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ABSTRACT

Constitutive models for fiber-reinforced ceramic-matrix composites (CMCs) are needed to enable imple-
mentation of these materials in future engineering systems. One such constitutive model, developed by
Genin and Hutchinson [1], is based on a phenomenological description of the inelastic response of CMC
laminates. Although the model has found some utility in elucidating the role of inelasticity in stress re-
distribution around strain concentrating features, we find that, in some instances, finite element analyses
based on this model exhibit numerical convergence problems. In the present study, we demonstrate both
analytically and by finite element analyses that, for certain anisotropic laminates, these numerical issues
stem from the fact that the model formulation is unstable. Additionally, we propose and assess modifi-
cations to the formulation that mitigate these problems yet retain the positive features of the original
model. The expectation is that the modifications will enable broader utilization of the model within
the engineering design community.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Genin and Hutchinson [1] developed a phenomenological con-
stitutive model for ceramic matrix composite (CMC) laminates
with balanced fiber architectures subject to plane-stress loadings.
The model is closely analogous in many respects to deformation
theory for metal plasticity. It can be readily calibrated using stan-
dardized mechanical tests and implemented in finite element
codes as a user-defined material model. In our experience with
the use of the Genin-Hutchinson model in finite element calcula-
tions, we have found that, in some instances, the calculations suffer
from numerical convergence problems. In the present study, we
show that the problems stem from the fact that the model, in its
present form, can become unstable in the post-matrix cracking re-
gime, even when the stress—strain curves used for calibration exhi-
bit strain hardening.

The objectives of the study are twofold. The first is to identify
the source of instability and ascertain the role of the stress-strain
relations used as calibrating inputs. The second is to remedy the
model formulation to ensure stability for strain-hardening materi-
als. The modifications to the original model are necessarily mini-
mal, in order to retain the positive features of the original
formulation: notably, the excellent agreement between experi-
mental and predicted stress—strain curves for 45° tension and pure
shear [1], as well as between experimental and predicted strains in
notched tension tests [2].
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The outline of the paper is as follows. First, we recapitulate the
essential features of the original GH model. Second, we derive a
mathematically-equivalent incremental version of the model. Here
the increments in stress are related to increments in strain via a
tangential stiffness matrix that depends on the current stress state.
Third, we demonstrate that, for certain anisotropic laminates, the
incremental model, and hence the original model, can be unstable
after matrix cracking. Fourth, we modify the incremental formula-
tion to ensure stability. This is accomplished by judiciously
adjusting the entries in the tangential stiffness matrix so it is posi-
tive-definite for all strain-hardening laminates. The remedy has
been devised to not only ensure stability but also satisfy a number
of additional conditions, notably, that: (i) the stress-strain rela-
tionships in the elastic domain are preserved exactly; (ii) the re-
sponses in 0° tension, 45° tension, equibiaxial tension, and pure
shear are recovered; (iii) it reduces to the original model for the
special case of a quasi-isotropic laminate; and (iv) it be based in
part on the mechanics of CMC laminates after matrix cracking
(rather than being purely mathematical). We show here that the
modified version of the model satisfies all of the aforementioned
conditions. Finally, we apply this model to simulate open-hole ten-
sion tests of CMC plates. Whereas the finite element simulations
employing the original model fail to converge for certain inelasti-
cally-anisotropic laminates, the new model exhibits no such con-
vergence problems. Furthermore, the original and modified
models yield identical results for quasi-isotropic laminates, as
required.

The weakness of the remediation approach is that it is necessar-
ily ad hoc. Ideally, in converting a deformation theory into an
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incremental theory, a yield surface and a flow rule would be
utilized. However, our ad hoc incremental formulation should be
sufficient for scenarios in which material elements undergo nearly
proportional straining: a limitation also of the original GH
formulation.

2. Original formulation of GH model

In its original formulation, the GH model expresses the stress
state in terms of the total strain components. The procedure, de-
scribed in Genin and Hutchinson [1], is summarized below. It is re-
stricted to loadings with proportional straining and thus the axes
of principal strain are assumed not to rotate significantly during
deformation.

The contributions of principal stresses to the principal strains
are assumed to be additive when the principal strains are oriented
along directions of material symmetry. For principal strains ori-
ented at 0°, the strains are written as

€ = fo(ar) + for(ou)
en = for(o1) + fo(ou)

Similarly, for principal strains oriented at 45° to the fiber directions:

(1)

€1 = fas(01) + fasr (o)

€n = fast(01) + fas (o) (2)

Here the functions f are stress-strain curves measured in uniaxial
tension tests conducted at either 0° or 45°. fy and f45 refer to normal
strains aligned with the load axis, whereas fyr and fys7 refer to nor-
mal strains transverse to the load axis. Considering the special case
of equibiaxial loading (0, = g = ¢), wherein the axes of principal
stress are indeterminate, the four functions f are found to be related
by

Jo(0) + for(0) = fas () + fasr (0) 3)

Hence, only three of the four functions are independent. Eq. (3) has
been shown to be approximately satisfied by stress—strain curves
measured on a SiC/CAS [0°/90°] laminate [1].

