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Preface
In rivers riparian vegetation can have not only strong interaction with the flow but also with

the ecological services of the aquatic system. In wetlands and along riverbanks often tree-like

vegetation with quite stiff trunks can be found. The study of the flow in the space between plant

stems is highly relevant since it influences the deposition of suspended sediment and the transport

of pollutants or nutrients. With her comprehensive experimental research study Mrs Dr. Ana

Margarida da Costa Ricardo carried out a novel detailed spatial characterization, at the inter-stem

scale, of the turbulent flow within arrays of emergent, rigid and cylindrical stems, randomly

placed with constant and varying density in a flume.

Mrs Dr. da Costa Ricardo performed detailed measurement of instantaneous velocities with a

2D Particle Image Velocimetry (PIV) and a 3D Laser Doppler Anemometry (LDA). Part of the

data was treated with Double-Averaging Methodology (DAM), used as an up-scaling technique

to deal with heterogeneous flows.

Mrs Dr. da Costa Ricardo could reveal that the drag force per submerged stem length is not

correlated directly with the stem areal number density and the stem Reynolds number. The drag

force depends on the longitudinal variation of the stem areal number-density. It could be observed

that the decrease of the latter is associated to larger flow resistance and that the drag coefficient

increases with the relative roughness, revealing an influence of the bed on the definition of the

flow structure. The importance of vortex shedding and unsteady separation of the flow on the

stems could be highlighted.

Finally Mrs Dr. da Costa Ricardo gives a new insight in the dissipation rate of turbulent

kinetic energy (TKE). She could contribute significantly to a better understanding of the complex

flow within random arrays of rigid and emergent stems, at the inter-stem scale regarding flow

resistance, budget of TKE and computation of dissipation rate of TKE.

We would like to thank the members of the jury Prof. António Luís Moreira, Instituto Superior

Técnico, Lisbon, Portugal and Prof. Jochen Aberle, NTNU, Trondheim, Norway, as well as Prof.

Fernando Porté-Agel, EPFL, Lausanne, Switzerland, for their helpful suggestions. Finally we also

thank gratefully the Portuguese Foundation for Science and Technology (FTC) for their financial

support under project PTDC/ECM/099752/2008 and the research grant SFRH/BD 33668/2009.

Prof. Dr. Anton Schleiss Prof. Dr. Rui Ferreira
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Abstract

In the context of environmental sciences, emergent circular cylinders function as an ersatz

for wetland vegetation. The study of the flow in the space among plant stems is highly relevant

as its hydrodynamics determine fluxes of suspended sediment, pollutants and nutrients, thus

constituting the physical stratum upon which biological and ecological strata are formed.

The present research project aims at a detailed spatial characterization, at the inter-stem scale,

of the turbulent flow within arrays of emergent, rigid and cylindrical stems, randomly placed with

constant and varying density.

The main goals of this work include a detailed characterization and quantification of the

flow in the space among plant stems, herein termed inter-stem space; the quantification of the

forces acting on the stems and the respective drag coefficient; an integrated analysis of the

spatial distribution of turbulent kinetic energy (TKE) conservation equation; the derivation of an

equation to estimate of the rate of dissipation of TKE, exploiting the space-averaging of two-point

correlations and statistics as a means to salvage the formalism of homogeneous and isotropic

turbulence as well as the characterization and quantification of the rate of dissipation of TKE in

the inter-stem space.

The work is mainly experimental, employing measurement of instantaneous velocities with

a 2D Particle Image Velocimetry (PIV) and a 3D Laser Doppler Anemometry (LDA). Part of

the data treatment is carried out following the framework of Double-Averaging Methodology

(DAM), an upscaling technique to deal with heterogeneous flows. On the topic of drag forces,

a dimensional analysis is performed to identify the relevant parameters on the characterization

of flows within arrays of rigid and emergent stems. Theoretical work is performed to devise a

formulation to compute the dissipation rate of energy for heterogeneous flow.

This work accounts with three innovations: i) a detailed spatial description of the budget of

TKE and of the terms of the double-averaged momentum conservation equation; ii) an experi-

mental procedure and associated data treatment, relying mostly on spatial measurements and thus

avoiding the use of the frozen turbulence approximation; and iii) the theoretical framework for

dealing with non-homogeneous flows, employing time and space-averaging as a means to apply
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the formalism of homogeneous and isotropic turbulence (HIT).

Momentum conservation equations were upscaled with a sound mathematical framework,

the Double-Averaging Methodology, and integrated vertically to obtain a model, without major

simplifications, to compute the drag forces associated with the vertical elements. It was concluded

that, locally at the patch scale, longitudinal gradient of stem areal number-density impacts the

magnitude of the drag force. However, at the scale of the wavelength of the stem’s distribution,

if the variability of stem areal number-density is cyclic, there might be no appreciable effect of

patchiness on the average momentum balance.

The spatial distribution of the terms of TKE budget, in the inter-stem space, is presented

and discussed. It is verified that the main source of TKE is vortex shedding from individual

stems and that the rates of production and dissipation are not in equilibrium, revealing important

interactions of turbulence with mean flow, pressure field and turbulent transport of TKE. Regions

with negative production, a previously unreported feature, were identified and discussed.

Exploring the space-averaging of two-point correlations and statistics of the turbulent flow

as means to apply the formalism of homogeneous and isotropic turbulence, an equation to

estimate the dissipation rate of turbulent kinetic energy was derived assuming valid local isotropy

conditions. Obviously some caution is needed and it must be underlined that it is not the validity

of the local isotropy for each instantaneous velocity series that is being claimed, instead it was

proved that averages of sufficient long time series of the structures functions and energy spectra

lead to the conclusions of the well known isotropic turbulence theory.

Advances on the understanding of the complex flow within random arrays of rigid and

emergent stems, at the inter-stem scale, were attained in three relevant topics: flow resistance,

budget of TKE and computation of dissipation rate of TKE.

The immediate progresses and methodologies of this program pertain to fluid mechanics do-

main, however it should be emphasized that the results will eventually mature into bioengineering

design approaches, what will positively impact river engineering practices.

Keywords: Vegetated flows, inter-stem scale, PIV, LDA, Double-Averaging Methodology,

turbulence, spatial analysis, TKE budget, momentum equations, drag coefficient, heterogeneity,

dissipation rate of TKE
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Resumo

No contexto das ciências ambientais, os cilindros circulares emergentes são muitas vezes

usados para simular vegetação rígida de zonas húmidas. O estudo do escoamento no espaço entre

hastes das plantas é de grande relevância na medida em que a sua hidrodinâmica determina fluxos

de sedimentos suspensos, poluentes e nutrientes, constituindo assim o estrato físico no qual os

estratos biológicos e ecológicos são formados.

O presente projecto de investigação visa a caracterização espacial detalhada, à escala do

espaçamento médio entre hastes, de escoamentos turbulentos com uma distribuição de vegetação

rígida emersa e de hastes cilíndricas, dispostas aleatoriamente com densidade constante e variável.

Os principais objectivos deste trabalho incluem a caracterização e quantificação do escoamento

no espaço entre hastes; a quantificação das forças de arrastamento actuantes nas hastes e respectivo

coeficiente de arrastamento; uma análise integrada da distribuição espacial dos termos da equação

de conservação da energia cinética turbulenta (TKE); o desenvolvimento de uma equação para

estimar a taxa de dissipação da TKE, explorando a média espacial das correlações a dois pontos

e outras funções estatísticas, como forma de manter o formalismo da turbulência homogénea e

isotrópica; caracterização e quantificação da taxa de dissipação da TKE.

O trabalho é essencialmente experimental, com medições de velocidades instantâneas com

recurso aos sistemas 2D Particle Image Velocimetry (PIV) e 3D Laser Doppler Anemometry

(LDA). Parte do tratamento de dados é realizado através da metodologia de dupla média espácio-

temporal (DAM), que permite caracterizar escoamentos não homogéneos. No âmbito do estudo

das forças de arrastamento, é realizada uma análise dimensional para identificar os parâmetros

relevantes na caracterização de escoamentos no interior de zonas com hastes rígidas emergentes.

O trabalho teórico consiste em desenvolver uma formulação para o cálculo da taxa de dissipação

da energia cinética turbulenta em escoamentos heterogéneos.

O presente trabalho apresenta três inovações importantes: i) uma descrição espacial detalhada

dos termos da equação de conservação da TKE da quantidade de movimento; ii) um procedi-

mento experimental e respectivo tratamento de dados baseado fundamentalmente em medições

espaciais, evitando por isso a utilização da hipótese de Taylor para converter escalas temporais em
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escalas espaciais; e iii) o enquadramento teórico para lidar com escoamentos não homogéneos,

aplicando médias temporais e espaciais como forma de salvaguardar o formalismo da turbulência

homogénea e isotrópica.

As equações de conservação da quantidade de movimento foram foram re-escritas com uma

formulação matemática adequada, de acordo com a metodologia DAM, e integradas na vertical

para obter para calcular, sem demasiadas simplificações, a força de arrastamento nas hastes.

Conclui-se localmente, num determinado troço com densidade de hastes constante, o gradiente

longitudinal da densidade de hastes tem impacte na magnitude das forças de arrastamento. No

entanto, à escala do comprimento de onda da distribuição de hastes, se a variabilidade espacial

apresentada pela densidade de hastes for cíclica, o arranjo em troços com diferentes densidades

de hastes não influência o balanço global da quantidade de movimento, uma vez que os efeitos de

aumento e diminuição da densidade de hastes se cancelam.

A distribuição espacial da magnitude dos termos da equação de conservação da TKE, no

espaço entre hastes, foi apresentado e discutido. Verificou-se que a principal fonte de TKE é a

ejecção de vórtices devido à separação instável do escoamento em torno de cada haste. Verificou-

se também que as taxas de produção e dissipação da TKE não estão em equilíbrio, revelando

importantes interacções entre os movimentos turbulentos e o escoamento médio e importante

transporte turbulento de TKE. Foram, ainda, identificadas regiões com taxas de produção de TKE

negativas, geralmente, uma característica rara nos escoamentos.

Foi obtida uma equação para estimar a taxa de dissipação da energia cinética turbulenta através

da média espacial da correlação de dois pontos e das estatísticas do escoamento turbulento,

assumindo como válida a condição de isotropia local. Obviamente é necessária alguma precaução

salientando que não é a validade da isotropia local para cada série de velocidades instantâneas

que está a ser considerada. Em vez disso, foi provado que as médias de séries temporais

suficientemente longas de funções de estrutura e espectros de energia apresentam a forma típica

dessas funções em condições de turbulência homogénea e isotrópica.

Os avanços na compreensão dos complexos escoamento em zonas com distribuições aleatórias

de hastes rígidas e emergentes, à escala do espaçamento médio entre hastes, foram obtidos na

resistência do escoamento, balanço da TKE e cálculo da taxa de dissipação da TKE.

Os progressos e metodologias deste programa pertencem ao domínio da mecânica dos fluidos,

no entanto os resultados poderão vir ser desenvolvidos para aplicação no domínio da bioengenha-

ria, resultando num impacto positivo nas práticas de engenharia fluvial.

Palavras chave: escoamentos com vegetação, escala do espaçamento entre hastes, PIV, LDA,

DAM, turbulência, análise espacial, balanço da TKE, equações da quantidade de movimento,

coeficiente de arrastamento, heterogeneidade, taxa de dissipação da TKE.
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Résumé

Dans le contexte des sciences environnementales, les cylindres circulaires émergés foncti-

onnent comme un ersatz de la végétation rigide des milieux humides. L’étude de l’écoulement

parmi des tiges est très importante car son hydrodynamique détermine les flux de sédiments en

suspension, de polluants et de nutriments, qui constituent ainsi la strate physique sur laquelle les

strates biologiques et écologiques se forment.

Ce projet de recherche vise à obtenir une caractérisation spatiale détaillée, à l’échelle inter-

tiges, de l’écoulement turbulent dans un réseau de tiges émergées, rigides et cylindriques, placées

aléatoirement avec une densité constante et variable.

Les objectifs principaux de ce travail sont la caractérisation et la quantification détaillées de

l’écoulement dans la zone entre les tiges; la quantification des forces de frottement sur les tiges

et de leurs coefficients de frottement respectifs; l’analyse intégrée de la distribution spatiale de

l’équation de conservation de l’énergie cinétique du mouvement d’agitation (TKE); la dérivation

d’une équation permettant d’évaluer le taux de dissipation de TKE : celle-ci exploite la moyenne

spatiale de la corrélation de deux points et les statistiques afin de récupérer le formalisme de la

turbulence homogène et isotrope ; l’application de cette nouvelle équation à la caractérisation et

à la quantification du taux de dissipation de TKE dans l’espace inter-tiges.

Ce travail est principalement expérimental et utilise la mesure de vitesses instantanées par

PIV 2D (Particle Image Velocimetry – Mesure de vitesses par images de particules) et par LDA

3D (Laser Doppler Anemometry – Anémométrie Laser Doppler). Une partie du traitement

de données est effectuée par la méthode des doubles moyennes (DAM – Double-Averaging

Methodology) dans le domaine temporel et spatial, une technique d’amélioration du traitement

des écoulements hétérogènes. En ce qui concerne les frottements, une analyse dimensionnelle est

réalisée afin d’identifier les paramètres importants pour la caractérisation des écoulements dans

un réseau de tiges rigides et émergées. Un travail théorique est également effectué pour concevoir

une méthode de calcul du taux de dissipation de TKE dans un écoulement hétérogène.

Trois innovations sont apportées par ce travail : i) l’objectif principal du travail qui vise une

description spatiale détaillée du bilan de TKE ainsi que des termes de l’équation moyenne de
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conservation de la quantité de mouvement; ii) le procédé expérimental qui repose principalement

sur des mesures spatiales, évitant ainsi l’utilisation de l’approximation de la turbulence figée; et

iii) l’approche théorique de traitement des écoulements non-homogènes, en utilisant les moyennes

temporelles et spatiales pour récupérer le formalisme de la turbulence homogène et isotrope.

Les équations de conservation de la quantité de mouvement ont été agrégées dans un cadre

mathématique robuste, la méthodologie DAM, et intégrées verticalement pour obtenir un modèle,

sans simplifications majeures, pour calculer les forces de frottement associées aux éléments

verticaux. Il a été montré que localement, à l’échelle ponctuelle, le gradient longitudinal de la

densité spatiale des tiges affecte la valeur de la force de frottement. Cependant, à plus grande

échelle, celle de la longueur d’onde de la distribution des tiges„ si la variabilité de la densité

spatiale des tiges est cyclique, il se peut qu’il n’y ait aucun effet notable de la répartition des tiges

sur le bilan moyen de la quantité de mouvement, car les influences locales opposées s’annulent.

La distribution spatiale de la valeur des termes du bilan de TKE, dans l’espace inter-tiges

a été présentée et discutée. Il a été vérifié que la source principale de TKE est la séparation

des vortex par les tiges individuelles et que les taux de production et de dissipation ne sont pas

en équilibre, révélant d’importantes intéractions de la turbulence avec l’écoulement moyen, le

champ de pression et le transport turbulent de TKE. Des zones de production négative, jamais

décrites jusqu’à présent, ont été identifiées.

En exploitant la moyenne spatiale de la corrélation entre deux points et les statistiques de

l’écoulement turbulent de manière à récupérer le formalisme de la turbulence homogène et

isotrope, une équation permettant d’estimer le taux de dissipation d’énergie cinétique turbulente

a été dérivée, en considérant que la condition d’isotropie locale est valide. Évidemment, une

certaine précaution est nécessaire et il doit être souligné que ce n’est pas la validité de l’isotropie

locale pour chaque série de vitesses instantanées qui est réclamée. Au lieu de cela, il a été

démontré que les moyennes de séries à suffisamment long terme des fonctions de structures et

des spectres d’énergies mènent aux conclusions bien connues de la turbulence isotropique.

Des améliorations de la compréhension de l’écoulement complexe à travers des rangées

aléatoires de tiges rigides et émergentes, à l’échelle inter-tiges, ont été obtenues sur la résistance

de l’écoulement, le bilan de TKE et le calcul du taux de dissipation de TKE.

Les progrès immédiats et les méthodologies de ce projet portent sur le domaine de la mécani-

que des fluides. Cependant, les résultats pourraient évoluer vers des approches de conception de

bio-ingénierie et influencer positivement les pratiques de l’ingénierie fluviale.

Mots-clés: Ecoulement en zones de végétation, échelle inter-tiges, PIV, LDA, DAM, tur-

bulence, analyse spatiale, bilan de TKE, équation de la quantité de mouvement, coefficient de

frottement, hétérogénéité, taux de dissipation de TKE
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Chapter 1

Introduction

1.1 Framework

Emergent vegetation, featuring a wide range of different species and with different ecological

roles, plays an ubiquitous role in coastal and riverine systems. Such systems, herein designated

wetlands, are characterized by a profound interaction of physical, biological and ecological

processes, and by relevant transport processes (Ferreira et al., 2010; Ghisalberti & Nepf, 2004;

Tanino & Nepf, 2008). Vegetation influences geomorphologic processes, affects the fluxes

of sediment, nutrients and contaminants, promotes water quality, maintains biodiversity and

improves landscape integrity. On the other hand, the existence of vegetation in a stream is

associated to a higher flow resistance, and hence greater flood risk (Kadlec, 1990).

The characterization of flows within wetlands is thus a relevant topic for river engineering,

but the difficulties arising, mostly associated to fluid-stem interaction, are, simultaneously, highly

challenging fluid mechanics problems. The present research is motivated by the former but

its methods and language pertains essentially to fluid mechanics. To avoid a conflict between

applications and methods that could unfocus this work, they should be clearly stated.

Ultimately, the realm of the application of the present research is fluvial and estuarine

management, as its results are relevant to increase the knowledge of the physics of water bodies

populated with aquatic vegetation. Within the framework of the EU water directive, this physical

knowledge is fundamental to devise strategies to improve and maintain the quality of water bodies

in its biological, ecological and societal dimensions.

The research methods pertain to fluid mechanics in two fundamental aspects regarding

the compromise between physical verisimilitude and experimental feasibility and the scale of

work. In the first case, the option favoured in this thesis was to perform laboratory work in

idealised controlled conditions procuring unambiguous data interpretation. Hence, emergent
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rigid cylindrical stems are employed as a proxy for natural stems. The stems are slightly rough

and are randomly placed as an effort to increase verisimilitude.

Concerning the length scales that characterize the flow within vegetation, one can generally

consider four main scales:
i. the stem scale, defined by the stem’s diameter;

ii. the inter-stem scale, an intermediate scale corresponding to the mean distance between the

axis of neighbouring plant stems;

iii. the patch scale, the distance representative of a domain where stem properties and stem

areal distributions are homogeneous;

iv. the reach scale, encompassing several vegetation patches, for instance a river reach or a

laboratory channel with non-homogeneous stem distribution.

In this thesis, the emphasis is placed on the characterization and quantification of flows at the

intermediate inter-stem (ii) and patch (iii) scales.

A great amount of research has been developed at these intermediate scales. Some of the key

works during the last decades included laboratory experiments with arrays of flexible (Dittrich

et al., 2012; Fathi-Maghadam & Kouwen, 1997; James et al., 2008; Järvelä, 2002; Nepf & Vivoni,

1999) or rigid stems (Ferreira et al., 2009b; Li & Shen, 1973; Nepf, 1999; Stone & Shen, 2002;

Tanino & Nepf, 2008; White & Nepf, 2008). Theoretical works can also be found in the literature

(Cheng, 2013; Lee et al., 2004; Maheshwari, 1992; Yen, 2002) where models and respective

application domains are presented, as well as, in the computational realm, there is an increasing

number of numerical databases for flows within vegetation reaches (Coceal et al., 2007; Defina &

Bixio, 2005; Kim & Stoesser, 2011; López & García, 1998, 2001; Stoesser et al., 2010).

The characterization of drag forces on vegetation elements has important applications in civil

engineering, namely in the estimation of hydraulic resistance for design of fluvial channels or

flood forecasting (Kadlec, 1990; López & García, 1998). The vegetation drag coefficient, CD,

empirically derived and a function of the fluid, flow and vegetation properties, is thus of great

importance to river engineers who seek for practical models to evaluate the flow resistance and

as an input to numerical hydrodynamic models. However, most of existing criteria for channels

protected with vegetation and simulation models employ resistance formulas such as Manning’s

and Chezy’s, necessarily calibrated ad hoc.

Moving towards physically-based design criteria, progresses have been made in the characteri-

zation of 3D flows over irregular boundaries and over canopies, mainly due to the application of

the Double-Averaging Methodology (DAM), which is a particular form of upscaling in the spatial

and temporal sense (Finnigan, 2000; Gimenez-Curto & Corniero Lera, 1996; Nikora et al., 2001,

2007a; Raupach et al., 1986). Such methods are especially pertinent for the characterization of

the flow within and in the near vicinity of plant canopies, due to the spatial heterogeneity that

characterizes this type of flow.
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The flow in the inter-stem space is turbulent provided that the areal distribution of stems is

not too dense (quantitative criteria in Sumner et al., 2005). Vortex shedding from individual

stems is the main source of turbulent kinetic energy (TKE). The spatial distribution of flow

variables is complex. The velocity field is nonhomogeneous, being mostly determined by the

interaction of vortexes shed by individual stems (Sumner et al., 2005). The spatial characterization

and quantification of the terms of TKE conservation equation may allow progresses on the

understanding of the nature of turbulence generated in these conditions. In particular, the

turbulence at the inter-stem space has to be known in detail in order to attempt closures for time-

or double-averaged (in time and space) conservation equations (Raupach & Thom, 1981).

The characterization and quantification of the rate of dissipation of TKE in flows within arrays

of stems is also a major research need, since it is a fundamental variable for the parametrization

of the unclosed terms. To this date, there is no general formulation relating the amount of

energy loss to the areal number-density of plant stems and the global Reynolds number. The

existing methods of calculation of the mean (time- and space-averaged) rate of dissipation of

TKE may be unreliable since they incorporate major simplifications (Finnigan, 2000). The point-

wise time-averaged rate of dissipation of TKE can be easily calculated for homogeneous and

isotropic turbulence (HIT), within Kolmogorov’s theoretical framework, requiring only a spectral

description of the fluctuating motion or the computation of structure functions. If turbulence is

not homogeneous, as is the case of the flow in the inter-stem space, there are several competing

theories expressing the dissipation tensor (e.g. Moser, 1994; Nazarenko et al., 1999; Oberlack,

1997; Perot & Natu, 2004) but which are not analytically tractable.

A thorough review of previous work focusing on the aforementioned intermediate scales,

inter-stem and patch scales, led to the identification of the following research needs, which were

considered in the establishment of the objectives of this research study and are enunciated in the

next sub-section:

i. a characterization of the terms of the momentum conservation equation at patch-scale as a

physically based mean to compute drag forces due to the presence of vegetation;

ii. an evaluation of the budget of turbulent kinetic energy (TKE) at the inter-stem scale;

iii. an adequate analysis of the small-scale turbulence aiming at the estimation of the dissipation

rate of TKE at the inter-stem scale in non-homogeneous flows.

The developments contained in the present thesis were guided by the following fundamental

premises:

• large-scale hydrodynamic effects must be integrated from smaller scale phenomena;

• before the derivation of closures to time- or double-averaged conservation equations are

attempted, a detailed knowledge of the turbulent flow in the inter-stem space is needed;

• upscaling operations must be performed within a well-defined mathematical framework;

• quantification of TKE budget allows for a deep understanding of the nature of the turbulence
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and opens possibilities for turbulent modelling;

• the rate of dissipation of turbulent kinetic energy is a fundamental variable for the parame-

trization of the terms, that require turbulent modelling.

1.2 Objectives

The present research project aims at a detailed spatial characterization, at the inter-stem scale,

of the turbulent flow within arrays of emergent, rigid and cylindrical stems, randomly placed

with constant and varying areal number-density, defined as the number of stems per unit of plan

area and expressed in stems/m2. It includes experimental work, employing measurements of

instantaneous velocities with Particle Image Velocimetry (PIV) and Laser Doppler Anemometry

(LDA), and theoretical work on the basic conservation equations of the flow.

The goals of this work, bearing in mind the research needs stated earlier in the text, can be

organized in three main blocks:

i. characterization of the terms of the upscaled momentum conservation equation, in which

the particular objectives are:
• a detailed characterization and quantification of the flow within vegetated areas

susceptible to be simulated by dense arrays of vertical emergent stems;

• the quantification of the drag forces acting on the stems and a discussion on the de-

pendence of the drag coefficient on the non-dimensional parameters that characterize

these flows.

ii. characterization and quantification of the spatial distribution of the terms of the TKE

conservation equation in the inter-stem space;

iii. study of small-scale turbulence, in which the specific goals are:
• the derivation of an equation akin to Kolmogorov’s equation to estimate the rate of

dissipation of TKE, exploiting the space-averaging of two-point correlations and

statistics as a means to use the formalism of homogeneous and isotropic turbulence;

• the characterization and quantification of the rate of dissipation of TKE in the inter-

stem space.

The originality of this PhD research study introduces three innovations:
i. a detailed spatial description of the budget of TKE and of the terms of the double-averaged

momentum conservation equation;

ii. an experimental procedure and associated data treatment, relying mostly on spatial measu-

rements and thus avoiding the use of the frozen turbulence approximation;

iii. the theoretical framework for dealing with non-homogeneous flows, employing time

and space-averaging as a means to apply the formalism of homogeneous and isotropic

turbulence (HIT);
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The immediate progresses and methodologies of this research program pertain to the fluid

mechanics domain, however it will eventually mature into bioengineering design approaches and

water quality monitoring strategies, that will positively impact river engineering and management

practices.

1.3 Methodology

To support the proposed objectives, three experimental tests were performed in two laboratory

facilities, employing two different techniques to acquire instantaneous velocity fields. At Labora-

tory of Hydraulics and Environment of Instituto Superior Técnico (IST) in Lisbon, Portugal, 2D

velocity maps were acquired with Particle Image Velocimetry (PIV) system and at the Laboratory

of Leichtweiß Institute for Hydraulic Engineering at Technische Universität Braunschweig (LWI)

in Germany 3D point-wise velocity series were acquired with Laser Doppler Anemometry (LDA)

Two of the tests simulate emergent vegetation conditions with constant stem areal number-density.

These two tests were reproduced only in one facility, where the PIV measurements took place.

Since actual wetlands exhibit patchiness and spatial variability in stem density, one of the tests

featured a periodic distribution of the stem areal number-density, alternating dense and sparse

patches. This test was reproduced, with the very same conditions, in both facilities.

The experimental tests were designed to allow for detailed measurements of the instantaneous

flow velocity, and these data were used to compute the relevant turbulent quantities. The

characterization of the flow includes time-averaged velocity and vorticity maps, autocorrelation

functions, second- and third-order structures functions and power spectral density functions.

Part of the data treatment is carried out following the framework of Double-Averaging

Methodology (DAM), to account for the great heterogeneity that characterizes the flows within

rigid stems at the inter-stem scale. On the topic of drag forces, a dimensional analysis is performed

to identify the relevant parameters for the characterization of flows within arrays of rigid and

emergent stems. Theoretical work is performed to devise an adequate formulation to compute the

dissipation rate of energy for heterogeneous flows, from the performed velocity measurements. It

consists in following the procedures of homogeneous and isotropic turbulence, exploiting the

space-averaging of two-point correlations and statistics.

1.4 Thesis structure

The present thesis is organized in eight chapters. After the present introductory chapter,

a brief literature review is exposed, introducing the fundamental conservation equations and

some of the results of the classic homogeneous and isotropic turbulence. The main principles of
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Double-Averaging Methodology (DAM) are explained in this chapter.

Chapter 3 presents details of the experimental work. The important role of the experimental

work in this PhD program justifies the extension of this chapter, where a complete description of

the laboratory facilities, instrumentation and experimental procedure is given.

Chapter 4 is written as a journal paper. This chapter aims at the quantification of the drag

coefficient of emergent rigid stems, and at the identification of the parameters to which drag is

most sensitive. Data treatment involved Double-Averaging methods and a dimensional analysis

identifying the relevant non-dimensional parameters for these flows.

Chapter 5 corresponds also to a journal paper. In this chapter, the quantification and discussion

of the relative magnitude of key terms of the equation of conservation of turbulent kinetic energy

(TKE) is discussed, at the inter-stem space of a flow within arrays of vertical cylinders simulating

plant stems of emergent and rigid vegetation. The calculation of these terms is based on new

databases consisting of three-component LDA velocity series and two-dimensional PIV velocity

maps, obtained in controlled laboratory conditions.

Chapter 6 presents the mathematical formalism of the theoretical framework for dealing

with non-homogeneous flows, employing time and space-averaging as a means to apply the

formalism of homogeneous and isotropic turbulence. This chapter was included as appendix for

the publication corresponding to chapter 7. However, since it demonstrates a very important

result applied in the following chapter, it was here included as a separate chapter.

Chapter 7 includes the main body of a article to be submitted to a fluid mechanics journal,

which includes as appendix the mathematical formalism presented in chapter 6. The objective of

this chapter is the characterization and quantification of the rate of dissipation of turbulent kinetic

energy (TKE) in flows within arrays of emergent, rigid and cylindrical stems, at scales of the

order of magnitude of the mean inter-stem characteristic length.

Although presented with the thesis layout, Chapters 4 to 7 include three articles submitted to

peer-reviewed journals, therefore some repetition of information may be found.

The last chapter summarizes the main conclusions drawn in the previous chapters and provides

recommendations for future works.
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Chapter 2

State-of-art

2.1 Introduction

Vegetation has a key role in the fluvial environment, providing depuration of contaminated

waters and protection against scour, among other relevant features. However, there is a knowledge

gap concerning channels protected vegetation. For instance, most of the existing design criteria for

wetlands employ resistance formulas such as Manning’s or Chezy’s, calibrated ad hoc (Rahmeyer

et al. 1995). Introducing the physics of vegetated channels requires tackling the complex fluid

dynamics problem that involves a hydrodynamic characterization of boundary, plant stems and

foliage and turbulent flow.

Double-Averaging Methodology (DAM), a particular form of upscaling, in both time and

space, allowed progress in the characterization of the 3D flow over irregular boundaries. Such

methods are especially pertinent for the characterization of the flows within and in the near

vicinity of plant canopies which are spatially heterogeneous. However, the detailed knowledge of

turbulent processes at smaller scales remains of paramount importance in the characterization of

flows within vegetated reaches.

This chapter is organized in two main sections. The first part introduces the fundamental

conservation equations, introducing the Double-Averaging Methodology (DAM) and the resulting

equations. The second part is a revision of some of the results of the classic homogeneous and

isotropic turbulence, which are the base for some of methods applied in the present thesis.
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2.2 Conceptual model

2.2.1 Navier-Stokes equations

The well-known Navier-Stokes equations are non-linear differential equations that describe the

flow of Newtonian fluids, expressing the balance of mass, surface and inertial forces. The Navier-

Stokes equations are obtained from the momentum conservation equation and the constitutive

equation which relates the strain rate and stress of the flow.

The momentum conservation equation for an incompressible fluid is defined, in tensor notation,

by (Currie, 1993, p. 17)

ρ
∂u j

∂ t
+ρ

∂u jui

∂xi
= ρg j +

∂σi j

∂xi
. (2.1)

In this equation, as in all the equations hereinafter, a Cartesian coordinate system is adopted

where x, y and z are the streamwise, spanwise and vertical coordinates, respectively, and u, v and

w are the corresponding instantaneous velocity components. Tensor notation is applied according

to {x1, x2, x3} ≡ {x, y, z} and {u1, u2, u3} ≡ {u, v, w}, and Einstein notation is applied to simply

the writing of sums in equations. In equation (2.1), ρ stands for the fluid volumetric mass density,

gi is ith component of the gravitational acceleration, σi j is the stress tensor and i = 1,2,3 and

j = 1,2,3 correspond to each of the space directions, x, y and z, respectively.

The constitutive equation for an incompressible Newtonian fluid is expressed by

σi j =−pδi j +µ

(
∂ui

∂x j
+

∂u j

∂xi

)
(2.2)

where p is the local pressure and µ is the fluid dynamic viscosity (Currie 1993, p. 28; Pope

2000, pp. 16-17). The term pδi j expresses the isotropic pressure acting on the fluid, while

µ

(
∂ui
∂x j

+
∂u j
∂xi

)
is the stress tensor of a Newtonian fluid.

Considering the fluid incompressibility and assuming that µ is constant, the derivation of

equation (2.2) results

∂σi j

∂xi
=− ∂ p

∂x j
+µ

∂ 2u j

∂xi∂xi
. (2.3)

Substituting this result in equation (2.1), dividing all terms by ρ and considering the mass conser-

vation equation for incompressible fluids
(

∂ui
∂xi

= 0
)

, one obtains the Navier-Stokes equations for

incompressible fluids (Schlichting 1968, p. 62; Monin & Yaglom 1971, p. 30; Currie 1993, p.
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31):

∂u j

∂ t
+

∂u jui

∂xi
= g j−

1
ρ

∂ p
∂x j

+ν
∂ 2u j

∂xi∂xi
(2.4)

where ν = µ/ρ is the fluid kinematic viscosity. This equation expresses the second’s Newton

law, where momentum variations in the left hand side, expressed as a force per mass unit, is

balanced by the external forces in the right hand side, where g j represents the mass force, ∂ p
∂x j

the

pressure surface force and ν
∂ 2u j

∂xi∂xi
the viscous surface force.

2.2.2 Reynolds-Averaged Navier-Stokes equations (RANS)

Most of the flows in nature are turbulent. Turbulent flows are random, unsteady, three-

dimensional and contain many eddies with different lengths and time scales. Typically, in a free

surface flow, largest eddy scales have the size of the flow depth. The smallest eddy scales one

can find in a turbulent flow are characterized by sizes of the order of magnitude of the fluid

molecules. Due to its complexity, turbulent flows are very difficult to predict. The Navier-Stokes

equations are able to describe all the details of the turbulent velocity fields of a flow, from

the largest to the smallest scale. However, when recurring to numerical solvers, such detail

leads to extremely expensive computational time to solve those equations even for simple cases.

Therefore, Navier-Stokes equations are considered, practically, impossible to apply to solve any

engineering problem (Pope, 2000, p.8).

The development of the so-called Reynolds-Averaged Navier-Stokes equations (RANS) was

motivated by the impossibility to solve actual problems with Navier-Stokes equations and it is

based in the application of a time-average operator over a time period larger than the largest

characteristic period of the flow motion. To obtain the RANS, it is necessary to introduce first

the Reynolds decomposition in the Navier-Stokes equations before the application of the time-

average operator. Reynolds decomposition consists in the decomposition of the instantaneous

flow variables into mean and fluctuating components, as exemplified in Figure 2.1. Hence, an

instantaneous generic variable θ can be written as

θ (x,y,z, t) = θ (x,y,z)+θ
′ (x,y,z, t) with θ ′ = 0 (2.5)

where overbars identify the time-averaged component and primes the fluctuations to the time-

average. Introducing Reynolds decomposition and time-averaging each term of equation (2.4), as

follows

∂

(
ū j +u′j

)

∂ t
+

∂

(
ū j +u′j

)
(ūi +u′i)

∂xi
= ḡ j−

1
ρ

∂ (p̄+ p′)
∂x j

+ν

∂ 2
(

ū j +u′j
)

∂xi∂xi
(2.6)
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Figure 2.1: Extract of a longitudinal instantaneous velocity time series acquired with a Laser Doppler
Anemometry system. The dashed line represents the time-averaged velocity ū.

and considering the following rules of the time-average operator (Hinze 1975, pp. 6-7, Monin &

Yaglom 1971, p. 207)

¯̄
θ = θ̄ θ +ξ = θ̄ + ξ̄

θ̄ ξ = θ̄ ξ̄
∂θ

∂ s
=

∂ θ̄

∂ s
θξ 6= θ̄ ξ̄

(where θ and ξ stand for any generic flow variable) one obtains the RANS for a flow of an

incompressible Newtonian fluid (Schlichting, 1968, p. 529):

∂ ū j

∂ t
+ ūi

∂ ū j

∂xi
= g j−

1
ρ

∂ p̄
∂x j
−

∂u′ju
′
i

∂xi
+ν

∂ 2ū j

∂xi∂xi
(2.7)

Most of the terms in the Navier-Stokes equations were simply replaced by their time-averaged

counterparts in the RANS, but a new term has arisen due to the non-linearity of the convective

acceleration term. This term, the third term on the right hand side of equation (2.7), is known as

the Reynold stress term and it represents, to the mean flow, the transport of momentum associated

to velocity fluctuations by the turbulent component of the flow.

The Reynolds stress tensor, also named turbulent stress tensor, is defined by −ρu′ju
′
i, and it is

an additional stress tensor which is caused by turbulent fluctuations (Monin & Yaglom, 1971,

p. 261) being often modelled as a turbulent diffusion of momentum (Schlichting, 1968, p. 546).

Several closure models for the Reynolds stress term have been proposed in order to find numerical
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solutions for the RANS (Patel et al., 1985).

The RANS have been used as a tool for both modelling and interpreting numerical and

experimental results. However, when the time-averaged flow is highly spatially heterogeneous,

RANS are not convenient. Therefore, to conceptually solve this issue, time-averaged equations

should be supplemented by space averaging (Nikora et al., 2007a).

2.2.3 Turbulent kinetic energy conservation equation

Particularly relevant within the scope of turbulent flows is the equation of balance of turbulent

energy, which describes the variation of the density of kinetic energy of the fluctuating motion

(Monin & Yaglom, 1971, p. 374). Hereinafter, the term turbulent kinetic energy (TKE) refers to

the mean kinetic energy of the turbulent motion per unit mass of the fluid, defined as Et = 1/2u′iu
′
i.

The TKE balance equation results from the subtraction of the kinetic energy equation for

the mean flow from the total kinetic energy equation. The former is obtained by multiplying

the RANS by the mean velocity ū j, while the total kinetic energy equation is obtained by the

multiplication of the Navier-Stokes equations by the instantaneous velocity u j followed by the

time-average of all terms (Tennekes & Lumley 1972, pp. 59-63, Hinze 1975, pp. 68-72).

For steady flows, the equation of conservation of TKE is written as

1
2

u j
∂u′iu

′
i

∂x j︸ ︷︷ ︸
I

+u′iu
′
j
∂ui

∂x j︸ ︷︷ ︸
II

+
1
2

∂u′iu
′
iu
′
j

∂x j︸ ︷︷ ︸
III

=− 1
ρ

∂ p′u′j
∂x j︸ ︷︷ ︸
IV

+2ν
∂ si ju′i
∂x j︸ ︷︷ ︸
V

− ε̄

︸︷︷︸
VI

, (2.8)

where si j is the symmetric part of turbulent strain tensor ∂u′i
∂x j

and ε̄ is the time-averaged dissipation

rate of TKE.

Equation (2.8) shows that the density of turbulent energy at a given point of the flow may

vary due to the interaction with the mean flow (term I, convective term), the transformation of

part of the energy of the mean motion into turbulent energy (term II, turbulent production), the

transport of turbulent energy by the fluctuating motion (term III, turbulent diffusion), the transport

of turbulence by pressure fluctuations (term IV, pressure diffusion), the action of internal friction

(term V, viscous term) and the transformation of kinetic energy into heat by viscous dissipation

(term VI, TKE dissipation rate) (Monin & Yaglom, 1971, pp. 373-382).

