods initialized by output feedback controllers

• Methods initialized by state feedback controllers

• One-step approaches

In this subsection, we study the relationship of some available methods in [3], [4], [6], [9]–[18]. For the simplicity

of the presentation, only the results of stabilizing controller design are discussed.

1) Fixed-order Controller Design Approaches Initialized by Output Feedback Controllers: In this part, the relation

among the two-stages approaches initialized by output feedback controllers [3], [4], [12], [13] are considered. The

proposed method in [3] (or in [4] for the discrete-time systems) uses the SPRness of the following transfer matrix:

H1(s) =

 M I

M − T−1A(λ)T I

 (13)

where the central state matrix M and the similarity transform T are chosen from a set of initial stabilizing output

feedback controllers designed for each vertex of the polytopic system. The proposed method of [12] is the special

case of the above results where T is considered as an identity matrix. In other words, in [12], the SPRness of the

following transfer matrix is considered:

H2(s) =

 M I

M −A(λ) I

 (14)

which is a special case of (13) with T = I .

The proposed fixed-order controller design method in [13] is based on the SPRness of the following transfer

matrix:

H3(s) =

 M τI

M −A(λ) τI

 ; τ > 0 (15)

It can be easily shown that the scalar parameter τ can be removed. In other words, the SPRness of H3(s) is

equivalent to the one of H2(s).



5

2) Fixed-order Controller Design Approaches Initialized by State Feedback Controllers: In this part, we study

the relation among the two-stages approaches initialized by state feedback controllers [6], [10], [15], [18]. The

results are given in the following Lemmas.

Lemma 3: Let Ksf (λ) be a stabilizing parameter-dependent state feedback controller for the continuous-time

system described by (1) and (2). Then, the following statements are equivalent:

(a) If there exist two matrices X and L such that the following transfer function is SPR:

H(s) =

 Āg(λ) + B̄g(λ)Ksf (λ) B̄g(λ)

XKsf (λ)− LC̄g(λ) X

 (16)

(b) If there exist a Lyapunov matrix P (λ) > 0, and some matrices X and L such that the following inequality

holds:  MT (λ)P (λ) + P (λ)M(λ) ?

B̄T
g (λ)P (λ)− (XKsf (λ)− LC̄g(λ)) −X −XT

 < 0 (17)

where M(λ) = Āg(λ) + B̄g(λ)Ksf (λ).
(c) (Theorem 2 in [10]) If there are a Lyapunov matrix P (λ) and some matrices F (λ), V (λ), X , and L such

that:
(Āg(λ) + B̄g(λ)Ksf (λ))TFT (λ) + F (λ)(Āg(λ) + B̄g(λ)Ksf (λ)) ? ?

P (λ) − FT (λ) + V (λ)(Āg(λ) + B̄g(λ)Ksf (λ)) −V (λ) − V T (λ) ?

B̄T
g (λ)FT (λ) + LC̄g(λ) −XKsf (λ) B̄T

g (λ)V T (λ) −X −XT

 < 0 (18)

(d) (Corollary 1 in [6]) If there exist a Lyapunov matrix P > 0 and two matrices X and L such that: ĀT
g P + PĀg ?

B̄gP 0

+ He

  KT
sf

−I

[ LC̄g −X
]  < 0 (19)

Then K = X−1L is a robust dynamic output feedback controller which stabilizes the continuous-time system given

in (1) and (2).

Proof: The statements (a) and (b) can directly result from KYP Lemma. Therefore, it is enough to show that

(18) is equivalent to (17). Post-multiplying (18) by U and pre-multiplying by UT , the inequality given in (17)

achieves.

U =


I 0

Āg + B̄gKsf B̄g

0 I

 (20)

To prove the statement (d), the inequality given in (17) is obtained by pre- and post-multiplication of (19) by

the following matrix:  I KT
sf

0 I

 (21)

Lemma 4: Let Ksf (λ) be a stabilizing parameter-dependent state feedback controller for the discrete-time system

given described by (1) and (2). Then, the following statements are equivalent:
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(a) If there exist two matrices X and L such that the following transfer function is SPR:

H(z) =

 Āg(λ) + B̄g(λ)Ksf (λ) B̄g(λ)

XKsf (λ)− LC̄g(λ) X

 (22)

(b) If there exist a Lyapunov matrix P (λ) > 0, and some matrices X and L such that: MT (λ)P (λ)M(λ)− P (λ) ?

B̄T
g (λ)P (λ)M(λ)− (XKsf (λ)− LC̄g(λ)) B̄T

g (λ)P (λ)B̄g(λ)−X −XT

 < 0 (23)

where M(λ) = Āg(λ) + B̄g(λ)Ksf (λ).