Non-linearity in the GH model is couched in terms of so-called
‘stress deficits’: that is, differences between elastic and actual
stress values. The elastic stresses are obtained from Hooke’s law.
For instance, when the principal strains are oriented at 0°, the elas-
tic (principal) stresses are given by

0 Eo voEo

Oy | |12 13| [€ — € (4)
g0 | vk Ey en| e e
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where CY is the elastic stiffness matrix for principal strains oriented
at 0°.

Similarly, the elastic (principal) stresses for principal strains ori-
ented at 45° are
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Using these results, the stress deficits at 0° can be written as
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The X terms in Eq. (6) correspond to the solution (inversion) of
Eq. (1). A similar statement can be written for the 45° direction,
with the X terms corresponding to the solution (inversion) of
Eq. (2).

To obtain the stress deficits at the angle of principal strains, 0,
the stress deficits at 0° and 45° are interpolated in accordance with

Adle = Ad? cos?(20,) + Aa® sin’(20,)

i (7)
Adj = Adf) cos? (20,) + Adjy sin® (20,)
Combining the previous results, we find:
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It can further be shown through standard procedures of coordinate
transformations that
Ca = Cor cos(20) + Cor sin”(20) )

so Eq. (8) reduces to

{G?L } = cos*(2) FO(Q’ v (10)
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Because the shear stress deficit is assumed to be zero, the actual
shear stress (again, oriented at 6.) is merely the elastic shear stress:

E4ys —Eo

=g —— =
2(1 4 v45)(1 + o)

(€ — €) sin(40,) (11)

3. Incremental formulation of GH model

We seek to convert the original GH model into an incremental
formulation. Not only is the incremental formulation useful for
assessing stability, but it is also amenable to modification to cor-
rect instabilities, as demonstrated below.

3.1. Approach

Consider two strain/stress states: the current state, denoted by
the superscript ¢, and the new state, denoted by the superscript n.
The states are related to one another by a prescribed strain incre-
ment. The goal is to determine the new stress state (or, equiva-
lently, the increments in each of the stress components) in terms
of the strain increment and the current strain and stress states.

The current strain state is given by two principal strains ori-
ented at the principal angle, 0¢, expressed generally as:

€ = [€,¢€,0] (12)

The increment in strain is also oriented at 0. Although we assume
proportional straining, we consider a non-zero shear strain compo-
nent in order to assess stability with respect to any incremental
deformation. The incremental strain tensor is thus expressed as:

de = [de;, dey, dy) (13)

Increments in principal strains are first-order in de¢; and dey, but
are only second-order in dy. If the increment is small, the latter
term is negligible. Conversely, the increment in 6. (the orientation
of the principal strain axes) is first-order in dy, and higher-order in
the other components. Therefore, the shear strain increment
rotates the principal axes while leaving the magnitudes of the prin-
cipal strains unchanged, and vice versa for the normal strain
increments.
The new strain state, oriented at an angle 67, is thus given by

€" = [ +de;, € + dey, 0] (14)
where

0" = 6 + do. (15)
and
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dy

dg, =~
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(16)

The stresses in the current state are also rotated into 6;. Since
the principal axes of stress and strain do not necessarily coincide,
a nonzero shear stress component may also be present, and thus
the current stress state is written as

6° = [0}, 07,7 (17)

3.2. Formulation

We derive the incremental model by linearizing Eqs. (10) and
(11) about de = 0.
Using Eq. (1), we obtain

de] | folo?) for(of) || do? | _ o, .| dO?
{de"}_{fér(a?) fé(aﬁ)defﬂ}_s(a){daﬁ} 18)

where the prime symbols denote derivatives. Similarly, using Eq.