2.2.4 Double-Averaging Methodology

Double-averaging (DA) methods are a particular form of upscaling, both in time and space.

The conservation equations of turbulent flows are expressed for time-averaged quantities which,
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in case of unsteady flow, are defined in a time-window smaller than the fundamental unsteady

flow time-scale, and for space-averaged quantities, defined in space windows larger than the

characteristic wavelength of the boundary irregularities (Franca & Czernuszenko, 2006). The

Double-Averaging Methodology (DAM) allowed progress in the characterization of the 3D flow

over irregular boundaries and as a result of these studies, the most consolidate advances concern

upscaling the RANS equations. The conservation of momentum ceases to be applicable at a

continuum of points in space to be applied at a mesh of bounded sets of finite measures, mapping

the continuum space. DAM is far more than a simple statistical procedure since it produces

mathematically significant physical terms that have been added ad hoc to the RANS during many

years, namely form-induced stresses and form and viscous drag.

The first double-averaging methods appeared in the field of multi-phase and ground-water

flow hydrodynamics (Gray & Lee, 1977; Whitaker, 1967). In free-surface hydraulics, the idea of

double-averaging was first introduced by Smith & McLean (1977) for characterizing a flow over

large dunes. However, the formal apparatus of the DAM theory has been built in atmospheric

boundary layer studies to describe turbulent flows within and above terrestrial canopies (Finnigan,

2000; Finnigan & Shaw, 2008; Poggi et al., 2004a,b; Raupach et al., 1991, 1986; Raupach &

Shaw, 1982; Wilson & Shaw, 1977, among others).

Concerning hydraulic flows, among the first published works it should be highlighted the

work of Gimenez-Curto & Corniero Lera (1996) who introduced the term “form-induced stress”

to describe the spatial disturbances in the time-averaged flow over rough surfaces. Later, López &

García (1998) used insights from the DAM to model the suspended sediment transport in a flow

through simulated vegetation. However, most of the development of the DAM in water flows

has been carried out during the last 12 years, mainly applied to flows over rough gravel beds

(Campbell, 2005; Ferreira et al., 2010, 2008; Franca et al., 2008; Manes et al., 2007; Mignot

et al., 2009a; Nikora et al., 2013; Nikora et al., 2001, 2004, 2007a; Pokrajac et al., 2008).

Nikora et al. (2001) suggested that the double-averaged momentum equations should be used

as a natural basis for hydraulics of rough-bed open-channel flows, especially with small relative

submergence of the roughness. According to the authors the main advantages of the DAM

are: the consistent link between spatially averaged roughness parameters and double-averaged

flow variables; the explicit appearance of a form drag term and form-induced stresses in the

momentum equations; the possibility for scaling considerations and parametrizations based

on double-averaged variables; and the possibility for the consistent scale partitioning of the

roughness parameters and flow properties.

Nikora et al. (2004) presented several models for the vertical distribution of the double-

averaged longitudinal velocity in flows over rough boundaries, suggesting constant, exponential

or linear profiles depending on roughness geometry and flow conditions.
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Nikora et al. (2007a), Nikora et al. (2007b) and Nikora et al. (2013) present a review of the

progresses achieved so far in the DAM theory as well as several applications of this theory in

hydraulics, highlighting its advantages and strengths. Ferreira et al. (2008) show the application

of the DAM in the characterization and quantification of the flow resistance in free surface

flows over rough, porous and mobile beds. Ferreira et al. (2010) applied DAM to evaluate the

impacts of sand transport on flow hydrodynamics and on vertical dissolved oxygen distribution

in gravel-bed rivers. This study concluded that neglecting the form-induced vertical fluxes of

mass leads to underestimating the concentrations of dissolved oxygen in the pythmenic layer.

In what concerns vegetated boundaries, DAM has been successfully employed to calculate the

drag exerted on arrays of identical stems (Poggi et al., 2004a) or the drag on plants with dense

foliage (Righetti & Armanini, 2002). The upscaled momentum equations are especially pertinent,

at the adequate scales, to calculate the drag partition (Raupach et al., 1991) and the bulk flow

resistance of a stem array (Ferreira et al., 2009a).

2.2.5 Double-Averaged Navier-Stokes equations (DANS)

Similarly to the process of obtaining the RANS from de Navier-Stokes equations, a set of

equations, named Double-Averaged Navier-Stokes equations (DANS) are derived from the RANS

introducing a spatial decomposition and applying the space-average operator. It should be noticed

that, herein, the space-averaging is introduced after the time-averaging. However, the inverse

order of the average operators would render the same results in what concerns the momentum

conservation equation (Nikora et al., 2007a; Pokrajac et al., 2008).

The spatial decomposition of a generic time-averaged flow variable θ̄ is expressed by

θ̄(x,y,z) =
〈
θ̄
〉
(z)+ ˜̄

θ(x,y,z) (2.9)

where angle brackets represent the space-averaging and tildes the spatial fluctuation of the time-

averaged variables regarding its space-averaged value. To simplify the notation, θ̃ ≡ ˜̄
θ will be

used hereinafter.

It should be noticed that the space-averaging here is considered over a thin layer parallel to

the mean channel bed, therefore
〈
θ̄
〉

depends only on the vertical coordinate z. The dimensions

of the averaging domain in the plane parallel to the mean bed should be larger than the dominant

turbulence scales, but much smaller than the large-scale features.

The space-average operator is subjected to the following rules (Finnigan & Shaw, 2008)

〈〈θ〉〉= 〈θ〉 〈θ +ξ 〉= 〈θ〉+ 〈ξ 〉
〈〈θ〉ξ 〉= 〈θ〉〈ξ 〉 〈θξ 〉 6= 〈θ〉〈ξ 〉
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where θ and ξ stand for any generic flow variables, as for example, the velocity, ui, or the

pressure, p. Moreover, it should be underlined that space-average operator does not always

commute with time and spatial differential operators (Raupach & Shaw, 1982; Wilson & Shaw,

1977). Actually,

〈
∂θ

∂x j

〉
=

∂ 〈θ〉
∂x j

is only true when the control volume is constituted only by fluid. When the control volume has

both a liquid and a solid fraction

〈
∂θ

∂x j

〉
6= ∂ 〈θ〉

∂x j
,

thus, to apply the spatial-average to differential terms two theorems should be invoked (details can

be found in Campbell, 2005; Finnigan, 2000; Gray & Lee, 1977; Nikora et al., 2007a; Raupach

et al., 1986).

These theorems are the spatial-averaging theorem

〈
∂θ

∂x j

〉
=

1
ψ

∂ψ 〈θ〉
∂x j

− 1
∀ f

∫

Sint

θn jdS, (2.10)

and the general transport equation

〈
∂θ

∂ t

〉
=

1
ψ

∂ψ 〈θ〉
∂ t

+
1
∀ f

∫

Sint

θu(I)i nidS, (2.11)

where θ is some tensorial quantity, vector or scalar, defined only in the fluid; Sint is the solid-fluid

interface surface; ψ =
∀ f
∀T

expresses the fluid fraction, i.e., the percentage of volume occupied

by fluid, ∀ f , within the total control volume, ∀T ; ni is the ith component of the unit normal

vector, directed from the solid into the fluid; u(I)i is the ith component of the velocity vector of

the solid-fluid interface. When the boundary is rigid, no-slip and non-porous u(I)i = 0, thus the

last term of the general transport equation vanishes. Hereinafter the superscript I is omitted in

non-ambiguous cases.

The double-averaged continuity equation follows straightforwardly by the application of

theorem (2.10) to the time-averaged version of this equation
(

∂ ūi
∂xi

= 0
)

:

〈
∂ ūi

∂xi

〉
=

1
ψ

∂ψ 〈ūi〉
∂xi

− 1
∀ f

∫

Sint

ūinidS = 0
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1
ψ

∂ψ 〈ūi〉
∂xi

=
1
∀ f

∫

Sint

ūinidS (2.12)

which becomes, for rigid, no-slip and non-porous boundaries

∂ψ 〈ūi〉
∂xi

= 0 (2.13)

Considering the presented rules, theorems and the double-averaged continuity equation, the

double-averaged momentum conservation equations, DANS, for incompressible fluids are given

by

∂
〈
ū j
〉

∂ t
+ 〈ūi〉

∂
〈
ū j
〉

∂xi
= g j−

1
ψρ

∂ψ 〈p̄〉
∂x j

− 1
ψ

∂ψ

〈
u′ju
′
i

〉

∂xi
− 1

ψ

∂ψ
〈
ũ jũi

〉

∂xi

+
1
ψ

∂

∂xi

(
ψ

〈
ν

∂ ū j

∂xi

〉)
+

1
ρ∀ f

∫

Sint

p̄n jdS− 1
∀ f

∫

Sint

ν
∂ ū j

∂xi
nidS− 〈ūi〉

ψ

∂ψ

∂ t

− 1
∀ f

∫

Sint

ū ju
(I)
i nidS−

〈
ū j
〉

∀ f

∫

Sint

ūinidS+
1
∀ f

∫

Sint

ū jūinidS+
1
∀ f

∫

Sint

u′ju
′
inidS (2.14)

By the non-slip condition and considering that the solid-fluid interface is rigid, in time, and

non-porous the terms in the last line and the term 〈ūi〉
ψ

∂ψ

∂ t of the previous equation disappear.

Therefore, DANS for rigid boundaries and incompressible fluids are expressed, in force per unit

of fluid mass, by (Ferreira et al., 2010; Finnigan, 2000; Nikora et al., 2007a; Raupach et al.,

1986)

∂
〈
ū j
〉

∂ t
+ 〈ūi〉

∂
〈
ū j
〉

∂xi
= g j−

1
ψρ

∂ψ 〈p̄〉
∂x j

− 1
ψ

∂ψ

〈
u′ju
′
i

〉

∂xi
− 1

ψ

∂ψ
〈
ũ jũi

〉

∂xi

+
1
ψ

∂

∂xi

(
ψ

〈
ν

∂ ū j

∂xi

〉)
+

1
ρ∀ f

∫

Sint

p̄n jdS− 1
∀ f

∫

Sint

ν
∂ ū j

∂xi
nidS (2.15)

In equation (2.15), terms ρψ

〈
u′ju
′
i

〉
and ρψ

〈
ν

∂ ū j
∂xi

〉
represent the space-averaged Reynolds and

viscous stress tensors, respectively. Due to the spatial variability of the flow, DANS include a new

term
∂ψ〈ũ j ũi〉

∂xi
, the form-induced flux, which appears due to the non-linearity of the convective

acceleration term. Form-induced stresses, also known as dispersive stresses, are defined as

ρψ
〈
ũ jũi

〉
and are due to the spatial variability of the time-averaged velocity field. According

to Gimenez-Curto & Corniero Lera (1996), the form-induced stress tensor is non-zero when

there is vorticity in the disturbed flow. There are two other terms in the DANS, arising from

the non-commutativity of the average and differential operators, the terms 1
ρ∀ f

∫
Sint

p̄n jdS and
1
∀ f

∫
Sint

ν
∂ ū j
∂xi

nidS which represent the pressure and viscous drag, respectively.
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Note that in the previous equations, time and space-averaging operators where applied con-

sidering a time interval sufficiently large and a control volume defined as an infinite horizontal

slab of vanishing thickness. If these conditions are not valid extra stresses appear in the DANS

(details in Finnigan, 2000; Leonard, 1974).

The form and viscous drag terms of equation (2.15) can be written as

1
∀ f

∫

Sint

p̄n jdS =−
〈

∂ p̃
∂x j

〉
+
〈p̄〉
ψ

∂ψ

∂x j
(2.16)

and

− 1
∀ f

∫

Sint

ν
∂ ū j

∂xi
nidS =

〈
ν

∂ 2ũ j

∂xi∂xi

〉
− ν

〈
ū j
〉

ψ

∂ 2ψ

∂xi∂xi

− 2ν

ψ

∂
〈
ū j
〉

∂xi

∂ψ

∂xi
+

1
ψ

∂

∂xi
ψν

(
1
∀ f

∫

Sint

ū jnidS
)

(2.17)

respectively (Campbell, 2005, pp. 225-231). The last term of equation (2.17) vanishes for rigid,

no-slip and non-porous bed conditions. Inserting in equation (2.15) the previous definitions,

considering

1
ψ

∂ψ 〈p̄〉
∂x j

=
〈p̄〉
ψ

∂ψ

∂x j
+

∂ 〈p̄〉
∂x j

and

1
ψ

∂

∂xi

(
ψ

〈
ν

∂
〈
ū j
〉

∂xi

〉)
=

〈
ν

∂ 2ū j

∂xi∂xi

〉
+

ν
〈
ū j
〉

ψ

∂ 2ψ

∂xi∂xi
+

2ν

ψ

∂
〈
ū j
〉

∂xi

∂ψ

∂xi

an equivalent way to express the DANS is given by

∂
〈
ū j
〉

∂ t
+ 〈ūi〉

∂
〈
ū j
〉

∂xi
= g j−

1
ρ

∂ 〈p̄〉
∂x j

− 1
ψ

∂ψ

〈
u′ju
′
i

〉

∂xi
− 1

ψ

∂ψ
〈
ũ jũi

〉

∂xi

+ν
∂ 2〈ū j〉
∂xi∂xi

− 1
ρ

〈
∂ p̃
∂x j

〉
+ν

〈
∂ 2ũ j

∂xi∂xi

〉
. (2.18)

It should be noticed that often in literature (Finnigan & Shaw, 2008; Nikora et al., 2001; Poggi

et al., 2004a; Poggi & Katul, 2008) the drag and viscous drag are presented as
〈

∂ p̃
∂xi

〉
and

〈
ν

∂ 2ũ j
∂xi∂xi

〉
, respectively. That is a simplification, these terms are only one of the components of

drag terms.
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2.2 Conceptual model

In the present work, double-averaged quantities are defined as

〈
θ̄
〉
(z) =

1
A f (z)

∫

Ω/Σ

θ(ξ1,ξ2,z)dS (2.19)

where Ω is the measuring domain, Σ is the subdomain of Ω occupied by solid elements, A f (z)

is the area of the domain, within Ω, occupied by fluid at a given elevation z. Dummy variables

ξ1 and ξ2 are such that 0 < ξ1 < Lx and 0 < ξ2 < Ly, where Lx and Ly are the characteristic

wavelengths of the boundary irregularities in the x and y directions, respectively.

Definition (2.19) is not practical when measurements are spatially discrete, for instance

velocity profiles taken at a finite number of points in a given measuring domain. In the latter case,

the calculation of the double-averaged velocity at a given elevation z obeys to (Ferreira et al.,

2010; Franca et al., 2008)

〈θ̄〉(z)≈

N−N0(z)

∑
k=1

θ̄k(z)Ak(z)

N−N0(z)

∑
k=1

Ak(z)

(2.20)

where Ak(z) is the area of the convex subdomain Ωk, defined as the the area of influence

of (xk,yk) ∈]0,Lx[×]0,Ly[ and such that
N(z)⋃

k=1

Ωk = Ω, N corresponds to the total number of

subdomains and N0(z) to the number of subdomains, at elevation z, for which the flow variable is

not defined in (xk,yk). It should be noticed that
N−N0(z)

∑
k=1

Ak(z)< A(z) for N0(z)> 0.

2.2.6 Space-averaged turbulent kinetic energy equation (SATKE)

In the DAM framework, turbulent kinetic energy conservation is given by the space-averaged

turbulent kinetic energy equation (SATKE), which consists on the introduction of spatial decom-

position and the application of the space-average operator to the TKE equation, presented above

in the equation (2.8). The space-averaged turbulent kinetic energy equation is, thus, expressed by
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(Finnigan, 2000; Mignot et al., 2008)

1
ψ

∂ψ

(〈
u j
〉〈

u′iu
′
i

〉
/2
)

∂x j
=−

〈
u′ju
′
i

〉
∂
〈
u j
〉

∂xi︸ ︷︷ ︸
Ps

−
〈

u′ju
′
i

〉〈
∂ ˜̄ui

∂x j

〉

︸ ︷︷ ︸
Pm

−
〈

ũ′ju
′
i
∂ ˜̄ui

∂x j

〉

︸ ︷︷ ︸
Pw

− 1
ψ

∂

∂x j


ψ

〈
ũ′iu
′
i
˜̄u j

〉

2︸ ︷︷ ︸
Td

+ψ

〈
u′ju
′
iu
′
i

〉

2︸ ︷︷ ︸
Tt

+
ψ

ρ

〈
p′u′j

〉

︸ ︷︷ ︸
Tp


+ν

∂ 2
〈

u′iu
′
i

〉
/2

∂xi∂xi︸ ︷︷ ︸
Tv

+〈ε̄〉 (2.21)

where the term Ps is the shear production, Pw is the wake production term and the term Pm

corresponds to the work of the spatial velocity fluctuations against the double-averaged Reynolds

stress, and it can be written as
〈

ũ′ju
′
i

〉
〈ūi〉
ψ

∂ψ

∂x j
. The terms Td, Tt, Tp and Tv correspond to the

dispersive, turbulent, pressure and viscous transport, respectively, and 〈ε〉 is the dissipation term.

2.3 Turbulence

2.3.1 Nature of turbulence

Most of the flows occurring in nature and engineering applications are turbulent, from micro

biomedical flows to motions of gases in interstellar nebulae, the number of examples of turbulent

flows is almost infinite. Thus turbulence is all around us, therefore its study is extremely important

from the practical viewpoint (Monin & Yaglom, 1971, pp. 2-3).

Although turbulence is a rather familiar notion, it is difficult to come up with a definition

precise enough to cover all the detailed characteristics comprehended in it (Hinze, 1975, p. 1).

The best way is to describe the most common characteristics of turbulent flows. Turbulent flows,

occuring at high Reynolds number, are characterized by random fluctuations, in time and in space,

of velocity, pressure and other fluid mechanical quantities; they present high diffusivity which

causes rapid mixing and increased transfer of momentum, heat and mass; turbulent flows are

rotational and three-dimensional and they are characterized by high levels of vorticity fluctuation;

turbulent flows are dissipative since viscous shear stresses continuously perform deformation

work increasing the internal energy of the fluid by expensing turbulent kinetic energy. Turbulence

is a property of the flow and not a fluid property (Tennekes & Lumley 1972, pp. 1-4; Hinze 1975,

p. 14).

Turbulent motion can be assumed as a consistent superposition of eddies of various sizes,

which strongly interact due to the nonlinear and three-dimensional character of turbulence (Hinze,
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2.3 Turbulence

Figure 2.2: Representation of an eddy of wavenumber k and wavelength 2π/k (from Tennekes & Lumley,
1972, p. 259).

1975, p. 14). Eddies are structures of the turbulent flows characterized by a length scale, l, in the

physical domain or by a wavenumber, k, in the spectral domain. A good description of the concept

of an eddy is presented by Tennekes & Lumley (1972), who describe, in the spectral space, an

eddy as a disturbance containing energy in the vicinity of k. Eddies are expected to interact with

other eddies within one or two wavelengths losing their identity. Therefore, the contribution

of an eddy to the energy spectrum is a fairly broad spike, wide enough to avoid oscillatory

behaviour in the correlation. Tennekes & Lumley (1972) define an eddy of wavenumber k as

a disturbance containing energy between 0.62k and 1.62k (Figure 2.2), which leads to a width

of the contribution to the spectrum equal to k (ln(1.62) = ln(0.62)∼= 1/2), corresponding to an

envelope of the eddy of the order of 1/k. Then, the eddy size l is roughly equal to 2π/k.

In a turbulent flow, the upper limit of the eddies is determined mainly by the size of the

physical domain, whereas the lower limit is determined by viscosity effects. Within these smallest

eddies the flow is of a strong viscous nature where molecular effects are dominant (Hinze, 1975,

pp. 7-8).

Due to the randomness and non-linearity that characterize turbulent flows it is a challenge to

find a mathematical expression for time and space dependence of the velocity or pressure field of

a flow. A solution is to adopt a statistical description for the turbulence theory, based on the study

of specific statistical laws (Monin & Yaglom, 1971, p. 3).

The following subsection presents a brief overview on theory of homogeneous and isotropic

turbulence (HIT), where only the definitions pertinent to this work are presented. Complete

reviews on statistical fluid mechanics may be found in Tennekes & Lumley (1972), Monin &

Yaglom (1971); Monin & Yaglom (1975) or Chassaing (2000).
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2.3.2 Homogeneous and isotropic turbulence

The concept of “homogeneous and isotropic turbulence” was introduced by Taylor (1935)

as the condition that all the finite-dimensional probability distributions of the fluid mechanical

quantities at a finite number of space-time points are invariant under any orthogonal transfor-

mation of a system of three-dimensional coordinates (Monin & Yaglom, 1971, p. 13). HIT

hypothesis, simplifying the mathematical formulations, allowed for very important advances on

the knowledge of turbulence, namely it was the base for the well known Kolmogorov’s theories.

The conditions of HIT are never fulfilled in real turbulent flows, however they proved to be very

valuable for describing small-scale proprieties of real flows. According to Monin & Yaglom

(1971), any developed turbulence with sufficiently high Reynolds number may be considered to be

locally homogeneous and locally isotropic, this means that a range of scales where homogeneous

and isotropic conditions apply may be found in the flow.

In this section the velocity field u(x,y,z) is considered homogeneous and isotropic, thus

with constant mean 〈u〉 and, without loss of generality, it is assumed that 〈u〉 = 0. Note that

in HIT conditions the statistics of the velocity field are equal for all the components, so u is

here considered as a generic velocity component (scalar random field). It should also be noted

that the time dependence of u is not considered since the flow is admitted steady, furthermore

the following definitions are presented in terms of space, avoiding to call the Taylor’s frozen

turbulence theory. The angle brackets, 〈〉1, represent here an appropriated ensemble average

operator, that due to the assumption done may be a space-average, however, since the processes

are considered stationary, it could also be a time-average.

Correlation functions, structure functions and energy spectra are within the most used quan-

tities to characterize turbulent flows. The autocorrelation function, the second-order structure

function and the one-dimensional energy spectrum are quantities interrelated, in the sense they

are all second-order functions of the fluctuation velocity field.

The correlation function measures the degree to which the velocity at two different points is

correlated and how they are correlated (Davidson, 2004, pp. 88-89). In the case of an isotropic

field u(x,y,z), the correlation function depends only on the lag r between the two points (Monin

& Yaglom, 1975, p. 31). Correlating the scalar field u(x,y,z) with itself at both spatial positions

(x,y,z) and (x+ rx,y+ ry,z+ rz), the correlation function can be called autocorrelation and it is

defined by

B(r) = 〈u(x,y,z)u(x+ rx,y+ ry,z+ rz)〉 (2.22)

where r = |rx~ex + ry~ey + rz~ez|. Very often autocorrelation functions are considered in the dimensi-

1Later the angular brackets will represent space-averaging.
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l0 r
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Figure 2.3: a) Autocorrelation function and corresponding integral scale, l0 and Taylor’s micro scale, λ

(adapted from Chassaing, 2000, p. 55). b) Sketch of the correlation functions BLL and BNN .

onless form, normalizing B(r) by the velocity variance at position (x,y,z):

R(r) =
〈u(x,y,z)u(x+ rx,y+ ry,z+ rz)〉

〈u(x,y,z)2〉 . (2.23)

The typical shape of R(r) is depicted in Figure 2.3a). The integration of this function leads to the

definition of the so called integral length scale of the turbulent flow, l0,

l0 =
∫ inf

0
R(r)dr, (2.24)

which is the distance where there is an appreciable correlation between the values of the flow

field at two points. This distance is of the order of the size of the largest eddies present in the

flow field.

Another scale of interest, also based on the autocorrelation function, corresponds to the

intersection on the horizontal axis (λ ) of the osculating parabola tangent to the autocorrelation

function at the origin peak for r = 0 (Monin & Yaglom, 1975, p.35). This scale λ , represented in

Figure 2.3a), is defined as

(
∂ 2R(r)

∂ r2

)

r=0
=− 2

λ 2 . (2.25)

Monin & Yaglom (1975) named this scale λ as the differential length scale, but it is also often

referred as Taylor’s micro scale.

The concept of the correlation function was introduced for a scalar field, it is now convenient

to extend it to multidimensional isotropic random fields. For that case, a correlation matrix is
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defined by

‖Bl j(r)‖= ‖
〈
ul(x,y,z)u j(x+ rx,y+ ry,z+ rz)

〉
‖ (2.26)

in which all the elements depend only on r = |rx~ex + ry~ey + rz~ez| (Monin & Yaglom, 1975, p.

36). When dealing with the tensor Bl j, it is convenient to consider a special set of coordinates

in which the first axis lies along the direction of the increments, r, while the two other axes are

perpendicular to that direction. Due to the isotropic condition it is possible to prove (see Monin &

Yaglom, 1975, p. 38) that Bl j is a symmetric tensor with only two nonequal components defined

by

B11 = BLL(r) = 〈uL(α)uL(α + r)〉 (2.27a)

B22 = B33 = BNN(r) = 〈uN(α)uN(α + r)〉 (2.27b)

where α is a generic space point, uL and uN denote the projections of the velocity vector on the

direction of r and on any perpendicular direction, respectively (see Figure 2.3b). BLL and BNN

are called the longitudinal and transverse correlation functions and they relate to each other by

(Monin & Yaglom, 1975, p. 49)

BNN(r) = BLL(r)+
r
2

∂BLL(r)
∂ r

. (2.28)

For the same referential, the two point longitudinal and transverse second-order structure

functions, S2L and S2N respectively, are defined as

S2L(r) =
〈
(uL (α + r)−uL(α))2

〉
(2.29a)

S2N(r) =
〈
(uN (α + r)−uN(α))2

〉
(2.29b)

Within HIT conditions, the correlation functions and the second-order structure functions are

related as follows (Monin & Yaglom, 1975, p.100)

S2L(r) = 2(BLL(0)−BLL(r)) (2.30a)

S2N(r) = 2(BNN(0)−BNN(r)) (2.30b)

Concerning second-order structure functions, an important result was analytically devised

from Kolmogorov hypotheses, the two-thirds law (Monin & Yaglom, 1975, pp. 353-354). This

states that in any turbulent flow with sufficiently large Reynolds number, the mean square of

the velocity difference between two points separated by a distance r should be proportional to
〈ε〉2/3 r2/3, for l0� r� η , where 〈ε〉 is the mean dissipation rate of TKE, and η stands for the
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Kolmogorov length scale. Hence, there is a particular range of scales, where HIT conditions are

normally valid, for which longitudinal and transverse second-order structure functions can be

written as

S2L(r) =C2L 〈ε〉2/3 r2/3 (2.31a)

S2N(r) =C2N 〈ε〉2/3 r2/3, (2.31b)

respectively. C2L and C2N are dimensionless constants.

Alternatively to the size of the eddies, one can work with wavenumber, k, passing from the

physical to the spectral space by means of Fourier transforms. The energy spectrum, in the

spectral domain, is related to the correlation function as follows

EL(k) =
1

2π

∫ +∞

−∞

e−ikrBLL(r)dr (2.32a)

EN(k) =
1

2π

∫ +∞

−∞

e−ikrBNN(r)dr (2.32b)

where EL and EN are longitudinal and transverse one-dimensional energy spectra, respectively,

and i is the imaginary unit. The energy spectrum is a convenient way to evaluate how the energy

is distributed across the various eddy sizes (Davidson, 2004, p. 91).

An equivalent law to the two-thirds law can be formulated in terms of energy spectrum (Monin

& Yaglom, 1975, p.355)

EL(k) =CL 〈ε〉2/3 k−5/3 (2.33a)

EN(k) =CN 〈ε〉2/3 k−5/3 (2.33b)

where CL and CN are dimensionless constants. This relation, often called −5/3 law, is valid

only for wavenumbers, k, within a particular range of scales, called the inertial range of scales.

Typically, turbulence extracts energy from the mean flow at large scale while viscous dissipation

of turbulent energy occurs at very small scales. Between these two extreme eddy scales there

is a range of scales which are not directly affected by the energy maintenance and dissipation

mechanisms (Tennekes & Lumley, 1972, pp. 248-274). This is the so called inertial range, where

both the 2/3 and the −5/3 laws are valid, and where merely transfer of energy, from production

processes to dissipation processes, occurs.

Briefly, and in a simplified way, the energy spectrum of turbulence can be defined in three

scale ranges. The energy-containing eddies correspond to the range with eddy sizes of the order

of the integral length scale, corresponding, normally, to anisotropic scales. Then, there is a flux

of energy from larger to smaller eddies, within the inertial range, where the eddies are expected

to be isotropic, since the turbulent motion is increasingly “scrambled” at small scales and the
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sense of direction is lost. This is the concept of local isotropy proposed by Kolmogorov (1941b).

In that range of scales, there are no gains or losses of energy and the total amount of energy

transferred down in the cascade process should be equal to the dissipation rate 〈ε〉. Therefore,

the inertial range is also called the equilibrium range. Finally, at the end of the energy cascade, at

very small scales, the energy is dissipated into heat (Tennekes & Lumley, 1972, pp. 248-274).

Kolmogorov (1941a) introduced one of the most important results of the HIT, developing a

relation between second- and third-order structure functions and the mean dissipation rate of

TKE as follows

S3L(r) =−
4
5
〈ε〉r+6ν

∂S2L(r)
∂ r

(2.34)

where S3L is the third-order structure function, which is defined by

S3L(r) =
〈
(uL (α + r)−uL(α))3

〉
. (2.35)

This is a very important analytical result since it allows the estimation of the dissipation rate of

TKE directly from the structure functions, without requiring any constant or major simplifications.

Since normally the locally isotropic condition is applied in the inertial range of scales, where

viscous friction should not play an important role, the previous equation is often simplified to

S3L(r) =−
4
5
〈ε〉r, (2.36)

which is termed as the “−4/5 law” (Frisch, 1995, p. 86). Equation (2.36) provides a

straightforward way to calculate the rate of dissipation 〈ε〉 provided that there is local isotropy, in

the sense of Monin & Yaglom (1975). In that case, there is a sufficiently large range of scales

where the linear behaviour of S3L is evident. This estimate of 〈ε〉 is particularly interesting since,

coming from a third order moment, it is non susceptible to be affected by white noise, typically

introduced by most instrumentation.
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Experimental work

3.1 Introduction

The purpose of the experimental work, in the scope of the present doctoral research project, is

the characterization of the turbulent flow within arrays of rigid and emergent cylinders, simulating

boundaries populated with rigid vegetation. Hence, the experimental tests were designed to

measure instantaneous velocities from which turbulent quantities are derived.

The experimental work was carried out in two laboratory facilities: three tests were carried out

at the Laboratory of Hydraulics and Environment of Instituto Superior Técnico (IST) in Lisbon,

Portugal, acquiring 2D velocity maps with a Particle Image Velocimetry (PIV) system; and one

test was reproduced at the Laboratory of Leichtweiß Institute for Hydraulic Engineering and

Water Resources at Technische Universität Braunschweig (LWI) in Germany, where 3D point-

wise velocity series were acquired with Laser Doppler Anemometry (LDA). The measurements

with PIV included velocity acquisitions in horizontal and vertical planes.

Three experimental tests were performed. Two had a constant areal number-density of stems

and one presented spatially varying stem areal number-density. The latter was the test reproduced

in both facilities. For all tests, the flow was gradually varied, accelerating in the downstream

direction.

The present chapter describes the laboratory facilities, instrumentation and experimental tests.

It starts with the description of both laboratory facilities and an overview of the instrumentation

used. Then, a description of the PIV follows, including a literature review of the key points

of this instrumentation, as well as a justification for parameters chosen in the framework of

this thesis. The PIV description is followed by a description of the main principles of LDA

instrumentation. The last section presents the experimental procedures including the description

and characterization of the tests performed.
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Figure 3.1: Schematic view of the recirculating tilting flume at IST.

3.2 Laboratory facilities

3.2.1 The flumes

At IST, the experimental work was performed in a recirculating tilting flume (CRIV). This is

a 12.5 m long, 40.8 cm wide and 50 cm tall prismatic channel with adjustable slope in the range

−0.5% to +2.5%. The channel has side walls made of glass, enabling flow visualization and

laser measurements. During the experiments, the channel was horizontal and the bottom was

covered with a horizontal layer of gravel and sand. Over the gravel bed, rough, vertical and rigid

cylinders with 1.1 cm of diameter were randomly placed to simulate regions populated with rigid

vegetation. A general view of the CRIV is shown in Figure 3.1.

The recirculation circuit of CRIV is composed of:

i. four storage and inertia communicating tanks of equal capacity of 1.1 m3;

ii. a water recirculation PVC pipe system with 200 mm diameter;

iii. a centrifugal pump whose maximum discharge is 28 l/s.

As accessories, the recirculation circuit has (i) a valve upstream of the pump, (ii) a valve in

the compression conduit, used to control the discharge and (iii) a 0.01 l/min precision digital

electromagnetic flow meter.

At the channel inlet there is a wooden stabilizer to reduce fluctuations of the free-surface

due to the upward movement of the flow leaving the pressure circuit. At the outlet, there are

two orifices to discharge the flow into one of the inertia tanks. The water is pumped from an

intermediate tank minimizing the air entrainment into the recirculation circuit.

CRIV is equipped with a manually operated gate at the outlet. However, during the experimen-

tal work the flow was controlled by a coarse gravel weir, avoiding the generation of a recirculation

pattern towards upstream of separated flow.
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(a) (b)

Figure 3.2: a) View from downstream of the vegetated reach and b) lateral view of the coarse weir, at IST
flume.

(a) (b)

Figure 3.3: a) Upstream part and b) the vegetated reach of the flume at LWI.

At LWI, the flume where experiments were carried out has a length of 32 m, is 0.6 m wide and

0.4 m high. It is a tilting flume with slope adjustable between −1% and +4%. This channel has

also side glass walls. In the experiments the flume was kept horizontal and its width was reduced

to 0.40 m in order to reproduce the conditions at IST’s laboratory. Figure 3.3a) presents a picture

of the upstream part of the flume; it shows the solution applied to narrow the original flume’s

width. At the entrance of the flume, concrete cubes were alternately place at each side of the

flume to destroy the flow structures created by the narrowing of the flume. Figure 3.3b) shows the

reach covered with stems, showing also the point gage used to measure the bed topography and

the transverse system used to displace the LDA probes. Here, the flow depth was also controlled

by a coarse gravel weir positioned downstream, to enforce the same water depths as in the test of

the CRIV flume.

The flume is connected to the laboratory recirculating system. At LWI there is a 25 m3
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Figure 3.4: Traverse system used at LWI for positioning the LDA probes.

elevated water reservoir with constant level, from where the water is gravitationally conducted to

the flume. The discharge is controlled by a valve and measured by an inductive flowmeter. From

the flume’s outlet, the water is then conveyed to a reservoir in the underground of the laboratory.

The LWI-flume was equipped with a traverse system which allowed the automatic positioning

of the LDA probes during the experiments. This automated system, shown in Figure 3.4, was

controlled by the LDA system software, BSA Flow from Dantec®.

Before starting the experiments, preparation works were performed in both flumes to guarantee

the adequacy of the experimental conditions. For this purpose, velocity measurements were

performed to verify the symmetry of the flumes as well as preliminary tests to evaluate the

sensitivity of the instrumentation.

For the experiments in both flumes, arrays of rigid, cylindrical and vertical stems were

randomly placed along a 3.5 m long reach simulating rigid vegetation conditions, herein called

vegetated reach. The diameter of the cylindrical elements was 1.1 cm. To enable the velocity

measurements, gaps (narrow regions without stems in the spanwise direction) were enforced,

whose width was equal to the mean inter-stem distance of the upstream reach. These gaps will

herein be designated by “measuring gaps".

Upstream of the vegetated reach there was a reach, about 4 m long, where the bed consisted

of a horizontal layer of gravel and sand, with the same roughness of the bed in the vegetated

reach, to develop the flow. The sand mean diameter was 0.8 mm while the gravel mean diameter

was 7.5 mm. Upstream of this reach, at the flume’s inlet a reach with larger gravel (3−5 cm

of diameter) was used to accelerate the development of the flow boundary layer. Figure 3.5

illustrates the longitudinal profile of the flumes during the experiments and shows details on the

stem’s placement.

All the experiments were carried out with a discharge of 2.3 l/s and the flow was subcritical
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(a)

(b) (c) (d)

Figure 3.5: a) Scheme of the longitudinal profile of the flumes during the experiments; b) detail of the
stem mounting; c) picture of stems and bed during the tests; and d) an view of IST’s flume from upstream.

both downstream and upstream of the vegetated reach.

The techniques employed to measure velocities, PIV and LDA, are particle-based techniques,

since they rely on the presence of particles following the flow. The corresponding particles

were added in the flow during the experiments. At IST, an elevated funnel, equipped with a tap,

was filled with a mixture of water and seeding before PIV acquisitions. The seeding mixture is

projected against a PVC plate before entering into the flow in order to fasten the mixing with

the main flow. The apparatus was placed at the flume’s inlet and it is presented in Figure 3.6

a). At LWI, the particles were mixed in water in a 200 l container, where a two-blade mixer

was rotating to avoid seeding deposition. The seeding mixture was pumped into the flume at

a constant discharge. Also at LWI, the seeding mixture was projected against a plate before

entering into the main flow. A picture of this apparatus is shown in Figure 3.6b).

3.2.2 Instrumentation

The experimental work required the measurement of:

i. instantaneous velocity maps;

ii. bed topography;

iii. free-surface elevation;

iv. water temperature.
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(a) (b)

Figure 3.6: Apparatus for the introduction of seeding particles in the flow a) at IST and b) at LWI.

Temperatures were regularly measured by means of a digital thermometer (Figure 3.7b) in

order to compute the water viscosity according to Likhachev (2003).

Regarding the bed and free-surface elevation, at IST’s facility, the measurements were carried

out with a high precision laser displacement sensor, the LK-2501 model commercialized by

Keyence® (Figure 3.7c). This equipment consists in a IIIb class laser head connected to a high-

precision controller. Displacements are obtained by triangulation: the laser beam is reflected off

the target surface and is received by a lens system also included in the laser head. The beam is

focused on a CCD sensing array which detects the peak value of the light quantity distribution of

the beam spot. This equipment has 50 µm of repeatability and the beam spot diameter is 0.3 mm

at the reference distance (500 mm). The output is a voltage on the range ±5 V which is linearly

converted into the metric system (50 µm/mV). To measure the free-surface level a very small

and opaque plastic sheet was placed on the measuring point. It should be noticed that the piece of

plastic did not interfere much with the free-surface oscillations.

At LWI, the bed topography was measured with a 0.1 mm precision point gage (Figure 3.3b).

The averaged free-surface longitudinal profile was also measured with the point gage. Since the

free-surface within the array of cylinders present oscillations, extra measurements were performed

acquiring images of the free-surface with a digital camera . During the recordings, there was

a ruler on the flume’s wall on the field of view (Figure 3.7d). Then, with image processing

tools the oscillations of the free-surface were quantified. The digital camera used was a uEye

UI-2230RE-M model, commercialized by IDS ®, which has a monochromatic CCD sensor with

1024×768 px2 of resolution. Its maximum acquisition frequency corresponds to 30 Hz.