(c) ( [18]) If there are a Lyapunov matrix P (λ) and some matrices F (λ), X , and L such that:
−P (λ) ? ?

FT (λ)(Āg(λ) + B̄g(λ)Ksf (λ)) P (λ)− F (λ)− FT (λ) ?

LC̄g(λ)−XTKsf (λ) B̄T
g (λ)F (λ) −X −XT

 < 0 (24)

(d) (Theorem 4.1 in [15]) If there exist a Lyapunov matrix P (λ) and some matrices F1, F2, F3, F4, X , and L
such that:

F1(Āg(λ) + B̄g(λ)Ksf (λ)) + (Āg(λ) + B̄g(λ)Ksf (λ))TFT
1 − P (λ) ? ? ?

F2(Āg(λ) + B̄g(λ)Ksf (λ)) −P (λ) ? ?

F3(Āg(λ) + B̄g(λ)Ksf (λ)) + B̄T
g (λ)FT

1 + LC̄g −XKsf (λ) B̄T
g (λ)FT

2 F3B̄T
g (λ)FT

3 − (X +XT ) ?

F4(Āg(λ) + B̄g(λ)Ksf (λ)) − FT
1 P (λ) − FT

2 F4B̄g(λ) − FT
3 −F4 − FT

4

 < 0

(25)

Then K = X−1L is a robust dynamic output feedback controller which stabilizes the discrete-time-time system

given in (1) and (2).

Proof: According to KYP Lemma, statements (a) and (b) are equivalent. Then, we show that inequalities given

in (24) and (23) are equivalent. Inequality (24) can be represented as:
−P ? ?

0 P ?

LC̄g −XTKsf 0 −X −XT

+ He




0

FT

0

[ Āg + B̄gKsf −I B̄g

]  < 0 (26)

Then, the slack matrix F can be removed using Projection Lemma as follows:

N (
[
Āg + B̄gKsf −I B̄g

]
)T


−P ? ?

0 P ?

LC̄g −XTKsf 0 −X −XT

N (
[
Āg + B̄gKsf −I B̄g

]
) < 0 (27)

By choosing

N (
[
Āg + B̄gKsf −I B̄g

]
) =


I 0

Āg + B̄gKsf B̄g

0 I

 (28)

we obtain
I 0

Āg + B̄gKsf B̄g

0 I


T 

−P ? ?

0 P ?

LC̄g −XTKsf 0 −X −XT




I 0

Āg + B̄gKsf B̄g

0 I

 < 0 (29)
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or equivalently  (Āg + B̄gKsf )TP (Āg + B̄gKsf )− P ?

B̄T
g P (Āg + B̄gKsf ) + LC̄g −XTKsf B̄T

g PB̄g −X −XT

 < 0 (30)

A similar procedure can be applied to show that (23) and (25) are equivalent. The statement (d) can be rewritten

as: 
−P ? ? ?

0 −P ? ?

LC̄g −XKsf 0 −(X +XT ) ?

0 P 0 0

+ He{


F1

F2

F3

F4


[
Āg + B̄gKsf 0 B̄g −I

]
} < 0 (31)

By considering

N (
[
Āg + B̄gKsf 0 B̄g −I

]
) =


I 0 0

0 I 0

0 0 I

Āg + B̄gKsf 0 B̄g

 (32)

we have
I 0 0

0 I 0

0 0 I

Āg + B̄gKsf 0 B̄g



T 
−P ? ? ?

0 −P ? ?

LC̄g −XKsf 0 −(X +XT ) ?

0 P 0 0




I 0 0

0 I 0

0 0 I

Āg + B̄gKsf 0 B̄g

 < 0

(33)

which is equal to the following inequality:
−P (λ) ? ?

P (λ)(Āg(λ) + B̄g(λ)Ksf (λ)) −P (λ) ?

LC̄g(λ)−XKsf (λ) B̄T
g (λ)P (λ) −X −XT

 < 0 (34)

By pre- and post-multiplication of the above inequality by the following matrix, (23) is derived. Thus, the proof is

complete.  I (Āg(λ) + B̄g(λ)Ksf (λ))T 0

0 B̄g(λ) I

 (35)

3) One-step Approaches to Fixed-order Control Design: In this part, the one-step LMI-based methods for fixed-

order dynamical output feedback controller design are considered. First, the results of the existing methods in [9],

[11], [14], [16], [17] are given. Then, we show that these approaches are based on the SPR-ness of some transfer

functions where matrix A is fixed by different approaches.

Lemma 5: The following two statements are equivalent.



8

(a) (Theorem 4 in [11]) If there exist P−1(λ) > 0, matrices G and L, and a positive scalar τ > 0 such that: He{Āg(λ)P−1(λ) + B̄g(λ)LTC̄g(λ)} ?