(2):
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Expanding Eq. (10) about de = 0 yields
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where a7, are normal stresses oriented at 67. Substituting the pre-
vious results into Eq. (20) and neglecting higher-order terms yields
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Note that the first term scales with the product of a modulus and dy
(per Eq. (16)), whereas the second term scales with the product of a
modulus and de;;. For nearly proportional straining, the former
term is negligible in comparison to the latter. So, we obtain:

do—' _ 0/ ¢ -1 2 C 5/ ¢ -1 2 C d€’
{da,,} = ({s (¢ )} cos2(20%) + [ (6 )] sin (29€)> {de,,}
(22)
Finally, linearizing the shear stress equation yields
E4ys — Eo
dr—o B0
=20+ va)(d + o)
x (4(€f — €)) cos(40%)d0, + (de; — deyy) sin(465)) (23)

4. Assessment of stability
4.1. Stability criterion

As discussed by Hill [3], a structure is stable if the condition
W = /V %da .dedV > 0 (24)
is satisfied for the strain increment de associated with any incre-
mental displacement dq of the structure [4]. For Eq. (24) to hold,

it is sufficient that the second-order work be positive ‘in the small’
[5,6]. This implies that the condition

do:de >0 (25)

should be satisfied locally, for every material element. Eq. (25) im-
poses a condition on the constitutive law: notably, that the tangen-
tial stiffness matrix, Cj =da;/d¢;, be positive-definite [6], or,
equivalently, that the symmetric part of the tangential stiffness,
(C+C€")/2, possess no negative eigenvalues. This condition will be
used to assess stability in the present work. Since Eq. (25) implies
positive material stiffness in every strain direction, it is not ex-
pected to hold for strain states in which the input stress-strain
curves exhibit strain-softening. Conversely, the stability condition
should be satisfied when the input stress—strain curves exhibit
strain-hardening.

The incremental formulation, described above, involves changes
in the magnitudes of the stress components and rotation of the
stress vector through the angle df.. To assess stability using Eq.
(25), the incremental stress and strain vectors must be written
with respect to the same coordinate axes. For this purpose, we ro-
tate the new stress vector, oriented at 67, back to the current prin-
cipal axes, oriented at 6{. Neglecting higher-order terms, the
principal stress increment (Eq. (22)) remains unchanged, but the
shear stress increment has an additional term, now written as:

Ess — Ep
2(1 +v45)(1 + o)
x (4(€f — €f) cos(407)do. + (de; — dey) sin(46;))
+ (o7 — 0f)d0, (26)

dtt =

Using Egs. (22) and (26), we can now assess the stability of the
incremental formulation. Furthermore, since the two formulations
of the model are mathematically equivalent, conclusions regarding
the stability of the incremental formulation are also applicable to
the original formulation.

Using the preceding framework, we find that two types of insta-
bilities can be obtained in the inelastic regime: one associated with
Eq. (26), and the other with Eq. (22). Each, in turn, is described
below.

4.2. Shear strain instability

Establishing general conditions for stability is difficult (and not
particularly enlightening), so a special case is examined here. We
consider a uniaxial tension test conducted in the 0° direction.
The material is assumed to have vy =0 (not unreasonable for
CMCs). Then, we consider an incremental shear strain. Obviously,
€;,=0, 65,=0, de; =dey =0, 0 =0 and v4s = 1 — Es5/Eo. Defin-
ing B = Eas/Eo, Eq. (26) simplifies to

(1P
=0

A good approximation of the first principal stress is
0§ = 0Eo (€] — €mc) + Eo€me, Where o is the ratio of the post-matrix
cracking modulus to the pre-matrix cracking modulus in the 0°
direction, and €, is the matrix cracking strain. Since d6. is propor-
tional to dy, stability requires that dt°d0d. > 0. Following some alge-
bra, we obtain the stability condition:

€;d0. + o7do, (27)

1 B
T e 1725 2
It is trivial to show that, although this equation is automatically sat-
isfied for elastically-isotropic materials (f = 1), it is not generally
true for elastically-anisotropic materials. For one set of typical val-
ues of material parameters (o = 1/4, €nc = 0.001, € = 0.006), sta-
bility requires that g exceed 0.71. Laminates in which the fiber
modulus is significantly higher than the matrix modulus (perhaps
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because of remnant porosity in the matrix) are unlikely to satisfy
this condition.

4.3. Principal strain instability

Here, we consider the case of a uniaxial tension test conducted
at 45°. In this case, Eq. (22) reduces to

] = [s=e] [ e (29)

da§ dey

and thus the stability condition is satisfied if $** is positive-definite.
Note that, after matrix cracking, the compliances in the 45° and 45°-
transverse directions are essentially equal and of opposite sign be-
cause of ‘fiber scissoring’ (see Eq. (3)). So, we obtain

o5 _ {fig(oi“’) faﬂ(a;ﬁ] _ { 1/Ess pme

fist(01%)  fis(aP) —1/E45 pme

where the subscript ‘pmc’ denotes post-matrix cracking. We now
consider a material that is elastically-isotropic, but inelastically
very anisotropic. For instance, taking Ey = E4s = 200 GPa, vo =
Vas = 0.1, and Ess pme = 5 GPa, it is readily seen that $* is non-posi-
tive-definite. This result arises because of the large dissimilarity in
the off-diagonal terms that describe coupling between strains and
stresses in orthogonal directions.