Concerning velocity measurements, 2D instantaneous velocity maps were acquired with a

Particle Image Velocimetry (PIV) system at IST and 3D point-wise velocity measurements were
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(a) (b)

(c) (d)

(e)

Figure 3.7: a) PIV laser head; b) digital thermometer; c) laser displacement sensor; d) ruler used to
measure free-surface levels with video images; e) uEye camera used to measure free-surface levels and f)
probes during LDA velocity measurements.
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performed with Laser Doppler Anemometry (LDA) at LWI. Details about those techniques are

presented in the following sections.

3.3 PIV: Particle Image Velocimetry

3.3.1 Historical notes and basic principals of PIV

PIV is an optical technology that allows the recording of instantaneous velocity flow fields,

by measuring the displacement of small tracer particles (also called seeding particles) that are

carried by the fluid in short time periods. Therefore, the tracer particles must be sufficiently small

and density close to the water density in order to accurately follow the fluid motion and not to

alter the fluid properties or flow characteristics.

From the operational point of view, PIV is a very simple technique consisting in a laser

illuminating a part of the flow and a camera recording the position of the illuminated tracer

particles. Therefore, the first form of PIV could be traced far back in history to the first time

someone possessing the concept of velocity watched small debris moving on surface of a flowing

stream (Adrian, 2005). PIV appeared in literature in the mid-1980s (Adrian, 1984; Lauterborn

& Vogel, 1984; Pickering & Halliwell, 1984) when the name Particle Image Velocimetry was

introduced to distinguish the illumination of particles in fluid flows by a light sheet from laser

speckle operation mode. Many researchers became interested in PIV because it offered a new and

highly promising means of studying the structure of turbulent flows (Adrian, 2005). In fact PIV

enables velocity measurements over a wide dynamic range of scales in length and velocity, to

sense flows in more than one direction and to calculate velocity gradients and thus out-of-plane

vorticity (Adrian, 2005; Ferreira, 2011). According to Adrian (2005), 30 years ago in the first

steps of PIV the major issue concerned the energy necessary to illuminate fine particles and

produce images of sufficient exposure and clarity. However promoted by the fast technological

growth in computer architecture and digital cameras, PIV has developed significantly in the past

15 years and it is, nowadays, widely used in fluid mechanics in the research of air and water

flows.

The classic PIV can only measure the projection of the velocity into the plane of the light

sheet. That may result in large errors for measurements of highly 3D flows since the out-of-plane

velocity is lost and the in-plane components are affected by perspective transformation (Raffel

et al., 2007). Some approaches capable of recovering the 3 velocity components have been

proposed, as stereoscopic PIV or holographic PIV, employing an additional camera. However,

these approaches increase significantly the cost of a PIV system (which is already expensive)

and they are not necessarily easy to implement. Details about stereoscopic PIV can be found in

Raffel et al. (2007).
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PIV has also been extended to microscopic length scales applying the principles of PIV to

design systems with spatial resolution of the order of the micron (Raffel et al., 2007, pp. 241-

258). This system is known as micro-PIV or µPIV and it is specially interesting in biomedical

research.

The description of PIV systems herein presented is based on the 2D “classic” mode as in the

reported experimental work was used a classic PIV commercialized by Dantec®. Due to the fact

that the quality of PIV measurements depends mostly on data processing there is a considerable

body of literature describing PIV hardware, methods and algorithms. Comprehensive reviews

can be found in Adrian (1991); Raffel et al. (2007); Tropea et al. (2007) and references herein

can be followed for more specialized issues.

An important advantage of PIV system is its intrusiveness, which is limited to the introduction

of the solid targets (seeding) in the flow that may affect flow or fluid particles; in general, no

material parts of the instrumentation are needed in the flow region under measurement. Although

the acquisition of raw data is relatively simple, PIV relies heavily on software for the analysis of

that data, which is a disadvantage of this measuring system. Another weak point of PIV is the

large processing time required for the first step of raw data analysis. The process of converting

the acquired images into instantaneous velocity fields conveniently calibrated in metric units and

referenced to the channel coordinate system is, normally, very slow. This process will be explain

in the next subsections.

3.3.2 Components of PIV

The PIV system, schematically represented in Figure 3.8, is typically composed of:

i. laser head and lens (Figure 3.9a);

ii. power supply or laser beam generator (Figure 3.9b);

iii. digital camera (Figure 3.9c);

iv. timing unit (Figure 3.9d);

v. acquisition and control software (Figure 3.9e).

The seeding particles, normally added to the flow, are illuminated twice in a short period of

time by means of a thin light sheet from a pulsed laser and the light scattered by the particles

is captured by a digital camera onto subsequent image frames by a digital camera. The timing

unit ensures the synchronization between the light emission by the laser head and the image

acquisition by the camera. The laser beam generator controls the power and the production of the

laser light and it includes a cooling system. The whole system is, usually, controlled by means of

a software. The PIV system used in this research project was operated with a sampling rate of 15

Hz and its power source is able to generate a pulse of energy of 30 mJ.
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Figure 3.8: Schematic representation of PIV components.

Lasers are widely used due to their ability to emit monochromatic light with high energy

density, that can be bundled into thin light sheets allowing the lightning of the seeding particles

without chromatic aberrations. A laser consists on the laser material (atomic or molecular gas,

semiconductor or solid material), the pump source which excites the laser material and the

resonator achieved by mirror arrangement (Raffel et al., 2007, pp. 28-29). The broadly used

word laser has its origins in the acronym for the expression “Light Amplification by Stimulated

Emission of Radiation”.

The laser source of the PIV system used in this work is a double-cavity Nd:YAG laser

(Neodymium-doped Yttrium Aluminium garnet), which is the most commonly used laser in

modern commercial PIV systems. It is a four-level system which has the advantage of relatively

low laser threshold. Nd:YAG lasers are solid-state lasers (subjected to optical pumping) with

high amplification and good mechanical and thermal proprieties. This type of laser is sensitive to

temperature, but for standard operating temperatures it emits at the strongest wavelength, 1064

nm in the infrared spectrum.

A pulsed laser is obtained by a quality switch (Q-switch) inside the cavity, operated in a

software-controlled triggered mode. Although Q-switches can be used to generate more than one

pulse out of one resonator, PIV lasers are generally associated to double oscillators, which enables

the user to adjust the time gap between two illuminations of the tracer particles independently

of the pulse strength. The double cavity lasers include a second harmonic generator (nonlinear

crystal) which converts infrared light of 1064 nm into green light of 532 nm, during a so called

34



3.3 PIV: Particle Image Velocimetry

(a) (b)

(c) (d) (e)

Figure 3.9: Photos of PIV components: a) laser head; b) laser beam generator; c) CCD camera; d) timer
box and e) DynamicStudio software.
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(a) (b)

Figure 3.10: a) Scheme of a double cavity laser head (from Raffel et al., 2007, p. 40); b) Picture of the
double cavity laser head o the PIV system used in this work.

phase matching. The cooling system is an essential feature in the phase matching process, as

stable temperatures are required due to the refractive index sensitivity to temperature changes

(Raffel et al., 2007).

The laser beams from each cavity are then conveyed to the output optics through a system of

mirrors, reflectors and shutters, as represented in Figure 3.10. At the output optics, the laser beams

are passed through prismatic lenses to generate laser sheets. In the present case, a cylindrical lens

produces the laser sheet. This lens is placed in an small cylindrical box attached to the laser head

allowing the orientation of the light sheet.

The choice of the cameras used to acquire the images with illuminated seeding particles is

very important, since the optical and electronic characteristics of sensors have a direct influence

on the technical possibilities in PIV recording and the accompanying error sources (Raffel et al.,

2007, p. 69). The camera’s sensors most commonly used in PIV systems are charge coupled

device (CCD) or complementary metal oxide semi-conductor (CMOS). CCD sensors operate

with photoelectric effect at each pixel, converting light (photons) into electric charge (electrons).

The charge of each pixel is then transferred through the same output node, which is relatively slow

but reliable (not prone to noise). This type of sensor is susceptible to pixel burning due to well

saturation (Raffel et al., 2007, p. 69). In CMOS devices each pixel has its own charge-to-voltage

conversion node. This type of digital cameras are highly sensitive and fast but tend to be prone to

noise and susceptible to image deformation (Raffel et al., 2007, p. 71).

Digital image sensors are, as any electronic device, subject to noise. Thermal and read noise

are the most common noise sources in the classic PIV systems. Thermal noise is related to the

electron-hole pairs generated by thermal effects which cannot be separated from the electron-

hole pairs generated by the photoelectric effect. The consequence is that weak particle images
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cannot be distinguished from noise. The read noise (or shot noise) is a direct consequence of

the charge-to-voltage conversion during the readout sequence, which increases with the readout

frequency (Raffel et al., 2007, p. 72).

In this work, an 8-bit and 1600×1200px2 CCD camera (Figure 3.9c) was used. The sensor is

only sensitive to light intensity, i.e., the amount of energy. To maximize the contrast between

the bright illuminated particles and the black background in the recorded images, the flume was

covered with black fabrics. The camera was positioned perpendicularly to the laser sheet in order

to acquire images of the region lightened by the laser minimizing the distortion effects.

The PIV systems used in this work was commercialized by Dantec®, therefore the software

used to control the data acquisition and to process the raw data was the DynamicStudio®. This

software allows the user to control the acquisition mode, to set the time between consecutive

pulses and the acquisition time. It also offers several control variables for the data processing.

3.3.3 Seeding particles

Unquestionably, the solid targets added into the flow play a crucial role in the quality of the

data acquired with PIV, since this technique relies on the fact that the solid particles follow all the

flow velocity fluctuation. Therefore, the particles’ properties have to be carefully examined to

avoid significant discrepancies between fluid and particle motion. Seeding particles are ideally

neutrally buoyant, non-inertial, non-toxic, non-corrosive, non-abrasive, non-volatile, chemically

inactive and clean (Melling, 1997; Raffel et al., 2007). It is desirable that the particles are

small enough for a good tracking of the flow and at the same time good light scatters, since this

improves the quality of signal. Since light scattering improves with increasing particle size a

compromise is required when choosing seeding particles.

For the present work a polymerized material, commercially named Decosoft 60, with a mean

diameter of 60 µm in a range from 50 µm to 70 µm was used as seeding. It is a white material

with round shaped particles and its chemical composition consists in 73% of polyurethane and

27% of titanium dioxide. The density of this seeding is 1.31g/cm3.

According to Melling (1997), it is possible to evaluate the suitability of the seeding particles to

follow a specific flow and, hence, to determine the smallest turbulent eddies that can be identified,

evaluating the ratio rp defined by

rp =
V 2

p

V 2
(3.1)

where V̄p is the modulus of seeding terminal fall velocity and V̄ is the modulus of flow velocity.

The seeding particles are able to perfectly track the flow when V 2
p =V 2, however Melling (1997)
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proposed a threshold of acceptability of rp = 0.95.

This ratio, rp, can be determined through the solution proposed by Hjemfelt & Mockros

(1996) for the limit case in which the density of the seeding particles is much larger than the

water density
(
s(p)� s(w)

)
:

V 2
p

V 2
≡ rp =

(
1+

2π fc

C

)−1

(3.2)

with

C =
18ν

s(p)d2
p

(3.3)

where fc is the frequency of the characteristic turbulent structures of the flow, dp is the diameter

of the seeding particles and ν is fluid’s kinematic viscosity. Equation (3.2) expresses the ability of

the seeding particle to follow the fluid’s turbulent micro-structure whose scale is fc (expressed in

terms of frequencies) as a function of the density and the diameter of the particles. The application

of equation (3.2) is justifiable for its conceptual simplicity as it retains the most important effects

of drag and inertia (Melling, 1997). Since in most cases the density of the seeding particles is

not much larger than the water density, this model renders a conservative estimate of the tracers

tracking ability.

Figure 3.11 shows the ratio rp as function of the frequency fc for the seeding particles used in

the present work. The graph represents the curves for the mean (60 µm) as well as the limits of

the range (50 and 70 µm) of particles diameters. As it can be observed in Figure 3.11, rp = 0.95

corresponds , in the graph for dp = 60 µm, to fc = 30 Hz meaning that the employed seeding

is suitable to detect turbulent structures with frequencies lower than 30 Hz. Since the PIV was

operated at 15 Hz, the Nyquist frequency is equal to 7.5 Hz. Therefore, it can be concluded that

the seeding particles used ensure the quality of the data acquired in the time domain. In the space

domain, applying Taylor’s frozen turbulence hypothesis (Tennekes & Lumley, 1972, p. 253) and

considering a mean velocity of 0.10 m/s, the frequency fc = 30 Hz corresponds to a turbulent

length scale λc = 3.3 mm. This means that the velocity of eddies smaller than 3.3 mm may be

measured with less than 95% confidence employing this material as seeding.

Regarding the scattering behaviour of the seeding particles, it depends on the ratio of particles’

refractive index to that of the surrounding medium, the particles’ size, shape and orientation,

polarization and observation angle. Light scattering by small particles is a complex subject,

herein only general aspects are commented. For details Van de Hulst (1957) can be referred to.

Typically seeding particles’ diameter used in water flows is of the order of tens of micrometers,

thus, larger than the incident light wavelength, λ (532 nm). This means that Mie’s scattering

theory applies (dp > λ ). According to this theory, the scattering of light on a particle can be
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Figure 3.11: Ratio rp as function of the frequency fc for the solid targets used in the present experimental
work.

characterized by the normalized diameter, q, defined by (Raffel et al., 2007, p. 18)

q =
πdp

λ
(3.4)

Figure 3.12 exemplifies polar distributions of the normalized scattered light intensity for different

diameters of glass particles in water, and an incident light wavelength λ = 532 nm. For increasing

q the ratio of forward to backward scattering intensity increases rapidly, indicating that recording

in forward scatter would be a better option, what is impossible in PIV. Scattering is poor at 90°

but it is normally the most practical option for PIV, due to the limited depth of field. It can be

observed from the Mie’s scattering diagrams that there is a clear tendency for the increasing of

the scattered light intensity with increasing particle diameter. The scattering efficiency can be

increased not only by using larger particles but also by increasing the number of the particles.

The light is not blocked by the particles but rather spread in all directions, therefore the light

imaged by the recording lens is not only due to direct illumination but also due to light scattered

by other neighbouring particles (Raffel et al., 2007, p. 20).
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(a) dp = 1 µm (b) dp = 10 µm (c) dp = 30 µm

Figure 3.12: The polar distribution of the scattered light intensity for glass particles of diameter a)
dp = 1 µm, b) dp = 10 µm and c) dp = 30 µm with incident light of wavelength λ = 532 nm, according
to Mie’s theory (from Raffel et al., 2007, p. 20).

3.3.4 The measuring principle

As it has been mentioned, the PIV system generates quasi-instantaneous velocity maps by

means of measuring small displacements of seeding particles between the light pulses, which are

determined through the evaluation of the PIV recordings.

The recorded images are divided into small areas, designated interrogation areas (IA), as

represented in Figure 3.13a). The displacements of the illuminated particles are obtained through

the particles initial and final position within a given IA and for a given time between two

consecutive laser pulses. If the lightened particles’ mean longitudinal and vertical displacements,

∆dx and ∆dz respectively, in a given interrogation area centred at (x,z) are found, the longitudinal

(u) and vertical (w) velocities, relatively to orthogonal axes parallel to the sides, are determined

by (Ferreira, 2011)

u(x,z)' (x+∆dx)− x
∆t

(3.5)

w(x,z)' (z+∆dz)− z
∆t

(3.6)

where ∆t is the time between two consecutive laser pulses, herein, referred as time between

pulses. Since the time to register images is smaller than time between two pulses, one can assume

that the computed velocity is a quasi-instantaneous velocity. ∆dx and ∆dz correspond to the

averaged displacement of the particles within a IA, requiring smaller IA in order to minimize

the smoothing effects to have velocity fields as much instantaneous as possible. Figure 3.13b)

illustrates the measuring principle of PIV.

The key issue in PIV data processing is determining the mean planar displacements ∆dx

and ∆dz in each interrogation area, with the least possible errors. Commonly, these mean

displacements are determined by cross-correlation algorithms which correlate the gray levels

between the two images resulting from two consecutive laser pulses ∆t apart from each other.

The most straightforward approach consists in dividing each image into non-overlapping square

IA with side length N (normally taken as a power of 2) and then perform the two-dimensional
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(a) (b)

Figure 3.13: a) Division into interrogation areas (IA) of an image acquired with PIV; b) Illustration of the
displacement of particles inside of an interrogation area, where the open circles correspond to the position
of the filled circles ∆t s later.

cross-correlation of each IA in the image pair. This correlation process is often applied in the

spectral domain (Sveen & Cowen, 2004). A cross-correlation algorithm can be, in a simple way,

defined as a statistical function that measures the degree of match between two samples for a

given shift. In the problem of determining the displacement of seeding particles within an IA,

the samples correspond to the gray intensity levels and the cross-correlation function, R can be

mathematically expressed by

R(x,z) =
M

∑
i=−M

N

∑
j=−N

I(i, j)I′(i+ x, j+ z) (3.7)

where I is the intensity level on the IA of the first frame, I′ is the intensity level on the same

IA of the second frame. I is shifted around in I′ without extending over edges of the latter. For

each choice of sample shift (x,z), the sum of the products of all overlapping pixel intensities

produces one cross-correlation value R(x,z). Note that x, z, i and j refer to the referential of

the centre of the IA. By applying this operation for the range of shifts −M ≤ x ≤ +M and

−N ≤ z≤+N, a correlation plane is obtained, whose size is (2M+1)× (2N +1) (Raffel et al.,

2007, p. 134). The coordinates of the maximum value of R (correlation peak) corresponds to the

mean planar displacements ∆dx and ∆dz. Then, the values of the displacements are divided by

the time between pulses, ∆t, to be converted into velocities. This process is repeated for every IA

in the captured images.
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Frame 1 Frame 2
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(a)

x

z
Frame 1 Frame 2

(b)

Figure 3.14: Examples of an IA in both frames and the respective correlation map. a) Case with a clear
correlation peak corresponding to the particle’s displacement; b) case with out-of-plane loss-of-pairs
problem, where it is not possible to distinguish the peak of particle’s displacement from the noise peaks.

Figure 3.14 shows two examples of correlation functions and the respective IA for both frames.

In one of the cases a clear peak can be identified while the other case presents an ambiguous

case with low signal-to-noise ratio, where it is not possible to distinguish the peak of particle’s

displacement from the noise peaks. The goal of this explanation about the cross-correlation

was to expose the process required to obtain the velocity maps with PIV. However, it should be

noticed that only the basic notions were introduced. The correlation algorithms are constantly

improving to enhance their efficiency. There are many algorithms, but the most common are the

algorithms based in simple cross-correlation or adaptive correlation.

Adaptive algorithms have been gaining popularity in recent years because they allow impro-

vements on the spatial resolution and spatial accuracy while reducing velocity bias errors, in

comparison to cross-correlation algorithms (Wereley & Meinhart, 2000). In adaptive correlation

a large IA is employed first and subjected to simple cross correlation. The correlation peak is

then used to re-center (offset) a smaller IA, again subjected to correlation. The process can be

repeated while there is enough illuminated seeding particles in the IA. This technique is now

standard and is especially useful when flow gradients are large. The first steps determine the

direction of the flow and the last step finds the correct displacements even with few illuminated

particles in the IA.

Often noisy IA conduct to spurious velocity vectors. Then to ensure good results, the last

step to obtain the instantaneous velocity maps is applied. It is called validation and it consists in

the comparison of the vectors with their neighbours. If they fail a verisimilitude test, they are

substituted, generally by the mode or the median of the surrounding 8 vectors. A review on the
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validation methods for PIV data is presented by Westerweel (1994) and Nogueira et al. (1997).

There are several error sources that may affect the quality of PIV measurements and that can

be linked both to experimental conditions or to the processing method. Details on PIV error

sources are presented by Keane & Adrian (1990), Westerweel (1993), Sveen & Cowen (2004)

or Raffel et al. (2007). In general, the loss-of-pairs is the major source of errors, as the name

suggests, this problem is caused by the particles that are not found in both of the frames. This

problem can occur due to the particles, usually close to the limit of the IA, that leave or arrive to

the IA in the interval between pulses. In this case, it is designated in-plane loss-of-pairs and is

illustrated in Figure 3.13b). Moreover, particles that leave the laser sheet because of 3D motion

are also a loss-of-pairs problem, in this case, named out-of-plane loss-of-pairs (Figure 3.14b).

It should also be remarked that the better contrast between the illuminated particles and the

background, the less noisy becomes the signal.

Several options can be considered at the processing stage to improve the quality of the results:

• The use of windows or filters may help to correct of in-plane loss of pairs and to enhance

peak width.

• Consider overlapped IA results in denser vector map, improving the visualization of the

flow field. Particles that were not considered in the correlation process because of in-

plane-loss of pairs may be retrieved with mild overlapping. However, this adds little new

information, overlapping is generally oversampling for better visualization.

• Adequate subpixel interpolation algorithms allow improvements on the accuracy of the

location of the correlation peak (details in Lourenco & Krothapalli, 1995; Roesgen, 2003;

Westerweel, 1993).

The data acquired in the scope of this research project was processed with adaptive correlation

and a validation method based on the median of the neighbour vectors was applied. Adaptive

correlation is time consuming but it renders to much better results that the simple cross-correlation.

Simão et al. (2009) showed that with cross-correlation large IA would produce considerable

errors while adaptive correlation is nearly insensitive to the IA size under the same conditions.

3.3.5 Control parameters of PIV

The quality of the velocity maps acquired with PIV technique depends on three correlated

parameters: time between pulses (∆t), quantity of seeding and size of interrogation areas (IA).

In the case of adaptive correlation, a rule-of-thumb states that initial IA should have more

than 12 seeding particles and the motion of the particles should be about 25% of the dimension

of the final IA (Raffel et al., 2007, p. 137). Therefore, the size of the IA depends on the quantity

of particles that are seeding the flow and on the time between pulses; smaller IA require higher
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density of seeding particles and lower ∆t. The spatial resolution of the velocity maps increases

with the decrease of the size of IA. Also the accuracy of the instantaneous velocity improves with

smaller IA since the IA work as a filter removing the smallest scales of the turbulent motion. On

the other hand, too small IA promote in-plane loss-of-pairs because they will have, in general,

less particles which are more likely to be close to the boundary.

Generally, the increase of the quantity of seeding in the flow has a positive impact on the

results; the drawback is that seeding particles are expensive. Nonetheless, if a flow can be densely

seeded a high valid correlation peak detection is achieved and high signal-to-noise ratio are

obtained.

Regarding the time between pulses, short intervals minimize the in-plane and out-of-plane

loss-of-pairs but larger ∆t increases precision.

Herein, the size of the IA was chosen to start at 128×128 px2 and to finished at 16×16 px2

after 3 iterations on the correlation process. This choice intended to maximize the spatial

resolution of the velocity field. No overlap of the IA was considered, since it would significantly

increase the computational time without improving the results. After choosing the IA’s size, a

sensitivity analysis was carried out to stablish the time between pulses. For the tested velocities,

∆t in the range of 1250− 1750 µs satisfied the general rule of displacements around 25%

of the dimension of the final IA. First and second order moments were evaluated for ∆t =

1250,1500,1750 µs. Figure 3.15 presents time-averaged longitudinal velocity profiles for the

tested ∆t while Figure 3.16 shows profiles of Reynolds shear stresses. The velocity profiles do

not seem very sensitive to the different time between pulses, however the Reynolds shear stresses

show that ∆t = 1500 µs renders smoother results. Thus, ∆t = 1500 µs was adopted to all the

performed PIV measurements. At last, the quantity of seeding was adjusted in order to have

enough seeding particles for the IA’s size chosen.

3.4 LDA: Laser Doppler Anemometry

3.4.1 Basic principles

Laser Doppler Anemometry, LDA, is a widespread technique for point-wise instantaneous

velocity measurements also referred as Laser Doppler Velocimeter (LDV).

As PIV, LDA is an indirect technique, since it measures the velocity of small particles in the

moving fluid. LDA is also a laser based technique, but unlike PIV, LDA employs the laser light in

a direct way, making use of the Doppler effect as the laser light is scattered back to the receiver.

Among the advantages of the LDA techniques, the small intrusiveness, which is the result

of the tracer particles introduction, the directional-sensitivity, the high temporal resolution and
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Figure 3.15: Time-averaged longitudinal velocity profiles of a lateral position acquired with time between
pulses of a)1250 µs, b)1500 µs and c) 1750 µs.
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Figure 3.16: Time-averaged Reynolds shear stress profiles of a lateral position acquired with time between
pulses of a)1250 µs, b)1500 µs and c) 1750 µs.
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the high accuracy can be listed as decisive advantages. LDA techniques are based on complex

chemical and electronic units and very sensitive optical systems with little software complexity.

According to Tropea et al. (2007) the first laser Doppler instrument was introduced by Cum-

mins et al. (1964) and Yeh & Cummins (1964), in which an optical configuration was presented,

subsequently known as the reference-beam mode. The dual-beam mode, used nowadays, was

introduced few years later by vom Stein & Pfeifer (1969). In this configuration, two in-going

laser beams crossing at an intersection angle were applied to create a measurement volume. The

scattered light from the two beams was collected on a single detector.

Durst et al. (1976) published, in a book format, a comprehensive and detailed review on

the measurement of instantaneous velocity by laser Doppler methods. This book, which is still

an actual reference concerning LDA principles, outlines principles of geometrical, physical,

and quantum optics, analyses light scattering, explains physically the optical measurement of

particle velocity and introduces the principles of LDA. Also, optical arrangements for velocity

measurement are described, the transform equation for a laser Doppler anemometer is derived,

and principles underlying the definition of the measuring control volume are set forth.

Due to technological improvements, LDA systems have continuously been developed and the

volume of literature on this technique is large and still increasing (Tropea, 1995). LDA systems

started being increasingly applied in the scope of river hydraulics research since the 1980s.

The most common lasers employed in LDA systems are the He-Ne (Helium-Neon), typically

at 632.8 nm, Ar-Ion (ions of Argon), normally operated in the blue or green spectra, and Nd:Yag

(Neodymium-doped Yttrium Aluminum garnet), in the infrared spectrum. He-Ne and Ar-Ion

lasers are gas-lasers, in which coherent light is produced by excitation of a gas by a strong electric

current. As mentioned in the PIV section, Nd:Yag is a solid-laser.

An LDA system is composed by a continuous laser source, transmitting optics, receiving

optics with photodetector, analogue filters and signal amplifiers, a signal processing unit and

memory unit, as schemed in Figure 3.17. The laser beam is split before reaching the transmitting

optics, normally by means of a Bragg cell (see Figure 3.17). The Bragg cell is composed of

a glass crystal subjected to acoustic vibration, from which the zero and the first-order beams

are used. Typical frequency shifts of the first-order beam are 40 MHz or 80 MHz. The shifted

beam ensures that directional ambiguity is eliminated. The beams are focused in the transmitting

optics in order to intercept in the measurement volume. A pair of beams of a given wavelength is

necessary to measure a given velocity component. The receiving optics collects the light scattered

by the particles in the measuring volume and conveys it to the photodetector. Generally, the

diameter of the tracer particles is larger than the wavelength of the laser light, therefore, the light

scattering obeys to the Mie’s theory, explained above.

The basic principle of LDA applies the Doppler effect twice. First, when the incident laser
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Figure 3.17: General layout of a backscatter LDA system (source: http://www.dantecdynamics.
com/measurement-principles-of-lda).

light impacts on the moving seeding particle. When the light is scattered from the illuminated

particle and received by a stationary detector (Tropea et al., 2007, p. 296). LDA systems can

work with the detector placed at any scattering angle with respect to the incident beams, but the

configurations commonly used are the forward and back scatter modes, schematically represented

in Figure 3.18. As seen in Figure 3.12, the scattered light intensity from seeding particles is

usually much stronger in the forward direction. Therefore, from the signal strength point of view,

the forward scattering mode is the best, however the back scatter mode is more convenient due to

constructive and operative reasons. If the receiving optics can be integrated into the transmitting

optics, with the former focused by the manufacturer, it is easier to position the probes and a

source of errors is eliminated.

Figure 3.19 illustrates the laser generator, the probes and the intersection of the laser beams

during the experiments at LWI. The LDA system used consisted on a 5W Argon-Ion laser, a F80

flow processor and two watertight probes with focal length of 198 mm in water (Aberle, 2006).

This system works in back scattering mode. A two-component probe transmits two orthogonal

pairs of beams (wavelengths 488 and 514.5 nm) while the one-component probe, positioned at

30° to the two-component probe, transmits the third pair of beams (wavelength 476.5 nm). Due

to the focal length larger than the flow depth, an acrylic case with a glass bottom was used to

submerge the probes in water and ensure that the laser beams travel in water from the probe

casing to the measuring volume, except in the 2 mm glass plate.
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(a)

(b)

Figure 3.18: Scheme of a LDA system in a) forward scatter mode and b) back scatter mode.

The Doppler principle by which the LDA operates is better explained by the so called fringe

model, represented in Figure 3.20. A fringe pattern is originated when two monochromatic

(same wavelength) coherent (same phase for all waves) light beams are superimposed. Where the

interfering light waves are in phase, i.e., peak aligned with peak, they add up and a bright fringe

is generated; where the waves are out of phase, i.e., peak aligned with trough, they cancel out and

a dark fringe occurs. In the LDA case this fringe pattern occurs in the measurement volume and

it is parallel to the axis of the transmitting optics.

The spacing between fringes, δ , depends on the wavelength of the crossing beams, λ , and on

the angle that they form, θ , according to the following mathematical expression

δ =
λ

2sin(θ/2)
. (3.8)

A particle crossing the control volume with velocity u normal to the axis of the probe will

generate a signal which, in the time domain is a wave packet with frequency f . The interval
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(a) (b) (c)

Figure 3.19: a) The laser generator, b) the probes and the acrylic case and c) the laser light beams during
the experiments at LWI.
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Figure 3.20: Fringe model (Source: Ferreira, 2011).
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between peaks is t = 1/ f , hence, the velocity of the particle that generated the burst is given by

u =
δ

t
=

λ

2sin(θ/2)
f . (3.9)

This equation is known as LDA fundamental equation, which combines the imposed arrangement

and laser properties, θ and λ , with the detected burst frequency, f to determine the velocity of

the particles moving with the fluid.

Each seeding particle passing through the measurement volume results in a signal, referred as

burst, at the output of the photodetector. The signal processor has the task of detecting when a

burst is present and estimating various signal parameters.

As mentioned before, the frequency shift introduced in the Bragg cell in one of the beams is

used to distinguish between positive and negative velocities. The frequency of the shifted beam

is changed by an amount proportional to the frequency of the acoustic wave, fbragg. As a result,

when the beams cross, the fringe pattern will appear moving with the shift frequency. Detected

frequencies smaller than fbragg will result in negative velocities.

Due to the random distribution of the seeding particles, these signals arrive irregularly in time,

requiring special considerations in the data processing step, for example, if evenly spaced velocity

series are sought polynomial interpolation algorithms for signal reconstruction are needed. The

key issue for the LDA signal conditioner and signal processing units is, thus, to identify bursts

from background noise and to detect correctly the frequency f . These units are often condensed

in the Real-time Signal Analyzer (RSA) unit, which undertake the following main operations:

i. subtraction of the Gaussian pedestal inherent to a coherent laser (the radial distribution of

the beam intensity is approximately Gaussian);

ii. amplification;

iii. filtering of noise components (general low-pass filtering);

iv. burst detection, for instance by thresholding in the time-amplitude domain;

v. frequency estimation, normally by inverse-Fourier methods.

3.4.2 Quality of measurements

The signal-to-noise ratio and the transit length are key parameters to verify the quality and

to validate a Doppler burst. Naturally, the larger the number of fringes, the easier to detect the

burst. The number of fringes increases with increasing angle between beams, θ , and increasing

focal distance, F . The time resolution of a LDA velocity series depends on the concentration

of the seeding particles in the flow. However, increasing the particle concentration indefinitely

does not continue to improve the temporal resolution, because the signal processing may not be

reliable in estimating the signal frequency when multiple particles are present simultaneously
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(a) (b)

Figure 3.21: Crossing of laser beams: a) correct crossing with parallel fringe pattern; b) incorrect crossing
due to lens aberration (Source: Ferreira, 2011).

in the measurement volume. Furthermore, high particle loads may change the flow properties.

More common than errors due to high concentration of seeding, are the errors introduced in the

measurements due to scarce seeding, which results in signal spiking or absent counts. Smaller

measurement volumes tolerate higher seeding concentrations and, at the same time, the same

laser power distributed over a smaller measurement volume leads to higher incident intensity

and, thus, higher signal amplitudes and quality. However, reducing the measurement volume

excessively may result in fewer particles being seen, reducing the temporal resolution of the

measurements.

The Doppler bursts are superimposed by noise associated to the instrumentation, as electric

noise due to poor insulation, noise introduced by the photodetector and noise introduced by

the laser generation. In general, these sources of noise are uncorrelated corresponding to noise

spectrally white, i.e., the total noise power is distributed evenly over all frequencies up to the

upper bandwidth of the system.

A common error source in LDA is the positioning of the laser beams, especially in 3D

arrangements where the user is required to match the measuring volumes of two different probes.

Working in coincidence mode, for which a passing particle must generate a burst recognisable by

the detectors associated to each of the three wavelengths, may drastically reduce the frequency

count if the measurement volumes are not perfectly aligned. Poor beam focus due to lens

aberration causes spatial gradients in the fringe pattern leading to inadequate estimates of the

frequency f . This problem of lens aberration is represented in Figure 3.21, where a correct

crossing of the beams, resulting in parallel fringe patterns, is compared with incorrect beams

crossing.

As a particle-based technique, LDA measurements are affected by errors introduced, especially

in turbulent flows, because particles do not follow the fluid exactly. As presented in section 3.3.3

for PIV, Hjemfelt & Mockros (1996) derived and solved the equation that describes particle
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motion in a viscous fluid, in which the leading term is Stokes drag. Retaining only this term, the

smaller turbulent scale measurable, ∆r, for a given velocity increment ∆u is

∆r =
1

18
d2

p(s
(p)−1)
ν

∆u (3.10)

where dp is particle’s diameter, s(p) is the specific gravity of the seeding particles and ν is the

fluid’s kinematic viscosity.

In the present experimental work, at LWI, titanium dioxide, commercialized by AppliChem®

under the designation of Titanium (IV) oxide pure, was used to seed the flow. The powder

particles were mixed in water in a 200 l container, from which the mixture was pumped into

the flume at a constant discharge. The diameter of the particles ranges from 5 to 50 µm and the

specific gravity of the titanium dioxide is 4.2 g cm−3. Considering a flow velocity of 0.10 m/s,

equation (3.10) indicates the smallest turbulent scale susceptible to be measured with titanium

dioxide particles of 50 µm is 4.4× 10−5 m. For the present experiments this value is much

smaller than the spatial resolution of the acquired velocity series, not causing significant errors.

Regarding the quality of turbulent flow measurements wit LDA, the size of the measuring

volume must be considered. The dimensions of the measuring volume in the directions normal

and parallel to the probe axis are

δx =
4Fλ

πDL cos(θ/2)
(3.11a)

δy =
4Fλ

πDL sin(θ/2)
(3.11b)

respectively, where F is the focal distance and DL is the beam’s diameter at the beam waist

before the lens. The remaining variables were previously defined. Control volumes too large

may smooth out small turbulent scales, since particles with symmetric velocities belonging to the

same eddy simultaneously present in the measurement volume may disturb burst detection. Large

control volumes also generate more noise. If the control volume encompasses strong spatial

gradients, particles with different velocities will cross the control volume and will be interpreted

as turbulence even if the flow is laminar. Naturally, if the flow is turbulent, this type of noise

will also be present but will be very difficult to detect as it may be uncorrelated. In the present

study the control volume was characterized by δx = 0.10 mm and δy = 0.38 mm, for F = 198

mm, θ = 30◦, λ = 514.5 nm and DL = 1 mm.
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3.5 Experimental tests

3.5.1 Test S1

Test S1 was carried out at IST. This test featured m = 400 stems/m2 randomly distributed

all over the vegetated reach, corresponding to a volumetric solid fraction, φ = πd2m/4, equal

to 0.038. Two measuring gaps were considered, distanced 1.0 m from each other. Figure 3.22

shows a plan view of the vegetated reach in test S1. Figure 3.23 illustrates the flume during the

experiments.

Figure 3.22: Plan view of test S1. The solid lines aligned with flow direction indicate the location of the
vertical plans measured with PIV. The rectangles point out the regions where horizontal velocity maps
were acquired. The blue arrow indicates the flow direction.

(a) (b)

Figure 3.23: Pictures of the flume during test S1: a) lateral view and b) plan view.
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Table 3.1: Features of the experimental measurements and flow properties for test S1.

M.Gap
x U h dh/dx T (v) T (h) Rep

(m) (m/s) (m) (−) (◦C) (◦C) (−)
Up 7.270 0.092 0.066 - 26.2 21.1 1170

Down 8.270 0.109 0.059 -0.007 28.2 25.7 1450

For each measuring gap, vertical (streamwise × vertical) and horizontal (streamwise ×
spanwise) instantaneous velocity maps were measured in the central part of the flume’s width, as

represented in Figure 3.22. Regarding the measurements in the vertical plane, 21 runs, collecting

486 images couples each, were performed at each lateral position, representing a total acquisition

time of 11′20′′. The camera’s field of view was adjusted in order to acquire velocity maps of the

whole flow depth maximizing the spatial resolution. It yielded to interrogation areas whose size

varied between 0.7 and 1.0 mm.

To avoid laser refractions due to the free-surface oscillations, during PIV measurements in

the vertical plane, for all tests, a 0.2 mm thick plastic sheet was placed at the free surface on

illuminated region.

The horizontal maps were acquired at 6 different heights for each measuring gap. 4×486

image pairs were recorded at each plane. On the upstream measuring gap, the maps were acquired

at 0.1,0.2,0.6,1.6,3.3 and 5.0 cm above the averaged bed level, while in the downstream gap,

the measurements were carried out at 0.1,0.2,0.5,1.0,3.7 and 5.3 cm above the average bed

level. The interrogation areas were about 0.7 and 0.6 mm large on the upstream and downstream

gaps, respectively.

Table 3.1 summarizes the main flow variables for each measuring gap (M.Gap). Herein,

x is the longitudinal coordinate of the measuring gap relative to the channel inlet, U is the

depth average of the double-averaged longitudinal velocity profile, dh/dx is the gradient of the

mean flow depth h, T (v) and T (h) are the mean water temperature during vertical and horizontal

measurements, respectively and Rep =Ud/ν is the stem Reynolds number, where d is the stem

diameter and ν is the water kinematic viscosity, which depends on temperature (Likhachev, 2003).

3.5.2 Test S2

Test S2 was first carried out at IST performing velocity measurements with the 2D PIV system

and then reproduced at LWI to get 3D velocity fields with the described LDA. For this test, stems

were placed in order to create a pattern with seven wavelengths, each 0.5 m long, with varying

m. Data acquisition was carried out in eight measuring gaps, distributed along two wavelengths
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Figure 3.24: Plan view of test S2. The solid lines aligned with flow direction indicate the location of the
vertical plans measured with PIV. The rectangles point out the regions where horizontal velocity maps
were acquired. The blue arrow indicates the flow direction. The points along lines perpendicular to the
flow direction represent the location of LDA measurements (P3 to P8).

