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1. Introduction

ABSTRACT

Effects of non-uniform strains on tensile fracture of fiber-reinforced ceramic-matrix
composites have not been satisfactorily explained by existing mechanics-based models.
In this paper, we use an exact model of fiber fragmentation under global load sharing
conditions to predict fracture in three model problems in which non-uniform strains
occur: (i) an end-constrained plate subject to a linear transverse temperature gradient;
(ii) an internally-pressurized cylindrical tube with a linear through-thickness tempera-
ture gradient; and (iii) a rectangular beam under combined bending and tension.
Fracture is assumed to occur when the global load reaches a maximum value.
Approximations to the exact fragmentation model are also assessed, with the goal of
decoupling the effects of two important parts of the computed stress—strain response:
the rate of post-peak strain softening and the magnitude of the plateau “flow” stress
once fiber fragmentation is complete. We find that for cases in which the fiber Weibull
modulus is low and hence its plateau strength is high relative to its peak and the
loading yields a sufficiently high strain gradient, the failure strain lies in the plateau
regime. Consequently, the results can be predicted with good accuracy using a
perfectly-plastic representation of the post-peak response. In contrast, for cases in
which the fiber Weibull modulus is high, the failure strain lies in the softening portion
of the curve. Here a linear-softening model is found to yield accurate results. A
preliminary assessment of the model has been made by comparing predicted and
measured bending/tension strength and failure strain ratios for one specific composite.
The correlations appear good, though additional experiments are required in order to
critically assess the model predictions over a range of loading scenarios.

© 2012 Elsevier Ltd. All rights reserved.

Fracture of tough fiber-reinforced ceramic-matrix composites (CMCs) occurs through a process of multiple matrix
cracking followed by fiber fragmentation and subsequent pullout of broken fiber fragments. Through this process, the
average stress borne by the matrix quickly diminishes with increasing strain and the majority of the load is eventually
supported by the fibers. Consequently, the composite strength is dictated by the fiber bundle strength. Numerous studies
over the past two decades have addressed the mechanics and statistics of fiber fragmentation and the corresponding
ultimate tensile strength and strain (Curtin, 1991a, b; Curtin et al., 1998; Hui et al., 1995; Neumeister, 1993a; Phoenix,
1993; Thouless and Evans, 1988). A review article by Curtin (1998) summarizes many of the important developments.
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Most of the studies have been based on a one-dimensional shear lag analysis to describe the stress build-up around broken
fibers, assuming that the frictional resistance between the fibers and matrix is constant within the region in which the fibers
have slipped past the matrix. Furthermore, most have been based on the assumption of global load sharing; that is, the load
carried previously by a broken fiber is shed equally to all other fibers in the plane of the break without generating stress
concentrations in neighboring fibers. Notable exceptions to the latter include the work of Ibnabdeljalil and Curtin (1997).

One of the outstanding challenges in the mechanics of composite fracture pertains to the effects of non-uniform strains.
The latter arise from bending moments or constrained thermal expansion in non-uniform temperature fields. They also
occur around discontinuities such as notches and holes. The experimental evidence suggests that there are two distinct
effects of non-uniform strains.

First, inelastic strain associated with matrix cracking and fiber fragmentation leads to stress re-distribution (Cady et al.,
1995; McNulty et al., 1999). In the case of bending of a rectangular beam, for instance, inelasticity leads to a non-linear
stress distribution and a progressive shift in the neutral axis from the beam center towards the compressive face. Even
making the conservative assumption that failure occurs upon attainment of a critical tensile strain, the predicted nominal
bending strength (calculated on the basis of elastic analysis) exceeds the uniaxial tensile strength by a large margin
(Beyerle et al., 1992; Marshall and Evans, 1985; McNulty and Zok, 1997). Indeed, experimental measurements show that
the bending strengths of typical CMCs are about 50-120% greater than their respective tensile strengths (Beyerle et al.,
1992; Marshall and Evans, 1985; McNulty and Zok, 1997; Prewo, 1986).