—Vas5/Ess

1/Ess G30)

4.4. Numerical calculations

To illustrate the effects of the instabilities in finite element
analyses, the uniaxial tension tests described above were simu-
lated using ABAQUS Standard (Version 6-9.2, Dassault Systémes)
with the original GH model as a user-defined constitutive law. Rel-
atively coarse meshes (16 four-noded, quadrilateral, plane stress
elements), depicted in Fig. 1b and d, were used. (Note that mesh
refinement does not fix, and can actually exacerbate, the conver-
gence problems associated with unstable materials.) In an attempt
to suppress local material instabilities, automatic stabilization
(damping) was employed.

The input stress—strain curves for the 0° tension test of the elas-
tically-anisotropic material are shown in Fig. 1a. The stress—strain
curves are bi-linear, with elastic constants E, = 200 GPa, vo = 0.1,
and E4s = 100 GPa. Thus 8 = E45/Ey = 0.5, below the predicted crit-
ical value for stability (0.71) in Eq. (28). In the post-matrix cracking
regime, the tangent moduli of the 0° and 45° stress—strain curves
are equal.

The stress in the direction of loading is plotted in Fig. 2a for all
integration points within the mesh. In the elastic regime and in a
portion of the inelastic regime, each element possesses a posi-
tive-definite tangential stiffness matrix. No instability results,
and the stress—strain curve predicted by the finite element analysis
therefore agrees with the 0° stress-strain curve (fy) used as input.
However, at a sufficiently large strain in the inelastic regime, the
smallest eigenvalue of the symmetric part of the tangential stiff-
ness matrix becomes negative (see Fig. 2c), causing the stiffness
matrix to lose positive-definiteness. When this occurs, the numer-
ical solver (based on the Newton-Raphson method) encounters
convergence difficulties. As a consequence, the stresses at the inte-
gration points diverge from the 0° stress-strain curve. The magni-
tude of the errors exceeds 25%.

Next we consider the tensile response of an inelastically-aniso-
tropic material (defined in Fig. 1c) in the 45° orientation. Once
again, bi-linear behavior is assumed. The material is elastically-
isotropic, so the shear strain-induced instability illustrated above
does not arise. However, inelastic anisotropy is present: the ratio
of the post-matrix cracking moduli being Ess pmc/Eopme = 1/100.

The normal stress in the 0° direction (not in the loading direc-
tion) is plotted in Fig. 2b for all integration points within the mesh.
Once again, the elastic behavior is correctly modeled by the finite
element simulation, while the inelastic behavior is poorly modeled
due to convergence problems. Loss of positive-definiteness occurs
immediately after matrix cracking, as indicated in Fig. 2d. The er-
rors in the computed stresses exceed 20% for several integration
points. (The normal stress in the loading direction - at 45° to the
fiber axes - displays lower error, because errors of opposite sign
in the normal and shear stresses at 0° tend to cancel one another
out.)

In the relatively simple loadings and geometries considered
here, the finite element analyses yield inaccurate results. In other
circumstances (such as those considered below), the finite element
solver can fail to converge entirely. This can occur, for instance,
when more complex geometries are simulated.

5. Remediation of instabilities

As demonstrated, the instabilities associated with the original
model prevent accurate finite element simulations for certain
anisotropic materials. The problem is remedied by adjusting the
entries of the tangential stiffness matrix in the inelastic domain.
The adjustments are physically motivated, as opposed to being
purely mathematical. One adjustment corrects for the problem of
the shear strain instability in elastically-anisotropic materials;
the other addresses the problem of the principal strain instability
in inelastically-anisotropic materials. Stability of the new model
is ensured by verifying that the tangential stiffness matrix is posi-
tive-definite when the input stress—strain curves exhibit strain-
hardening.

5.1. Shear strain instability

Prior to matrix cracking, shear-extension coupling can exist if
Eo # Egs. Specifically, a difference in principal strains causes shear
stresses to develop if the orientation of the principal axes lies be-
tween 0° and 45°. The original GH model predicts that, even after
matrix cracking, shear stresses within the material continue to rise
with additional normal strain. This scenario is somewhat implausi-
ble, however, since matrix cracking alleviates the constraint that
gives rise to shear-extension coupling. We expect, contrary to the
original model, that matrix cracking causes a de-coupling of shear
and extension, and thus no additional shear stress builds up from
this coupling. We therefore assume that increments in shear stress
in the inelastic regime are caused solely by increments in shear
strain. But the proportionality constant cannot be chosen arbi-
trarily: the requirement of objectivity must be enforced [7]. Specif-
ically, for quasi-isotropic materials, the axes of principal stress and
strain must be aligned. Therefore, in the incremental model, these
axes must rotate by the same angle. As noted by BaZant [7], this
requirement is equivalent to the relationship

C C
0 — 0y

dz¢ = (O'; — chl)d0( = m

(31)

where both the stress and the stress increment are oriented at ¢¢.
Since the proportionality constant is guaranteed to be positive, this
modification resolves the problem of shear strain instability. Note
that Eq. (31) is identical to that in the original GH model for lami-
nates that are elastically-isotropic (Ey = E4s).