- P1 to P4 (first wavelength) and P5 to P8 (second wavelength) as shown in Figure 3.24. Each

wavelength features:

• a 15 cm long patch with m = 1600 stems/m2 (dense patch, herein); this is the case of patch

p4−5 in the second wavelength;

• a 10 cm long transition patch with an average m of 980 stems/m2, divided into two

5 cm reaches with 1200 stems/m2 and 800 stems/m2, respectively from upstream to

downstream; it is the case of patches p1−2 and p5−6, respectively in the first and second

wavelengths;

• a 15 cm long patch of m = 400 stems/m2 (sparse patch, herein); this is the case of patches

p2−3 (first wavelength) and p6−7 (second wavelength);

• a 10 cm long transition patch with an average m of 980 stems/m2, divided into two 5 cm

reaches with m = 800 stems/m2 and m = 1200 stems/m2, respectively from upstream to

downstream; it is the case of patches p3−4 (first wavelength) and p7−8 (second wavelength).

Figure 3.23 presents pictures showing two views of the flume during the experiments in test S2 at

IST.

The velocity measurements with PIV in test S2 consisted, for each measuring gap, in the

acquisition of vertical maps at 9 lateral positions and horizontal maps at 4 vertical positions, as

represented in Figure 3.24. Regarding the vertical measurements, 10×573 px2 images couples
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(a) (b)

Figure 3.25: Pictures of the flume during test S2 at IST: a) lateral view and b) plan view.

were collected for each lateral position, representing a total acquisition time of 6′37′′. The spatial

resolution yielded to interrogation areas of 0.7−1.0 mm. For the horizontal measurements, each

vertical position consisted in several lateral acquisitions (typically 4) in order to cover the whole

flume width. For each lateral position, one run with 5000 image pairs was acquired corresponding

to 5′33′′ of consecutive data. The horizontal planes were measured at 90%, 60% and 25% of

the flow depth and about 3 mm above the averaged bed elevation. It is difficult to get good

measurements very close to the bed due to the laser light refractions. The field of view was

≈ 12×10 cm2, corresponding to interrogation areas of ≈ 1.3×1.3 mm2.

Table 3.2 presents the main flow variables for each measuring gap (M.Gap) of test S2 at IST,

where dm/dx is the longitudinal gradient of the stem areal number-density m. The remaining

variables are the same as in test S1. It should be noted that, as in the other tests, free surface

exhibited an oscillating behaviour, with larger amplitude in the dense patches.

The three-component LDA velocity series were measured at 27 points along spanwise di-

rection, centred in the channel midpoint, with a spatial resolution of 5 mm, as shown in Figure

3.24. These series were collected at 6 elevations for 6 measuring gaps (P3 to P8 - Figure 3.24),

approximately at the centre of the measuring gap. The 6 elevations considered were z = 3 mm

and z = 7 mm relatively to the averaged bed elevation and z = 25,40,60,75% of the flow depth.

The sampling time at each point was 3 minutes with sampling frequencies between 50 and 120

Hz.

Table 3.3 presents the main flow variables for each measuring gap (M.Gap) of test S2 at

LWI, where the time and space-averaged longitudinal velocity, 〈ū〉, is presented for all the

vertical positions for each measuring gap. At LWI, the water temperature varied in the range

13.4−14.2◦C, being relatively stable during the experiments.
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Table 3.2: Features of the experimental measurements and flow properties for test S2 at IST.

M.Gap P1 P2 P3 P4 P5 P6 P7 P8

Patch p0−1 p1−2 p2−3 p3−4 p4−5 p5−6 p6−7 p7−8

x (m) 6.680 6.782 6.935 7.036 7.192 7.293 7.446 7.545

m (stems/m2) 1600 980 400 980 1600 980 400 980

dm/dx 0 <0 0 >0 0 <0 0 >0

φ (−) 0.152 0.093 0.038 0.093 0.152 0.093 0.038 0.093

U (m/s) 0.085 0.083 0.090 0.099 0.103 0.108 0.100 0.106

h (m) 0.065 0.064 0.063 0.062 0.057 0.056 0.054 0.052

dh/dx (−) -0.020 -0.017 -0.002 -0.012 -0.031 -0.018 -0.010 -0.017

T (v) (◦C) 27.7 30.3 29.9 27.7 25.9 26.3 24.1 22.0

T (h) (◦C) 29.2 30.0 29.6 31.9 30.0 30.5 30.1 28.5

Rep (−) 1121 1158 1237 1303 1302 1374 1216 1222

Table 3.3: Features of the experimental measurements and flow properties for test S2 at LWI.

M.Gap P3 P4 P5 P6 P7 P8

Patch p2−3 p3−4 p4−5 p5−6 p6−7 p7−8

m (stems/m2) 400 980 1600 980 400 980

dm/dx 0 >0 0 <0 0 >0

φ (−) 0.038 0.093 0.152 0.093 0.038 0.093

h (m) 0.063 0.061 0.056 0.056 0.054 0.052

dh/dx (−) -0.001 -0.018 -0.033 0.000 -0.010 -0.028

〈ū〉 (m/s)

z = 3 mm 0.107 0.130 0.109 0.109 0.123 0.137

z = 7 mm 0.113 0.123 0.130 0.113 0.126 0.137

z = 0.25h - 0.115 0.125 0.110 0.123 0.129

z = 0.40h 0.106 0.116 0.123 0.108 0.124 0.128

z = 0.60h 0.109 0.115 0.123 0.112 0.127 0.130

z = 0.75h 0.114 0.122 0.127 0.118 0.138 0.133
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3.5.3 Test S3

Test S3 was populated with the same number of stems of test S2 (1366 stems) distributed

randomly and uniformly, resulting in m = 980 stems/m2 and φ = 0.093. Two measuring gaps,

1.0 m apart, were considered as represented in Figure 3.26. A lateral and plan view of the flume

during the experiments are presented in Figure 3.27.

Figure 3.26: Plan view of test S3. The solid lines aligned with flow direction indicate the location of the
vertical plans measured with PIV. The rectangles point out the regions where horizontal velocity maps
were acquired. The blue arrow indicates the flow direction.

(a) (b)

Figure 3.27: Pictures of the flume during test S3: a) lateral view and b) perspective
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Table 3.4: Features of the experimental measurements and flow properties for test S3.

M.Gap
x U h dh/dx T (v) T (h) Rep

(m) (m/s) (m) (−) (◦C) (◦C) (−)
Up 6.900 0.092 0.065 - 19.0 19.0 989

Down 7.900 0.099 0.051 -0.014 19.0 19.0 1064

Also for test S3 the velocity field was characterized with vertical and horizontal maps.

Regarding the measurements in the horizontal plane, 5000 instantaneous velocity maps were

acquired consecutively in two lateral positions, in the central part of the flume, at each elevation.

For each measuring gap, three different elevations were considered, 25%, 60% and 85% of

the flow depth. The field of view was ≈ 12×10 cm2, corresponding to interrogation areas of

≈ 1.2×1.2 mm2. In what concerns vertical velocity maps, the measurements were performed at

11 and 15 lateral positions in the upstream and downstream measuring gaps, respectively (Figure

3.26). At each lateral one run with 5000 image pairs was acquired corresponding to 5′33′′ of

consecutive data.

Table 3.4 presents the main flow variables for the measuring gaps of test S3. The presented

variables are the same as in test S1.

3.6 Data treatment

3.6.1 Bed topography

The laser displacement sensor described above was employed to measure the bed topography

at IST’s flume. The laser head was mounted in a mobile support held in the flume’s rails, which

allows streamwise and spanwise displacements. The goal of the bed topography measurements

was a statistical characterization of the bed elevation and fluctuations. This means that a detailed

and referenced bathymetry was not sought, instead the measurements were designed to verify

the horizontality of the gravel bed and to obtain an average value of the bed elevation in the

measuring gaps. The measurements consisted in the acquisition of bed elevation series along a

longitudinal or transverse line, moving the laser head with an approximately constant velocity

along that line. The laser head was positioned and then pushed manually along the selected line.

To verify the gravel bed covering the flume’s bottom was approximately horizontal, longi-

tudinal measurements were performed at several lateral positions, along the vegetated reach.

Figures 3.28 and 3.29 exemplify longitudinal bed elevation profiles for tests S1 and S2. Due to

the presence of the stems, the laser light was wrongly reflected leading to erroneous values in

the longitudinal profile. These spikes were detected applying the phase-space threshold method
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presented by Goring & Nikora (2002) and they were not replaced; instead they were simply not

considered.

Figure 3.28 shows that the gravel layer in test S1 presented a slight trend. It should be

noticed that building of an horizontal layer within the stems was a difficult task. Furthermore,

the trend become visible only at the end of the vegetated reach. Therefore, it was accepted as an

approximately horizontal bed, but the flow depths were adequately computed.

Bed elevation transverse profiles were acquired to each measuring gap in order to compute

the averaged bed elevation characterizing each measuring gap.

3.6.2 Free-surface

The laser displacement sensor was also employed to measure the free-surface level, in a

point-wise fashion. A very small and opaque 0.2 mm thick plastic piece was placed on the

measuring point to allow the laser light reflection at the free-surface level. The interference of

that piece of plastic with the free-surface oscillations was negligible.

Within the scope of the present thesis, the free-surface measurements was aimed at the

characterization of the mean flow depth and its longitudinal gradient. Due to the complex

oscillatory behaviour of the free-surface, the mean elevation at a given measuring gap was

computed from several (7 to 10) points in the spanwise direction. Targeting the longitudinal

gradient, the oscillations of the free-surface at several points in along the flume’s centreline were

acquired. The free-surface elevation series were acquired at 200 Hz during 60 s in test S1 and

at 100 Hz during 60 s in test S2. For test S3, the series, which were not evenly spaced, were

acquired during 160 s at an average rate of 200 Hz.

Figures 3.30 to 3.33 exemplify two of the free-surface elevation series acquired to each

test. Extracts of 10 s are also shown to better visualization of the oscillations. The amplitude

of the oscillations varied from point to point in a given cross-section and with the stem areal

number-density.

Figure 3.34 presents the longitudinal profile of bed and free-surface elevations for each

experimental test, showing that flow was gradually varied accelerating in downstream direction

as the flow depth decreases.

3.6.3 Volumetric fluid fraction

To show the relative magnitude of bed and free-surface oscillations over the water column, a

vertical profile of the volumetric fluid fraction in the total control volume is presented in Figure

3.35. For the bottom and top layers the statistical information from the bed and free-surface
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(a)

(b)

(c)

Figure 3.28: Longitudinal profiles of bed elevation of test S1 at a) y = 0.100 m, b) y = 0.204 m and c)
y = 0.333 m. The red lines represent the averaged value of each series.
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(a)

(b)

(c)

Figure 3.29: Longitudinal profiles of bed elevation of test S2 at a) y = 0.164 m, b) y = 0.204 m and c)
y = 0.244 m. The red lines represent the averaged value of each series.
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(a)

(b)

Figure 3.30: Oscillations of the free-surface at points a) x = 7.25 m and y = 0.275 m, and b) x = 8.30 m
and y = 0.204 m, in test S1.

Figure 3.31: Oscillations of the free-surface at the point x = 7.446 m and y = 0.204 m in the measuring
gap P7 of test S2.
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Figure 3.32: Oscillations of the free-surface at the point x = 7.192 m and y = 0.214 m in the measuring
gap P5 of test S2.

(a)

(b)

Figure 3.33: Oscillations of the free-surface at points a) x = 7.90 m and y = 0.302 m, and b) x = 8.90 m
and y = 0.217 m, in test S3.
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Figure 3.34: Longitudinal profiles of free-surface and bed elevation of tests a) S1, b) S2 and c) S3.

measurements was used and for the layer where the solid fraction corresponds solely to the stems

the fluid fraction is defined by

ψ = 1−π
d2

4
m. (3.12)

The volumetric fluid fraction decreases towards zero values due to the oscillations of the

free surface. In the layer between the minimum and the maximum of the free surface level, the

non-fluid part of the control volume is occupied by stems and air.

3.6.4 PIV velocity maps

Concerning the PIV data treatment, the first step is performed by the PIV software, which

applies an adaptive correlation algorithm to convert the images pairs into instantaneous velocity

maps. The instantaneous velocity field exported from the PIV software were in image units

(px/s), thus a conversion to metric units (m/s) was applied. A simple linear transformation

was considered since the field of view was small enough so that it became possible to neglect

circular camera distortions. For each acquired plane, before the velocity measurements, a PVC

sheet, marked off with a millimetre scale, was placed on measurement’s plane and an image was
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(a) (b) (c) (d)

Figure 3.35: Vertical distribution of the volumetric fluid fractions for a) test S1, b) measuring gaps on the
first wavelength of the stem distribution of test S2, c) measuring gaps on the second wavelength of the
stem distribution of test S2 and d) test S3.

recorded to allow the computation of the calibration coefficient. The marked PVC sheet, shown

in Figure 3.36, was also used to focus the camera. Since the camera’s field of view included parts

which were not flow (bed, stems and air above the free surface), the original velocity maps were

masked out to eliminate those parts.

Figure 3.36: PVC sheet used to calculate the calibration factor to convert velocity maps in image units
(px/s) into metric units (m/s).

Figures 3.37 and 3.38 present three examples of vertical maps of longitudinal and vertical

instantaneous velocity components, respectively, after calibration and mask out procedures.

Those maps correspond to the “raw” data in this study and based on the instantaneous flow

field a time-averaged characterization of the flow at inter-stem scale was performed. Moreover

autocorrelation functions, second and third-order structure functions and energy spectra were

computed.

Figure 3.39 presents the time-averaged velocities corresponding to tests in which the instan-

taneous fields of Figures 3.37 and 3.38 were acquired. The colormaps represent the velocity

magnitude,
(
ū2 + w̄2

)1/2 and the vector plots correspond the time-averaged velocity field, where

only each second vector is represented. The corresponding Reynolds shear stresses and longitudi-
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(a) (b) (c)

Figure 3.37: Instantaneous longitudinal velocity, u, maps at measuring gap P7 of test S2 at a) y = 0.214 m,
b) y = 0.224 m and c) y = 0.234 m. Units of velocity colormaps are m/s.

(a) (b) (c)

Figure 3.38: Instantaneous vertical velocity, w, maps at measuring gap P7 of test S2 at a) y = 0.214 m, b)
y = 0.224 m and c) y = 0.234 m. Units of velocity colormaps are m/s.
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(a) (b) (c)

Figure 3.39: Time-averaged velocity maps at measuring gap P7 of test S2 at a) y= 0.214 m, b) y= 0.224 m
and c) y = 0.234 m. The colormap represents the velocity magnitude,

(
ū2 + w̄2

)1/2. Units of velocity
colormaps are m/s. The arrow at the graphs bottom is the scale of the vector plot and it corresponds to 0.2
m/s.

(a) (b) (c)

Figure 3.40: Time-averaged Reynolds shear stress
(
−ρu′w′

)
maps at measuring gap P7 of test S2 at a)

y = 0.214 m, b) y = 0.224 m and c) y = 0.234 m. Units of stress colormaps are Pa.
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(a) (b) (c)

Figure 3.41: Longitudinal turbulent intensity
(

u′u′
1/2
)

maps at measuring gap P7 of test S2 at a)
y = 0.214 m, b) y = 0.224 m and c) y = 0.234 m. Units of colormaps are m/s.

(a) (b) (c)

Figure 3.42: Vertical turbulent intensity
(

w′w′
1/2
)

maps at measuring gap P7 of test S2 at a) y = 0.214 m,
b) y = 0.224 m and c) y = 0.234 m. Units of colormaps are m/s.
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nal and vertical turbulent intensities are shown in Figures 3.40, 3.41 and 3.42, respectively.

Data corresponding to vertical planes were mainly applied to compute the double-averaged

velocity and stress profiles presented in Chapter 4. The quality of the mean (double-averaged)

values depends on the number and on the location of the space-sample points or profiles. The

Appendix A presents a conference paper where the issues related to the sufficiently sampling for

application of the DAM are discussed.

Regarding the data from horizontal planes, instantaneous velocity series in spanwise direction

were used to characterize the turbulence of the studied flows as explained in Chapter 7. The

time-averaged flow field allows a qualitative characterization of the flow within the inter-stem

space. Figures 3.43 and 3.44 present, for test S2, a time-averaged velocity and vorticity map,

respectively, at each measuring gap.

The qualitative time-averaged flow analysis revealed that the inter-stem space is characterized

by alternating zones of low velocity in wake regions and high velocity zones between stems, for

all the stem areal number-density tested. The time-averaged vorticity maps show a repeating

symmetrically paired vortexes pattern caused by the unsteady separation of the flow on the

cylinders. These quasi-symmetric high vorticity patterns behind the stems identify von Kármán

vortex streets. Comparing vorticity maps for the different longitudinal positions, one can conclude

that stems induce a regular structure of vortex patterns independently of the stem areal number-

density. However, the space necessary to fully develop the vortex pattern is strongly reduced in

dense patches. At sparse patches vorticity has space to decrease its intensity what is not observed

at dense patches where the vortices are forced to compress. From the phenomenological point of

view, turbulent structure generation in this kind of flow is similar to generation in the case of an

isolated cylinder, it is a wake production dominated flow.
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Figure 3.43: Time-averaged velocity maps at the measuring gaps of test S2. Units of colormaps are m/s.
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Figure 3.44: Time-averaged vorticity maps at the measuring gaps of test S2. Units of colormaps are s−1.
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Chapter 4

Drag coefficient of flows within
random arrays of rigid and emergent
plant stems

This chapter aims at the quantification of the drag coefficient (CD) of emergent rigid stems,

simulated by vertical cylinders, and at the identification of the parameters to which drag is

most sensitive to. Laboratory experiments were performed with rigid and emergent vegetation,

featuring constant and varying stem areal number-density (m), under gradually varied flow

conditions. Data acquisition consisted in 2D instantaneous velocities maps measured with PIV.

Data treatment involved Double-Averaging methods and a dimensional analysis identified the

relevant non-dimensional parameters characterizing these flows. At patch scale, the longitudinal

increase of m is associated to smaller magnitudes of the drag force per unit of submerged stem

length (FD). However, at wavelength scale, there is no appreciable effect of spatial variability

of m and FD becomes independent of the particular arrangement of stems. For the range of

investigated Rep and m, CD does not vary with Rep. CD seems to increase for lower relative flow

depths, revealing the influence of the bottom roughness. It is argued that the drag force should be

calculated with the full momentum equation.

Keywords: Vegetation, PIV, Double-Averaging Methodology, Dimensional analysis, Drag

coefficient.
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4.1 Introduction

River engineering works procure, in a sustainable society, the promotion of high standards

of water quality and habitat diversity within good landscape design practices. Vegetation plays

a key role in river systems as it affects flow resistance and fluxes of sediments, nutrients and

contaminants (Tanino & Nepf, 2008) and it provides a large range of ecosystem services (Aberle &

Järvelä, 2013), allied to such economical and safety functions as navigation and flood protection.

Promoted by increasing environmental concerns, a large number of scientific works have been

carried out during the last decades dealing with flows within vegetation-covered boundaries.

These include field studies (Kadlec, 1990; Lee et al., 2004; Nikora et al., 2008; Petryk &

Bosmajian, 1975) but most publications report laboratory experiments with arrays of flexible

(Dittrich et al., 2012; Fathi-Maghadam & Kouwen, 1997; James et al., 2008; Järvelä, 2002; Nepf

& Vivoni, 1999) or rigid stems (Ferreira et al., 2009b; Li & Shen, 1973; Nepf, 1999; Stone &

Shen, 2002; Tanino & Nepf, 2008; White & Nepf, 2008). There are also some theoretical works

(Cheng, 2013; Lee et al., 2004; Maheshwari, 1992; Yen, 2002) presenting models and respective

application domain, and, in the computational realm, an increasing number of numerical databases

for flows within vegetation reaches (Koch & Ladd, 1997; López & García, 1998, 2001).

The characterization of drag forces on vegetation elements is one of the most important fields

of research, with important applications in civil engineering, namely in the estimation of hydraulic

resistance for design of fluvial channels or flood forecasting (Kadlec, 1990; López & García,

1998). Most of the existing design criteria and simulation models employ resistance formulas

such as Manning’s, necessarily calibrated ad hoc. Moving toward physically based design criteria,

progresses have been made in the characterization of 3D flows over irregular boundaries and over

canopies, mainly due to the application of the Double-Averaging Methodology (DAM), which is

a particular form of upscaling in the spatial and temporal sense (Finnigan, 2000; Gimenez-Curto

& Corniero Lera, 1996; Nikora et al., 2001, 2007a; Raupach et al., 1986).

Many of the studies aimed at the quantification and parametrization of flow resistance attri-

butable to vegetation are based on the rigid cylinder analogy. On one hand it might be argued

that such simplification does not cover most of the wide range of natural conditions; on the

other hand some key physical processes governing flow resistance of vegetated areas can be

better understood with simple rigid-stem experimental apparatus. This is the case of the effect

of changing the number of stems per unit plan area on flow variables such as flow resistance

or the relative magnitude of forces acting on the bed boundary and on the stems. Furthermore,

floodplains populated by shrubs or trees and wetlands populated by reed-type vegetation, which

are cases where vegetation can be simulated by rigid stems, are often found in nature.

The vegetation drag coefficient, CD, is an empirically derived function of the fluid, flow and

vegetation properties. It is of great importance to river engineers who seek for practical models to
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evaluate the flow resistance and to some numerical hydrodynamic models. Several authors have

computed the vegetation drag coefficient and studied its dependence on characteristic parameters

(Ishikawa et al., 2000; Nepf, 1999; Stoesser et al., 2010; Tanino & Nepf, 2008; Tinoco & Cowen,

2013), namely the volumetric solid fraction, φ , which is the ratio between the volume occupied by

stems and the total control volume, and stem Reynolds number, defined as Rep =Ud/ν , U being

the depth-averaged mean longitudinal velocity, d the stem diameter and ν the fluid kinematic

viscosity.

A literature review revealed that there are inconsistencies regarding the dependence of the

drag coefficient on the volumetric solid fraction and on the stem Reynolds number: Nepf (1999)

presented a negative correlation between drag coefficient and φ but most of the authors have

found a positive correlation (e.g. Ishikawa et al. (2000); Tanino & Nepf (2008); Tinoco & Cowen

(2013)); also, positive (Ishikawa et al., 2000) and negative correlations (Tanino & Nepf, 2008)

and also lack of correlation (Tinoco & Cowen, 2013) have been reported in what concerns the

relation between CD and Rep. However, one must note that most of the studies consider the

vegetation drag force balanced only by the longitudinal pressure gradient. Although the latter

is the dominant term in the horizontal balance of forces, the balance of the other smaller terms

might have a non-negligible impact. Particularly, form-induced (or dispersive) stresses, which are

often considered negligible in literature, may present magnitudes of the same order as Reynolds

stresses (Ferreira et al., 2009b). Bearing these issues in mind, the main objectives of this study are

the quantification of the drag coefficient of emergent rigid stems, simulated by vertical cylinders,

and to determine to which parameters the value of CD is most sensitive to.

Since natural systems are rarely homogeneous, the flow within the stem array is influenced

by several space scales, determined by the stem diameter, the areal number-density of stems,

herein designated by m and expressed in stems/m2, and its spatial modulation. The present

work features the study of a flow with and without spatial variability of m along the streamwise

direction. Particular goals include i) a detailed characterization and quantification of the flow

within vegetated areas susceptible to be simulated by dense arrays of vertical emergent stems; ii)

the quantification of the forces acting on the stems and iii) a discussion on the dependence of the

drag coefficient on the non-dimensional parameters that characterize these kind of flows. These

objectives lead to a better knowledge of the flow resistance in wetlands and vegetated areas in

general.

The objectives are achieved by carrying out in laboratory three tests simulating rigid and

emergent vegetation, with constant and varying density of stems. The present study employs

rigid, emergent and slightly rough cylinders, randomly placed as a proxy for natural stems

in a compromise between laboratory feasibility and physical similitude. The data acquisition

consisted mainly in 2D instantaneous velocities maps measured with a Particle Image Velocimetry

system (PIV). The data treatment is carried out following the framework of Double-Averaging
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Methodology (DAM) and a dimensional analysis is performed to identify the relevant parameters

on the characterization of flows within arrays of rigid and emergent stems.

This work is organized in five main sections. After the introduction, the governing equations

are presented. Then, it follows the description of the experimental setup. Further, the results are

presented and discussed and finally the paper is closed with the main conclusions.

4.2 Governing equations

4.2.1 Double-Averaged Navier Stokes Equations

The Double-Averaging Methodology (DAM) provides the conceptual framework for the

calculation of the force acting on the stems and, independently, the force acting on the bed surface.

DAM is an upscaling technique that introduces a spatial decomposition of the time-averaged flow

variables into a spatial fluctuation component and a double-averaged value. If θ is a generic flow

quantity, the time averaged value is decomposed in θ̄ = 〈θ̄〉+ θ̃ , where θ̃ is the spatial fluctuation

and 〈θ̄〉 is the double-averaged (time- and space-averaged) value, herein simply designated as

the mean value of that quantity. The flow is described at larger spatial scales and the effects of

spatial variability are expressed as dispersive quantities (Finnigan, 2000; Raupach et al., 1986).

The forces acting on the bed and on the stems are calculated from the DANS (Double-Averaged

Navier-Stokes) equations (Nikora et al., 2001, 2007a). For steady flows, the DANS equations are

written as

〈ūi〉
∂ 〈ū j〉
∂xi

= g j−
1

ψρ
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− 1
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+
1
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∂
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(
ψ

〈
ν

∂ ū j
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〉)
+

1

ρ∀(s)f

∫

S(s)int

p̄n jdS− 1

∀(s)f

∫

S(s)int

ν
∂ ū j

∂xi
nidS

+
1

ρ∀(b)f

∫

S(b)int

p̄n jdS− 1

∀(b)f

∫

S(b)int

ν
∂ ū j

∂xi
nidS, (4.1)

where i = x,y,z are the streamwise, spanwise and vertical directions, respectively, of the Cartesian

referential, ūi and p̄ are the time-averaged velocities and pressure, respectively, 〈ūi〉 and 〈p̄〉 are

the mean (space- and time-averaged) velocities and pressure, respectively, ũi = ūi−〈ūi〉 stands

for the spatial velocity fluctuations, ∀(k)f and S(k)int stand, respectively, for the volume of fluid

and for the area of the fluid-solid interface of the control volume k, ψ is the volumetric fluid

fraction defined as ψ = 1−φ (s)−φ (b), φ (k) being the volumetric solid fraction in control volume

k. k = s identifies the control volume bounded by the mean bed elevation and the free surface

and k = b identifies the control volume bounded by a horizontal plane that contains the crests

of the rough bed and by the mean bed elevation. The stress and drag terms in Eq. (4.1) are:
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−ρψ〈u′iu′j〉, the Reynolds stress tensor; −ρψ〈ũiũ j〉, the form-induced stress tensor; ψ

〈
ν

∂ ū j
∂xi

〉
,

the viscous stresses; 1
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∫
S(s)int

p̄n jdS, the form (pressure) drag on the stems; − 1
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nidS,
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− 1
∀(b)f
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ν
∂ ū j
∂xi

nidS, the viscous drag on the bed (all drag forces per unit mass).

4.2.2 Mean pressure distribution

To obtain the pressure distribution one integrates vertically the vertical component of Eq. (4.1).

In the present work only longitudinal and vertical components of the velocity field were measured

as it was assumed that 〈v̄〉 ≈ 0 (Ricardo et al., 2013). Furthermore, viscous stresses are neglected:

due to the small magnitude of the water kinematic viscosity, those stresses are expected to be at

least one order of magnitude smaller than the other terms in Eq. (4.1). Under these conditions and

further introducing the free-surface kinematic condition, ∂h/∂x 〈ū〉|h = 〈w̄〉|h (where h stands

for the water depth), the integration of the z-component of Eq. (4.1) between a generic level z

and the free-surface yields

ψ(z)〈p̄〉(z) = ρgcosβ [ψ]hz +ρκ(x,z) (4.2)

where, simplifying the notation, the square brackets are used to represent the integral variables,
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∫ h
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represents the deviation to the hydrostatic pressure distribution.

4.2.3 Mean drag force

The integration of the longitudinal component of the momentum conservation equation (Eq.

4.1) leads to an equation that allows the computation of the drag force exerted on the stems. With

the same assumptions stated for the vertical component, the longitudinal components of DANS
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are written as
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Writing the pressure and the viscous forces per unit volume as I(b)px =− 1
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∂x nx +

∂ ū
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previously obtained pressure distribution, carrying out the vertical integration, between zero and

h, and introducing the free surface kinematic condition, Eq. (4.4) becomes
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It should be noticed that the last four terms on the right hand side are handled as
∫ h

0
ψ

ρ
I(b)px dz≈

1
ρ
{ψI(b)px }h = 1

ρ
αb,p{ψ}{I(b)px }h = 1

ρ
αb,p{ψ}〈 f̄ (b,p)x 〉, where the brackets {} stand for the depth-

average operator and the constant αb,p represents the deviation of the product of averaged

variables and the averaged of the product of the same variables.

The mean quantity 〈 f̄ (s)x 〉= 〈 f̄ (s,ν)x 〉+ 〈 f̄ (s,p)x 〉 is the drag force exerted on the stems per unit

plan area, susceptible to be expressed as 〈 f̄ (s)x 〉= FDmh, being FD the mean drag force per unit of

submerged stem length. Note that FD is not a force (per unit length) acting on any particular stem;

it is the mean force acting on the array of stems divided by the number of stems in that array.

4.3 Experimental tests

The experimental work was carried out in a 12.5 m long and 40.8 cm wide recirculating

tilting flume of the Laboratory of Hydraulics and Environment of Instituto Superior Técnico. The
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flume has glass side walls, enabling flow visualization and laser illumination. The flume bottom

was horizontal and covered with a thin horizontal layer of gravel and sand with the thickness

of 2 times the mean diameter of the gravel. Arrays of rigid, vertical and cylindrical stems were

randomly placed along of a 3.5 m long reach simulating emergent vegetation conditions. The

diameter of the cylindrical elements is 1.1 cm. Downstream the reach covered with vegetation, a

coarse gravel weir controlled the flow, which was subcritical both downstream and upstream of

the vegetated reach.

Three experimental tests were performed, two with a constant areal number-density of stems

and one with spatially varying stem areal number-density. To enable the velocity measurements,

gaps (narrow regions without stems in the spanwise direction) were enforced, whose width was

equal to the mean inter-stem distance of the upstream reach. These gaps will herein be designated

as “measuring gaps". The main characteristics of the arrangement of stems and measuring gaps

are as follows.

• Test S1 featured 400 stems/m2 randomly distributed all over the vegetated reach (Fig.

4.1a). The measuring gaps were distanced 1.0 m apart.

• For test S2, stems were placed in order to create a pattern with seven wavelengths, each

0.5 m long, with varying m. Data acquisition was carried out in eight measuring gaps,

distributed along two wavelengths - P1 to P4 (first wavelength) and P5 to P8 (second

wavelength) as shown in Fig. 4.1b). Each wavelength features

– a 15 cm long patch with m = 1600 stems/m2 (dense patch, herein); this is the case

of patch p4−5 in the second wavelength;

– a 10 cm long transition patch with an average m of 980 stems/m2, divided into two

5 cm reaches with 1200 stems/m2 and 800 stems/m2, respectively from upstream

to downstream; it is the case of patches p1−2 and p5−6, respectively in the first and

second wavelengths;

– a 15 cm long patch of m = 400 stems/m2 (sparse patch, herein); this is the case of

patches p2−3 (first wavelength) and p6−7 (second wavelength);

– an ending patch 10 cm long transition patch with an average m of 980 stems/m2,

divided into two 5 cm reaches with m = 800 stems/m2 and m = 1200 stems/m2,

respectively from upstream to downstream; it is the case of patches p3−4 (first

wavelength) and p7−8 (second wavelength).
• Test S3 was populated with the same number of stems of test S2 (1366 stems) distributed

randomly and uniformly, resulting in m = 980 stems/m2. Measuring gaps were 1.0 m

apart (Fig. 4.1c).

The experiments were run with a discharge of 2.3 l/s. The flow is gradually varied, accelerating

in the downstream direction. The free surface exhibited an oscillating behaviour with larger

amplitudes in dense patches.
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p p p p p p p
1-2 2-3 3-4 4-5 5-6 6-7 7-8

p
0-1

Figure 4.1: Plan view of the stem covered reach where the measurements were carried out for each test:
a) test S1; b) test S2 and c) test S3. The solid lines aligned with flow direction indicate the location of the
vertical plans measured with PIV.
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Table 4.1: Features of the experimental measurements and flow properties for each test.

Test M.Gap Patch
x m dm/dx U h dh/dx H Rep

(m) (stems/m2) (−) (m/s) (m) (−) (m) (−)

S1
Up 7.270 400 0 0.092 0.066 - 0.044 1170

Down 8.270 400 0 0.109 0.059 -0.007 0.046 1450

S2

P1 p0−1 6.680 1600 0 0.085 0.065 -0.020 0.046 1121

P2 p1−2 6.782 980 < 0 0.083 0.064 -0.017 0.045 1158

P3 p2−3 6.935 400 0 0.090 0.063 -0.002 0.040 1237

P4 p3−4 7.036 980 > 0 0.099 0.062 -0.012 0.045 1303

P5 p4−5 7.192 1600 0 0.103 0.057 -0.031 0.038 1302

P6 p5−6 7.293 980 < 0 0.108 0.056 -0.018 0.036 1374

P7 p6−7 7.446 400 0 0.100 0.054 -0.010 0.036 1216

P8 p7−8 7.545 980 > 0 0.106 0.052 -0.017 0.032 1222

S3
Up 6.900 980 0 0.092 0.065 - 0.042 989

Down 7.900 980 0 0.099 0.051 -0.014 0.041 1064
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Chapter 4. Drag coefficient of flows within random arrays of rigid emergent stems

Table 4.1 summarizes the main flow variables for each test. Herein, x is the longitudinal

coordinate of the measuring gap relative to the channel inlet, dh/dx is the gradient of the mean

flow depth h and H is the depth of the water column where the flow is controlled by the stems. The

remaining variables were previously defined. The column label M.Gap identifies the measuring

gap where the measurements corresponding to each patch were done.

Measurements consisted in acquisition of 2D (streamwise × vertical) instantaneous velocity

maps with a Particle Image Velocimetry system (PIV), bottom and free surface levels with a laser

displacement sensor (Keyence LK-2000) and water temperature with a thermometer. PIV is a

technique whose intrusiveness is limited to the introduction of solid targets for flow visualization.

The PIV system consisted of an 8-bit 1600×1200 px2 CCD camera and a double-cavity Nd-YAG

laser with pulse energy of 30 mJ at wavelength of 532 nm. PIV image pairs were acquired at a

frequency of 15 Hz with a time delay of 1500 µs between frames. The targets were polyurethane

particles with a mean diameter of 60 µm in a range from 50 µm to 70 µm and a density of

1.31 g/cm3. Using this seeding, the cut-off frequency of the turbulent signal, calculated with

the theory of Hjemfelt & Mockros (1996), is about 30 Hz. Given that the Nyquist frequency of

the PIV measurements is 7.5 Hz, it is concluded that the seeding particles are adequate for the

performed laboratory work.

For each longitudinal position, several vertical planes were measured in the central part

of the flume width (horizontal lines in Fig. 4.1). For each plane of the test S1 21× 486 px2

images couples were collected, which corresponds to 11′20′′ of total acquisition time. For test

S2 10× 573 px2 images couples were collected at each lateral position, representing a total

acquisition time of 6′37′′. Concerning the test S3, one run with 5000 image pairs was acquired for

each vertical plane, corresponding to 5′33′′ of consecutive data. Image pairs were processed with

an adaptive correlation algorithm starting with interrogation area of 128×128 px2 and ending at

16×16 px2, without overlap. The spatial resolution of the velocity maps yields to interrogation

volumes of (0.7− 1)× (0.7− 1)× 2 mm3, since the laser light sheet is approximately 2 mm

thick.

The length scale used in this work to normalize the vertical coordinate in the graphs presented

below correspond to the depth of the water column where the flow is controlled by the stems,

H. This region is identified by the profile of longitudinal form-induced stress as sketched in Fig.

4.2a).

Fig. 4.2b) shows profiles of the volumetric fluid fraction, or void function, ψ(x,z) showing

that the bed and the free-surface oscillations are relatively small. Therefore, the void function is,

herein, considered as constant through all the flow depth and determined by the volumetric solid

fraction occupied by the stems, ψ(x) = 1−φ (s).
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(a) (b)

Figure 4.2: a) Double-averaged profiles of normal longitudinal form-induced stresses for identification of
the flow layer controlled by the stems. The data presented correspond to test S2. b) Vertical profiles of
void function, ψ(x,z). The vertical axis is normalized by the flow depth, h.

4.4 Results

4.4.1 Dimensional analysis

Any given mean quantity of a physical phenomenon is susceptible to be written as a function

of a set of sufficient parameters that fully define that phenomenon (Yalin, 1971, p.6). In this case,

the mean drag force on stems and the drag coefficient should depend on:

i) fluid properties, for which the sufficient parameters are the viscosity, µ , and the density, ρ ;

ii) vegetation characteristics, which, for rigid stems, are the stem diameter, d, the inter-stem

distance s, defined as s = 1/
√

m, its spatial derivative and the roughness of the stems, kd .

iii) bottom boundary features; in this case the median diameter of the gravel bed ds stands for

a measure of the hydraulic roughness of the immobile boundary;

iv) flow descriptors, for which the necessary and sufficient parameters are the mean depth-

averaged longitudinal velocity, U , the flow depth h and their longitudinal derivatives;

v) the acceleration of gravity, g.

Drag forces per unit of submerged stem length are thus completely determined by

FD = f
(

µ,ρ,d,s,
∂ s
∂x

,kd ,ds,U,h,
∂U
∂x

,
∂h
∂x

,g
)

(4.6)

The longitudinal coordinate, x, is not considered since none of the previous parameters varies

independently of x.

83



Chapter 4. Drag coefficient of flows within random arrays of rigid emergent stems

Applying Vaschy-Buckingham’s theorem (also known as π theorem) using U , ρ and d as

basic quantities (also called repeating variables), one obtains

ΠFD =
Fd

ρU2d
= fFD

(
Rep,

s
d
,

∂ s/d
∂x/d

,
ds

d
,
kd

d
,

h
d
,
∂h/d
∂x/d

,Fr
)

(4.7)

where the stem Reynolds number Rep =
Uρd

µ
expresses the relative importance of inertial versus

viscous effects, the relative inter-stem distance s
d (equivalent to the volumetric solid fraction, φ )

expresses the influence of flow blockage by stems, the relative grain-size representative diameter
ds
d , expresses the influence of bed roughness and kd

d accounts for the effects stem roughness, the

relative flow depth h
d allows for the discussion of the relative influence of the bottom on the flow

structure and the Froude number, Fr = U√
gh , obtained as (the square root of) a combination of

the ratio of U2

gd and h
d , accounts for free-surface effects on the flow structure. Since the areal

stem number-density varies longitudinally (patches p1−2, p3−4, p5−6, p7−8 in S2) and the flow is

gradually varied, the derivatives of the relative inter-stem distance ( ∂ s/d
∂x/d ) and of the relative water

depth ( ∂h/d
∂x/d ) are kept in (4.7).