A second effect (not broadly recognized) is manifested as a disparity between the peak tensile strain attained in pure
bending and the failure strain in uniaxial tension. Typical values for one CMC are shown in Table 1 (McNulty and Zok,
1997); here the failure strain in bending is about 50% greater than that in tension. Yet higher values of tensile strains have
been measured in the vicinity of notches or holes in tensile coupons of the same CMC (McNulty et al., 1999). Similar trends
have been reported for fiber-reinforced metal-matrix composites. For instance, in SiC-fiber titanium-matrix systems, the
peak tensile strains attained in bending exceed that the uniaxial tensile fracture strain by more than 60% (Ramamurty,
2004). These results demonstrate that the tensile strain for fracture of fiber-reinforced composites is not unique and thus
models based on a critical strain criterion are likely to underestimate their full potential.

Hild et al. (1994) attempted to predict fracture of CMCs in bending using a constitutive law derived from fiber
fragmentation theory coupled with a critical tensile strain criterion for fracture. The model was capable of capturing some of
the effects of inelasticity on stress distribution but, clearly, could not predict the differing failure strains in bending and
tension. Neumeister (1993b) used a similar approach to address the same problem but with an alternate (ad hoc) fracture
criterion: notably, one based on the attainment of a critical number of fiber breaks within a prescribed volume element. In
addition to lacking a sound fundamental basis, the fracture criterion leads to a predicted tensile-face failure strain in
bending comparable to the failure strain in tension: again inconsistent with experimental measurements (McNulty and
Zok, 1997). Yet others have attempted to rationalize the effects of non-uniform strains on the basis of weakest link
scaling laws, wherein strength increases as the volume of stressed material decreases (Bullock, 1974; McNulty and Zok,
1997; Whitney and Knight, 1980). Although this approach has been made to bring some experimental results into
agreement with the model - by tuning the parameters in an assumed Weibull distribution, for instance - it is purely
phenomenological and lacks predictive power.

Steif and Trojnacki (1994) presented an analysis of the bending problem that was based on a purely phenomenological
representation of the tensile response of a composite (without any explicit connection to fiber properties) but proved to be
useful in demonstrating the role of the post-peak strain-softening rate on the composite bending strength. To this end,
they used a one-dimensional tri-linear constitutive law for the composite. The three parts were intended to depict: (i) the
linear-elastic portion before matrix cracking in tension as well as that in compression; (ii) the reduction in tangent
modulus due to matrix cracking; and (iii) the strain softening beyond the peak stress. They then used standard Euler-
Bernoulli beam theory coupled with a fracture criterion based on the attainment of a maximum bending moment to compute
the nominal bending strength. They concluded that the degree to which the bending strength exceeds the tensile strength
is governed predominantly by the rate of post-peak strain softening. In the present paper, we show, using a similar
analysis but with a mechanistic model for fiber fragmentation, that there are indeed circumstances in which the bending/
tension strength differential can be attributed to the post-peak softening. We also show that there are other circumstances
in which this is not the case; instead, the dominant effect is associated with the attainment of a plateau flow stress after
fiber fragmentation is complete (a feature not captured by the model of Steif and Trojnacki). We also examine the effects of
strain softening and plateau flow on failure in other loading scenarios in which strain gradients are present.

Table 1
Measured failure strains and stresses in uniaxial tension, four-point bending, and open-hole tension of a
laminated [0°/90°] laminated Nicalon/MAS composite (McNulty and Zok, 1997).