C̄g(λ)P−1(λ)−GTC̄g(λ) + τLT B̄T
g (λ) −τG− τGT

 < 0 (36)

where

T =

 (C̄giC̄
T
gi)

−1 ∃ i0 ∈ {1, 2, . . . , N} s.t. C̄gi is full row rank

I o.w.
(37)

(b) If there are matrices G and L, and a positive scalar τ > 0 such that the following transfer matrix is SPR:

H4(s) =

 M(λ) −(τ−1C̄g(λ)T + B̄g(λ)LG−1)

τ−1G−T C̄g(λ) τ−1G−T

 (38)

where M(λ) = Āg(λ)− τ−1C̄T
g (λ)TC̄g(λ).

Then, the static output feedback K = LG−1 stabilizes the continuous-time augmented system in (1) and (2).

Proof: Inequality (36) is equivalent to the following one: PA+ATP C̄T
g − P (C̄T

g T
T + τB̄gK)GT

? −τG− τGT

 =

 P PB̄gK

0 I

 He{ĀgP
−1 + B̄gLTC̄g} ?

C̄gP
−1 −GTC̄g + τLT B̄T

g −τG− τGT

 P PB̄gK

0 I

T

< 0

(39)

The above inequality indicates that the following transfer matrix is SPR.

H−1
4 (s) =

 A (C̄T
g T

T + τB̄gK)GT

C̄g τGT

 (40)

According to Lemma 2, H4(s) in (42) is also an SPR transfer matrix. Thus, the proof is complete.

Lemma 6: Assume that matrices Cgi in (2) are full-row rank for i = 1, . . . , q. The following statements are

equivalent.

(a) (Lemma 4.2 in [9]) If there exist a positive scalar α, matrices Ỹj > 0 and structured matrices Zi = Z1 0no×(n−no)

Z2i Z3i

 and L =
[
L1 0ni×(n−no)

]
such that:

 αHe{ÃgiZi + B̃gijL} ?

(TiỸjT
T
i + ÃgiZi + B̃gijL)T − αZi −Zi − ZT

i

 < 0 (41)

where Ti is a non-singular similarity transformation matrix for each vertex of the polytope satisfying C̃gi =

CgiT
−1
i = [In0×no 0no×(n−no)], Ãgi = TiAgiT

−1
i and B̃gij = TiBgj .

(b) If there exist a positive scalar α, matrices Ỹj > 0 and structured matrices Zi =

 Z1 0no×(n−no)

Z2i Z3i

 and

L =
[
L1 0ni×(n−no)

]
such that the following transfer matrix is SPR:

H5(s) =

 M −Z̃−1(λ)

αI +AT (λ) Z̃−1(λ)

 (42)
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where M = −αI , Z̃−1(λ) =
∑q

i=1 λiZ̃
−1
i , and Z̃i = T−1

i ZiT
−T
i .

Then, the continuous-time system in (1) is robustly stable by a static output feedback controller K = L1Z
−1
1 .

Proof: By using the fact that LT−T
i = KCgiZ̃i, the inequality given in (41) is equivalent to: αHe{Ti(Agi +Buj

KCgi)Z̃iT
T
i } ?

Ti(Ỹj + Z̃T
i (Agi +Buj

KCgi)
T − αZ̃i)T

T
i −Ti(Z̃i + Z̃T

i )TT
i

 < 0 (43)

Pre- and post-multiplying of the above inequality by

 T−1
i −αT−1

i

0 Z̃−T
i T−1

i

 and its transpose lead to the following

set of inequalities:  −2αỸj ?

Z̃−T
i Ỹ T

j + (Agi +BgjKCgi)
T + αI −Z̃−1

i − Z̃−T
i

 < 0 (44)

Multiplying (44) by λiλj and summing them, the following inequality is obtained: −2αỸ (λ) ?

Z̃−T (λ)Ỹ T (λ) + (Ag(λ) +Bg(λ)KCg(λ))T + αI −Z̃−1(λ)− Z̃−T (λ)

 < 0 (45)

where Ỹ (λ) =
∑q

i=1 λiỸi. Based on Lemma 1, the above inequality is equivalent to the SPRness of the transfer

matrix H5(s) in (42).

Lemma 7: The following statements are equivalent.

(a) ( [14]) If there exist matrices P , N , and U such that: −P ?

PĀg + B̄gNC̄g −P

 < 0

PB̄g = B̄gU

(46)

(b) If there exist matrices P > 0, N , and U such that the following transfer matrix is SPR,

H6(z) =

 0 I

−PĀg − B̄gNC̄g P

 (47)

and PB̄g = B̄gU .

Then, the closed-loop stability of the discrete-time system in (5) is guaranteed with K = U−1N .