Figures 4.3 and 4.5 show that the influence of the free-surface over the flow structure are

confined to a narrow upper layer, which is compatible with low values of Froude number

associated with the investigated flows. Hence, the dependence of CD on Fr is not discussed. The

parameters ds
d and kd

d are also not discussed since the properties of the sediments of the gravel

bed and the stem roughness are the same for all the tests. One also notices that the derivatives of

the dimensionless parameters are the same as the derivatives of the dimensional parameters s and

h. Considering that the drag coefficient commonly used in literature is CD = 2 fFD , the functional

dependence of the drag force per unit stem length is thus

FD =
1
2

ρdU2CD

(
Rep,

s
d
,

∂ s
∂x

,
h
d
,
∂h
∂x

)
. (4.8)

Equation (4.8) provides the framework for the discussion of the values of FD and CD calculated

from the PIV database and water depth measurements (shown in the next sub-sections).

4.4.2 Characterization of time- and space-averaged flow

This subsection presents a characterization of the flow for the three experimental tests based

on the double-averaged velocity and stress profiles. Note that, hereinafter, for simplification, ρ is

omitted in the stress tensors. The quantification of relevant double-averaged quantities allows for

the actual calculation of the drag force from Eq. (4.5). Employing discrete measurements, the
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calculation of such double-averaged quantities obeys to

〈θ̄〉(z)≈

N−N0(z)

∑
k=1

θ̄k(z)Ak(z)

N−N0(z)

∑
k=1

Ak(z)

(4.9)

where 〈θ̄〉 = 〈ūi〉 or 〈θ̄〉 = 〈p̄〉, Ak(z) is the area of the convex sub-domain Ωk, defined as the

the area of influence of (xk,yk) ∈]0,Lx[×]0,Ly[ and such that
N(z)⋃

k=1

Ωk = Ω, N corresponds to the

total number of sub-domains and N0(z) to the number of sub-domains, at elevation z, for which

the flow variable is not defined in (xk,yk). It should be noticed that
N−N0(z)

∑
k=1

Ak(z) < A(z) for

N0(z)> 0.

Fig. 4.3 presents profiles of longitudinal and vertical velocities. For the longitudinal velocity,

one observes that the shape of the profiles is similar for all the tested density of stems. There is

a pronounced bulge, at lower layers, in almost all profiles, corresponding to a maximum of the

mean longitudinal velocity. Below the maximum, the value of 〈ū〉 decreases in fashion typical of

a boundary-layer flow. Evidently, near the surface of the gravel elements the no-slip condition

applies. Note that the mean flow velocity at the mean trough level is not necessarily zero, it is

only required that is is compatible with the mean sub-surface flow which should be negligible.

At the free surface, there is a thin boundary layer created by a 0.2 mm thick plastic sheet placed

at the free surface to avoid laser refractions during PIV measurements. The main feature of

the longitudinal velocity within arrays of rigid stems is its uniformity of the distribution on the

region where the flow is controlled by the vertical elements. Regarding its magnitude, the profiles

corresponding to downstream positions have higher values than those at upstream expressing the

fact that the flow is gradually accelerated.

Profiles of vertical velocity show typically small values, except close to the bottom where,

due to the interaction with the bed, the flow shows down- and upward movements (nevertheless

presenting values one order of magnitude smaller than the longitudinal velocity). Fig. 4.3b)

indicates that the impact of the bed roughness is more important in denser patches. Close to the

free surface, the non-zero values might be justified by the vertical oscillations observed. Here,

the largest values are observed for the measuring gaps P5 and P8 of S2, which correspond to the

densest patches.

Fig. 4.4a) represents Reynolds shear stresses showing that these turbulent stresses have very

small magnitudes, almost vanishing on the region controlled by the stems. Close to the bed and

the free surface, patches with high stem areal number-density exhibit larger values. The wavy

behaviour of this variable, alternating between positive and negative values, is most likely due to
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Figure 4.3: a) Double-averaged longitudinal velocity profiles. b) Double-averaged vertical velocity
profiles.

the roughness of the vertical stems.

The form-induced shear stresses (Fig. 4.4b) have the maximum values near the bottom and

become almost zero at levels close to the free surface. These stresses are, in general, larger than

Reynolds stresses and increase with the stem areal number-density.

Normal longitudinal turbulent and dispersive stresses are presented in Fig. 4.5 a) and b),

respectively, showing that both have the same order of magnitude. The longitudinal form-induced

stress, representing the correlation of the spatial fluctuation of the longitudinal velocity with

itself, is a good variable to express the heterogeneity of the flows within vegetation patches.

Its magnitude clearly increases with the increasing density of stems. As mentioned above, it

allows to identify the region, on the water column, where the flow is controlled by the stems,

since its vertical distribution shows an inflection point where the bottom looses importance in the

definition of the flow structure.

Fig. 4.6 presents the vertical component of the Reynolds and form-induced stresses showing,

in both cases, a correlation between its magnitude and the stem areal number-density. Vertical

Reynolds stresses exhibit an almost constant profile at most of the flow depth, decreasing to

zero close to the bed and the free-surface. Concerning the dispersive stresses, its magnitude

is smaller than the corresponding turbulent stresses and the maximum values are felt close to

the bed, decreasing then to zero towards the free-surface. This vertical stress points out that in

the region of the interaction with the bed the flow is highly 3D, with important vertical flow

components.
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Figure 4.4: Double-averaged shear stresses: a) Reynolds; b) form-induced.
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Figure 4.5: Double-averaged normal longitudinal stresses: a) Reynolds; b) form-induced.
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Figure 4.6: Double-averaged normal vertical stresses: a) Reynolds; b) form-induced.

Mean vertical velocity is one order of magnitude smaller that the longitudinal component and

does not present important longitudinal gradients (Fig. 4.3b); Reynolds shear stresses proved to

be very small through the entire flow depth (Fig. 4.4a); form-induced shear stresses (Fig. 4.4b)

and normal vertical form-induced stresses (Fig. 4.6 b) are zero at the free-surface. Therefore,

the function κ(x,z) presents values of O
(
10−4

)
, i.e., it is 4 orders of magnitude smaller than the

first term of Eq. (4.2). Hence, the pressure distribution is assumed hydrostatic.

4.4.3 Quantification of drag forces and coefficients

The quantification of mean velocities and stresses allows for further simplification of Eq.

(4.5), since one notices that some of its terms are negligible: both turbulent and dispersive shear

stresses vanish at the bottom and at the free-surface and due to the small amplitude of the bed

oscillations; the viscous and pressure drag exerted on the bed per unit plan area, 〈 f (b,ν)x 〉 and

〈 f (b,p)x 〉 respectively, are expected to be very small (Ferreira et al., 2009b), so they were not

considered. Therefore, 〈 f̄ (s)x 〉 is actually calculated as

〈 f̄ (s)x 〉=
ρ

ψ

(
−∂ [ψ〈ū〉〈ū〉]

∂x
+

[
〈ū〉〈ū〉∂ψ

∂x

]h

0
−g

h2

2
∂ψ

∂x
−ghψ

∂h
∂x
−

∂
[
ψ〈u′u′〉

]h
0

∂x

+
∂h
∂x

(
ψ〈u′u′〉

)∣∣
h−

∂ [ψ〈ũũ〉]h0
∂x

+
∂h
∂x

(ψ〈ũũ〉)|h

)
. (4.10)

After computing the force exerted on the stems per unit of plan area, 〈 f̄ (s)x 〉, the mean drag
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Table 4.2: Values of FD, CD and F∗D for each patch.

Test S1
S2

S3
p1−2 p2−3 p3−4 p4−5 p5−6 p6−7 p7−8

FD(N/m) 0.16 0.19 0.08 0.06 0.17 0.22 0.29 0.13 0.14

CD(−) 2.9 6.3 1.7 0.9 3.0 4.3 5.3 1.8 2.8

F∗D(N/m) 0.17 0.15 0.05 0.11 0.16 0.16 0.24 0.15 0.13

force per unit of submerged stem length, FD, is obtained by

FD =
〈 f̄ (s)x 〉

mh
(4.11)

The drag coefficient is defined, from Eq. (4.8), as

CD = 2FD/(ρdU2) (4.12)

The mean drag force in the longitudinal direction, for flows over flat beds, is often defined

in literature as the force that balances the pressure gradient (Tanino & Nepf, 2008; Tinoco &

Cowen, 2013):

F∗D =−ψρg
m

dh
dx

(4.13)

The values of FD, CD and F∗D calculated by Eqs. (4.11), (4.12) and (4.13), respectively, for

each test are presented in Table 4.2.

The widespread use of F∗D in the literature justifies a discussion, performed below, of its relation

with FD. The influence of the areal number-density of stems, its modulation and flow variability

on the values of FD and the variation of the values of CD as a function of the non-dimensional

parameters of (4.8) are then discussed.

4.4.4 The use of F∗D as a proxy for FD

Equation (4.13) represents the leading term in Eq. (4.11). To better understand the relative

contribution of the leading term and remaining terms, FD is plotted against F∗D in Fig. 4.7a) and

the ratio FD/F∗D is shown in Fig. 4.7b) as a function of m. A conspicuous deviation from the

identity line is observed in Fig. 4.7a) for large values of FD. Above all, this means that the

approximation error inherent to Eq. (4.13) is not systematic.

Figure 4.7b) allows for a more complete understanding of the relation between the relevant and
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Figure 4.7: a) Drag force FD calculated by Eq. (4.11) against the simplification F∗D expressed by Eq.
(4.13); b) the ratio FD/F∗D as a function of m.

the secondary terms: for high areal number-density of stems, the dominant term seems sufficient

to explain the drag force; on the contrary, for low values of m (400 stems/m2), the dominant

term must be complemented with the secondary terms to avoid blunt errors. Interestingly, it

appears that the spatial variability of m can play an important role in the relative magnitude of

the terms of Eq. (4.11): for m = 980 stems/m2 and ∂m
∂x = 0, FD seems satisfactorily described

by its dominant term (test S3 in Fig. 4.7b); however, for the same value of m but ∂m
∂x < 0 (or,

equivalently, ∂ s
∂x > 0) the secondary terms become important and the estimate based solely on

the pressure gradient underestimates the true drag force (patches p1−2 and p5−6); conversely, for
∂m
∂x > 0 (or, equivalently, ∂ s

∂x < 0), secondary terms are also important but the estimate based

on the pressure gradient overestimates the true drag force (patches p3−4 and p7−8). It is thus

concluded that Eq. (4.13) is not a good proxy for the mean drag (per unit length) on plant stems

since the approximation error is not systematic and is influenced by gradients in the spatial

distribution of stems.

4.4.5 The drag force per unit stem length, FD

The impact of the variation of the areal number-density of stems on the values of FD, computed

from Eq. (4.11), is shown in Fig. 4.8. The dependence of FD on m is not conclusive: there seems

to be a decreasing trend but only in the highest values of FD; if one considers the mean of all

points for each m, FD appears approximately constant and thus uncorrelated with m (or s). A

closer observation of Fig. 4.8 reveals a dependence on ∂m
∂x ; this can be perceived by analysing

the values of FD at m = 980 stems/m2. The relevant points concern test S3 and patches p1−2,
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Figure 4.8: Drag force per unit of length of submerged stem, FD against the stem areal number-density, m.

p5−6

(
∂m
∂x < 0

)
, p4−5 and p7−8

(
∂m
∂x > 0

)
of test S2. Patches with ∂m

∂x < 0 exhibit a larger drag

force than patches ∂m
∂x > 0. Test S3, with ∂m

∂x = 0, is characterized by an intermediate value of FD,

which contributes to the consistency of this analysis. Hence, the seeming lack of correlation of

FD with s is partially the result of opposite forms of correlation with ∂m
∂x that cancel out over one

wavelength.

To further pursue this issue, the actual drag forces in tests S2 and S3 are calculated and

compared. Test S3 was designed to have uniformly distributed the same number of stems between

measuring gaps as the two wavelengths of test S2. Furthermore, the submerged stem lengths

are comparable in both tests. The total drag force corresponding to the reach between the

measuring gaps P1 and P8 on test S2 is 2.9 N, corresponding to 306 stems, while the total force

corresponding to the same number of stems in test S3 is 2.6 N. The total drag force is thus

practically the same for both tests, although in test S2 its values are sensitive to gradients of m.

Interpreting these results one proposes that, in S2, the opposite local influences of ∂m
∂x > 0 and

∂m
∂x < 0 cancel out over each wavelength. One thus concludes that the longitudinal variability of

m does not impact the global balance of momentum when its variability is of cyclic nature. This

hypothesis can be validated with extra tests featuring the same space-averaged value of m with

constant, positive or negative gradients, but this was out of the scope of the present work.

Figure 4.8 also reveals that the values pertaining to the second wavelength, for the same mean

value of s and the same value ∂ s
∂x , are always larger than the values for the first wavelength. The

increase of the drag force from the first to the second wavelength expresses the influence of

flow acceleration. Note that this is not a trivial result since, as seen before, drag is not solely
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Figure 4.9: Drag coefficient as function of stem Reynolds number Rep =Udρ/µ .

determined by the pressure gradient.

4.4.6 Variation of CD

Fig. 4.9 shows the dependence of CD on the stem Reynolds number. It reveals no obvious

correlation between the two parameters. As mentioned above, forces acting on stems are mainly

pressure drag, as the magnitude of viscosity is sufficiently small to render viscous forces negligible.

Therefore, CD is expected not to change with Rep, for sufficiently high values of the latter. The

somewhat disorganised distribution of values in Fig. 4.9 may be the reflection of the influence

of other parameters on CD (as the randomness of the stem distributions) or it can be due to

experimental errors.

The correlation between the drag coefficient and ratio s/d is presented in Fig. 4.10. Although

the scatter is high, indicating the influence of other parameters, a tendency for a positive corre-

lation is found, indicating that the drag coefficient should increase with increasing s/d. Since

s = m−1/2, it means that the presented database reveals a decrease of CD for increasing stem areal

number-density. This is compatible with the study of Nepf (1999), featuring Rep = 1000−4000

and m = 10−1000 stems/m2. Most of published works claim an inverse trend, notably Tanino &

Nepf (2008), Stoesser et al. (2010) and Tinoco & Cowen (2013); however it must be underlined

that conditions, namely the form of calculating FD, may vary considerably from one study to

another rendering void the direct comparison.

In the case of tests S1 and S3, calculating CD from F∗D allows for a direct comparison with the
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Figure 4.10: Drag coefficient as function of s/d.

results of Tanino & Nepf (2008). They presented curves, represented in Fig. 4.11, showing a

parabolic decrease of CD with Rep for a given φ and an increase of the values of CD with increasing

φ . The values of CD computed from both FD and F∗D, are plotted in Fig. 4.11 for tests S1 and

S3. These tests have different m, or s, but almost equal values of CD, 2.9 and 2.8, respectively.

According to Tanino and Nepf’s curves, a flow with Rep ≈ 1000 with m = 400 stem/m2 (as test

S1) would have CD ≈ 1.0 while for a similar Rep, with the φ of test S3, the drag coefficient would

be CD ≈ 2.0. The differences between the results are thus large, even for the case of CD calculated

from F∗D. The fact that the stem Reynolds number is beyond the scope studied by Tanino & Nepf

(2008) and the roughness of the stems may justify the differences.

The dependence of CD on h/d is shown in Fig. 4.12. This parameter expresses the influence

of the bed on the definition of the flow structure. Higher values of h/d are associated with a

smaller relative influence of the bed. It is envisaged that for very high values of h/d the drag

coefficient should not be influenced by this parameter anymore. Fig. 4.12 shows a tendency

for the decrease of CD with increasing h/d. This means that the contributions to the drag force

are not uniformly distributed along the water column; the boundary-layer flow near the bottom,

subjected to velocities lower than the depth-averaged mean velocity, contributes more than the

average. Exceptions for this trend are the patches p1−2 and p7−8. It is postulated that the value of

CD in these patches is highly influenced by other parameters: they are transition patches with

opposite signs of the gradient of s. In particular the high value of CD for patch p1−2 should be a

consequence of its increase for positive gradients of s.
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Figure 4.12: Drag coefficient as function of h/d.
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4.5 Conclusions

The present study sought progresses on the understanding of the processes governing flow

resistance in areas protected by rigid and emergent vegetation through experimental work.

A characterization of the flow was based on vertical profiles of velocity and stresses computed

with the Double-Averaging Methodology. Mean longitudinal velocity profiles show a pronounced

bulge close to the bottom decreasing like in a typical boundary-layer flow towards the bottom, but

its main feature is the constant profile in the region where the flow is controlled by the vertical

stems. A strong correlation between stem density and the magnitude of flow variables was

observed. Both turbulent and form-induced stresses increase with the stem areal number-density.

An important conclusion regarding the magnitude of the dispersive and turbulent stresses is that

the former have the same order of magnitude of the latter. Therefore, one should not neglect

form-induced stresses, as it is often done in literature arguing that those stresses are much smaller

than Reynolds stresses. This is specially important in case of dense patches.

The calculation of the drag force acting on the stems followed a conceptual framework

provided by the Double-Averaging Methodology. The drag force per unit plan area was calcu-

lated from the depth-averaged longitudinal component of the DANS equations, with no major

simplifications.

It was verified that the term corresponding to the pressure gradient is dominant. However,

balancing the drag force only with this term, as it is common in literature, may lead to important

non-systematic errors. In fact, the relative importance of the dominant term is affected by

gradients in the areal number-density of stems. Also, the importance of ∂h
∂x becomes reduced for

high values of the drag force.

A dimensional analysis was carried out identifying the characteristic parameters that influence

the drag force. The correlation of those parameters with CD showed that the dependence of the

drag coefficient is complex and may result from a non linear combination of more than one

parameter.

The drag force per submerged stem length seems uncorrelated with the stem areal number-

density, but it depends on the longitudinal variation of the latter. It was observed that the decrease

of the number of stems per unit area is associated to larger flow resistance while the flow resistance

is smaller when there is a longitudinal increase of m.

Another progress introduced herein is related to the effect of the patchiness on the drag forces.

At patch scale, the longitudinal increase of stem areal number-density is associated to smaller

magnitudes of the drag force per unit of submerged stem length. However, at wavelength scale, if

the variability of m is cyclic, there might be no appreciable effect of patchiness on the average

drag force since the opposite local influences of ∂m
∂x > 0 and ∂m

∂x < 0 cancel out.
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The effect of flow acceleration is shown by the increase of the drag force from upstream

patches to downstream patches with the same m.

Concerning the dependence of CD on the stem Reynolds number, for the range of investigated

Rep and m, the drag coefficient does not vary with Rep.

The observed decrease of CD with increasing h/d reveals an influence of the bed on the

definition of the flow structure. The contribution to the drag force are not uniform along the water

column, being the contribution of the bottom boundary layer larger than the average.

This study reveals that experimental tests covering simultaneously a large range of Reynolds

numbers and a large range of stem areal number-density, which are still missing, would be the

key to understand the flow resistance associated to the vegetation stems.
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Chapter 5

The terms of the turbulent kinetic
energy budget within reaches of
emergent vegetation

This chapter is aimed at quantifying and discussing the relative magnitude of key terms of the

equation of conservation of turbulent kinetic energy (TKE) at the inter-stem space of a flow within

arrays of vertical cylinders simulating plant stems of emergent and rigid vegetation. The spatial

distribution of turbulent quantities and mean flow variables are influenced by two fundamental

space scales, the diameter of the stems and the local stem areal number-density. These scales may

vary considerably since the areal distribution of plant stems in natural systems is generally not

homogeneous; they are often arranged in alternating sparse and dense patches. As a consequence

of the complex spatial distribution of the flow field, the magnitude of the terms of the budget

of TKE in the inter-stem space has seldom been quantified experimentally and is currently not

well-known. Addressing this research need, the calculation of these terms is, in this work, based

on new databases consisting of three-component LDA velocity series and two-dimensional PIV

velocity maps, obtained in carefully controlled laboratory conditions. It is verified that the main

source of TKE is vortex shedding from individual stems. The rates of production and dissipation

are not in equilibrium. Regions with negative production, a previously unreported feature, are

identified. Turbulent diffusion is particularly important along the von Kármán vortex street.

Convective rate of change of TKE and pressure diffusion are most relevant in the vicinity of

stems.
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5.1 Introduction

Emergent vegetation, featuring a wide range of different species and with different ecological

roles, is ubiquitous in coastal and riverine systems. In such systems, herein collected under the

general designations of wetland vegetation or wetlands, it is known that there exists a profound

interaction of physical, biological and ecological processes, being transport processes especially

relevant (Defina & Peruzzo, 2012; Ghisalberti & Nepf, 2004; Tanino & Nepf, 2009). This justifies

the recent growth in the volume of research on hydrodynamics of wetland vegetation (Aberle &

Järvelä, 2013; Nepf, 2012b).

Progresses have been achieved in the detailed characterization of flow around isolated cy-

linders or arrays of few cylinders (Sumner, 2010, and references herein), a proxy to the stem

scale. However, this scale (whose relevant measure is the stem diameter) is not sufficient to

analyse wetlands. The local mean inter-stem distance (the space-averaged distance between

neighbouring stems) necessarily plays an important role at intermediate scales since vortex streets

emanating from neighbour stems overlap and change the flow characteristics, relatively to the

single stem wake flow. Herein, this intermediate scale is termed the inter-stem scale. It should be

highlighted that, even for uniform species, the inter-stem scale may vary considerably since the

areal distribution of plant stems in natural systems is generally not homogeneous. In fact, they

are often arranged in alternating sparse and dense patches (Schoelynck et al., 2012).

The characterization of the flow at scales encompassing several patches, for instance a river

reach or a laboratory channel, requires a third geometrical scale: the submerged plant volume

divided by the total area occupied by plants (Aberle & Järvelä, 2013). A large amount of research

has been carried out at this larger scales (Huthoff, 2012; Kim & Stoesser, 2011; Siniscalchi

et al., 2012; Sukhodolova & Sukhodolov, 2012; Tanino & Nepf, 2008), generally aimed at the

quantification and parametrization of flow resistance attributable to vegetation.

Currently, one identifies major research needs at the intermediate scale, herein the inter-stem

scale, due to the difficulties of acquiring sound empirical data. The key problem concerns the

technical difficulties associated with the installation of measuring probes in the reduced void

space within arrays of densely packed stems. It is not a coincidence that major recent advances

have been attained through numerical data production (Coceal et al., 2007; Defina & Bixio, 2005;

Stoesser et al., 2010). These combined with laboratory studies at this scale (Ferreira et al., 2009b;

Nepf, 1999; White & Nepf, 2007; White & Nepf, 2003) have mostly advanced the knowledge

on fluxes of mass and momentum, for instance clarifying the nature of turbulent and dispersive

stresses. The balance of mechanical energy, on the contrary, has received comparatively less

attention. Given that in the inter-stem space, the flow is normally turbulent, attention should be

directed to the terms of the budget of turbulent kinetic energy (TKE).

Bearing these issues in mind, the main objective of this work is to characterize and to quantify
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the spatial distribution of the terms of the equation of conservation of TKE in the inter-stem

space of a flow within an array of emergent stems featuring longitudinal patchiness. For steady

flows, the equation of conservation of TKE is written, employing a mix of tensor and differential

notation,

1
2

u j
∂u′iu

′
i

∂x j︸ ︷︷ ︸
I

+u′iu
′
j
∂ui

∂x j︸ ︷︷ ︸
II

+
1
2

∂u′iu
′
iu
′
j

∂x j︸ ︷︷ ︸
III

=− 1
ρ

∂ p′u′j
∂x j︸ ︷︷ ︸
IV

+2ν
∂ si ju′i
∂x j︸ ︷︷ ︸
V

− ε̄

︸︷︷︸
VI

, (5.1)

where i and j are indices running from 1 to 3, x j stand for three cartesian spatial directions,
1
2 u′iu

′
i (summation of repeated indices intended) is the specific TKE, i.e, TKE per mass unit, u j

and u′j are the jth component of, respectively, the time-averaged velocity and the instantaneous

time fluctuation, p′ is the pressure fluctuation, si j is the symmetric part of turbulent strain tensor
∂u′i
∂x j

, ε̄ is the time-averaged dissipation rate of TKE and ν stands for the kinematic viscosity

of the fluid. A direct quantification of terms I (convective rate of change of TKE), II (rate of

production), III (turbulent diffusion) and VI (dissipation rate of TKE) in equation (5.1) is carried

out. Assuming the mean flow Reynolds number is sufficiently high, term V can be neglected and

term IV back-calculated from equation (5.1).

To fulfil the aforementioned objectives, a number of practical problems concerning instru-

mentation and experimental apparatus must be overcome. As a compromise between physical

verisimilitude and laboratory feasibility, slightly rough stems, randomly placed, are employed

in this laboratory study as an ersatz for natural stems. The spatial distribution in the horizontal

plane emulates the patchiness often seen in actual wetlands (Schoelynck et al., 2012). A simpler

regular spatial distribution would render the results easier to analyse but such simplicity could

be misleading as the complexity of wake interactions found in nature is not amenable to be

simulated by simple staggered arrays of stems. The key feature of spatial patchiness in the spatial

distribution of the stems was simulated by imposing a periodic variation of the stem density in

the streamwise direction. Raw data, consisting of instantaneous velocities were acquired with

a three-component Laser Doppler Anemometer (LDA) and a two-component Particle Image

Velocimetry system (PIV). In both databases the spatial resolution is of the order of magnitude of

Taylor’s microscale.

The paper is organized in six sections. Laboratory facilities and instrumentation are described

in section 2. Section 3 presents the methodology for computing the variables discussed herein.

The terms of TKE equation are characterized in section 4. A discussion of the results is expounded

in section 5 and the document is ended by a summary of the main conclusions. Throughout this

work, a cartesian referential is considered, where x, y and z correspond to the streamwise, spanwise

and vertical directions, respectively, and u, v and w are the corresponding velocity components.

Concerning the symbology related to turbulent quantities, overlines (ui) represent ensemble-
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averaging, here simply taken as time-averaging and primes (u′i) represent time fluctuations.

5.2 Laboratory facilities and instrumentation

Two laboratory tests were carried out with identical experimental conditions. They were

performed in a 32.0 m long and 0.60 m wide tilting flume at the Leichtweiß-Institute of the

Technische Universität Braunschweig (LWI) and in a 12.5 m long and 0.408 m wide recirculating

tilting flume at the Laboratory of Hydraulics and Environment of Instituto Superior Técnico

(IST). Both flumes have glass side walls, enabling flow visualization and laser illumination. The

flume at LWI was adapted to reproduce the same conditions tested at IST, therefore the effective

flume were the experiments were carried out had 10.5 m of length and 0.40 cm of width.

The bottom of both flumes was covered with a horizontal layer of gravel and sand. Arrays of

rigid, cylindrical and emergent stems with a diameter of 0.011 m were placed in a 3.5 m long

reach simulating rigid and emergent vegetation conditions. Patches with 1600 stems/m2 (dense,

herein) were alternated with patches with 400 stems/m2 (sparse, herein), as shown in Figure

5.1. Both dense and sparse patches are 15 cm long and are separated by 10 cm long transition

reaches subdivided into two 5 cm reaches with densities of 1200 stems/m2 and 800 stems/m2.

Throughout the vegetated reach, i.e. in the dense and sparse patches and in the transition reaches,

the areal distribution of stems was random and in accordance with a uniform distribution. Stem

density varied periodically with a wavelength of 0.5 m. At the end of the vegetated reach between

two consecutive patches there was a gap without stems to enable the velocity measurements

(dashed rectangles in Figure 5.1). To minimize its impact, the width of that measuring gap is

equal to the mean inter-stem distance of the upstream patch.

The flow was subcritical both downstream and upstream the vegetated reach. A coarse gravel

weir downstream of the array of stems controlled the flow depth. Relatively to conventional flap

or vertical gates, such weirs do not generate a recirculation pattern of separated flow upstream.

The water depth at the end of the vegetated reach was 4.2 cm (in both tests). In the LWI flume,

a 3-component Laser Doppler Anemometry system (LDA) was used to acquire instantaneous

velocity series at several points. In the IST flume, two-dimensional maps of instantaneous

velocities were measured with a Particle Image Velocimetry system (PIV).

LDA technique allows acquisition of three components of instantaneous velocities at high

temporal data-rates. If the frozen turbulence hypothesis is applicable, LDA measurements allow

long velocity series in the streamwise direction with high resolution. On the other hand, a two-

component PIV allows, in general, good spatial resolution and it is much cheaper than LDA, in

terms of laboratory time, to obtain spatial variability. Therefore, these two techniques combined

can render very good results within a feasible time. For an introduction to these two techniques
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Figure 5.1: Plan view of the stem covered reach where the measurements were carried out. Dashed
rectangles point out the regions where horizontal velocity maps (PIV) were acquired for each longitudinal
position, P1 to P8. The solid lines aligned with flow direction indicate the location of the vertical plans
measured with PIV. The points along lines perpendicular to the flow direction represent the location of
LDA measurements (P3 to P8).

see (Tropea et al., 2007, pp. 287-342), or other more specialized literature (Durst et al., 1976;

Raffel et al., 1998).

The LDA system consisted in a 5W Argon-Ion laser, a F80 flow processor and two watertight

probes with focal length of 198 mm in water and the probes were mounted on an automated

transverse system. A two-component probe transmits two orthogonal pairs of beams (wavelengths

514.5 and 488 nm) while the one-component probe, positioned at 30° to the two-component

probe, transmits the third pair of beams (wavelength 476.5 nm). Because the focal length is larger

than the flow depth, an acrylic case with a glass bottom was used to submerge the probes in water

and ensure that the laser beams travel in water from the probe casing to the measuring volume,

except in the 2 mm glass plate (Aberle, 2006). The three-component LDA velocity series were

measured at 27 points along spanwise direction, centred in the channel midpoint, with a spatial

resolution of 5 mm. These series were collected for 6 longitudinal positions (P3 to P8 - Figure

5.1), approximately at the centre of each measuring gap, at 60% of the flow depth. The sampling

time at each point was 3 minutes with sampling frequencies between 50 and 120 Hz. Titanium

dioxide particles were used as solid targets.

The PIV system consisted of an 8-bit 1600× 1200 px2 CCD camera and a double-cavity

Nd-YAG laser with pulse energy of 30 mJ at wavelength of 532 nm. The system was operated at

15 Hz with a time delay of 1500 µm between frames. As solid targets were used polyurethane

particles with mean diameter of 60 µm in a range from 50 to 70 µm and density of 1.31 g/cm3.

For this kind of particles the cut-off frequency of the turbulent signal, calculated with the theory

of Hjemfelt & Mockros (1996) is about 40 Hz. The Nyquist frequency of the PIV time series

is 7.5 Hz, therefore one concludes that the particles were adequate to this experimental work.
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Horizontal (u and v) and vertical (u and w) maps of instantaneous velocity were acquired for

each longitudinal position (P1 to P8 - Figure 5.1). The vertical measurements were performed

in 9 lateral planes, for each position, acquiring 10× 573 image couples for each plane which

correspond to ≈ 6.5 minutes of acquisition time. Regarding horizontal measurements, maps of

≈ 9.5×12.5 cm2 (length × width) were acquired covering the entire flume width. The spatial

resolution yields interrogations volumes of 1.3×1.3×2.0 mm3. Each dataset consisted in 5000

image couples performing 5.5 minutes of consecutive data. The horizontal planes were located at

about 60% of the flow depth of each longitudinal position.

The discharge was regularly controlled by a digital flowmeter installed on the inlet pipe.

Temperatures were measured regularly in order to compute the water viscosity according to

Likhachev (2003). For the test at IST, the water temperature varied between 27.6°C and 32.2°C

while at LWI water temperature was in the range 13.4−14.2°C.

The bed topography and the free surface elevation were measured with a laser displacement

sensor (Keyence LK-2000) at IST. For tests performed at LWI, the free surface elevation was

measured with video analysis and the bed topography with a point gage.

Table 5.1 presents key variables that describe the flow at each longitudinal position. In

this table, x stands for the longitudinal coordinate of the cross-section representative of each

measuring gap, relative to the channel inlet, m is the stem areal number-density, 〈h̄〉 is the mean

(time- and space-averaged in the measuring gap) flow depth, d〈h̄〉/dx represents the gradient

of the mean flow depth, z is the elevation of the PIV horizontal planes or LDA measurements,

〈ū〉 stands for the time- and space-averaged longitudinal velocity and Rep = 〈ū〉d/ν is the stem

Reynolds number, where d is the stem diameter. The tests were performed with a discharge of

2.33 l/s. The flow is gradually varied, accelerating in the downstream direction as the flow depth

decreases. The free surface exhibited an oscillating behaviour, with higher amplitudes within

dense patches.

5.3 Methodology for calculations of the terms of TKE equation

5.3.1 Compatibility of PIV and LDA databases

To use LDA and PIV databases complementarily one must first argue for its compatibility.

In the present case, the argument relies on the comparison of key terms calculated from both

databases, specifically two components of the turbulent production term, −u′v′ ∂u
∂y and −v′v′ ∂v

∂y .

These components are especially relevant for the total production, as it will be discussed in the

next section.
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Table 5.1: Features of the experimental measurements and flow properties for each longitudinal position.

P1 P2 P3 P4 P5 P6 P7 P8

x (m) 6.680 6.782 6.935 7.036 7.192 7.293 7.446 7.545

m (stems/m2) 1600 800 400 1200 1600 800 400 1200

〈h̄〉 (m) PIV 0.066 0.063 0.062 0.061 0.056 0.054 0.054 0.053

LDA - 0.063 0.063 0.061 0.056 0.056 0.054 0.052

d〈h̄〉/dx (−) PIV -0.014 -0.029 -0.008 -0.010 -0.035 -0.015 -0.009 -0.007

LDA - - -0.001 -0.018 -0.033 0.000 -0.010 -0.028

z/〈h̄〉 (−) PIV 0.57 0.61 0.61 0.62 0.67 0.69 0.55 0.59

LDA - - 0.60 0.60 0.60 0.60 0.60 0.60

〈ū〉 (m/s) PIV 0.086 0.093 0.090 0.091 0.092 0.108 0.106 0.100

LDA - - 0.109 0.115 0.123 0.112 0.127 0.130

Rep(−) PIV 1161 1282 1233 1302 1266 1514 1469 1338

LDA - - 1025 1081 1156 1053 1194 1222

In the case of the LDA database, the spatial resolution is low and, hence, the spatial derivative

was computed by means of backward differences, ∂ui(yn)
∂y ≈ ui(yn)−ui(yn−1)

yn−yn−1
, where n = 1,2, ...,27

is the index of the time-average velocity vector, ūi and the y-coordinate, being yn− yn−1 = 5

mm. Concerning the PIV database, ∂u
∂y and ∂v

∂y are approximated by central differences for time-

averaged velocity maps with the resolution of the PIV interrogation areas without superimposition.

It should be noted that the spatial resolution of PIV database is about 5 times larger than that of

the LDA database.

The spatial derivatives of the time-averaged velocities are multiplied by the second order

moments −u′v′ and −v′v′, calculated from time series. In the case of the PIV database, the

resolution and the spatial extent is sufficiently high to obtain two-dimensional maps of each

production component. In the case of the LDA database, the result is a discrete set of 27 samples

of the same production terms that span laterally over a line 13 cm long, centred at the flume axis

(see Figure 5.1). In order to compare with the latter, two-dimensional maps obtained from PIV

measurements were subsampled at the same line.

The comparison was performed for all measuring gaps. Representative examples are shown in

Figures 5.2 and 5.3 for −u′v′ ∂u
∂y and −v′v′ ∂v

∂y respectively. Globally, there is a good agreement

between the LDA and PIV databases. In the sparser regions (positions P7 in Figure 5.2 and P6

in Figure 5.3) the results are almost coincident. In denser regions (positions P5 in Figure 5.2

and P8 in Figure 5.3), both databases agree qualitatively and, in the case of the space between

stems, where the production terms are small, also quantitatively. The quantitative disagreement

registered at the wakes of stems are attributed mainly to the low spatial discretization of the
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Figure 5.2: Comparison of −u′v′∂u/∂y component of the turbulent production of TKE, computed from
PIV and LDA databases for a) P7 and b) P5. Vertical dotted lines identify the y-coordinate of centres of
stems close to the upstream limit of the measuring gap (see Appendix C for extra figures).
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Figure 5.3: Comparison of −v′v′∂v/∂y component of the turbulent production of TKE, computed from
PIV and LDA databases for a) P6 and b) P8. Vertical dotted lines identify the y-coordinate of centres of
stems close to the upstream limit of the measuring gap (see Appendix C for extra figures).
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LDA database, which tends to exacerbate spatial finite-differences. Bias-to-zero characteristic

of PIV databases (especially two-component measurements in three-dimensional flows where

out-of-plane loss of pairs becomes relevant, Raffel et al., 1998, p. 176) and bias to large velocities,

characteristic of LDA databases may also play a role in such disagreement.

Owing to the general good agreement between LDA and PIV databases, these are used in

complementarity throughout this work.

5.3.2 Methodology for the calculation of the rate of dissipation of TKE

The mean rate of dissipation of TKE, term VI of equation (5.1), is exclusively calculated from

the LDA database. The reason for this option and the methodology for calculation are expounded

in this section.

The point-wise time-averaged rate of dissipation of TKE can be easily calculated for homo-

geneous and isotropic turbulence (HIT), within the theory presented by Kolmogorov (1941a),

requiring only a spectral description of the fluctuating motion or the computation of structure

functions (see, e.g. Monin & Yaglom, 1975, pp. 351-355). If turbulence is not homogeneous, as is

the case of the flow in the inter-stem space, the main results of HIT theory are still valid provided

that local isotropy conditions are applicable (Monin & Yaglom, 1975, p. 396). Under these

conditions, the mean dissipation rate of energy, ε̄ , term VI of equation (5.1), can be computed

applying Kolmogorov’s equation (Kolmogorov, 1941a)

S(3)LL (r) =−
4
5

ε̄r+6ν
∂S(2)LL (r)

∂ r
(5.2)

where r stands for the longitudinal increment, S(3)LL is the third-order structure function and S(2)LL is

the second-order structure function.

To show that, in this case, there exists a range of isotropic scales, and to identify them, the

correlation-coefficient spectra is computed. It is defined as CLN = |ELN |/(ELLENN)
1/2, where

ELN is the shear-stress cospectrum and ELL and ENN are the longitudinal and transverse spectra,

respectively (Saddoughi & Veeravalli, 1994). In isotropic conditions no shear stress is originated;

hence, scales for which CLN is zero or very small are identified as isotropic and loosely associated

with the spectral inertial range, where TKE is not produced or dissipated (Tennekes & Lumley,

1972, chap. 8). Local isotropy in the sense of Monin & Yaglom (1975) can be assumed if there is

a range of scales for which CLN is zero or very small.

Figure 5.4 exemplifies correlation-coefficient spectra for two longitudinal positions, P5 and P7.

For the point in P5, CLN < 0.10 to scales of f > 3 Hz; in P7, CLN < 0.15 to f > 10 Hz. Assuming

that for frequencies sufficiently higher than 10 Hz the correlation coefficient is small enough, and
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Figure 5.4: Correlation-coefficient spectra at a) y = 0.215 m for P5 and b) y = 0.195 m for P7. Computed
from the LDA database.

applying the frozen turbulence hypothesis proposed by Taylor (1938), with a convection velocity

equal to the mean velocity of each gap, one may thus assume that equation (5.2) is valid for

scales sufficiently smaller than approximately 8 mm. For practical purposes it will be assumed

that scales smaller than half the stem diameter are isotropic.