Test Maximum local strain Strength (MPa)
at failure (%)

Uniaxial tension 0.86-0.93 299-324
Four-point bending 1.30-1.40 600-650 (flexural)
Open-hole tension 1.60 -
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An argument could be made that, once the stress in a composite structure locally reaches the peak in its tensile stress—
strain curve, the deformation would localize into a narrow band and thus the assumption of deformation homogeneity
implicit to the load-maximum failure criterion would break down. If this were the case, the preferred approach to failure
prediction would involve use of a cohesive zone model. We present arguments later in the paper that, if the localization
spreads under a progressively increasing macroscopic load (i.e. with structural hardening), then other potential
localization sites remote from the first can be triggered, leading to an array of such bands, with a characteristic spacing
controlled by the fragment length. Thus, although the deformation would not be homogeneous over distances comparable
to the crack spacing, the displacements could be averaged over an appropriate length scale so as to compute a physically-
meaningful strain.

Assessments of the fidelity of predicted bending strengths have been based on comparisons between such predictions
and experimental measurements. However, some of these assessments are tainted by the fact that failure in the
experiments had not occurred in a purely tensile mode. For example, in the studies of Marshall and Evans (1985), Prewo
(1986), and Jansson and Leckie (1992) on unidirectional SiC/LAS, tensile fracture was preceded by compressive crushing at
the loading points in the bend tests. In another study, by Beyerle et al. (1992) on unidirectional SiC/CAS, fracture in
bending occurred via delamination in the regions between the inner and outer loading points: not in the region of
maximum moment. Consequently, conclusions drawn from such comparisons (Hild et al., 1994; Neumeister, 1993b; Steif
and Trojnacki, 1994) should be judged skeptically. (It is noted parenthetically that, because of the very high tensile
strength of unidirectional CMCs coupled with their low resistance to in-plane shear loads, true tensile failure is generally
difficult to attain under flexural loading. The problem is less pronounced in multidirectional laminates.)

The principal objective of the present study is to develop a mechanics framework to describe the effects of non-uniform
strains on tensile fracture of fiber-reinforced CMCs under monotonic loading. The outline of the paper is as follows. We
begin with a description of the constitutive law for the composite tensile stress-strain response, based on the fiber
fragmentation model of Hui et al. (1995). Next, we present a framework that utilizes this constitutive law to ascertain the
maximum load-bearing capacity of composite structures in the presence of non-uniform strains. The key assumption (as
noted earlier) is that failure occurs upon attainment of a global load maximum. This framework is then applied to three
model problems of engineering interest: (i) an end-constrained plate subjected to a linear transverse temperature
gradient; (ii) a cylindrical thin-walled tube with a linear through-thickness temperature gradient and internal pressure;
and (iii) a beam with rectangular cross-section undergoing combined bending and tension. Each problem produces a
constant strain gradient in one of the directions transverse to the fibers. We find that the peak tensile strain at the load
maximum increases with the magnitude of the strain gradient; the sensitivity of the failure strain to the strain gradient is
not unique but rather depends on the loading path. Furthermore, in order to glean insights into the characteristics of the
tensile response that control failure, we consider approximate representations that decouple the effects of strain softening
from the plateau flow stress at large strains. Finally, calculations of failure strain and stress for the problem of pure
bending are assessed against the experimental data of McNulty and Zok (1997).

2. Constitutive laws
2.1. Fiber fragmentation

The inelasticity in the post matrix-cracking tensile response is governed by the process of fiber fragmentation and
sliding along the fiber-matrix interfaces. A convenient description of the statistical variation in fiber strength is the two-
parameter Weibull distribution:

—L P
ool (2]

where F is the cumulative failure probability of a fiber of length L at a stress oy, Lo and o, are reference values of length and
strength, respectively, and p is the Weibull modulus. Shear-lag theory describes how the fiber stress away from a break is
restored to its far-field value, via the frictional resistance 7, of the fiber-matrix interface (Cox, 1952). Assuming that g is
constant, the fiber stress varies linearly within a “recovery zone” adjacent to the fiber break, over a length [=2Ray /7,
where oyis the fiber stress remote from the break, given by oy=Eg, with Erbeing the fiber modulus and ¢ the applied strain.