The elimination of the shear-extension coupling term renders
the tangential stiffness matrix in the modified model orthotropic
in the inelastic domain. Therefore, the modified model can be
classified as an incrementally orthotropic model, as discussed by
BaZant [7].
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Fig. 1. (a) Input stress—strain curves and (b) finite element mesh for a simulation of an elastically-anisotropic material in 0° tension. (c) Input stress-strain curves and (d)
finite element mesh for a simulation of an inelastically-anisotropic material in 45° tension. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

5.2. Principal strain instability

As noted previously, the principal strain instability arises be-
cause the description of the coupling between stresses and strains
in the two principal directions is incomplete. To properly describe
this coupling, the phenomenon of fiber scissoring must be taken
into account.

Scissoring represents a low-stiffness deformation mode in
which fibers rotate and bend in order to align themselves with
the load axis. It occurs in the inelastic domain, wherein matrix
cracks partially alleviate the constraints on fiber motion. Scissoring
does not operate in the elastic domain (provided the matrix is suf-
ficiently stiff) nor when the load is aligned with one of the fiber
axes (i.e. at 0° or 90°).

The GH model evidently fails to capture the scissoring mecha-
nism. A particular example, shown in Fig. 5, illustrates the point.
We consider a [0°/90°] laminate that is first loaded in tension at
45° to the fiber axes, along the I-direction defined in Fig. 5. This
loading produces a series of periodic matrix cracks normal to the
I-direction. The laminate is subsequently loaded by a pair of incre-
mental stresses Acg in the I- and II-directions, with Agy > Ao;. The
compliance matrix from the original GH model, notably

&5 _ {f&(aiﬁ) fzisr(o';lzs):|

fist(01%)  fis(ai)

would predict that the incremental strain in the I-direction would
be much greater than that in the II-direction. In contrast, upon con-
sideration of the scissoring process, we conclude that, in fact, the
magnitudes of the incremental strains would be reversed.

Here we propose an alternative compliance matrix to describe
the strains resulting from fiber scissoring. To this end, the cracked
matrix is conceptualized, to a first approximation, as a very com-
pliant elastic medium with a large failure strain: an assumption
also made in models of the post-cracking response of CMCs under
0° loading [8]. In order for scissoring to be treated as an elastic phe-
nomenon, the compliance matrix must be symmetric. (This sym-
metry makes sense in physical terms: when fiber scissoring is
the predominant mode of deformation, large transverse strains
should develop for stresses applied in either of the principal direc-
tions.) Additionally, the compliance matrix must preserve the 45°,
45°-transverse, and equibiaxial stress-strain relations. The sim-
plest compliance matrix that satisfies these conditions is

S45 _ f4£5(0-;15) f‘iST(G;‘S) (33)
fast(07°)  fas(01)
Here the second principal stress plays no role because the first prin-
cipal stress governs the state of damage and therefore the propen-
sity for scissoring to occur.
The response of real laminates is expected to fall between the
extremes of Eq. (33), which accounts for fiber scissoring, and Eq.
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Fig. 2. Normal stresses parallel to the fiber directions at all integration points within the two finite element models defined in Fig. 1: (a) 0° tension of the material defined in
Fig. 1a and b 45° tension of the material defined in Fig. 1c. Smallest eigenvalue of the symmetric part of the tangential stiffness matrix in each test (c and d). Loss of positive-
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(32), which accounts for fiber stretching and fragmentation. We as-
sume that, for general loading in the 0-direction, the pertinent
compliance is a weighted sum of those in Eqs. (32) and (33).
Enforcing the condition that the stress-strain curves for uniaxial
tension at 0° and 45° should be recovered, the new compliance ma-
trix becomes

0 fy(al)
§" =D,
[fér(df)

fir(a?)
fy(al)

fitay)

34
fir(?) G4

- Dﬂ){ f,;r(am}

filaw)

where D, is a constant that characterizes the tendency of the lam-
inate to scissor in the #-direction. It is defined such that, when
D, = 1, the compliance matrix is governed by fiber rotation (scissor-
ing); conversely, when D, = 0, it is governed by fiber stretching and
fragmentation.