Having established the range of validity of equation (5.2), the dissipation rate of energy, ε̄ , is,

herein, computed, from LDA database. The time series are first transformed into spatial series

by applying Taylor’s hypothesis with the time and space-averaged velocity in each measuring

gap as convection velocity. Then, the first plateau of the compensated series S(3)LL (r)−6ν
∂S(2)LL (r)

∂ r

is identified; the value of the rate of dissipation of TKE is ε̄ = −5S(3)LL
4r +6ν

5
4r

∂S(2)LL (r)
∂ r . It should

be noted that the PIV database is not adequate to apply this methodology since the time series

were acquired at 15 Hz, a frequency too low to produce power spectral density functions with

conclusive information on the existence of an inertial range.

Figure 5.5 exemplifies S(3)LL and S(2)LL for a point in P3 and P8, sparse and dense patches,

respectively. Build from the elements shown in Figure 5.5, the third-order structure function

corrected by the viscous term (equation 5.2) is shown in Figure 5.6. At small r, there is a linear

reach associated with the inertial range of scales, for which the slope is −4/5ε̄ . It is noteworthy

that, in general, the slope, and therefore the dissipation rate of TKE, increases with the stem

density. The example shown in Figure 5.6 is representative of this behaviour.
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Figure 5.5: a) Third-order structure function S(3)LL and b) second-order structure function S(2)LL , for two
longitudinal positions, P3 (at y = 0.180 m) and P8 (at y = 0.165 m).
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m). Dotted lines highlight the linear reach with slope −4/5ε̄ .
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5.3.3 Methodology for the calculation of convective, productive and turbulent
diffusion terms

The convective term, production and turbulent diffusion terms (I, II and III, respectively, in

equation 5.1) are computed with PIV measurements taken in the horizontal plane. The order

of magnitude of the several contributions that compose these terms is first assessed. At lines

corresponding to the intersection of horizontal and vertical planes of PIV measurements (see

Figure 5.1) it is possible to compute 7 contributions of terms I, II and III. Representative examples

of the calculated contributions and also the sum of all contributions are seen in Figure 5.7. The

relative magnitude of contributions involving z-derivatives and correlations involving the w

component of time-averaged velocities and fluctuations are much smaller than corresponding

terms with y− and x− derivatives and correlations of fluctuating components in the xy-plane.

The available data do not allow the computation of the two terms that require data from

the yz-plane. However, the LDA database shows that those terms are much smaller than those

pertaining the xy-plane. Indeed, as seen in Figure 5.8a), the Reynolds shear stress in the yz-plane

is much smaller than that in xy-plane, v′w′� u′v′. Also, Figure 5.8b) shows that w is the velocity

component with smaller variations in y-component, ∂w
∂y � ∂u

∂y , ∂v
∂y . Vertical gradients of v are

not available however they are expected to be small, as ∂u
∂ z and ∂w

∂ z present also small magnitude

(Ferreira et al., 2009b; Ricardo et al., 2012).

One thus concludes that the dominant contributions in terms I, II and III are those calculated

from the horizontal PIV database.

Summarizing, in the present work convective, production and turbulent diffusion terms of the

TKE budget equation become, respectively,

1
2

u j
∂u′iu

′
i

∂x j
≈ 1

2

(
u

∂

∂x

(
u′u′+ v′v′

)
+ v

∂

∂y

(
u′u′+ v′v′

))

u′iu
′
j
∂ui

∂x j
≈ u′u′

∂u
∂x

+u′v′
∂u
∂y

+u′v′
∂v
∂x

+ v′v′
∂v
∂y

1
2

∂u′iu
′
iu
′
j

∂x j
≈ 1

2

(
∂u′u′u′

∂x
+

∂u′u′v′

∂y
+

∂v′v′u′

∂x
+

∂v′v′v′

∂y

)
.
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Figure 5.7: Contributions of the a) convective term, b) turbulent production and c) turbulent diffusion of
TKE equation for P8 at y = 24.4 cm. Open markers represent terms from horizontal database while filled
markers are computed with the vertical database. Asterisks represent the sum of the 7 contributions.
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Figure 5.8: a) Reynolds shear stresses −ρu′v′ and −ρv′w′ for P8. b) Lateral gradients of time averaged
velocity components for P5. Both results are computed from LDA database. Vertical dotted lines identify
the y-coordinate of centres of stems close to the upstream limit of the measuring gap.

5.4 Quantification of the terms of the equation of conservation of
TKE

5.4.1 Computed terms

This section is devoted at presenting and discussing the terms of equation of conservation of

TKE (equation 5.1), namely the convective rate of change of TKE (term I), its rate of production

(II), its turbulent diffusion (III) and its dissipation rate (VI). Assuming that the mean flow

Reynolds number is sufficiently high, term V can be neglected and term IV back-calculated from

equation (5.1). Dissipative, convective, productive and turbulent diffusion terms were calculated

as explained in section 5.3 for the measuring gaps representative of the patches with different

areal number-density of stems identified in section 5.2.

5.4.2 Rate of production of TKE

Spectral analysis of time series of velocity fluctuations obtained in the inter-stem space has

revealed that vortex shedding from individual stems is the main source of TKE (Nepf, 1999).

The current PIV databases clarify key features of the spatial organization of productive terms,

including the preferred location of maxima and minima and the relative importance of the

contributions that compose it.

In what concerns the latter issue, quantification of the contributions of turbulent production,

exemplified in Figure 5.7b), leads to the conclusion that−u′v′∂ ū/∂y is the dominant term. Terms
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Figure 5.9: Two-dimensional maps of turbulent production, −u′iu
′
j∂ ūi/∂x j,

(
m2s−3

)
for positions a) P7

and b) P8. Dots aligned horizontally identify the position of LDA measurements. The arrow indicates the
flow direction (see Appendix C for extra figures).

−u′u′∂ ū/∂x and −v′v′∂ v̄/∂y also have important magnitudes but they tend to cancel each other

out. This is observed at all longitudinal positions, irrespectively of their areal number-density of

stems. The only exceptions occur in the space between stems at the upstream part of measuring

gaps representative of large stem densities. At those locations,−u′u′∂ ū/∂x shows negative values,

as seen in Figure 5.7b).

As for the spatial variation of turbulent production, two-dimensional PIV results in the xy-

plane reveal that there is strong production in the wake of each cylinder, accompanying the path

of shed vortices (the von Kármán street). Examples of this behaviour are shown in Figure 5.9

for P7, a patch with the smallest stem areal number-density, and for P8, a patch representative

of large density of stems. In general, one registers a maximum in TKE rate of production about

1d downstream of the shedding stem, where a strong shear rate, mainly ∂u
∂y , produces significant

work against non-negligible Reynolds shear stresses.

Moving downstream in each measuring gap, for the cases with large inter-stem space (sparse

patches), the magnitude of turbulent production decreases until becoming vanishingly small. This

is the case of measuring gap P7, Figure 5.9a). Within the reaches with small inter-stem distance

(dense patches), such as P5 and P8 (see Figure 5.9b), as a result of confinement, the maximum

can be felt very close to the next array of stems.

Figure 5.9 also shows that not all turbulent rate of production contributes to increase TKE.

Negative values of turbulent rate of production were found in-between stems placed sufficiently

close to each other in y-direction. The negative production areas are located at the upstream end

of the measuring gap in the spaces between adjacent stems, which are regions where the flow is
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a)

b)

Figure 5.10: Two-dimensional maps of the convective term, 1/2ū j∂u′iu
′
i/∂x j,

(
m2s−3

)
for positions a)

P7 and b) P8. Dots aligned horizontally identify the position of LDA measurements. The arrow indicates
the flow direction (see Appendix C for extra figures).

strongly accelerated. Therefore, in this region, the work of the strong positive shear rate ∂u/∂x

against the positive u′u′ is more important than the work generated by other components of shear

rate, namely ∂u/∂y against u′v′ or ∂v/∂y against v′v′. This previously unreported feature is thus

almost absent in the sparse patches, as seen in Figure 5.9a), but is quite evident in Figure 5.9b),

representative of a densely populated patch.

5.4.3 Convective transport of TKE

The convective rate of change of TKE (term I in equation 5.1) represents the interaction of

the mean and turbulent flow fields. It was observed that the dominate contributions of this term

are ū∂u′u′/∂x and ū∂v′v′/∂x, evidencing an important impact of the time-averaged longitudinal

velocity on the convective rate of change of TKE. Figure 5.7a) is representative of the relative

importance of each contribution composing the convective term of TKE observed for all the

studied patches.

The spatial variation of its magnitude is shown in the maps of Figure 5.10. It is higher in the

vicinity of the cylinders, both at the upstream and downstream end of the measuring gap, due

to the unsteady flow separation around the cylinders. Approaching the stems, the streamlines

diverge around the obstacle so that the flow particles, decreasing the longitudinal velocity, travel

around the stem without detaching. Maps of the convective rate of change of TKE evidence

negative values on the upstream vicinity of the cylinders (downstream of the measuring gap)

which are linked to the expected reduction of the longitudinal flow field of the region. Within the

inner part of the stems wake, the convective term of TKE presents generally small magnitude
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with negative values, since the longitudinal velocity often shows negative values in that regions.

While in the outer part of the wakes, the convective term presents its highest positive values.

Hence, in the vicinity of the cylinders, both upstream and downstream, the convective term has

magnitudes of the same order as the productive term, whereas in the regions between stems it is

nearly zero.

5.4.4 Diffusion of TKE

Turbulent diffusion, term III of equation (5.1), accounts for changes in TKE due to its transport

by velocity fluctuations. As for the convective and production terms, the dominate contributions

of the turbulent diffusion of TKE are those computed from the horizontal database (open symbols

in Figure 5.7 c). It was observed that ∂u′u′v′
∂y is, in general, the dominant contribution. However,

∂v′v′v′
∂y and ∂u′u′u′

∂x also show important magnitudes.

Figure 5.11 shows maps of this term at measuring gaps P7 (representative of a sparse reach)

and P8 (representative of a dense reach). Globally, turbulent diffusion is large and positive at

streaks that loosely reproduce the path of vortices shed behind stems, i.e. the von Kármán street.

This is particularly clear in Figure 5.11a) where the streaks are almost perfectly symmetrical

relatively to the line in the x-direction that contains the centre of the cylinder that sheds the

vortices. Large and negative values are found adjacent to the streaks with positive values, both at

the wake behind cylinders but mostly at the outer interface of the von Kármán street, confining

with the faster flow regions between stems. In measuring gaps representative of lower stem areal

number-densities, the magnitude of diffusion decreases significantly in the downstream direction,

before any interaction with the downstream neighbouring stems (see Figure 5.11a).

The main difference between sparse and densely populated patches is that at the latter the

positive diffusion streaks and adjacent negative regions are spatially less coherent (see Figure

5.11b). In some cases at P5 and P8, they are superimposed, which is due to the flow patterns

imposed by stems further upstream and the interaction of the vortex streets of neighbouring

stems. The magnitude of both positive and negative diffusion is larger in the measuring gaps

representative of denser regions (Figure 5.11).

5.4.5 Rate of dissipation and overall budget of TKE

As explained in section 5.3, the rate of dissipation of TKE (term VI of equation 5.1) was com-

puted from the LDA database and, hence, results are available at only 27 locations approximately

in the centre of each measuring gap. Hence, in this section, to allow for comparison, the maps of

the remaining computed terms are sub-sampled on the line, extending spanwise, where ε̄ was

calculated (shown as dotted points in Figure 5.1 and in Figures 5.9 to 5.11).
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a)

b)

Figure 5.11: Two-dimensional maps of turbulent diffusion, 1/2∂u′iu
′
iu
′
j/∂x j,

(
m2s−3

)
for positions a) P7

and b) P8. Dots aligned horizontally identify the position of LDA measurements. The arrow indicates the
flow direction (see Appendix C for extra figures).

Figures 5.12 and 5.13 show the spanwise profiles of productive, convective, turbulent diffusion

and dissipative terms of equation (5.1) for measuring gaps representative of small (P3 and P7)

and large (P5 and P8) stem areal number-density, respectively.

The rate of dissipation of TKE (filled diamonds in Figures 5.12 and 5.13) is seen to increase

in wake regions, being negligibly small in regions between stems. As a consequence, ε̄ is higher

in measuring gaps with larger stem areal number-density, since the proportion of wake regions is

higher.

For variables computed from PIV databases, Figures 5.12 and 5.13 show that all the terms are

larger in positions with higher density of stems. This seems to be a consequence of the fact that

the terms of equation (5.1) have greater absolute value in the wake of stems.

A comparison of all directly computed terms shows that production and dissipation rates are

not in equilibrium, except in the regions between stems where both are negligible. It is also

noteworthy that the balance of all directly computed terms is not zero, i.e. the rate of dissipation

is not balanced by the sum of the production rate, diffusion and convective rate of change (with

respective signs). This is particularly evident in positions with high number of stems per unit of

area, like P5 or P8 (see Figure 5.13).

This highlights the role of pressure diffusion (term IV in equation 5.1), i.e. the transport by

turbulence of pressure fluctuations. Its magnitude is shown Figure 5.14, for two longitudinal

positions, P7 (sparse) and P8 (dense). In the case of small density of stems, P7, term IV is

small although not entirely negligible. On another hand, for P8, with a relatively high density of

stems, the pressure diffusion has values with the same order of magnitude of the other terms in
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Figure 5.12: Lateral profiles of the terms of TKE budget equation for longitudinal positions a) P3 and b)
P7. Vertical dotted lines identify the y-coordinate of centres of stems close to the upstream limit of the
measuring reach (see Appendix C for extra figures).
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Figure 5.13: Lateral profiles of the terms of TKE budget equation for longitudinal positions a) P5 and b)
P8. Vertical dotted lines identify the y-coordinate of centres of stems close to the upstream limit of the
measuring reach (see Appendix C for extra figures).

the budget of TKE, presenting larger values in wake regions where dynamics of TKE is more

complex. Figure 5.14 shows a correlation between the magnitude of pressure diffusion and the

proximity of a cylinder to the downstream limit of the measuring gap. This is possibly associated

with the transport by the turbulent field of the pressure that builds up in front downstream stems.

This correlation is, obviously, more evident for P8 than for P7, due to narrower width of the

measuring gap of the former. It is worth to note that the closest cylinders of the measuring gap

for P8 (y = 0.172 m and y = 0.200 m, see, for example, Figure 5.11b) identify two of the highest

negative peaks of the term IV.

The seeming relevance of the role of pressure diffusion must, however be taken with some

care, given that it is computed as a derived term, subjected to the hypothesis that viscous diffusion

is vanishingly small and incorporating the uncertainty associated with the calculation of ε̄ .
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Figure 5.14: Term IV, 1
ρ

∂ p′u′j
∂x j

, of TKE equation for two longitudinal positions, P7 and P8. Vertical
solid and dotted lines identify the y-coordinate of centres of stems close to the downstream limit of the
measuring gap of P7 and P8, respectively.

5.5 Discussion

An integrated view of the turbulent energy dynamics of flows through an array of emergent

cylinders is attempted in this section.

For the purpose of better organizing the discussion, the wake region can be divided into a

near field and a far field. The near field behind individual stems is defined here as the distance

behind the stem until the maximum of production is attained, loosely where the von Kármán

vortex streets start interacting. From the presented data, it is normally 1 to 1.5d. In the near field,

the pattern of production seems essentially determined by the stem diameter and local Rep and

little influenced by the areal number-density of stems. This is a consequence of the fact that,

for the range of areal solid-fractions investigated, production in the near field is a consequence

of unsteady viscous separation behind individual stems. Hence, the production of TKE in the

inter-stem space is mostly associated with vortex shedding from individual stems. Indeed, maps

of the rate of turbulent production (Figure 5.9) show that the work of the strong shear rates

against Reynolds shear stresses on the wake of the stems originate a clear pattern of positive

values, which closely accompany the known path of vortices in the von Kármán street. This

is in agreement with the spectral analysis of the flow in the inter-stem space, which reveals a

clear peak associated with the shedding frequency in the power spectral density function (Nepf,

1999). In denser regions, the vortex shedding frequency is changed (normally increased) by

the proximity of stems upstream (Sumner, 2010). This may be a second-order influence of the

number areal-density of stems: an increase of the production rate accompanying an increase of

the rate of vortex shedding. In the far field, further downstream in the wake of the stem, turbulent
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transport and interaction with mean flow contribute to disrupt the coherence of shed vortices and

the rate of production diminishes concomitantly. This effect is clear only in the measuring gaps

representative of sparse patches where there is enough space for such interactions to occur. In the

dense patches, often no far field is registered, i.e. downstream stems often succeed the locus of

maximum production.

The presented data indicate that the rates of production and of dissipation are not in equilibrium

in the inter-stem space. One particularly interesting feature is the existence of regions with

negative rates of production. This implies interactions of turbulence with the mean flow and

with the pressure field as well as a turbulent transport of TKE, the end product of which is the

actual spatial distribution of TKE. The latter is presented in Figure 5.15 for sparse (P7) and

dense (P8) patches. Herein, TKE is quantified considering only the longitudinal and transverse

turbulent intensities, i.e. 1/2
(
u′u′+ v′v′

)
, since the vertical turbulent intensity is small and its

space derivatives are the same as the sum u′u′+ v′v′ (the numerical simulation presented by

Stoesser et al., 2010, confirms these observations). High values of TKE are found within the

wake region, except in the near field very close to the stem. This behaviour is clearly identified in

Figure 5.15a) for P7 (sparse patch). This is a consequence of the distribution of its components:

the longitudinal is highest on the von Kármán vortex street close to the stem’s edge, whereas the

highest values of the transverse component are found in the overlapping of von Kármán streets

about 1d downstream of the shedding stem. For denser patches, as P8 (5.15b), the overlap of the

vortex streets occurs closer to the stem, leading to a larger region with high values of TKE.

The key difference between the spatial distributions of TKE and of the rate of production

of TKE is that the former is much smoother than the latter, especially in the dense regions (see

Figures 5.9b and 5.15b). In common, as observed above, they both peak at the limit of the near

field of the wake behind the stems, roughly where von Kármán vortex streets begin (spatially) to

interact. This suggests that the imbalance between rates of production and of dissipation is more

pronounced in this region. The available results for the rate of dissipation confirm this hypothesis

(Figures 5.12 and 5.13), although they are not totally conclusive due to the limited spatial range.

Hence, turbulent diffusion and interactions with the mean flow and pressure field surely act to

redistribute TKE from the loci of high production-dissipation to adjacent regions.

In the case of turbulent diffusion the redistributive role seems clear: its extreme values, both

positive and negative are distributed in a pattern similar to a von Kármán vortex street (Figure

5.11). Since diffusion is obtained from the directional derivatives of the flux of TKE, this suggests

that there are important turbulent fluxes of TKE at the loci of peak production that become less

important with distance, especially in lateral-outward directions. To clarify this point, these

turbulent fluxes were directly quantified. Figure 5.15 shows the flux of TKE represented in vector

form u′ (u′u′+ v′v′)~i+ v′ (u′u′+ v′v′)~j, where~i and ~j are the orthogonal unit vectors that define

the horizontal plane.
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a)

b)

Figure 5.15: Two-dimensional maps of 1/2
(
u′u′+ v′v′

)
overlapped by a vector plot of the flux of TKE,

for positions a) P7 and b) P8. The colorbar units are m2s−2. The arrow on the left upper corner indicates
the flow direction while the arrow on the bottom indicates the scale of the vector plot (see Appendix C for
extra figures).

The key observable features are strong turbulent transport laterally outwards and slightly

upstream of the locus of peak production and no laterally-inward turbulent transport. Instead of

the latter, strong downstream transport is observed in the inner part of the stems’s wake. The

result is a quasi-circular pattern of turbulent transport of TKE, around the loci of peak production,

more evident in the dense patches (Figure 5.15b). This pattern is compatible with a redistribution

of TKE over the inter-stem space. Other features are worth emphasising. In the first place,

there is very little turbulent flux directed to the separated flow attached at the lee of the stem,

where turbulent intensities are already negligibly small. This is the only exception to the general

behaviour that the flux of TKE is directed from regions with high values of TKE to regions

with low values. Hence, the turbulent flux seems essentially determined by the gradient of TKE

which would classify turbulent diffusion (in the present flow) as a fickian process (the diffusion

coefficients were not estimated). Another relevant feature is the absence of turbulent flux directed

to regions where the rate of production of TKE is negative. In other words, the conversion of

turbulent kinetic energy into kinetic energy of the mean flow is not fed by a turbulent diffusive
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mechanism. It was verified that negative production was the result of strong flow acceleration in

the corridor between adjacent cylinders, leading to important shear rates, combined with high

turbulence intensities in the same region; if turbulent diffusion is indeed a fickian process, there

could not be a flux to regions with negative production since they have high turbulent intensities.

It is noteworthy that the convective rate of change of TKE is also negative in the regions with

negative rate of production, a consequence of the decrease of TKE in the downstream direction

corridor between adjacent cylinders. To clarify the role of the mean flow in both the transport of

TKE (gradient of TKE in the convective term) and the rate of production of TKE (time-averaged

shear rate) further investigation is needed with measurements in the space between laterally

placed cylinders.

The interaction of turbulent and mean flow fields, expressed in the rate of convective change

of TKE possesses one other interesting feature: high absolute values in front and in the close

vicinity of stems (Figure 5.10). Considering that both production and diffusion present small

magnitudes in the downstream limit of the measuring gap, it is expected that the observed high

values of the convective term are balanced by pressure diffusion and rate of dissipation. Further

pursuing this issue, it has been observed that the balance of all the terms of equation (5.1)

computed directly from the experiments (terms I, II, III and VI) do not vanish, highlighting

the importance of the pressure diffusion term. It is observed that pressure diffusion is larger in

the vortex streets and smaller in the corridors between stems (Figure 5.14). More importantly,

there seems to be an increase of its absolute value in front of stems, in their close vicinity. This

suggests that the turbulent field transports the fluctuating components of the pressure that builds

up in front of downstream stems. Balance of TKE would then require a negative gradient of TKE

in the longitudinal direction, explaining the strong negative rates of convective change, and a

suppression of turbulent intensities in front of cylinders. The latter feature may actually be seen

in Figure 5.15b.

It should be noticed that the impact of the Reynolds number is not discussed in the present

work. The key role of this parameter on the study of turbulent flows is acknowledge. However,

since the range of Rep is relatively small (see Table 5.1), the present database would not guarantee

sufficient contrast to render the discussion fruitful.

5.6 Conclusions

The present study is based on the analysis of three-component LDA velocity series and

two-component PIV velocity maps and aimed at the characterization of the key terms of TKE

equation. The main goal was to discuss the spatial distribution of the terms within the budget

of turbulent kinetic energy, namely turbulent production and diffusion, the convective term and

the rate of dissipation, for different stem areal number-density. The compatibility of the two
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databases proved to be sufficiently good by leading to similar values of important components of

the turbulent production term, −u′v′∂ ū/∂y and −v′v′∂ v̄/∂y.

An important feature of flows through arrays of emergent and rigid cylinders is its conspicuous

spatial variability evidencing the importance of vortex shedding and unsteady separation of the

flow on the cylinders. Another important feature of this study consisted in the random distribution

of the array of stems, due to the impact of the local arrangement of the stems on the results.

The production of TKE in the inter-stem space is mostly associated with vortex shedding

from individual stems. The magnitude of the rate of production is higher in the wake region,

reaching a maximum about 1d downstream of the shedding stem and then decreases towards zero

when the inter-stem distance is large enough. Also TKE has a peak of magnitude at the limit of

the near field of the stem’s wake. However, the spatial distribution of TKE is smoother than the

distribution of the rate of production of TKE. Negative production of TKE was identified in the

beginning of the measuring gap between close stems, associated with strong accelerations that

the flow field is here subjected to.

It was observed that the rates of production and of dissipation are not in equilibrium in the

inter-stem space, revealing important interactions of turbulence with mean flow and pressure field

and turbulent transport of TKE.

The turbulent diffusion presents important values, both positive and negative, within the von

Kármán vortex streets. The turbulent fluxes of TKE revealed strong turbulent transport laterally

outwards, slightly upstream of the locus of peak production and in the inner part of the stems’s

wake, resulting in a quasi-circular pattern of turbulent transport of TKE, around the loci of peak

production. The flux of TKE is, generally, directed from regions with high values of TKE to

regions with low values indicating turbulent diffusion as a fickian process.

Expressing the interactions between mean and turbulent flow fields, the convective term

reveals itself in the vicinity of the array of stems. This term is expected to balance the pressure

diffusion term, especially in the downstream limit of the measuring gap where it is associated

with to the pressure build-up in front of the following array of stems.

The rate of dissipation was found to increase with the density of stems and to present smaller

space variation when comparing to the other terms discussed. However, its magnitude tends to be

higher in the wake of the stems than in the regions between adjacent stems.

The integrated analysis of the turbulent kinetic energy dynamics carried out in this work

provide further understanding of the complex flows within boundaries covered by emergent and

rigid vegetation.
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Chapter 6

Adaptation of homogeneous and
isotropic turbulence results

6.1 Introduction

This chapter presents the mathematical formalism of a result developed in the scope of this

thesis, which was included as Annex of the paper presented in the following chapter. Being

on of the innovative points of the present work, it was considered important to include those

mathematical developments in a separate chapter before the application of that result.

6.2 Spatial version of Kolmogorov’s equation

The two point longitudinal and transverse second-order structure functions, S2L and S2N

respectively, are defined herein by

S2L(α,r) = (ṽ(α + r)− ṽ(α))2 (6.1a)

S2N(α,r) = (ũ(α + r)− ũ(α))2 (6.1b)

where r is the increment in y-direction, α is any point in the space and ṽ and ũ are the velocity

fluctuations components on the same and the perpendicular direction of the increment, respecti-

vely. The over-line stands, here, for the appropriate ensemble-average, since the processes are

stationary, this may be a time-average.

The longitudinal third-order structure function is defined as

S3(α,r) = (ṽ(α + r)− ṽ(α))3 . (6.2)
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Since turbulence is not homogeneous, the values of the structure functions depend on the point

α and not only on the lag r. If the structure functions are space-averaged, the results 〈S2〉 and
〈S3〉 do not depend on any particular α . Instead, they become dependent only on the space lag r:

〈S2L〉(r) =
〈
(ṽ(α + r)− ṽ(α))2

〉
(6.3a)

〈S2N〉(r) =
〈
(ũ(α + r)− ũ(α))2

〉
(6.3b)

〈S3〉(r) =
〈
(ṽ(α + r)− ṽ(α))3

〉
. (6.3c)

Exploiting the space-averaging of two-point correlations and statistics, we followed the proce-

dure applied by Monin & Yaglom (1975, pp.120-122) to derive an equation akin to Kolmogorov’s

equation (equation 2.34), from which an estimate of the rate of dissipation of TKE can be obtai-

ned. Evidently, turbulence remains non-homogeneous but the formalism that led to the relation

between second and third-order structure functions in HIT is now applicable rendering similar

results. To show this result, the procedure applied by Monin & Yaglom (1975, pp.120-122) to

derive the Kármán-Howart’s equation is followed. We start with the incompressible Navier-Stokes

equations

∂u j

∂ t
+

∂u juk

∂xk
=− 1

ρ

∂ p
∂x j

+ν
∂ 2u j

∂xk∂xk
+g j (6.4)

where u j is the jth velocity component, p is the pressure field and g j is the jth gravitational

acceleration component. A spatial decomposition is considered

θ(x, t) = 〈θ〉(t)+ θ̃(x, t)

where θ may stand for u j or p, 〈θ〉 is the space average of the variable θ and θ̃ is the fluctuation

to the spatial average. Introducing the spatial decomposition in each term of (6.4) we get:

∂u j

∂ t
=

∂ 〈u〉 j

∂ t
+

∂ ũ j

∂ t
(6.5)

∂u juk

∂xk
=

∂ 〈u〉 j uk

∂xk
+

∂ ũ juk

∂xk
=

∂ 〈u〉 j uk

∂xk
+

∂ ũ jũk

∂xk
+

∂ ũ j 〈u〉k
∂xk

(6.6)

∂ p
∂x j

=
∂ 〈p〉
∂x j

+
∂ p̃
∂x j

(6.7)
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ν
∂ 2u j

∂xk∂xk
= ν

∂ 2 〈u〉 j

∂xk∂xk
+ν

∂ 2ũ j

∂xk∂xk
(6.8)

At a generic instant and at a given point xk = xA
k , variables will be written θ(t,xA

k )≡ θ A, time

being dropped for simplicity. At point xk = xA
k , (6.4) can be written

∂ 〈u〉Aj
∂ t

+
∂ 〈u〉 j uA

k

∂xA
k
−ν

∂ 2 〈u〉 j

∂xA
k ∂xA

k
−g j

︸ ︷︷ ︸
(1)

+

+
1
ρ

∂ 〈p〉
∂xA

j︸ ︷︷ ︸
(2)

+
∂ ũA

j

∂ t
+

∂ ũA
j ũA

k

∂xA
k

+
∂ ũA

j 〈u〉k
∂xA

k
+

1
ρ

∂ p̃A

∂xA
j
−ν

∂ 2ũA
j

∂xA
k ∂xA

k︸ ︷︷ ︸
(3)

= 0 (6.9)

Term (1) is equal to the gradient of pressure that balances the result of the application of the

Navier-Stokes operator to the (space-averaged) velocity 〈u〉. This term will be expressed as

− 1
ρ

∂P
∂xA

j
and it can be associated to term (2). Together with term (3), (6.9) becomes

1
ρ

∂ (〈p〉−P)
∂xA

j
+

∂ ũA
j

∂ t
+

∂ ũA
j ũA

k

∂xA
k

+
∂ ũA

j 〈u〉k
∂xA

k
+

1
ρ

∂ p̃A

∂xA
j
−ν

∂ 2ũA
j

∂xA
k ∂xA

k
= 0 (6.10)

Then we multiply each term of (6.10) by velocity ũB
i (t,x

B
k ), taken at point xB

k such that

xB
k = xA

k + rk:

1
ρ

∂ (〈p〉−P)
∂xA

j
ũB

i +
∂ ũA

j

∂ t
ũB

i +
∂ ũA

j ũA
k

∂xA
k

ũB
i +

∂ ũA
j 〈u〉k

∂xA
k

ũB
i +

1
ρ

∂ p̃A

∂xA
j

ũB
i −ν

∂ 2ũA
j

∂xA
k ∂xA

k
ũB

i = 0 (6.11)

Considering that ũB
i (t,x

B
k ) does not depend on xA

k , (6.11) can be written as

1
ρ

∂ (〈p〉−P) ũB
i

∂xA
j

+
∂ ũA

j

∂ t
ũB

i +
∂ ũA

j ũA
k ũB

i

∂xA
k

+
∂ ũA

j 〈u〉k ũB
i

∂xA
k

+
1
ρ

∂ p̃AũB
i

∂xA
j
−ν

∂ 2ũA
j ũB

i

∂xA
k ∂xA

k
= 0 (6.12)

An equation similar to (6.10) can be written at xB
k for ũB

i (t,x
B
k ). Let this equation be multiplied
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by ũA
j (t,x

A
k ) and added to (6.12). One obtains

∂ ũA
j ũB

i

∂ t
+

∂ ũA
j ũA

k ũB
i

∂xA
k

+
∂ ũA

j 〈u〉k ũB
i

∂xA
k

+
1
ρ

∂ p̃AũB
i

∂xA
j
−ν

∂ 2ũA
j ũB

i

∂xA
k ∂xA

k
+

∂ ũB
i ũB

k ũA
j

∂xB
k

+
∂ ũB

i 〈u〉k ũA
j

∂xB
k

+
1
ρ

∂ p̃BũA
j

∂xB
i
−ν

∂ 2ũB
i ũA

j

∂xB
k ∂xB

k
+

+
1
ρ

∂ (〈p〉−P) ũB
i

∂xA
j

+
1
ρ

∂ (〈p〉−P) ũA
j

∂xB
i

= 0 . (6.13)

Equation (6.13) is now a multi-dimensional operator with six independent space variables, xA
k

and rk = xB
k − xA

k .

We now average (6.13) over a sufficiently large area. For the problem at hand, this average

requires an area larger than twice the mean inter-stem space. In practice, the average can be carried

out over a line that encompasses both xA
k and xB

k . For the instrumentation at hand, measurements

over such lines are discrete which means that, for a given rk, the average is performed as an

arithmetic mean of the values of variables taken at all points rk apart. Evidently the spatial

velocity series thus defined incorporates wavelengths that express the spatial variability of the

time-averaged flow, whose classification as turbulence is objectionable. However, one notes that

these wavelengths are of the order of magnitude of the inter-stem space and thus much larger

than the turbulent scales that will be the focus of the analysis. Equation (6.13) becomes

∂

〈
ũA

j ũB
i

〉

∂ t
+

∂

〈
ũA

j ũA
k ũB

i

〉

∂xA
k

+
∂

〈
ũB

i ũB
k ũA

j

〉

∂xB
k

+
∂

〈
ũB

i ũA
j

〉
〈u〉k

∂xB
k

+
∂

〈
ũA

j ũB
i

〉
〈u〉k

∂xA
k

+

+
1
ρ

∂
〈

p̃AũB
i
〉

∂xA
j

+
1
ρ

∂

〈
p̃BũA

j

〉

∂xB
i
−ν

∂ 2
〈

ũA
j ũB

i

〉

∂xA
k ∂xA

k
−ν

∂ 2
〈

ũB
i ũA

j

〉

∂xB
k ∂xB

k
= 0 . (6.14)

In the above derivation the rules
〈
〈γ〉 θ̃

〉
= 0 and 〈〈γ〉θ〉= 〈γ〉〈θ〉, where γ and θ are generic

hydrodynamic variables, have been applied.

The variables subjected to derivation are space-averaged, then, since xA
k and xB

k belong to

same sampling region, all spatial derivatives in (6.14) are independent of the particular point in

space where they are evaluated. Thus (6.14) admits only one independent variable, the lag vector

rk. Hence, ∂ f
∂xA

k
=− ∂ f

∂ rk
, ∂ f

∂xB
k
= ∂ f

∂ rk
, where f is a generic space-average variable. Including these
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derivation rules in (6.14) one obtains

∂

〈
ũA

j ũB
i

〉

∂ t
−

∂

〈
ũA

j ũA
k ũB

i

〉

∂ rk
+

∂

〈
ũB

i ũB
k ũA

j

〉

∂ rk
+

− 1
ρ

∂
〈

p̃AũB
i
〉

∂ r j
+

1
ρ

∂

〈
p̃BũA

j

〉

∂ ri
−2ν

∂ 2
〈

ũB
i ũA

j

〉

∂ rk∂ rk
= 0 (6.15)

since
∂〈ũB

i ũA
j 〉〈u〉k

∂ rk
− ∂〈ũA

j ũB
i 〉〈u〉k

∂ rk
= 0 .

Considering the correlation tensors, Bi j, Bip and Bi j,k, defined as

B ji(rk, t) = 〈ũ j(xk, t)ũi(xk + rk, t)〉
Bip(rk, t) = 〈ũi(xk, t)p̃(xk + rk, t)〉
B ji,k(rk, t) = 〈ũ j(xk, t)ũi(xk, t)ũk(xk + rk, t)〉

Equation (6.15) may be written as

∂B ji(r, t)
∂ t

=
∂

∂ rk

(
B jk,i(r, t)−B j,ik(r, t)

)
+

1
ρ

(
Bpi(r, t)

∂ r j
− B jp(r, t)

∂ ri

)
+2ν

∂ 2B ji(r, t)
∂ rk∂ rk

(6.16)

where argument rk of correlation tensors was replaced by r for simplicity and to avoid misunders-

tandings with the summation notation.

Considering now the scales at which the local isotropy condition is valid, the functions

Bpi(rk, t) and B jp(rk, t) must vanish and the tensors B ji(rk, t), B jk,i(rk, t) and B j,ik(rk, t)=Bik, j(−rk, t)

can be expressed in terms of the two scalar functions BLL(r, t) and BLL,L(r, t):

B ji(rk, t) = (BLL(r, t)−BNN(r, t))
r jri

r2 +BNN(r, t)δ ji (6.17)

B ji,k(rk, t) = (BLL,L(r, t)−BNN,L(r, t)−2BLN,N(r, t))
r jrirk

r3

+BLN,N(r, t)
δikr j +δ jkri

r
+BNN,L(r, t)

δ jirk

r
(6.18)
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where

BNN(r, t) = BLL(r, t)+
r
2

∂BLL(r, t)
∂ r

BNN,L(r, t) =−
1
2

BLL,L(r, t)

BLN,N(r, t) =
1
2

BLL,L(r, t)+
r
4

∂BLL,L(r, t)
∂ r

BLL(r, t) = 〈ũL(xk, t)ũL(xk + rk, t)〉
BNN(r, t) = 〈ũN(xk, t)ũN(xk + rk, t)〉
BLL,L(r, t) = 〈ũL(xk, t)ũL(xk, t)ũL(xk + rk, t)〉
BNN,L(r, t) = 〈ũN(xk, t)ũN(xk, t)ũL(xk + rk, t)〉
BLN,N(r, t) = 〈ũL(xk, t)ũN(xk, t)ũN(xk + rk, t)〉

r = |rk|, δ ji is the Kronecker delta function, ũL is the velocity fluctuation component on the

direction of the increment r and ũN is the velocity fluctuation component normal to that direction

(Monin & Yaglom, 1975, pp. 39,64-65,117-118).

Substituting the previous expressions in (6.16) we obtain
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(6.19)

If we equate the coefficients of the tensors δ ji and r jri on the left and right hand sides of (6.19),

we obtain two scalar equations which are equivalent to each other (Monin & Yaglom, 1975,

p.122). Considering, for example, the equation obtained when the coefficients of the tensor δ ji

are equate, we find

∂BLL(r, t)
∂ t

=

(
∂

∂ r
+

4
r

)(
BLL,L(r, t)+2ν

∂BLL(r, t)
∂ r

)
(6.20)

If this equation is time-averaged, over a sufficient large time period, it is no longer time dependent,

without loss of generality once we are considering a steady flow and spatial correlation tensors.
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Equation (6.20) is now written as
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=

(
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∂ r
+

4
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)
(6.21)

being

BLL(r) = 〈ũL(xk, t)ũL(xk + rk, t)〉
BLL,L(r) = 〈ũL(xk, t)ũL(xk, t)ũL(xk + rk, t)〉.

In locally isotropic turbulence, structures functions can be determined by means of the

correlation functions, 〈S2L〉(r) = 2
(
BLL(0)−BLL(r)

)
and 〈S3〉(r) = 6BLL,L(r) (according to our

notation).

Within the DAM the conservation of turbulent kinetic energy, DATKE (double-averaged

TKE-equation), is written
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(6.22)

We recall that the overlined variables are time-averaged variables, while primes stand for fluctua-

tions to the time-average, angular brackets for space-averaged variables and tildes for fluctuations

to the space-average. In the local isotropy conditions the mean convective fluxes are zero and

the dispersive, turbulent and pressure transport terms also vanish. We also assume that the

Reynolds number is large enough to have negligible viscous diffusion. So under such conditions

the DATKE reduces to

∂

〈
u′iu
′
i

〉
/2

∂ t
=−〈ε〉 (6.23)

Once ∂ 〈S2L〉(r)
∂ t = 0 at small scales (Monin & Yaglom, 1975, p.396) and ∂BLL(0)

∂ t =−2
3 〈ε〉 (see

6.3), the (6.21) becomes
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If we multiply this equation by r4 and integrate with respect to r (applying integration by parts

theorem) we obtain

〈S3〉(r) =−
4
5
〈ε〉r+6ν

∂ 〈S2L〉(r)
∂ r

(6.25)

This equation is used in the next chapter as a mean to compute the mean dissipation rate of TKE,
〈ε〉.