The fiber fragmentation problem has been analyzed approximately by Curtin (1991a, b) and Neumeister (1993a) and
solved exactly by Hui et al. (1995). The differences in the resulting constitutive laws from the exact and the approximate
analyses arise from differing assumptions about two physical phenomena: shadowing of fiber defects within the recovery
zone and overlap of recovery zones adjacent to neighboring breaks (Neumeister, 1993a). Neglecting these phenomena
leads to erroneous predictions in the post-peak softening regime (Neumeister, 1993a). The constitutive law employed here
is the one based on Hui’s solution. The model is based on the assumptions that: (i) the frictional resistance of the fiber/
matrix interface is uniform along the length of the fibers (unaffected by local perturbations associated with discrete matrix
cracks); (ii) the characteristic terminal fragment length is small compared to the gauge length of stressed material; and
(iii) the fiber strength follows a Weibull distribution (Eq. (1)). Suitable normalizations yield three key parameters: (i) a
non-dimensional fiber stress, S=¢/V;o. where @ is the average stress borne by the fibers, V; is the volume fraction of
fibers aligned with the tensile loading direction and o, is a characteristic strength defined by . = (agroLo/R)l/("“); (ii) the
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Fig. 1. Comparison of constitutive laws for three typical values of p.

corresponding tensile strain, A=¢Ef/o.; and (iii) a characteristic length, given by A.= (RGO/TOL(])/”)”/(”“). The full
analytical description of the stress—strain response is presented in the Appendix A. The integrals contained therein were
computed numerically in MATLAB (Mathworks, 2009) using adaptive Simpson quadrature.

Tensile stress-strain curves computed from Hui’s model for representative values of p are depicted in Fig. 1. The
notable features include the gradual strain softening following the peak and a “plateau” flow stress at large strains (once
the fragmentation process is complete). Also shown for comparison are the stress—strain curves from Curtin’s approximate
model. The latter yields reasonably accurate results up to the peak stress but not in the post-peak (softening) regime.

2.2. Complete constitutive law

To ensure that the composite is modeled in a physically-realistic manner in the elastic regime as well as under
compressive loading, the preceding fragmentation model is supplemented with a pre-matrix cracking constitutive law. The
compressive response of the composite is taken to be elastic for all strains, and the elastic moduli in compression and
tension are assumed to be equal to one another. The ratio E of the post-matrix cracking tangent modulus to the
longitudinal composite modulus E. is defined by E' = VE; /E.. For typical fiber volume fractions and fiber/matrix moduli, E’
falls between 1/4 and 1/2. In addition, although matrix cracking is experimentally observed to commence and saturate at
somewhat different stress levels (Evans and Zok, 1994), the constitutive law used in the present analysis assumes that
these stresses are the same. The consequence is that the stress-strain curve exhibits a strain burst upon matrix cracking, in
accord with the prediction of the well-known micromechanical model of Aveston et al. (1971). A non-dimensional matrix
cracking stress is defined by Syc = omc/Vyoc. The complete constitutive law can thus be expressed in piecewise form as

AJE A <SpcE
S(A) =< Sme SmcE' < A < Spc 2)
fA) Spe<A

where f(A) is the fiber bundle response presented in the Appendix A.
In the model problems we consider in the present article, the structures do not undergo unloading either globally or
locally. Consequently, differences in the loading/unloading response (common in CMCs) are neglected.

2.3. Approximate representations

In order to glean insights into the important post-peak characteristics that govern failure, we also consider two
approximate formulations of the constitutive law obtained from Hui’s model (Fig. 3). In the first, termed the plateau model,
the post-peak response is represented by instantaneous softening from the peak to the plateau and the subsequent flow
stress is assumed to remain at the plateau level for higher strains. This representation neglects the strain-softening portion
of the curve and is expected to yield a lower bound on the predicted failure stress and strain. In the second, termed the
softening model, the post-peak response is assumed to follow a linear softening law, with the rate of softening obtained
from a linear fit of the exact results in the regime between the peak and the plateau (Fig. 3). The expectation is that, for
small strain gradients, failure will occur at strains only slightly beyond the peak and hence the linear softening model
should yield reasonably accurate results. Conversely, for large gradients, the failure strain will fall well within the plateau
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Fig. 2. Two approximate representations of the post-peak response: perfectly-plastic flow at the plateau stress and linear softening.
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Fig. 3. Schematics of the three model problems of interest: (a) linear temperature gradient across an end-clamped plate, (b) pressurized tube with linear
temperature gradient through the wall, and (c) combined bending and tension of a rectangular beam.