In implementing this modification in the GH model, only Dy and
Dys are required; in general, these quantities will be different from
one another. In the 0° direction, the fibers are aligned with the load
axis, so there is no tendency to scissor and thus Dy = 0. In contrast,
in the 45° direction, the laminate may undergo scissoring, so
0 < D45 < 1. For a quasi-isotropic laminate, D4s must equal 0, since
the 0° and 45° directions are equivalent. In contrast, for a [0°/90°]
laminate, deformation is expected to be dominated by the scissor-
ing mechanism; therefore, D45 should be close to unity. Determina-
tion of the precise value of Dys for the latter laminate is outside the
scope of this work; micro-mechanical models may be required for
this task. However, as shown in Section 6.2, stress distributions
that arise during on-axis loading of [0°/90°] laminates are insensi-
tive to Dys.

For D45 = 1, the modified compliance matrix, and therefore the
tangential stiffness matrix, is positive-definite when f5(o7°) >
—f1sr(a). This condition is automatically satisfied, per Eq. (3).

5.3. Material instability

The aforementioned approach remedies material instability in
the GH constitutive model. It yields a tangential stiffness matrix
that is guaranteed to be positive-definite provided the stress—
strain curves used for calibration exhibit strain hardening. One
possible criticism of this strategy is that physically realistic insta-
bilities, resulting from fiber fragmentation or shear banding
[9,10], may be artificially suppressed. The counter-argument is that
the input stress—strain curves f, and fis could be readily modified
to account for phenomena that lead to instabilities in the 0° and
45¢° directions. If, for instance, a strain softening portion were in-
cluded in f45, the model would predict a negative shear stiffness
and the formation of a shear band; if, on the other hand, a softening
portion were included in fy, the model would predict a negative
tensile stiffness and the formation of a tensile crack. Furthermore,
since the 0° and 45° tension tests probe the extremes of the com-
posite response, it seems unlikely that instabilities would occur for
loadings at intermediate angles if these instabilities were not pres-
ent in the input stress-strain curves. Although this approach re-
quires further experimental and theoretical study for validation,
it appears to offer a promising route for modelling material insta-
bility in CMC laminates.

5.4. Criterion for inelasticity

The modified constitutive model requires a criterion to distin-
guish between the elastic and inelastic regimes, since the proce-
dures for computing stresses differ in the two regimes. For
instance, in the original GH model, inelasticity is deemed to occur
if any of the stress deficits are non-zero. But, this criterion leads to
contradictory results if the matrix cracking stresses or strains differ
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in the 0° and 45¢° directions. To demonstrate the contradiction, we
consider a material element undergoing equibiaxial stressing with
a stress ¢ = 0, = gy in the range ¢ < ¢ < ¢%,. The original GH
model predicts a nonzero stress deficit in the 45° direction (since
Acf® >0) and a zero stress deficit in the 0° direction (since
Ac? = 0). Therefore, per Eq. (7), if we consider the principal stres-
ses to be aligned at 45°, the material element is deemed to be
inelastic, but if we consider the principal stresses to be aligned at
0°, the material element is deemed to be elastic. This result is con-
tradictory since the axes of principal stress are arbitrary for equibi-
axial stressing.

The contradiction arises from the assumption that matrix crack-
ing is governed only by the largest principal stress: a natural con-
sequence of the stress deficit criterion for matrix cracking.
Therefore, if this criterion is used, both the original and modified
GH models are appropriate only for materials that possess (nearly)
identical matrix cracking stresses and strains in the 0° and 45°
directions. While this condition may be approximately satisfied
in CMCs with relatively dense, stiff matrices, e.g. SiC/CAS, it will
not be satisfied in CMCs with compliant, weak matrices, e.g. C/C.
(According to the categorization scheme of Evans and co-workers,
the former composites are Class Il materials whereas the latter are
Class III. The classes can be distinguished by the ratio of the matrix
shear modulus to the fiber Young’s modulus [10].)

The modified GH model would be suitable for elastically-aniso-
tropic materials provided that a different criterion for matrix
cracking were employed. This criterion remains to be developed.
As argued above, it would need to involve the second principal
stress, to avoid the contradiction that arises for equibiaxial
stressing.

In this work, the stress deficit criterion is used to assess the
presence of matrix cracking within an element. Therefore, the fi-
nite element simulations that use the modified GH model are lim-
ited to elastically-isotropic laminates. For these materials, the
shear strain instability discussed previously becomes irrelevant.
However, the original GH model remains unsuitable for finite ele-
ment calculations because of the principal strain instability that
arises in inelastically-anisotropic materials.