6.3 Order of the application of the average operators

There is an important issue behind the assumption ∂BLL(0)
∂ t = −2

3 〈ε〉 = 2
3

∂〈u′iu′i〉/2
∂ t which

is related with the order of the application of the space- and time-average operators. Since

BLL(r) = 〈ũL(xk, t)ũL(xk + rk, t)〉 it might not be evident its relation with
〈

u′iu
′
i

〉
/2.

Commonly in literature the DATKE is derived applying first the Reynolds decomposition and

the time-average operator and then the spatial decomposition and the space-average operator,

resulting into (6.22). Let us now introduce the spatial decomposition in the
〈
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〉
tensor
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Now considering the inverse order of the average operators we would find the tensor 〈ũiũi〉. If

we now introduce the Reynolds decomposition in this term, we get

〈ũiũi〉=
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Hence, we are led to the conclusion that

〈
u′iu
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〉
−〈ui〉′ 〈ui〉′ = 〈ũiũi〉−〈 ¯̃ui ¯̃ui〉 (6.26)

Based in the conservation equation of each of the tensors in (6.26), we get to conclude that

〈ε〉− εT = 〈ε〉− εG (6.27)
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where 〈ε〉 stands for the double-averaged dissipation rate as it is usually presented in literature, 〈ε〉
is the dissipation rate associated to the tensor 〈ũiũi〉, which is also a turbulent energy dissipation

rate in the Kolmogorov sense. The terms εT and εG are the dissipation rate corresponding to the

tensors 〈ui〉′ 〈ui〉′ and 〈 ¯̃ui ¯̃ui〉, respectively, and have a physical meaning more difficult to explain.

However, we suppose that in the range of scales we are focus on εG− εT ≈ 0, and then we can

consider 〈ε〉= 〈ε〉.

Hence we can relate BLL with the 〈ε〉 and assume

∂BLL(0)
∂ t

=−2
3
〈ε〉= 2

3

∂

〈
u′iu
′
i

〉
/2

∂ t
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Chapter 7

Rate of dissipation of TKE in flows
within arrays of rigid emergent stems.
Characterisation based on spatial
measurements

This chapter presents a detailed spatial description of a flow within an array of rigid and

emergent cylinders with varying density. The data used in the flow description consisted in

horizontal maps of instantaneous velocity acquired with a Particle Image Velocimetry (PIV)

system in a laboratory model simulating a stream with rigid vegetation. The characterization of

the flow includes time-averaged velocity and vorticity maps, which allows to see how the mean

flow behaves at the inter-stem distance. Autocorrelation functions are presented and they are

used to define the characteristic length scales of the flow. Furthermore, second and third order

structures functions as well as energy spectra are discussed.

The work exploits the space-averaging of two-point correlations and statistics of the turbulent

flow as means to salvage the formalism of homogeneous and isotropic turbulence (HIT), deriving

an equation to estimate the dissipation rate of turbulent kinetic energy (TKE).

7.1 Introduction

The physics of flows through arrays of circular cylinders has been investigated in the scope

of several fundamental and applied disciplines. In the context of environmental sciences, rigid

emergent cylinders represent a convenient ersatz for stems of several wetland species (Lightbody

& Nepf, 2006; Nepf & Ghisalberti, 2008), allowing for laboratory work under controlled conditi-
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ons. In this context, the study of flows within the array of plant stems is of paramount importance

since flow hydrodynamics determines fluxes of suspended sediment, pollutants and nutrients,

thus constituting the physical stratum upon which biological and ecological strata are formed

(Nepf, 2012a; Tanino & Nepf, 2009; White & Nepf, 2003).

In natural conditions, the flow in the space among stems is normally turbulent. Turbulence is

non-homogeneous, being mostly generated by the interaction of vortexes shed by individual stems.

For high Reynolds numbers (the appropriate Reynolds numbers will be defined later), second and

higher order moments of velocity fluctuations evidence a spatial distribution depending mostly

on stem diameter and placement.

Upscaling the analysis to larger spatial scales has allowed for major progresses in the formal

definition and characterization of momentum and scalar fluxes (Finnigan, 2000; Poggi et al.,

2004a; Raupach et al., 1986; White & Nepf, 2008). The theoretical background allowing for the

exact expression of conservation laws at scales larger than the mean inter-stem distance (defined

as the averaged distance between a stem and its nearest neighbour) has been laid out by Finnigan

(2000); Finnigan & Shaw (2008); Nikora et al. (2001); Raupach & Shaw (1982), among others,

and has been termed Double-Averaging Methodology (DAM, Nikora et al., 2007a). Conservation

equations for mass, momentum and second-order moments of turbulent fluctuations, namely

turbulent kinetic energy (TKE), have been developed within the DAM.

Terms in the space-averaged equations of conservation of momentum and TKE, notably space-

averaged dispersive stresses, dispersive stresses and wake production terms, require parametriza-

tion. It is reasonable to believe, in analogy to turbulence characterization, that combinations of

〈k̄〉, the space-averaged TKE, and 〈ε̄〉= 〈 ∂u′i
∂xk

∂u′i
∂xk
〉, the space-averaged rate of dissipation of TKE

provide length and time scales useful to characterize the averaged flow at the inter-stem scale and

to formulate higher order closure models (Juang et al., 2008).

Of particular interest to this research is the quantification of 〈ε̄〉, for which existing methods

mostly involve space-averaging of point-wise estimates. These may be obtained from characte-

ristic macroscales (Mignot et al., 2009b), from a balance analysis of production and dissipation

terms (Finnigan, 2000) or under the assumption of homogeneous and isotropic turbulence (see,

e.g. Monin & Yaglom, 1975, pp.351-355). In the latter case, the rate of dissipation can be

calculated from the gradient of the longitudinal velocity, from Rice’s formula (Sreenivasan et al.,

1983) and, in the absence of spectral short-cut typical for submerged canopies, from spectra

or structure function scaling laws (e.g. Hsieh & Katul, 1997). These estimates require i) high

spatial resolution for direct evaluation of spatial derivatives, ii) sufficient temporal resolution and

the validity of Taylor’s hypothesis (Taylor, 1938) or sufficient spatial resolution for spectral or

structure function analysis.

If turbulence is not homogeneous, as is the case of the flow in the inter-stem space, there are

134



7.1 Introduction

several competing theories expressing the dissipation tensor (e.g. Moser, 1994; Oberlack, 1997;

Perot & Natu, 2004) but they are not analytically tractable for transforming measured velocity

fluctuations into dissipation rates and are, therefore, out of the scope of this paper. Furthermore,

the use of Taylor’s hypothesis in flows that exhibit separation and periodic vortex shedding is

problematic, as the correct advection velocity is unknown. In this paper, this issue is addressed as

turbulent quantities are derived directly from spatial velocity series.

The objective of the paper is the characterization and quantification of the rate of dissipation

of turbulent kinetic energy (TKE) in flows within arrays of emergent, rigid and cylindrical stems

at scales of the order of magnitude of the mean inter-stem characteristic length. We do not

attempt to employ a non-homogeneous theory. Instead, we assume local isotropy, in the sense

of Monin & Yaglom (1975), and we further exploit space-averaging of two-point correlations

and statistics as a means to salvage the formalism of HIT. In particular, we derive an equation

akin to Kolmogorov’s and use it to express the longitudinal 3rd−order structure function, from

which an estimate of the rate of dissipation of TKE can be obtained. We choose not to calculate it

from second-order statistics, namely power spectra and 2nd−order structure functions, since we

can not presuppose universality of the involved constants under our flow conditions. We also do

not employ the direct definition or estimates based on Taylor’s micro-scales because the spatial

resolution is not sufficiently high to resolve the all relevant gradients of the velocity field.

As a compromise between physical verisimilitude and laboratory feasibility, we employ

slightly rough stems randomly placed whose spatial distribution in the horizontal plane emulates

the patchiness often seen in actual wetlands (Schoelynck et al., 2012). A simpler regular spatial

distribution would render the results easier to analyse. However, such simplicity could be

misleading as the complexity of wake interactions found in nature is not amenable to be simulated

by simple staggered arrays of stems. We thus assume a wide range of spatial variability in the

flow field and seek to explain it as the a result of a, presumably, non-linear combination of

space-averaged and local effects.

Horizontal maps of instantaneous velocity were acquired with a particle image velocimetry

system (PIV) in a flow within an array of cylinders with different stem areal number-density,

herein designated by m and expressed in stems/m2. The focus of the present study is placed at the

scale of the inter-cylinders distance, herein referred as inter-stem distance. A particular feature of

the presented characterization of the flow is that it is carried out with a spatial analysis of the

flow, avoiding the use of the frozen turbulence approximation, which would be inappropriate for

this kind of flows.

The values of the stem-Reynolds number Rep = 〈ū〉d/ν (where 〈ū〉 stands for the mean

longitudinal velocity, d is the stem diameter and ν is the kinematic viscosity) for the particular

flow described in this paper range between 1100 to 1700 and the stem density ranges from 400 to

1600 stems m−2. For these densities of stems, the flow in the inter-stem space lies in Type 4B
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Strouhal-Reynolds number behaviour presented by Sumner (2010) for staggered configurations.

Depending of its relative location, the flow in the inter space of multiple cylinders may involve

complex interactions between the shear layers, vortices, wakes and von Kármán vortex streets.

Each cylinder has a viscous boundary layer that stretches and sheds vortices at a frequency, f ,

that depends on the Reynolds number. Boundary layers of neighbour cylinders may overlap

forming a creeping flow. For a single isolated cylinder, the range of Reynolds numbers in the

present study would correspond to a Strouhal number (St = f d/〈ū〉) of, approximately, 0.21.

However, due to the interaction with neighbouring cylinders, the frequency of vortex ejection

may be different and may even fluctuate in time. It should be also possible to find cases with

more than a single shedding frequency (Sumner, 2010).

Concerning the structure of the paper, the next section describes the experimental facilities,

the instrumentation and the laboratory tests carried out. Section 7.3 presents a brief description

of the classical tools for turbulence characterization, including the adaptation of the results

developed for homogeneous and isotropic turbulence as well as the necessary results to support

the simplifications assumed. Section 7.4 is the main section presenting the computation of the

dissipation rate of TKE as well as a discussion of the results obtained. To finish, the conclusions

of this work are drawn.

7.2 Experimental facilities

The experimental work was carried out in a recirculating tilting flume of the Laboratory of

Hydraulics and Environment of Instituto Superior Técnico. It is a 12.5 m long and 40.8 cm

wide prismatic horizontal channel. The channel has side walls made of glass, enabling flow

visualization and laser measurements. The bottom was covered with a horizontal layer of gravel

and sand. Arrays of rigid, cylindrical, vertical and emergent stems, were randomly placed along

a 3.5 m long reach simulating rigid vegetation conditions. The stems, randomly but uniformly

distributed, were organized in 15 cm long alternated patches with 1600 stems m−2 (dense, herein)

and 400 stems m−2 (sparse, herein), separated by 10 cm long transition reaches featuring 5 cm

with a density of 1200 stems m−2 and 5 cm with 800 stems m−2 (figure 7.1). At the end of the

vegetated reach between two consecutive patches there is a gap without stems to enable the

velocity measurements (dashed rectangles in figure 7.1). To minimize its impact, the width of

that measuring gap is equal to the mean inter-stem distance of the upstream patch. The patchiness

of the array of stems presents a wavelength of 0.5 m. Downstream of the vegetation covered

reach a coarse gravel weir controlled the flow.

The instantaneous velocity fields were acquired with a 2D Particle Image Velocimetry system

(PIV), which is an optical technology which allows obtaining velocity flow fields by measuring
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Figure 7.1: Plan view of part of the stem covered reach. Dashed rectangles depict the regions where the
horizontal maps of velocity were measured for each patch, from P1 to P8. For each measuring gap a local
referential is considered.

seeding particle’s velocity. The PIV system consisted of a 8-bit 1600×1200 px2 CCD camera

and a double-cavity Nd-YAG laser with pulse energy of 30 mJ at wavelength of 532 nm. PIV

image pairs were acquired at a frequency of 15 Hz with a time delay of 1500 µs between frames.

The flow was seeded by polyurethane particles with an averaged diameter of 60 µm in a range

from 50 to 70 µm and a density of 1.31g cm−3. The correlation algorithm applied to obtain

the instantaneous velocity maps is included in the acquisition software and it incorporates a

validation procedure based in the median of the neighbourhood.

Horizontal maps of instantaneous velocity were acquired, at each measuring gap (figure 7.1),

covering the entire flume width with maps of ≈ 9.5 cm long and 12.5 cm wide at two different

heights (see table 5.1: za and zb). For each acquisition 5000 image couples were collected, what

allows computations of turbulence statistics over 5′33′′ of consecutive data. Image pairs were

processed with an adaptive correlation algorithm starting with interrogation area of 128×128 px2

and ending at 16× 16 px2, without overlap. This spatial resolution yields to interrogation

volumes of 1.3× 1.3× 2 mm3, since the laser light sheet is approximately 2 mm thick. The

spatial resolution of PIV measurements results from a trade off between zooming the image into

a small area to solve small scale motion, which leads to a loss of global information and increases

noise and capturing the region of the flow field that includes all relevant scales (Lavoie et al.,

2007). In this case, the image size is large enough to capture at least twice the mean inter-stem

distance, s, which is the most relevant scale for this study. The size of the interrogation area is

≈ 0.4λ and ≈ 10η , being λ the Taylor’s micro scale and η the Kolmogorov length scale.

Tests were performed with a discharge of 2.33 ls−1. In table 5.1, m represents stem areal

number-density, s = 1/
√

m is the mean inter-stem distance, h is the averaged flow depth, z(i), with

i = a,b, is the elevation of the measurement planes, and Re(i)p = 〈ū(i)〉d/ν(i) is the stem Reynolds

number, where d = 0.011 m is the stem diameter, 〈ū(i)〉 is the double-averaged longitudinal
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Table 7.1: Features of the experimental tests and flow properties for each longitudinal position.

P1 P2 P3 P4 P5 P6 P7 P8

m stems m−2 1600 800 400 1200 1600 800 400 1200

s (m) 0.025 0.035 0.050 0.029 0.025 0.035 0.050 0.029

h (m) 0.065 0.064 0.063 0.062 0.057 0.056 0.054 0.052

z(a)/h (−) 0.57 0.61 0.61 0.62 0.67 0.69 0.55 0.59

z(b)/h (−) 0.84 0.89 0.90 0.91 0.90 0.93 0.94 0.90

〈ū(a)〉 (m s−1) 0.086 0.093 0.090 0.091 0.092 0.108 0.106 0.100

〈ū(b)〉 (m s−1) 0.091 0.094 0.092 0.092 0.105 0.109 0.104 0.116

Re(a)p (−) 1161 1282 1233 1302 1266 1512 1469 1338

Re(b)p (−) 1281 1268 1242 1301 1473 1533 1462 1564

velocity and ν(i) stands for the kinematic viscosity, which depends on water temperature at the

time of the measurements (Likhachev, 2003). The presented values are averages of the several

lateral measurements of each longitudinal and vertical positions.

Throughout this work a Cartesian referential system is considered, where x, y and z correspond

to the streamwise, spanwise and vertical directions, respectively, and u, v and w are the correspon-

ding velocity components. However when correlation or structure functions are concerned, it is

convenient to consider a special set of coordinates in which the first axis lies along the direction

of the increments, r, while the two other axes are perpendicular to that direction. Hence, to

avoid misunderstandings concerning spatial directions, it should be noticed that the adjectives

streamwise and spanwise are used with a different meaning of longitudinal and transverse, being

the latter applied to classify functions evolving increments. Still regarding the symbols used

throughout this text, angular brackets (〈u〉) denote space-average operator while over-lines (ū)

are used as time-average operator, tildes (ũ) represent spatial fluctuations and primes (u′) time

fluctuations. For example ũ = u−〈u〉 and u′ = u− ū. The subscript p = 1,2, ...,8 is used to

identify the measuring gap (then, also the corresponding patch) while the superscript i = a,b

identifies the vertical position.

In the present work, the data analysis is performed with an original approach, considering

instantaneous velocity series in transversal direction instead of the typical advection direction.

That is because the goal is to characterize the flow at at the inter-stem scale and flow heterogeneity

due to the presence of the vertical cylinders is highlighted along the spanwise direction. To

better understand the results presented in the following sections, some explanations about the

data treatment are given hereafter. Figure 7.2a) exemplifies an instantaneous velocity map in

the horizontal plane z(a) for the measuring gap P5. The dashed line on that figure represents one

spatial series of instantaneous velocity, which is the base for all the analysis herein presented.
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Figure 7.2: a) Example of an instantaneous velocity map at P5. b) Instantaneous and spatial longitudinal
velocity series.

Figure 7.2b) is a graph of the streamwise (ũ) and spanwise (ṽ) spatial velocity fluctuation series

identified by the dashed line in figure 7.2a). The coordinates are normalized by the mean inter-

stem distance, sp, and a local referential is considered for each longitudinal position (see figure

7.1). With spatial velocity series like these, autocorrelation functions, structure functions and

energy spectra are computed for each available cross section and for all time instants. Then a

time-average is considered for every cross section.

Figure 7.3 (left hand side) presents time-averaged velocity maps for each measuring gap at

height z(a). These maps evidence the great heterogeneity of this kind of flows, at large scales, with

zones of low velocity at the cylinder’s wake alternated by high velocity zones between cylinders.

These low/high velocity patterns are observed for all the tested stem areal number-density. The

column on the right hand side of the same figure shows the corresponding time-averaged vorticity

maps. Vorticity maps show a repeating symmetrically paired vortexes pattern caused by the

unsteady separation of the flow over the cylinders. These quasi-symmetric high vorticity patterns

behind the stems identify Von Kármán vortex streets. Comparing vorticity maps for patches with

m, we conclude that the presence of vertical cylinders induce a regular structure of vortex patterns

independently of the stem areal number-density. However, the space necessary to fully develop

the vortex pattern is strongly reduced for dense patches. In sparse patches, vorticity has space to

decrease its intensity contrarily to what is observed in dense patches where the vortices are forced
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Figure 7.3: Time-averaged velocity maps (left) and time-averaged vorticity maps (right) at z(a) for each
longitudinal position (P1 to P8, from the top to the bottom).
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to compress. From the phenomenological point of view, turbulent structures generation in this

kind of flow is similar to generation in the case of an isolated cylinder, it is a wake production

dominated flow. The vortex generation is due to the flow separation around the cylinder, being the

size of the vortices dependent on the cylinder diameter. Consequently, the role of the inter-stem

distance on the turbulent field is played on density and spatial organization of those vortices.

Therefore, a dense patch, having smaller inter-stem distance, leads to higher vortex density which

results in stronger spatial velocity fluctuations. Based on that feature, flows within arrays of rigid

cylinders can be named as inter-stem flows.

7.3 Adaptation of HIT results

The theory of turbulence is based on statistical analysis of random flow fields. Correlations

and moments of the probability distributions are key parameters in characterization of turbulence.

Autocorrelation and structure functions are of particular interest.

Autocorrelation functions for spatial velocity series along spanwise direction are presented

and applied to estimate a characteristic macro length scale and the Taylor’s micro scale of the

present flow.

As explained before, sets of instantaneous autocorrelation functions were time-averaged for

each cross section and then space averaged for all cross sections, for each dataset. The time-

averaged longitudinal and transverse autocorrelation functions are defined, in dimensionless way,

by

RL(x,r) =
(〈ṽ(t,x,y)ṽ(t,x,y+ r)〉

〈ṽ(t,x,y)2〉

)
(7.1a)

RN(x,r) =
(〈ũ(t,x,y)ũ(t,x,y+ r)〉

〈ũ(t,x,y)2〉

)
, (7.1b)

respectively, where t stands for time and r for the space increment. Figures 7.4 and 7.5 exemplify

RL and RN for sparse and dense patches, P3 and P5, respectively. Theses figures show that

both RL and RN present an oscillating behaviour around zero, with a wavelength close to s and

high amplitude, for RN , leading to the conclusion that, the inter-stem distance has an important

role in the flow energy budget. The definition of integral scale based in the integration of the

autocorrelation function proves to be inadequate in flows within arrays of cylinders, since due to

this oscillating behaviour it would render to very small values or even to negative values, what

does not make physical sense. There is no theoretical definition for the relevant length scales

for flows with this level of complexity, nevertheless the previous analysis based on vorticity

maps and autocorrelation functions identified the inter-stem distance as a very important scale.

Due to the random distribution of cylinders in the present study, it is not possible to have an
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Figure 7.4: Longitudinal autocorrelation function for a) P3 and b) P5, at 4 different cross sections for a
lateral position at height z(a).
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Figure 7.5: Transverse autocorrelation function for a) P3 and b) P5, at 4 different cross sections for a
lateral position at height z(a).

142



7.3 Adaptation of HIT results

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
−0.60

−0.40

−0.20

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

r (m)

〈R
N
〉(

-)

 

 

P1
P2
P3
P4
P5
P6
P7
P8

(a)

P1 P2 P3 P4 P5 P6 P7 P8
0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Λ
(m

)

 

 

z(a)

z(b)

(b)

Figure 7.6: a) Double-averaged transverse autocorrelation function for a lateral position at height z(a). b)
Mean macro-scale for each longitudinal and vertical positions.

unambiguous value to the inter-stem space scale. Hence, the present work defines a macro-scale

based on the transverse autocorrelation function, instead of using the averaged inter-stem distance

s, which would be less sensitive to local flow conditions. The macro-scale, Λ, was defined as the

increment r corresponding to the first local maximum of the time- and space-averaged transverse

autocorrelation function, 〈RN〉, after the origin which corresponds to 〈RN〉 = 1. Figure 7.6a

presents 〈RN〉 of each measuring gap for a lateral position at height z(a). The macro-scale is

computed for each dataset and then an average of all lateral positions is considered for each

longitudinal and vertical position (figure 7.6b). The values of Λ increase from dense patches to

sparse ones, supporting the idea that the characteristic length scale is correlated with s.

Another scale of interest corresponds to the length of the segment cut on the horizontal axis

by the osculating parabola tangent to the autocorrelation function at its origin peak (Monin &

Yaglom, 1975, p.35). This scale is often referred as Taylor’s micro scale, and herein is represented

by λL or λN depending whether it is computed from 〈RL〉 or 〈RN〉, respectively. Formally, this

micro scale is defined by (Tennekes & Lumley, 1972, p.211)

(
∂ 2RL,N

∂ r2

)

r=0
=− 2

λ 2
L,N

(7.2)

and the numerical definition applied herein to estimate these scales is

λL,N =
∆r√

〈RL,N〉(r = 0)−〈RL,N〉(r = ∆r)
(7.3)

Table 7.2 presents longitudinal and transverse Taylor’s micro scale, λL and λN , respectively and
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Table 7.2: Taylor’s micro scales and Reynolds numbers based on the micro and macro scales of the flow.

P1 P2 P3 P4 P5 P6 P7 P8

λ
(a)
L (m) 0.0031 0.0031 0.0029 0.0032 0.0027 0.0031 0.0033 0.0031

λ
(b)
L (m) 0.0033 0.0031 0.0030 0.0034 0.0031 0.0032 0.0033 0.0034

Re(a)
λL (−) 152 143 105 159 151 162 160 177

Re(b)
λL (−) 167 143 113 163 167 175 159 192

λ
(a)
N (m) 0.0038 0.0038 0.0036 0.0041 0.0036 0.0037 0.0039 0.0039

λ
(b)
N (m) 0.0038 0.0038 0.0036 0.0041 0.0040 0.0037 0.0039 0.0040

Re(a)
λN (−) 329 278 209 366 385 294 296 387

Re(b)
λN (−) 332 271 210 362 440 307 286 401

Re(a)
Λ

(−) 2509 3548 4899 3681 2889 3989 5718 3468

Re(b)
Λ

(−) 3626 3398 4709 3677 3514 4004 5373 4080

the corresponding Reynolds numbers, ReλL = λL〈ṽ2〉1/2
/ν and ReλN = λN〈ũ2〉1/2

/ν .

It should be noticed that the theoretical result from homogeneous and isotropic turbulence

stating that λL =
√

2λN is not verified for this flow, where all reaches have λN larger than λL, a

relation λN ≈ 1.25λL was found.

The two point longitudinal and transverse second-order structure functions, S2L and S2N

respectively, are defined herein by

S2L(α,r) = (ṽ(α + r)− ṽ(α))2 (7.4a)

S2N(α,r) = (ũ(α + r)− ũ(α))2 (7.4b)

where r is the increment which has the y-direction, α is any point in the space and ṽ and ũ are the

velocity fluctuations components on the same and the perpendicular direction of the increment,

respectively. The over-line stands, here, for the appropriate ensemble-average, since the processes

are stationary, this may be a time-average.

The longitudinal third-order structure function is defined as

S3(α,r) = (ṽ(α + r)− ṽ(α))3 . (7.5)

Since turbulence is not homogeneous, the values of the structure functions depend on the point

α and not only on the lag r. If the structure functions are space-averaged, the results 〈S2〉 and
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〈S3〉 do not depend on any particular α . Instead, they become dependent only on the space lag r:

〈S2L〉(r) =
〈
(ṽ(α + r)− ṽ(α))2

〉
(7.6a)

〈S2N〉(r) =
〈
(ũ(α + r)− ũ(α))2

〉
(7.6b)

〈S3〉(r) =
〈
(ṽ(α + r)− ṽ(α))3

〉
. (7.6c)

Exploiting the space-averaging of two-point correlations and statistics, we followed the proce-

dure applied by Monin & Yaglom (1975, pp.120-122) to derive an equation akin to Kolmogorov’s

equation (also referred as Kármán-Howart’s equation), from which an estimate of the rate of

dissipation of TKE can be obtained. Evidently, turbulence remains non-homogeneous but the

formalism that led to the relation between second and third-order structure functions in HIT is

now applicable rendering similar results (see Annex I):

〈S3〉(r) =−
4
5

r 〈ε〉+6ν
∂ 〈S2L〉(r)

∂ r
(7.7)

where ν stands for the kinematic viscosity and 〈ε〉 is the mean dissipation rate of energy. This

equation is valid within the range of scales where the local isotropy condition is applicable.

Often, when r is in the inertial range of scale, the viscous friction is considered not to play an

appreciable role, i.e., ν
∂ 〈S2L〉(r)

∂ r ≈ 0, so (7.7) is very often found in literature written as:

〈S3〉(r) =−
4
5

r 〈ε〉 (7.8)

which corresponds to the known four-fifth law in homogeneous and isotropic turbulence theory

(Monin & Yaglom, 1975, pp.395-397; Frisch, 1995, p.76).

Normalized third order structure functions, 〈S3〉, for two measuring gaps, P7 and P5, are

presented in figure 7.7. Analysing the measured third order structure functions we conclude

that it is difficult to identify a common pattern for these functions, what may be related to the

difficulty associated to estimate third order moments from the measurements. However, the main

interest of third order structures functions is found at small scales, where these are related to

energy dissipation rate according to (7.8). On that reach of interest, for all the datasets we found

the expected behaviour, since 〈S3〉 presents a linear decrease with r until reaching a minimum

value. The analysis of 〈S3〉 herein is focused on the reach r/Λp < 0.5. The linear reach is longer

in dense patches than in sparse patches (figure 7.7). In general, the number of points over the

linear part of the graph decreases toward downstream.

Recent studies, investigating the finite Reynolds number effect (Antonia & Burattini, 2006;

Danaila et al., 2002; Qian, 1999; Tchoufag et al., 2012), have evidenced that for flows encoun-
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Figure 7.7: Dimensionless third order longitudinal structure function, 〈S3〉, for a lateral position at height
z(a) for a) P7 and b) P5.

tered in the laboratory, the effect of a finite Reynolds number and of the non-stationarity or

inhomogeneity associated with large scales can affect significantly the behaviour of the scales in

the inertial range. These advances show that small Reynolds numbers maintain the magnitude

of the third order structure function below its asymptotic value of 4εr/5. Thus, the estimation

of 〈ε〉 by (7.8) may lead to overestimated values. Most of these recent studies require a known

dissipation rate, which is often estimated by other theoretical assumptions. So when the goal is to

estimate turbulent dissipation rate, a certain degree of uncertainty is still inevitable.

Another important result from Kolmogorov hypotheses is the two-thirds law (Monin &

Yaglom, 1975, pp. 353-354), stating that in any turbulent flow with sufficiently large Reynolds

number, the mean square of the velocity difference between two points separated by a distance

r should be proportional to 〈ε〉2/3 r2/3, for l0� r� η , where l0 and η stand for integral and

Kolmogorov length scale, respectively. The mean square of velocity increments corresponds

to the second order structure function. Hence, supposing that our data have enough spatial

resolution, we should find the following relations within the inertial range of scales

〈S2L〉(r) =C2L 〈ε〉2/3 r2/3 (7.9a)

〈S2N〉(r) =C2N 〈ε〉2/3 r2/3 (7.9b)

where C2L and C2N are dimensionless constants. Figure 7.8 exemplifies longitudinal second order

structures functions, 〈S2L〉, for a dense patch (P5) and sparse one (P3). Graphs are presented in

dimensionless form, being increments normalized by the macro-scale, Λp and structure functions

normalized by the variance of the velocity series, 〈ṽ2〉 and 〈ũ2〉. The black crosses plotted in these
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Figure 7.8: Dimensionless second order longitudinal structure function,〈S2L〉, for a lateral position at
height z(a) for a) P3 and b) P5. The black dotted line with +-marker represents the relation given by
(7.10a) for the upstream cross section.

figures represent an estimation of the structure function based on the autocorrelation functions by

the following relation for HIT (Monin & Yaglom, 1975, p.100)

〈S2L〉(r) = 2(RL(0)−RL(r)) (7.10a)

〈S2N〉(r) = 2(RN(0)−RN(r)) (7.10b)

We observed that this estimation agrees well with measured 〈S2L〉 and 〈S2N〉, corroborating the

local isotropy approach. 〈S2L〉 and 〈S2N〉 reveal an oscillating shape, more pronounced for dense

patches, which expresses the characteristic pattern of high and low velocity of the flow field.

In both, longitudinal and transverse functions, the reach corresponding to the inertial range is

identified, where graphs have a 2/3 slope spanning about half decade for 〈S2L〉 and a bit less for
〈S2N〉. The structure functions are practically constant along streamwise direction.

An equivalent law to the two-thirds law can be formulated in terms of energy spectrum (Monin

& Yaglom, 1975, p.355)

EL(k) =CL 〈ε〉2/3 k−5/3 (7.11a)

EN(k) =CN 〈ε〉2/3 k−5/3 (7.11b)

where EL and EN are longitudinal and transverse one-dimensional energy spectrum, respectively

and CL and CN are dimensionless constants. This relation, often called −5/3 law, is valid only

for wavenumbers, k, within the inertial range. Figure 7.9 shows transverse spectra for P3 (sparse

patch) and P1 (dense patch). The computed spectra exhibit the inertial range, typically spanning

147



Chapter 7. Dissipation of TKE in flows within arrays of rigid emergent stems

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

kΛ3(-)

E
N
/
( u

′2
Λ
3

) (-
)

 

 

P3

−5/3

0.10s
3

0.25s
3

0.40s
3

0.50s
3

(a)

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

kΛ1(-)

E
N
/
( u

′2
Λ
1

) (-
)

 

 

P1

−5/3

0.13s
1

0.18s
1

0.23s
1

0.28s
1

(b)

Figure 7.9: Dimensionless spatial transverse spectra for a lateral position at height z(b) for patches a) P3
and b) P1.

about half decade, where a −5/3 slope reach is visible (Appendix B presents transverse and

longitudinal spectra for all measuring gaps).

Flows within arrays of cylinders require heterogeneity and anisotropy. However, the heteroge-

neity of those kind of flows is on the time-averaged field. Considering translations in spanwise

direction, the flow is statistically invariant due to the periodic distribution of cylinders (Frisch,

1995, p.73). Since the turbulence of such kind of flow is governed by the inter-stem distance,

it reveals a strong tendency to isotropy, as presented by Ricardo et al. (2011). Assuming that

the collected data present enough resolution to include increments within the inertial range of

scales, and assuming local isotropy in the studied flow, (7.7) will be employed to estimate the

mean dissipation rate of the flow within arrays of different m. Nevertheless, an evaluation of

the suitability of the local isotropy approach is presented by means of the correlation-coefficient

spectrum, CLN , which is defined by

CLN(k)≡
|ELN(k)|

[EN(k)EL(k)]
1/2 (7.12)

where ELN(k) is the shear-stress cospectrum and EL(k) and EN(k) are the longitudinal and

transverse one-dimensional spectra, respectively. For local isotropy, CLN(k) should fall to zero at

high wavenumbers (Saddoughi & Veeravalli, 1994). Log-linear plots of correlation-coefficient

spectra, CLN are shown in figure 7.10, for two patches, P5 and P7. For other patches similar

behaviour is found. After the greatest peak at macro scale wavenumber, CLN starts decreasing

towards zero. In the inertial range of scales CLN < 0.05, revealing that the local isotropy condition

is satisfied.
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Figure 7.10: Correlation-coefficient spectra a lateral position at height z(a) for a) P7 and b) P5.

7.4 Dissipation rate

To attempt an estimation of the dissipation rate of turbulent kinetic energy, the methodology

described above was followed. The dissipation rate was estimated by identifying the first plateau

of the compensated version of (7.7):

〈ε〉=− 5
4r

(
〈S3〉(r)−6ν

∂ 〈S2L〉(r)
∂ r

)
(7.13)

Once the second order structure functions may be affected by uncorrelated noise and the noise

level is specially important for small increments, the second term on the right hand side of the

previous equation may introduce errors on the estimate of the energy dissipation rate. On other

hand, it is a non sense to neglect this term when it can be computed from the experimental

data avoiding additional simplifications on (7.7). For that reason, we adopt a compromised

solution identifying with spectral analysis the range of scales where the noise is significant, and

therefore neglecting the term of the second order structure function derivative only for those

scales. Typically, the noise gets important for scales smaller than 5 mm, which correspond to

scales within the linear reach of the third order structure function. Another remark on the estimate

of the dissipation rate concerns the definition of the plateau, which is considered valid only when

it is defined by 3 or more points.

A careful analysis of the results led to the conclusion that the 〈ε〉 is very sensitive to local

conditions, i.e., the local arrangement of the cylinders impacts strongly the behaviour of the

dissipation rate. Figure 7.11 illustrates the variation of 〈ε〉 with x for four of the studied datasets,
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Figure 7.11: Dissipation rate of kinetic energy along streamwise direction for several datasets: a) P3 for
y = 0.29−0.41 cm at z(b), b) P5 for y = 0.10−0.22 cm at z(b), c) P6 for y = 0.0.09−0.21 cm at z(a) and
d) P8 for y = 0.23− 0.35 cm at z(a). The dashed rectangles indicate the measurement reach while the
circles represent the cylinders. It should be noticed that plan views represented in these graphs preserve
the geometrical scale indicated by the x-axis.

representing also the corresponding local distribution of the cylinders. In most of the cases, 〈ε〉
progresses downstream as in the cases a) and b)of figure 7.11, increasing towards a maximum

value and then decreasing. Such behaviour is due to the gap without cylinders where the

velocity measurements were carried on.The production of each cylinder is not felt immediately

downstream of it but rather slightly further downstream, however that distance may not be

determined easily. So, the initial increasing of 〈ε〉 reflects the input of the upstream cylinders,

then the flow finds a region without any obstacles where its dissipative potential decreases until

the flow enters again in an area with cylinders. The pattern of decreasing 〈ε〉 presented in figure

7.11 c) was found only for P6 in two of the lateral positions at both heights. For this case, the

relatively low amount of cylinders within the close neighbourhood of the measuring gap explains

that 〈ε〉 is already within its decreasing reach. Furthermore, the impact of the closest cylinders

can be identified on the two local maxima found on the graph of 〈ε〉 against x corresponding to

this dataset. The last case herein presented corresponds to a first decreasing reach of 〈ε〉 followed

by an increasing one, which may be more difficult to explain. However, the example of figure

7.11 d) shows that the particularly dense array of cylinders on the upstream limit of the measuring

gap following a sparser region should indicate that first five points of the graph are not impacted

by the "last row" of cylinders yet, while the remaining points show an increase of 〈ε〉 due to the

presence of those closest cylinders.
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Figure 7.12: a) Measured and estimated mean dissipation rate, 〈ε〉l , for each longitudinal position. The
dashed line at the bottom stand for relative stem density; b) Mean dissipation rate, 〈ε〉l , against the Taylor’s
micro scale based Reynolds number, ReλN .

Equation (7.13) was applied for each cross section of all available datasets, as presented

in figure 7.11, then an average of the dissipation rate for each dataset was considered, 〈ε〉x as

well as an average of the dissipation rate of all the lateral positions for the same patch and the

same height, 〈ε〉l . Figure 7.12a) shows that dissipation rate has a strong correlation with the

stem areal number-density, since the former increases when the later increases. There is an

increase of the dissipation rate from the first to the second wavelength of the array modulation,

i.e. from P1-P4 to P5-P8, due to the pressure gradient. This figure also presents estimates 〈ε〉l
based in a characteristic scales of velocity, uc and length, L, ε ≈ u3

c/L, as is commonly used in

literature, assuming that production is equal to dissipation. Herein, the estimative was computed

by 〈ε〉 ≈ 〈ṽ2〉(3/2)
/Λ (empty symbols in figure 7.12a) and one can observe that it leads to values

of dissipation rate close to the measured ones. We also computed an estimative based in the

streamwise velocity component, 〈ε〉 ≈ 〈ũ2〉(3/2)
/Λ. However, this estimate leads to values one

order of magnitude higher than the measured ones. This difference is due to the anisotropy of

the flow at the macro scale. Hence, it should be highlighted that the application of this simple

estimative requires some caution since it can lead to values with different orders of magnitude

depending in the characteristic velocity chosen.

Given the importance of the Reynolds number based on Taylor’s micro scale, figure 7.12b)

represents mean dissipation rate of energy against this dimensionless parameter. The dissipation

rate increases with increasing Reynolds number, being this behaviour clearer at height z(b) than at

z(a). This may indicate that the proximity to the free surface has an impact on the energy budget

of the flow.
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Figure 7.13: a) Mean dissipation rate 〈ε〉x against the macro scale based Reynolds number, ReΛ, for
each lateral position. b) Mean dissipation rate 〈ε〉l against the macro scale based Reynolds number, ReΛ,
average of all lateral position for each longitudinal and vertical positions. The numbers indicate the
corresponding longitudinal position.

Figure 7.13 presents the mean dissipation rate 〈ε〉x and 〈ε〉l as function of the Reynolds

number based in the macro-scale of the flow, ReΛ = 〈ūh〉Λ/ν . The dispersion of the points

presented in those graphs lead us to the conclusion that the correlation between these variables

is weak and depends of the height of the measured plane. For z(a) the dissipation rate does not

change much for a large range of Reynolds number while closer to the free surface similar values

of Reynolds number present large differences on the value of 〈ε〉.