regime, and thus the perfectly-plastic post-peak representation should yield more accurate results. A further expectation is
that the suitability of the two approximate representations will depend onp. This is because, as p decreases, the ratio of the
plateau stress to the peak stress increases and the rate of strain softening decreases.

Assessments of the two approximate representations are made on the basis of the errors in the predicted strengths of
the composite structures relative to those obtained from the exact Hui model. The results are presented as maps in
coordinates of fiber Weibull modulus and a measure of the strain gradient. The maps depict the regimes in which the
approximate models yield sufficiently accurate results: an error of less than 5% being deemed to be adequate. For
comparison, a model based on the attainment of a critical fracture strain is also considered. Consequently, in general, three
(potentially overlapping) domains emerge, one for each of the three approximate representations. A fourth domain - one
in which none of the three approximations provide adequate accuracy - can also be present.
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3. Model problems
3.1. Approach

The approach for solving the problem of fracture with non-uniform strains is as follows. Eq. (2) defines a constitutive
law that relates normal strains and stresses in the fiber direction, x. The axial strain is permitted to vary only in the
transverse directions, y and z. The reaction force, ry, in the fiber direction can therefore be expressed as

ry= / G (E(,2)dydz 3)
A

The y and z coordinates are non-dimensionalized as Y =y/hy, and Z = z/h,, where h; is the dimension of the specimen in the
i direction. Then, utilizing the normalizations introduced in Section 2, Eq. (3) reduces to

T'x

Re = hyh,Via,

- / S(A(Y.2)dYdZ @)
A

The strain distribution, A(Y,Z), is assumed to be known a priori. The loading trajectory is expressed in terms of a single
parameter, t: for instance, an applied displacement, a rotation or a temperature gradient. Fracture is deemed to have
occurred when the reaction force attains a maximum (not when a material element locally reaches the peak in its stress-
strain curve). The fracture strength, &, is thus obtained by maximizing R, with respect to t. Similarly, the fracture strain,
Al .. is taken as the maximum value of A(Y,Z) within the body when the critical value of t is reached. Numerical solutions

were obtained using a minimization algorithm in the optimization toolbox of MATLAB (Mathworks, 2009).
For problems involving bending, a non-dimensional moment is defined as

M= 2 / (Y=Y)-S(A(Y,Z))dYdZ (5)
hythfGC A
where Y, is the Y-coordinate of the axis of applied tension. Proportional loading is assumed, with M, /Ry = tan(Z), where 4
characterizes the mixity of loading. The loading reduces to pure bending for A=m/2 and pure tension for A=0.
Intermediate values of 4 describe combined bending and tension. Numerical solutions were again obtained using MATLAB
(Mathworks, 2009). Since the moment and the axial load are proportional, either quantity can be used as the objective
function for maximization. The loading parameter was taken to be the tensile-face strain An,ax For each prescribed value of
Amax, @ subroutine was used to solve numerically for the strain gradient, ¥ that satisfies the proportional loading equation

Mz(AmaXv lP) =tan (A) 'Rx(Amax- 'P) (6)

For pure bending, the quantities of interest obtained from the numerical solution are the tensile-face strain at failure, Afyay,
and the failure moment, Mé. The flexural strength, afb, is expressed in non-dimensional form in accordance with

_ % f
S, = Vo = 6M, 0

where 5’; is the non-dimensional flexural strength. For combined bending/tension, a failure locus can be constructed at a
constant value of p. The moment at failure, Mé, is converted into a flexural strength using Eq. (7), while the axial load at
failure, R/, becomes the tensile strength, S/.