5.5. Predictions for simple loading scenarios

By inspection, we see that the modified model agrees with the
original model for 0° and 45° tension. The models also agree for
equibiaxial tension, according to Eq. (3).

For the case of pure shear, the predictions of the original and
modified models are somewhat different. In the original model,
the tangent shear compliance in the inelastic domain is well
approximated by

O~ Fis() ~ FirlD) 35)

In the modified model, the material is somewhat more compliant in
shear:

gzu+mm&m—&m» (36)

Since the tangent modulus in the inelastic regime is usually very
small (roughly 1-5 GPa) - that is, the response is nearly perfectly-
plastic [1,2] - the factor 1+ D4s will have only a small influence
on the shear flow stress. The predictions of the modified model
are therefore expected to be almost indistinguishable from the
experimental results for the loading scenarios considered in Genin
and Hutchinson [1]: 0° tension, 45° tension, and pure shear.

For a quasi-isotropic laminate, the shear-extension coupling
term is zero, and the material does not scissor in either the 0° or
45¢ direction, so Dy = D45 = 0. Therefore, not only is the pure shear

behavior identical in the modified and original models, but the
models are actually equivalent. This fact is numerically confirmed
in Section 6.

6. Illustrative numerical examples
6.1. Simulations

For ease of implementation, the constitutive equations in the
modified model are integrated explicitly using the modified Euler
scheme discussed by Sloan et al. [11]. The scheme utilizes auto-
matic sub-stepping to limit the error arising from the integration
procedure to within a prescribed error tolerance for each time step.
It has been implemented in a user-material subroutine (UMAT) for
use in ABAQUS.

The UMATSs for the modified and original models are utilized to
simulate an open-hole tension test of a composite laminate. Two
materials are considered. In one, the laminate is elastically isotro-
pic but inelastically anisotropic, with stress-strain curves identical
to those depicted in Fig. 1c. In this simulation, the original GH
model is expected to fail to converge in the inelastic domain, due
to material elements that are unstable. In contrast, the modified
GH model is expected to remain stable and encounter no conver-
gence problems throughout the inelastic domain. In the second,
the geometry and loading are identical to the first, but the laminate
is quasi-isotropic. The 45° stress-strain curve is modified to have a
tangent modulus of 50 GPa in the inelastic domain, so that fys = fo.
As noted above, the modified and original models are expected to
yield identical results for this material and, for both models, all
material elements should be stable.

The finite element simulation was conducted in ABAQUS Stan-
dard (Version 6-9.2, Dassault Systémes). The specimen geometry
is depicted in Fig. 3. The plate width is five times the hole diameter.
A quarter-symmetry finite element model is employed, with four-
noded, quadrilateral, plane-stress elements. Load is applied in the
y-direction (i.e. at 90°). A study was performed to ensure that the
stresses and strains converged with respect to mesh density. For
the quasi-isotropic material, the scissoring parameters D, and
D4s both equal 0, by definition. For the inelastically anisotropic

>
0.2

1

Fig. 3. Finite element mesh used to compute stress concentrations in open-hole
tensile specimens. The element labeled A is the one interrogated to obtain the
results in Fig. 6. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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material, these parameters were set to 0 and 1 for the 0° and 45°
directions, respectively. To explore the sensitivity of the results
to Dys, a simulation was also run using the minimum value of this
parameter that guaranteed stability (D45 = 0.76).

6.2. Results

For the quasi-isotropic laminate, stresses and strains in the
direction of loading for the modified and original models are virtu-
ally identical to one another (within 0.05%) in both the elastic and
inelastic regimes, as expected. The computed stress concentration
factor k at the hole edge, normalized by that obtained in the elastic
domain, k., is plotted in Fig. 4a gainst the applied net-section
stress, G, Normalized by the matrix cracking stress, o,.. The re-
sults show that stress redistribution due to inelasticity initially
mitigates the stress concentration at the hole edge, thereby allow-
ing the laminate to sustain larger loads before tensile fracture: a
common feature in CMCs. More importantly, the stress concentra-
tion factors predicted by both models are identical. Furthermore,
the tangential stiffness matrix for every element remains posi-
tive-definite throughout both simulations, and no convergence dif-
ficulties are encountered.