7.5 Conclusion

The present work carried out, for a turbulent flow within an array of emergent and rigid

cylinders with varying areal number-density, a flow characterization in spatial domain with

a pertinent and innovative approach. A spatial analysis of this kind of flows is particularly

interesting since it avoids the approximation of the frozen turbulence theory. The innovative

approach consisted in the application of the common tools for turbulent analysis with spatial

velocity series in the spanwise direction instead of considering it along the direction of advection.

The focus of the present study is the region, of the flow depth, where the flow is controlled by the

vertical elements, so the effect of the bottom roughness and the free surface were not discussed

herein.

The qualitative time-averaged flow analysis revealed that the inter-stem space is characterized

by alternating zones of low velocity in wake regions and high velocity zones between stems
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and by quasi symmetric high vorticity patterns around the stem, independently of the stem areal

number-density. However, the inter-stem distance plays a very important role on the turbulent

field, since that scale controls the density and the spatial organization of those vortices. Also,

transverse autocorrelation functions corroborate the importance of this length scale presenting

oscillations with wavelengths close to that scale and amplitudes of ≈ 0.2. Hence, flows within

arrays of rigid cylinders are inter-stem flows. Autocorrelation functions were applied to define the

macro-scale, Λ, a characteristic length scale which was defined as the increment r corresponding

to the first local maximum of 〈RN〉, after the origin. Second and third order structure functions

were presented. A linear relation was found, for the smallest scales, between the increment r and

the structure function, 〈S3〉, evidencing that the measurement resolution was small enough to

measure within the inertial range of scales.

The main goal of this work was the computation and discussion of the mean dissipation

rate of TKE. Within the framework of the Double-Averaging Methodology, and following a

similar procedure to the one applied by Monin & Yaglom (1975) to obtain the Kolmogorov

equation, we showed that the formalism that leads to the relation between second and third-

order structure functions in HIT is applicable to non-homogeneous turbulence rendering similar

results (see equation 7.7); this represents the main contribution of our work. Despite to the great

heterogeneity at the large scales of the studied flow, the present work proved that the results of

the isotropic turbulence theory may be applied to study the small scales. Obviously some caution

is needed. It should be remarked that we are not claiming the validity of the local isotropy for

each instantaneous velocity series but instead we confirm that averages of sufficient long time

series of the structures functions and energy spectra lead to the conclusions of the well known

isotropic turbulence theory. We have shown that an average of 5000 spatial spectra, at the same

cross section, presents a clear −5/3 slope reach, while 〈S3〉 presents a linear reach and 〈S2〉 a

reach of 2/3 slope. Furthermore, correlation-coefficient spectra, CLN , decrease towards zero

for small scales, reinforcing the validity of the local isotropy condition. Equation (7.13) was

employed to compute the rate of dissipation of TKE, 〈ε〉. We conclude that behaviour of 〈ε〉 is

very sensitive to the local arrangement of the cylinders. For most of the datasets studied herein ,
〈ε〉 increases on the first cross-sections, reflecting the production input of upstream obstacles and

when the closest cylinders are far enough, it decreases towards downstream due to the gap without

cylinders where the measurements where carried on. Several exceptions to this comportment of

the dissipation rate were found and explained by the local arrangement of the random array of

cylinders. Concerning the patterns of a global average, 〈ε〉l exhibits a spatial variation close to

that of the cylinder areal number-density, m. In both wavelength of the array modulation, the rate

of energy dissipation increased with m. We also conclude that 〈ε〉l increases with the Reynolds

number based on Taylor’s micro scale. However, no strong correlation was found between the

dissipation rate and Reynolds number based on the macro scale, ReΛ.
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Chapter 7. Dissipation of TKE in flows within arrays of rigid emergent stems

The present work, based in detailed 2D PIV measurements and in a non-conventional approach,

allowed some advances in the complex task of understanding the dissipation rate of TKE of a

flow in a presence of random array of cylinders.
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Chapter 8

Conclusions

8.1 Summary

The present research study, based on experimental measurements of instantaneous velocities,

aimed at a detailed description of a turbulent flow within arrays of emergent stems with constant

and varying density. This study brings innovation in what concerns the detailed spatial description

of the budget of turbulent kinetic energy and the terms of the double-averaged momentum

conservation equation. Innovative experimental procedures are also introduced, particularly

in what concerns data treatment for which the use of spatial measurements avoids the use of

the frozen turbulence approximation. This work introduces a new techniques to deal with the

non-homogeneity of flows within vegetation. The phenomenological length scales with most

interest to this work were the inter-stem and patch scales. Furthermore, the focus was on the

region of the flow depth where the flow is controlled by the vertical stem. Bottom roughness and

free surface effects were not discussed.

Two measuring techniques were employed for obtaining the empirical data: 3D Laser Doppler

Anemometry (LDA) and 2D Particle Image Velocimetry (PIV). LDA technique allows acquisition

of three components of instantaneous velocities at high temporal data-rates in one point of the

flow. Being a point-wise technique, a thorough spatial characterization of the velocity flow field

with LDA is extremely time consuming. On the other hand, a two-component PIV allows, in

general, good spatial resolution and in a less expensive fashion than LDA, in terms of laboratory

time, to obtain spatial variability. If the spatial resolution is good enough, PIV databases allow

turbulence analysis without the application of the frozen turbulence approximation. These two

techniques were thus combined to allow complementary results within a feasible time.

155
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8.2 Main results

The main conclusions of the core chapters of this thesis are summarized hereafter.

Chapter 4

The characterization of the flow based on vertical profiles of velocity and stresses computed

with the Double-Averaging Methodology revealed that:
• there is a strong correlation between stem areal number-density and the magnitude of flow

variables;

• mean longitudinal velocity vertical distribution have a pronounced bulge close to the

bottom, decreasing then like in a typical boundary-layer flow towards the bottom;

• mean longitudinal velocity profiles are characterized by a uniform distribution in the region

where the flow is controlled by the vertical stems;

• dispersive and turbulent stresses have the same order of magnitude, and therefore, the

former should not be neglected by on basic conservation equations describing these flows.

The calculation of the drag force acting on the stems followed the conceptual framework

provided by the Double-Averaging Methodology. The drag force per plane unit area was

calculated from the depth-averaged longitudinal component of the DANS equations, with no

major simplifications, showing that the term corresponding to the pressure gradient is dominant.

However, balancing the drag force only with this term, as it is common in literature, may lead to

important non-systematic errors. In fact, the relative importance of the dominant term is affected

by the gradients in the areal number-density of stems, and the importance of the flow depth

gradient, ∂h
∂x , becomes reduced for high values of the drag force.

A dimensional analysis identified, among the variables assessed in this study, stem Reynolds

number, Rep, ration between inter-stem distance and stem diameter, s
d , longitudinal gradient of

the inter-stem distance, ∂ s
∂x , ration between flow depth and stem diameter, h

d , and longitudinal flow

depth gradient, ∂h
∂x as the characteristic parameters that control the drag force. The correlation of

those parameters with drag coefficient, CD, showed that the dependence of the drag coefficient is

complex and may result from a non linear combination of more than one parameter. The main

achieved conclusions include:
• the drag force per submerged stem length seems uncorrelated with the stem areal number-

density, m, and with the stem Reynolds number, Rep, for the range of Rep and m investiga-

ted;

• the drag force depends on the longitudinal variation of the stem areal number-density. It

was observed that the decrease of the number of stems per unit area, m, is associated to

larger flow resistance while the flow resistance is lower with the longitudinal increase of m;

• the drag coefficient increases with the relative roughness defined as h/d, revealing an

influence of the bed on the definition of the flow structure;
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At patch the scale, it was observed that the longitudinal increase of stem areal number-density

is associated to smaller magnitudes of the drag force per unit of submerged stem length. However,

at the representative scale of the longitudinal variation of the stem areal number-density, m, if the

variability of m is cyclic, there might be no appreciable effect of patchiness on the average drag

force since the opposite local influences of ∂m
∂x > 0 and ∂m

∂x < 0 cancel out in overall.

Chapter 5

An integrated view of the turbulent energy dynamics of flows through an array of emergent

cylinders was described based in the spatial characterization of the terms of the TKE budget

equation. The spatial distribution of the convective rate of change, the rate of turbulent production,

the turbulent diffusion and the dissipation rate of TKE were presented. Assuming that the

mean flow Reynolds number is sufficiently high, the viscous term could be neglected and the

pressure diffusion term was back-calculated from the TKE conservation equation. The following

conclusions are drawn in accordance to the analysis of the TKE budget terms:

• The production of TKE is mostly associated to vortex shedding from individual stems; the

magnitude is higher in the wake region, reaching a maximum about one stem diameter

downstream of the shedding stem, decreasing towards zero, when the inter-stem distance is

large enough.

• As the rate of production, TKE quantity has a peak of magnitude at the limit of the near

field of the stem wake, but the spatial distribution of TKE is smoother.

• Negative production of TKE is observed between close stems, associated to strong accele-

rations combined with high turbulent intensities that the flow field is here subjected to. The

data analysis confirmed that this conversion of turbulent kinetic energy into mean kinetic

energy is not fed by any turbulent diffusive mechanism.

• The rates of production and of dissipation are not in equilibrium at the inter-stem space,

revealing important interactions of turbulence with mean flow, turbulent transport of TKE

and pressure diffusion.

• The turbulent diffusion of TKE presents important values, both positive and negative,

within the von Kármán vortex streets.

• The turbulent fluxes of TKE revealed strong turbulent transport laterally, slightly upstream

of the locus of peak production and in the inner part of the stems wake, resulting in a

quasi-circular pattern of turbulent transport of TKE.

• There is evidence that turbulent diffusion may be a Fickian process since the flux of TKE

is, generally, directed from the regions with higher values of TKE to the regions with lower

values.

• The highest values of the magnitude of the convective term are located in the vicinity of

the array of stems.

• The convective rate of change of TKE is expected to balance the pressure diffusion term;
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• The rate of dissipation was found to increase with the density of stems and to present

smaller spatial variation when compared to the other terms of the TKE budget equation.

However, the magnitude of the rate of dissipation tends to be higher in the wake of the

stems than in the regions between adjacent stems.

A conspicuous spatial variability was found evidencing the importance of vortex shedding and

unsteady separation of the flow on the cylinders. In this study a random distribution of the array

of stems highlighted the impact of the local arrangements of the stems on the budget of TKE.

Chapter 6 and 7

A spatial analysis of turbulence in these flows is particularly relevant since it avoids applying

the approximation of the frozen turbulence theory. An innovative approach is herein presented,

consisting in the application of the common tools for turbulent analysis to the instantaneous spatial

velocity series in the spanwise direction of the flow,instead of considering it along the direction of

main advection. Inspired on the framework of the Double-Averaging Methodology, and following

a similar procedure to the one applied by Monin & Yaglom (1975) to obtain Kolmogorov’s

equation, it is shown that the formalism that leads to the relation between second and third-order

structure functions in HIT is applicable to non-homogeneous turbulence, rendering similar results.

An equation similar to Kolmogorov’s equation, relating the space-averaged second- and third-

order structure functions and the mean dissipation rate of energy, is proposed. This equation

was applied to compute the mean dissipation rate of energy for patches with different stem areal

number-density.

Despite the great heterogeneity at the larger scales of the studied flow, the present work

proved that an average of 5000 spatial spectra obtained instantaneously at the same cross section,

presents a clear −5/3 slope reach, while third-order structure functions present a linear reach

and second-order structure functions a reach of 2/3 slope, as expected when performing the

equivalent analysis using Kolmogorov’s equations for time series. Therefore, it is clear that long

time series of the structures functions and energy spectra show, at small-scales, the expected

results of the isotropic turbulence theory. Furthermore, correlation-coefficient spectra decrease

towards zero for small scales, reinforcing the validity of the local isotropy condition.

Concerning the dissipation rate of turbulent kinetic energy, it was seen that

• in most cases, it increases in the downstream near-field of stems, reflecting the strong

production input of stems in the upstream limit of the measuring gap and then it decreases

towards downstream, as the distance to upstream stems increases, in a way similar to the

decay observed in grid turbulence. However, exceptions to this behaviour were found and

explained by the local arrangement of the random array of cylinders;

• the dissipation rate of TKE it is very sensitive to the local arrangement of the cylinders;

• the dissipation rate increases with the cylinder areal number-density;

• the dissipation rate of TKE increases with the Reynolds number based on Taylor’s micro
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scale although the relation is not exactly quadratic;

• there is not a correlation between the dissipation rate and Reynolds number based on the

macro scale.

Summing up the achievements of the present work, advances on the understanding of the

complex flow within random arrays of rigid and emergent stems, at the inter-stem scale, were

reached in three relevant topics: flow resistance, budget of TKE and computation of dissipation

rate of TKE.

8.3 Recommendations for future work

The characterization of flows within wetlands is a relevant topic for river engineering and

simultaneously a challenging fluid mechanics problem. Although a considerable amount of

research has been carried out, the open questions are still numerous and the practical applications,

sought by river engineers, are not appropriately answered yet. In that sense, many recommendati-

ons for future work could be envisaged. Herein, special attention is given to the natural extension

of the present work.

A large experimental database was created with this PhD research project, which is yet far

from completely explored. Therefore, the most natural recommendation for future work is a

further exploitation of that database, namely,

• applying proper orthogonal decomposition (POD) to quantify the relevant scales of this

type of flows;

• determining the velocity of propagation of the vortexes shed by the cylinders based on the

instantaneous vorticity maps;

• computing the dissipation tensor and the rate of dissipation of TKE in accordance to

different theories for non-homogenous turbulence;

• analysing the equation of conservation of the Reynolds stress tensor;

• determining the appropriate constants for spectral density functions and second order

structure functions.

Regarding the flow resistance associated to the vegetation stems, the present study revealed

that experimental tests covering simultaneously a large range of Reynolds numbers and a large

range of stem areal number-density, are still missing.

Also, in the characterization of the terms of the TKE conservation equation, the impact of the

Reynolds number could not be discussed in the present work. The key role of this parameter on

the study of turbulent flows is acknowledged and justify additional experimental tests.

Closure models for form-induced stresses and for the production terms in conservation
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equation associated to these stresses, are not available for flows with vegetated boundaries yet.

Determining these closures is a rather difficult task due to the complexity that these flows present.

That is, definitely, a demanding research challenge and represents a decisive step in the path

towards physically based design criteria for vegetated channels.
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Appendix A

Optimizing the location of sampling
points for double-averaged turbulent
quantities in flows within arrays of
rigid emergent stems

Abstract: 1 In engineering applications concerning the flow in vegetated channels such as the
quantification of flow resistance it is desirable to upscale the analysis. The proper geometrical
scale for the quantification of the turbulent flow variables is the mean inter-stem space. Double-
averaging methods (time and space averaging, herein DAM) become a relevant conceptual tool to
express the conservation equation describing spatially heterogeneous flows within a space domain
the flow. The quality of the mean (double-averaged) values depends on the number and on the
location of the space-sample points or profiles. No systematic and rational approaches have been
dedicated to the impacts of the number and location of the sample points on the quality of the
mean quantities. The objective of this work is to study the positioning of a limited set of samples
so to describe the system in an optimal way. The placement of sampling points results from
an optimization procedure seeking the empirical probability distribution of the time-averaged
longitudinal velocity, obtained with 8 samples, that best reproduces the complete distribution.
The results of the optimization are shown to be robust and applicable to situations where flow
characterization is performed with little detail.

Keywords: Emergent rigid vegetation, Double-Averaging Methods, velocity maps, optimization
algorithm

1Ricardo, A. M. (2009), Optimizing the location of sampling points for double-averaged turbulent quantities in
flows within arrays of rigid emergent stems, 33th IAHR Congress, Vancouver.
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Optimizing the location of sampling points for double-averaged turbulent quantities in
flows within arrays of rigid emergent stems

Introduction

Emergent vegetation covering floodplains and wetlands has an important role in fluvial
ecosystems, influencing hydrodynamic behaviour, ecological equilibrium and environmental
characteristics of water bodies (Ghisalberti & Nepf, 2004). Plant stems affect flow depth, flood
conveyance, sediment transport capacity, and other hydraulic parameters. In addition, vegetation
plays an important role in maintaining the water quality by filtering nutrients from the water
column (White & Nepf, 2008).

The main characteristic of the flow through arrays of rigid stems is the great spatial variability
in the inter-stem space. Most applications, notably mathematical simulation, require some form
of spatial upscaling, averaging out smaller scales. The contribution of the latter will be given by
closure equations whose formulations must be determined empirically. One of the most successful
upscaling techniques is the Double-Average Methodology (DAM) (Nikora et al., 2001, 2008). It
reveals that, at the scale of the mean inter-stem distance, the effect of smaller scales is expressed
through form-induced stresses. For instance, their spatial gradients explain a considerable part of
drag on plant stems (Ferreira et al., 2009b; Ricardo, 2008).

In practice, the space-averaging procedure is planar and discrete: at a given z level, a number
of time-averaged samples of a given quantity is taken to compute the double-average value of that
quantity. The quality of the double-averaged values depends on the number and on the location
of the sample points or profiles. The sufficient number of sampling points and its location has, to
the author’s knowledge, never been the object of a systematic study. If no attempts are made is
taken to optimize these, the application of DAM may result in a considerable expenditure of time
for measuring and process data and of data storage space.

This work addresses the issue of the location of the sampling points. The objective is to devise
simple criterion to optimize the location of a limited number of sampling points so that they are
representative of the flow at a given space scale. This can be seen as the basis of a technique to
determine the sufficient number of sampling points for DA analysis.

To meet the proposed objective laboratory work was performed. PIV was used to characterize
the flow in a region whose dimensions are of the order of magnitude of the desired spatial scale -
the inter-stem spacing (sections 2 and 3). The probability density functions of the time-averaged
spatial fluctuations of the longitudinal velocity is obtained in a region whose area scales with the
square of the inter-stem spacing. An empirical distribution with 8 samples is generated so that its
four moments are optimal relatively to those of the true distribution (section 4). The location of
the sampling points in the horizontal plane is determined by finding longitudinal velocities in the
2D plane equal to those of optimal distribution. The work herein proposed rests on the following
premise: in order to reduce data collection time and data storage volume and to ensure a good
quality space averaged quantities, it is necessary to perform a preliminary characterization of the
flow before performing the actual tests. This means finding zones of quasi-homogeneity to be
articulated with the results of the optimized distribution (section 5).
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Laboratory facilities and instrumentation

The data used in the present study was produced in the 10 m long and 0.409 m wide Recir-
culating Tilting Flume at the Laboratory of Hydraulics and Environment of Instituto Superior
Técnico, TULisbon (Figure A.1). The flume has glass side walls, enabling flow visualization and
laser measurements.

Figure A.1: Schematic view of the flume.

Laboratory tests were carried out to characterize the flow within a dense array of vertical
emergent stems that reproduce the natural conditions in wetlands (Figure A.1). The flume bottom
was covered with a uniform sand layer with mean diameter d50 = 0.008 m. Arrays of stems
with 1.1 cm of width randomly placed in the sand bed simulated emergent vegetation conditions.
Downstream the stems reach, coarse gravel weir controlled the flow. To develop the turbulent
boundary layer, a gravel-bedded reach was laid upstream of the stems.

Instantaneous velocity maps were obtained with a 532 nm, 30 mJ 2D Particle Image Velocime-
try (PIV) system, operated at a sampling rate of 15 Hz and an interval between consecutive laser
pulses of 1500 µs. Each acquisition period contained 490 samples, corresponding to about 33 s.
The velocity fields were measured in vertical planes at 3 different lateral positions aligned with
the flow direction and in horizontal planes at 6 different vertical positions. Figure A.2 depicts a
plan view of the flume with the measuring reach.

Figure A.2: Plan view of working reach. The measuring region is the dot-dashed rectangle in horizontal
plane and dashed lines in vertical plane). Point 1 and 2 are sample points that will be refereed latter for
spectral analysis.

The particles employed for flow visualization and measuring were 50 µm Polyamide Seeding
Particles with a specific gravity of 1.03. The cut-off was 100 Hz, much greater than the Nyquist
frequency of the PIV measurements (details in Ricardo, 2008).

173
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The free-surface elevation was measured with a 1 mm precision ruler and the bed topography
was measured with a 0.1 mm precision point gage.

Characterization and description of the flow

Before introducing the optimization procedure for the location of the sampling points, it is
necessary to characterize the flow in the measuring area in order to assess the type of variability
to be dealt with. The experiments were performed with a discharge of Q = 2.33 ls−1 and the
stem distribution was characterized by density n = 399 stems/m2 and a solid volume fraction
φ = 0.038. At the measuring reach, the mean velocity was U = 0.106 ms−1, the flow depth was〈
h
〉
= 0.055 m, the free-surface slope was d

〈
h
〉
/dx =−0.0056 and the stem Reynolds number

was Rep =Ud/ν = 1162. Scour holes developed at the base of the stems and sand deposits with
0.4 cm of maximum elevation above the initial bed formed downstream the stems. The impact of
these on the flow structure consisted on the development of an inner layer influenced by bed-form
oscillations. The flow exhibits a thin inner boundary layer, influenced by the bed forms and grain
roughness. This layer extend to about 10 % of the flow depth and is characterized by a sharp
longitudinal velocity gradient. In most of the depth, the longitudinal velocity is constant and the
flow is mainly influenced by turbulence generated at the stem array.

Maps of 2DH mean spatial velocity fluctuations (Figure A.3) and maps of mean vorticity

Figure A.3: Maps of time-average velocity fluctuations (cm/s) measured in the horizontal planes at level:
a) z = 0.95 cm and b) z = 1.95 cm. Circles stand for placement of the sample points of optimal solution
and triangles of the uniform solution (section 5).

(Figure A.4) were computed to characterize the flow in the inter-stem region. The spatial velocity
fluctuations were obtained from ũ = ū−〈ū〉, where ū and 〈ū〉 are, respectively, the time-average
and the double-averaged longitudinal velocity. Figure A.3 shows that the flow within vegetated
areas is extremely heterogeneous. As expected, velocity is lower in the wake of the stems
and higher in regions between two stems. Between y = 5 cm and y = 6 cm, it is possible to
observe a shear layer dividing regions of relative low and high velocity. One may expect that
Kelvin-Helmholtz instabilities may form in this in this region. In fact, the mean vorticity maps
seems to corroborate the existence of this kind of instabilities. However, due to the tridimensional
character of the flow, they are difficult to distinguish. A careful observation of instantaneous map
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a) b)

Figure A.4: Mean vorticity fields (s−1). (Remaining caption as in Figure A.3)

of velocity and streamlines, reveals that the flow is marked by coherent upward and downward
fluid motion. Indeed, streamlines merge and disappear in sinks or appear in sources (Figure A.5).
These events are probably turbulent ejections and sweeps.

a) b)

Figure A.5: Instantaneous fluctuation velocity quiver and streamlines in a a) event of upward velocity and
b) event of downward velocity.

The Von Kármán vortex street is observed downstream the stem situated at the top left of the
measuring reach (stem A on Figure A.2). In this region there is a repeating pattern of paired
vortexes caused by the unsteady separation of flow over the stem. The Von Kármán vortex
street may be identified on maps of mean vorticity, which clearly shows a quasi-symmetric high
vorticity pattern behind the stems.

The Strouhal number of the vortexes in a Kármán vortex street is given by (Schlichting, 1968,
pp. 31-32) S = f d/U , where f is the dimension frequency and U is the flow velocity. For an
isolated cylinder, the Strouhal number depends uniquely on the Reynolds number. For a Reynolds
number of 5574, the Strouhal number is 0.205. Hence, the frequency of the Von Kármán vortex
street would be 1.98 Hz.

Figure A.6 shows the power spectrum on two points of the flow at level z = 1.95 cm (indicated
in Figure A.2). It was assumed that the array of stems is sparse enough to be applied the
results of a isolated cylinder. Hence, the spectrum corresponding to point 1, exhibits the highest

175



Optimizing the location of sampling points for double-averaged turbulent quantities in
flows within arrays of rigid emergent stems

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

10
2

 Frequency  (Hz) 

P
o
w

e
r
  
(
m

  
/s

)

−1

−5/3

2

a)

P
o
w

e
r
  
(
m

  
/s

)

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

10
2

 Frequency  (Hz) 

−1

−5/3

P
o
w

e
r
  
(
m

  
/s

)
2

b)

Figure A.6: Log-log plot of the power spectra of the flow at 1.95 cm above the bed in a) point 1 and b)
point 2 ( see Figure A.2). The continuous line is a moving average of the periodogram (dot-dashed line).

peak corresponding to the frequency 2 Hz corroborating the existence of a predominant and
persistent flow structure in the wake of the stem A. The lower peak, in this spectrum may
represent the interaction between cylinders. About the second spectrum, it is possible that the two
peaks corresponding to frequencies 1.6 and 2.2 Hz are an impression of the Kelvin-Helmholtz
instabilities.

Optimization procedure

Due to economic and time limitations it is usual to have a limited number of sampling points
to characterize the flow. In the previous section the particular forms of spatial heterogeneity that
characterize flows within arrays of rigid emergent stems were identified. It is now explained
how to best capture the observed heterogeneity with a limited number of samples, i.e. how to
obtain good DA quantities with a small number of samples. The analysis will be restricted to
double-averaged velocities, but it can easily be extended to other DA quantities.

The procedure begins with a statistical analysis of the data of the horizontal plane. The spatial
probability density function (pdf) of the longitudinal velocity is determined. Then, it is applied
the principle that the empirical distribution obtained with a limited set of velocities should have
the same 1st, 2nd, 3rd and 4th order moments.

The mean velocity field of the studied flow, at level z = 1.95 cm, is characterized by mean of
8.88 cm/s, variance of 5.94 cm2s−2, third central moment of −23.02 cm3s−3 and forth central
moment of 226.57 cm4s−4. Figure A.8-a) presents the pdf of this mean velocity map. In this
work, it is proposed that the number of sampling points is restricted to 8. The optimization
algorithm is based on a guided generation system states, each characterized by a 8 velocities,
and for which the statistical descriptors are calculated. The algorithm chooses the solution that
minimizes the following objective function:

OF = α

(
M(x)

2
µ2

x
−M(t)

2
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t
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(
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(
M(x)

4
µ4

x
−M(t)

4

µ4
t

)2

(A.1)

where M(x)
i stand for the ith moment of the set of 8 points about the mean of the total population,
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M(t)
i is the ith central moment of the population, µx and µt are, respectively, the mean of the set of

8 points and the population. The weighting factors are α = 0.6, β = 0.3 and γ = 0.1 since, for the
frequency distribution of velocity field, statistical dispersion is more important than asymmetry
and asymmetry is more important than flatness. Since the set of all possible system states is
extremely large (of order of 1012), the optimization algorithm selects only states for which the
mean is optimal (reducing to order of 109 system states). The latter condition is implemented as
the threshold condition | µt−µx

µx
| ≤ 0.05.

Thus, the algorithm tests all possible combinations of 8 sampling points in a chosen number
of bins of the discretized velocity pdf that verify the condition optimal 1st moment. In Figure A.7
is showed a plot of a part of the objective function.
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Figure A.7: Plot of part of the objective function.

Results and discussion

The results were obtained with a discretization of velocity pdf of 0.09 cm/s, compatible
with an acceptable computing time. Figure A.8 exhibits the pdf of the population (left) and the
histogram obtained with the optimal system state (right). The value of the objective function of
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Figure A.8: Frequency distribution of the a) velocity map at level z = 1.95 cm b) and its best fit with only
8 points.

the best solution is 8.14×10−6.
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The velocities of the optimal solution were searched in the 2DH velocity plot (Figure A.3) to
find the location of the sampling points. Profiles of DA longitudinal velocities were computed
in these locations. The results, showed in Figure A.9a, were compared with the integration of
mean velocity of each horizontal plane and with reference results of a DAM presented in Ricardo
(2008) with 60 sampling points. To clarify the importance of the optimization procedure, the
results of a "primitive" (uniform) distribution of sampling points (Figure A.3b) are compared with
the optimal distribution in Figure 9b. In absence of previous flow characterization, the tendency
will be to distribute uniformly the sampling points. As seen in Figure 9b, such distribution would
underestimate the values of the DA longitudinal velocity.
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Figure A.9: a) Double-average longitudinal velocity profiles resulting of a DAM with the best set of 8
points (circles), a DAM presented in Ricardo (2008) (diamonds) and the integration on horizontal planes
(asterisks). b) Velocity profile resulting of a uniform placement of the sample points (circles) compared
with optimal solution (diamonds).

This procedure may seem non-applicable in most practical applications, as it requires extra
information prior to the commencement of the tests. However, it is stressed that some previous
knowledge of the flow will allow for better estimates of DA variables. Furthermore, the procedure
does not require a too detailed flow information and it can be shown to be robust. One concludes,
observing the pdf and the distribution of Figures 8a and b, that the results may be interpreted
as an indication that 5 sample points are needed in regions of intermediate velocities, 2 sample
points in regions of high velocity and 1 sample point in regions of low velocity. To show the
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Figure A.10: a) Longitudinal velocity map (cm/s) and placement of the sample points of the simpler
solution (squares). b) Velocity profile resulting of a placement of the sample points with a simpler criterion
(circles) compared with the best solution of placement algorithm (diamonds).
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robustness procedure, these flow regions are shown in Figure A.10a. With this simpler criterion
a DA velocity profile was computed with 5 points on mean values (green), 2 points on higher
values (blue) and 1 point on a wake (red). The result of this test is very similar to the best solution
(Figure A.10-b), confirming that this is a robust procedure.

Conclusions

This work was performed under the premise that it is necessary to acquire some information
of the heterogeneity of the flow before collecting data for DA descriptions. It was thus proposed
a methodology for a rational use of that preliminary information. The optimizing procedure
was designed for the spatial distribution of the longitudinal velocity and verified with the DA
longitudinal velocity but can be applied to other DA variables.

The procedure was applied to a highly heterogeneous flow, within an array of emergent rigid
stems, featuring vortical structures of different nature and interactions between vortical structure
emitted from neighboring stems. This complexity was sufficiently capture in the pdf of the
spatial fluctuations of the longitudinal velocity. The optimal distribution of the limited number of
sampling points preserved the four main moments of the pfd of the population. This procedure is
robust in the sense that a coarse description of the flow variability would conduct to near-optimal
solutions.

This procedure can be seen as a first step for a sufficient sampling algorithm, that will allow
for time and data storage savings in the context of DA applications.
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Optimizing the location of sampling points for double-averaged turbulent quantities in
flows within arrays of rigid emergent stems
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Appendix B

Spectral analysis

The present appendix presents spatial transverse, EN , and longitudinal, EL, energy spectra for
the two lateral positions at the flume’s center at height z(b) (see Table 7.1) in all the measuring
gaps of test S2. The energy spectrum is obtained by a power spectral density of a spatial series of
velocity fluctuations, using the periodogram as spectral estimator. Instantaneous spatial series
were used along y direction and then time-averaged spectra are considered. Graphs are presented
in dimensionless form, being wavenumbers normalized by the macro-scale, Λ and energy power
normalized by the macro-scale and the variance of the velocity series.For each figure a comparison
of the energy spectrum at different cross sections is shown. The subscript i of Λi and si specifies
the measuring gap. Vertical lines indicate scales of interest: dotted lines for averaged macro scale
of P3 and P7; solid lines for averaged macro scale of P2 and P6, and P4 and P8; dashed lines
for averaged macro scale of P1 and P5; thicker dot-dashed lines for kΛi = 1; thinner dot-dashed
lines for stem diameter. An averaged macro-scale was considered for patches with the same stem
areal number-density, to avoid an overload of lines.

The presented transverse spectra show an inertial range, typically spanning about half decade,
a −5/3 slope reach is visible. About the productive range of scales, it should be highlighted that
the fingerprint of different scales in the flow are visible in the energy spectra. The spectra indicates
that the most energetic scale corresponds to the macro-scale of the region immediately upstream
of the measuring section, but the other densities also contribute to the energy balance. Comparing,
for each patch, spectra at different streamwise locations one can observe that they remain nearly
the same, only at high wavenumbers there is an increase of energy towards downstream. Also
comparing spectra of different measuring patches, one can conclude that both magnitude and
shape are similar, only a slight increase of the peak values can be noticed for dense patches when
compared with sparse patches.

Regarding longitudinal spectra, the peaks are less pronounced than in EN and they decrease
with the stem areal number-density. However, one can still identify in EL the signature of the
different scales in the flow as well as the −5/3 slope identifying the inertial range of scales.
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Spectral analysis
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Figure B.1: Dimensionless spatial transverse spectra for the lateral position between y = 0.10 m and
y = 0.22 m at height z(b), for the measuring gaps P1 to P4 of test S2. Vertical lines indicate scales of
interest: dotted – average macro scale of P3 and P7; solid – average macro scale of P2 and P6, and P4 and
P8; dashed – average macro scale of P1 and P5; thicker dot-dashed – kΛi = 1; thinner dot-dashed – stem
diameter.
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Figure B.2: Dimensionless spatial transverse spectra for the lateral position between y = 0.10 m and
y = 0.22 m at height z(b), for the measuring gaps P5 to P8 of test S2 (cf. Fig. B.1 for meaning of vertical
lines).
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2
Λ
1

)
(−

)

 

 

−5/3

P1

0.14s
1

0.20s
1

0.25s
1

0.31s
1

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

kΛ2 (−)

E
N
/
( ũ
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Figure B.3: Dimensionless spatial transverse spectra for the lateral position between y = 0.18 m and
y = 0.30 m at height z(b), for the measuring gaps P1 and P4 of test S2 (cf. Fig. B.1 for meaning of vertical
lines).
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Figure B.4: Dimensionless spatial transverse spectra for the lateral position between y = 0.18 m and
y = 0.30 m at height z(b), for the measuring gaps P5 to P8 of test S2 (cf. Fig. B.1 for meaning of vertical
lines).
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Figure B.5: Dimensionless spatial longitudinal spectra for the lateral position between y = 0.10 m and
y = 0.22 m at height z(b), for the measuring gaps P1 to P4 of test S2 (cf. Fig. B.1 for meaning of vertical
lines).
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Figure B.6: Dimensionless spatial longitudinal spectra for the lateral position between y = 0.10 m and
y = 0.22 m at height z(b), for the measuring gaps P5 to P8 of test S2 (cf. Fig. B.1 for meaning of vertical
lines).
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Figure B.7: Dimensionless spatial longitudinal spectra for the lateral position between y = 0.18 m and
y = 0.30 m at height z(b), for the measuring gaps P1 to P4 of test S2 (cf. Fig. B.1 for meaning of vertical
lines).
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Figure B.8: Dimensionless spatial longitudinal spectra for the lateral position between y = 0.18 m and
y = 0.30 m at height z(b), for the measuring gaps P5 to P8 of test S2 (cf. Fig. B.1 for meaning of vertical
lines).

189



Spectral analysis

190



Appendix C

Additional figures for the
characterization of TKE budget within
arrays of cylinders

This appendix is aimed at presenting for all the measuring gaps of test S2 part of the figures
exemplified in Chapter 5 only for some patches. All the data presented here correspond to the
database identified in Chapter 5.

Figure C.1 and C.2 show−u′v′∂u/∂y and−v′v′∂v/∂y components of the turbulent production
of TKE, respectively, computed from PIV and LDA databases for measuring gaps where LDA
measurements were performed.

Figures C.3 and C.4 present maps of turbulent production for all measuring gaps of test S2.
Figures C.5 and C.6 show maps of the convective term of TKE budget and Figures C.7 and C.8
show maps of turbulent diffusion, also to the measuring gaps P1 to P8.

Lateral profiles of the terms of TKE budget equation are presented in Figures C.9 and C.10.

In Figures C.11 to C.14 two-dimensional maps of 1/2
(
u′u′+ v′v′

)
overlapped by a vector

plot of TKE flux are shown for the two lateral positions in the flume’s center, for each measuring
gap of test S2.
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Additional figures for the characterization of TKE budget within arrays of cylinders
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Figure C.1: Comparison of −u′v′∂u/∂y component of the turbulent production of TKE, computed from
PIV and LDA databases for measuring gaps P3 to P8. Vertical dotted lines identify the y-coordinate of
centres of stems close to the upstream limit of the measuring gap.
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Figure C.2: Comparison of −v′v′∂v/∂y component of the turbulent production of TKE, computed from
PIV and LDA databases for measuring gaps P3 to P8.
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Additional figures for the characterization of TKE budget within arrays of cylinders

Figure C.3: Two-dimensional maps of turbulent production, −u′iu
′
j∂ ūi/∂x j,

(
m2s−3

)
for measuring gaps

P1 to P4. Dots aligned horizontally identify the position of LDA measurements.
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Figure C.4: Two-dimensional maps of turbulent production, −u′iu
′
j∂ ūi/∂x j,

(
m2s−3

)
for measuring gaps

P5 to P8. Dots aligned horizontally identify the position of LDA measurements.
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Additional figures for the characterization of TKE budget within arrays of cylinders

Figure C.5: Two-dimensional maps of the convective term, 1/2ū j∂u′iu
′
i/∂x j,

(
m2s−3

)
for measuring gaps

P1 to P4. Dots aligned horizontally identify the position of LDA measurements.
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Figure C.6: Two-dimensional maps of the convective term, 1/2ū j∂u′iu
′
i/∂x j,

(
m2s−3

)
for measuring gaps

P5 to P8. Dots aligned horizontally identify the position of LDA measurements.
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Additional figures for the characterization of TKE budget within arrays of cylinders

Figure C.7: Two-dimensional maps of turbulent diffusion, 1/2∂u′iu
′
iu
′
j/∂x j,

(
m2s−3

)
for measuring gaps

P1 to P4. Dots aligned horizontally identify the position of LDA measurements.
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Figure C.8: Two-dimensional maps of turbulent diffusion, 1/2∂u′iu
′
iu
′
j/∂x j,

(
m2s−3

)
for measuring gaps

P5 to P8. Dots aligned horizontally identify the position of LDA measurements.
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Additional figures for the characterization of TKE budget within arrays of cylinders
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Figure C.9: Lateral profiles of the terms of TKE budget equation for measuring gaps P3 to P5.
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Figure C.10: Lateral profiles of the terms of TKE budget equation for measuring gaps P6 to P8.
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Additional figures for the characterization of TKE budget within arrays of cylinders

Figure C.11: Two-dimensional maps of 1/2
(
u′u′+ v′v′

)
overlapped by a vector plot of the flux of TKE,

for measuring gaps P1 to P4. The colorbar units are m2s−2.
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Figure C.12: Two-dimensional maps of 1/2
(
u′u′+ v′v′

)
overlapped by a vector plot of the flux of TKE,

for measuring gaps P1 to P4. The colorbar units are m2s−2.
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Additional figures for the characterization of TKE budget within arrays of cylinders

Figure C.13: Two-dimensional maps of 1/2
(
u′u′+ v′v′

)
overlapped by a vector plot of the flux of TKE,

for measuring gaps P5 to P8. The colorbar units are m2s−2.
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Figure C.14: Two-dimensional maps of 1/2
(
u′u′+ v′v′

)
overlapped by a vector plot of the flux of TKE,

for measuring gaps P5 to P8. The colorbar units are m2s−2.
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