Proof: It should be noted that

PĀg + B̄gNC̄g = PA (48)

Therefore, (46) is equivalent to the following inequality indicating that H6(z) in (47) is SPR. −P ?

PA −P

 < 0 (49)
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Lemma 8: Without loss of generality, we assume that there exists a matrix T such that TB̄g =

 I

0

. The

following statements are equivalent.

(a) ( [16]) If there exist matrices P̄ , S̄ =

 S̄1 0

0 S̄2

, and L̄ such that:


−P̄ ?

S̄T ĀgT
−1 +

 L

0

 C̄gT
−1 P̄ − S̄ − S̄T

 < 0 (50)

(b) If there exist matrices S̄ =

 S̄1 0

0 S̄2

, and L̄ such that the following transfer matrix is SPR,

H7(z) =

 0 I

−(TT S̄T )A TT S̄T

 (51)

Then, K = S̄1
−1
L stabilizes the discrete-time system in (5).

Proof: It should be noted that  L

0

 =

 I

0

 S̄1S̄1
−1
L

=

 S̄1

0

 S̄1
−1
L

=

 S̄1 0

0 S̄2

 I

0

K
= S̄T B̄gK

(52)

Hence, (50) is equivalent to the following inequality: −P̄ ?

S̄T (Āg + B̄gKC̄g)T−1 P̄ − S̄ − S̄T

 < 0 (53)

Multiply the above inequality on the left by

 TT 0

0 TT

 and on the right by

 T 0

0 T

. Then, we obtain:

 −TT P̄ T ?

TT S̄T (Āg + B̄gKC̄g) TT P̄ T − TT S̄T − TT S̄TT

 < 0 (54)

Inequality (54) indicates that H7(z) in (51) is an SPR transfer function.

Lemma 9: Without loss of generality, assume that there exists a matrix T such that C̄gT = [I 0]. The following

statements are equivalent.



11

(a) ( [17]) If there exist a scalar λ, matrices P > 0, G =

 G11 0

G21 G22

, F =

 λG11 0

F21 F22

, and Y =[
Y1 0

]
such that: P − TG−GTTT ?

ĀgTG+ B̄gY − FTTT −P + He{ĀgTF + λB̄gY }

 < 0 (55)

(b) If there exist a scalar λ, matrices G =

 G11 0

G21 G22

, F =

 λG11 0

F21 F22

, and Y =
[
Y1 0

]
such

that the following transfer matrix is SPR,

H8(z) =

 −G−1F −G−1T−1

G−1F +AT G−1T−1

 (56)

Then, K = Y1G
−1
11 stabilizes the discrete-time system in (5).

Proof: Based on the structure of matrices Y , G, and F , we have:

Y = KC̄gTG

= λ−1KC̄gTF
(57)

Therefore, inequality (55) is equivalent to: P − TG−GTTT ?

ATG− FTTT −P + He{ATF}

 < 0 (58)

The above inequality shows that the following transfer function is SPR.

H−1
8 (z) =

 AT I

T (F +GAT ) TG

 (59)

According to Lemma 2, H8(z) in (56) is SPR. The proof is complete.

Lemma 10: Without loss of generality, assume that there exists a matrix T such that C̄gT = [I 0]. The following

statements are equivalent.

(a) ( [17]) If there exist a scalar λ, matrices P > 0, G =

 G11 0

G21 G22

, F =

 λG11 0

F21 F22

, and Y =[
Y1 0

]
such that: P − TGTT − TGTTT ?

ĀgTGT
T + B̄gY T

T − TFTTT −P + He{ĀgTFT
T + λB̄gY T

T }

 < 0 (60)

(b) If there exist a scalar λ, matrices G =

 G11 0

G21 G22

, F =

 λG11 0

F21 F22

, and Y =
[
Y1 0

]
such

that the following transfer matrix is SPR:

H9(z) =

 −Ḡ−1F̄ −Ḡ−1

AT + Ḡ−1F̄ Ḡ−1

 (61)
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where Ḡ = TGTT and F̄ = TFTT .

Then, K = Y1G
−1
11 stabilizes the discrete-time system in (5).

Proof: Similar to the proof of Lemma (9), we can show that the following transfer function is SPR.

H−1
9 (z) =

 AT I

TFTT + TGTTAT ) TGTT

 (62)

As a result, H9(z) in (61) is an SPR transfer function.

Lemma 11: If the conditions of Theorem 1 presented in [19] hold, the following transfer function is SPR.

H10(z) =

 0 αI

−GA αG

 (63)

IV. CONCLUSIONS

This report reviews the recent slack variable-based methods for design of fixed-order controllers. It is shown

that the main relation among these approaches is the concept of Strictly Positive Realness (SPRness) of transfer

function matrices represented by KYP Lemma.
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