In contrast, for the anisotropic laminate, stresses and strains for
the two models differ slightly, since the scissoring adjustment is
present in the modified model but absent in the original model.
Therefore, the stress concentration factors, shown in Fig. 4b, are
also slightly different (by approximately 0.3-0.6% after net-section
matrix cracking). The original model yields unstable behavior after
matrix cracking. As a consequence, the solver eventually fails to
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Fig. 4. Stress concentration factor at hole edge vs. applied stress for (a) the quasi-
isotropic material and (b) the inelastically-anisotropic material. Results for the
original and modified GH models are shown. Two values of Dss (0.76 and 1) are
considered for the anisotropic material. The stress concentration factor is normal-
ized by that in the elastic domain. The applied stress is computed on a net-section
basis and is normalized by the matrix cracking stress. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 5. Deformation of a cracked crossply laminate undergoing fiber scissoring. The
behavior predicted by the GH model is shown at top right; that expected from
consideration of fiber scissoring is shown at bottom right. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

obtain a solution; in the present case, this occurs at an applied
stress of Gpee/0me = 1.34. The stress history for one unstable ele-
ment (see Fig. 3) is plotted in Fig. 6. The stresses (ay,, in the direc-
tion of loading) initially increase monotonically and smoothly;
however, at Oyet/0me = 1.15, matrix cracking commences within
the element. The tangential stiffness matrix loses positive-
definiteness shortly thereafter, causing the stresses to diverge
and the stress history to lose monotonicity. The stress history for
the same element in the modified model is also plotted in Fig. 6;
the element is seen to exhibit stable behavior.

The simulation using the value D45 = 0.76 yields results almost
identical to those for Dys = 1. The discrepancy between the axial
stresses along the net-section symmetry plane (i.e. the incipient
fracture plane) is very small: less than 0.2% for all values of applied
stress. Results for the stress concentration factor for Dys = 0.76 are
shown in Fig. 4b. They indicate that the stress concentration factor
is essentially independent of D,s. Physically, these results arise be-
cause, in notched tension simulations, the 0° properties dominate
the behavior, whereas the shear properties have a decidedly sec-
ondary effect. This fact can be verified by comparing the stress con-
centration factor for the quasi-isotropic material (in which the
laminate is stiff in shear) with that for the anisotropic material
(in which the laminate is compliant in shear after matrix cracking).
Recall that the only effect of D,s is to marginally alter the shear
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Fig. 6. Evolution of normal stress in direction of loading (o,,) for one specific
unstable element (indicated in Fig. 3) in the notched tension simulation. Stresses
are plotted at all four integration points within the element. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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compliance in the post-matrix cracking regime; D,s leaves the 0°
response unchanged. The implication is that, for open-hole tension
tests, D45 can be set to unity without greatly affecting the accuracy
of the results. However, for tests in which the shear properties pre-
dominate, the scissoring parameter must be selected more
carefully.

The assumption of nearly proportional straining, used to derive
the incremental model, was checked numerically for both the qua-
si-isotropic and anisotropic laminates. The orientation of the axes
of principal strain (0.) was found to rotate by less than 0.1 rad
(5.7°) for almost all elements. In a few elements along the hole
boundary, which experienced larger shear strains, 6. rotated by a
larger angle, with the maximum rotation angle being 0.35 rad
(20°). Therefore, the strains are nearly proportional for the vast
majority of the laminate; the presence of mildly non-proportional
straining in a small number of elements is surmised to negligibly
affect the accuracy of the finite element analysis.

7. Summary and conclusions

We have demonstrated both analytically and by finite element
analyses that the original formulation of the GH model is unstable
for certain anisotropic laminates. Two distinct sources of instability
have been identified: one associated with incremental shearing of
elastically-anisotropic laminates and the other with incremental
transverse straining of inelastically-anisotropic laminates. Both
instabilities are manifested only in the post-matrix cracking re-
gime. The sources of instability are more apparent in the incremen-
tal formulation of the model because the tangential stiffness
matrix is explicitly present.

The instabilities are remedied by two proposed modifications.
In the first, shear-extension coupling after matrix cracking is as-
sumed to be negligible (even if it exists in the elastic domain).
Although this assumption seems physically plausible, it remains
to be validated experimentally. In the second, a modified tangen-
tial compliance matrix is developed in order to account for fiber
scissoring, assuming simultaneous operation of two modes of
deformation: axial fiber stretching and fragmentation (which was
described in the original GH model) and fiber rotation (which
was not). For this purpose, a scissoring parameter, Dy, is introduced
to characterize the relative contributions of the two modes to the
overall compliance. This parameter must equal O in the 0° direc-
tion; in the 45° direction, the value is 0 for quasi-isotropic lami-
nates and close to 1 for [0°/90°] laminates. Although the precise
value of Dys for the latter laminates cannot be rationally selected,

it appears to exert only a weak influence on the stress distribution
in open-hole tension simulations. Most importantly, it yields stable
behavior throughout. Thus, finite element analyses employing the
modified model run stably whereas those with the original model
encounter convergence problems. Future work will include an
experimental assessment of the model as well as parametric stud-
ies to probe the effects of anisotropy on stress distributions in CMC
laminates.
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