In each of the three model problems considered below, the strain distribution is linear and varies in only the Y-
direction. The strain distribution can therefore be expressed as

AY,Z)=Amax— VY 3

where Ap,.x is the maximum tensile strain; the origin of the Y-axis is positioned so that the maximum strain is located at
Y=0; and ¥ characterizes the strain gradient. Both A,x and ¥ are functions of the loading parameter t.

3.2. Constrained plate with temperature gradient

In the first model problem, we consider a composite plate with a rectangular cross-section fixed between two rigid
supports and initially at a uniform (stress-free) temperature T (Fig. 3(a)). The left side of the plate is positioned at Y=0
and its temperature, T;, is reduced at a constant rate so that T; = To—T;t, where 7 is time. Similarly, the right side of the
plate is cooled at a different rate in accordance with Tg = To—Trt. Without loss of generality, we assume that TL>Tk.
Further assuming that the temperature gradient thereby developed is linear, the thermal strain field becomes

een(Y,T) = ATL(1=Y) + To—Tol = —ot[Tu(1-Y)+ T 9)
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where o is the coefficient of thermal expansion of the composite in the fiber direction. Since the total strain is zero, the
mechanical strain is &, = —&g. Its maximum value, written in the form of Eq. (8), is

Ama(®) = T2 (10)
The corresponding strain gradient is
¥(1) =0 Amax(1) an
where
T
0=1- Ti (12)

All physically-plausible scenarios fall in the domain 0 <® < 1.

[llustrative numerical results showing the effects of p, S;,c and E’ on the fracture strength and strain are presented in
Figs. 4 and 5. They show that the fracture strain increases monotonically with strain gradient (characterized by @). The
effects are most pronounced for small Weibull moduli (p < 5, typical of SiC fibers). The fracture stress, however, decreases
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Fig. 4. Effects of Weibull modulus p and strain gradient © on (a) the maximum strain at peak load and (b) the corresponding peak stress for the linear
temperature gradient problem (E'=1/3 and S;,.=0).
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Fig. 5. Effects of (a) matrix cracking stress Sy, (for ©=0.9 and E' = 1/3) and (b) the modulus ratio E'(for ®=0.9 and S;,c = 1/3) on the maximum strain at
the peak stress for the linear temperature gradient problem.

with ©. The results also indicate that the fracture stress and strain are insensitive to both S, and E'. This insensitivity
arises because, at fracture, the majority of the material resides in the post-matrix-cracking regime.

Also shown for comparison in Fig. 4(b) are the predictions based on the linear softening model and the plateau model.
Here the softening model yields accurate results over the entire range of p and @. The plateau model, in contrast, is
adequate at low strain gradients but underestimates the strength for © > 0.3.

A map showing the domains in which the approximate models yield accurate results is presented in Fig. 6. It comprises
three regimes. (i) For small gradients, characterized approximately by ® < 1/3, fracture occurs shortly after the peak in the
stress-strain curve. Consequently, all three of the approximate models yield adequate results. The boundary of this domain
is almost independent of p. (ii) The plateau model is also accurate in the domain of very low values of p and high strain
gradients. This result arises because the plateau stress is a significant fraction of the peak value at low values of p and thus,
under large strain gradients, failure occurs when the peak strain is well within the plateau domain. (iii) The linear
softening model provides adequate results over the entire parameter space. The inference is that the additional load-
bearing capacity (beyond that at the attainment of the peak stress locally) is attributable largely to the finite post-peak
strain-softening rate; the plateau flow stress plays a decidedly secondary role.

3.3. Pressurized tube with temperature gradient

We next consider a thin-walled cylindrical tube subject, first, to a linear through-thickness temperature gradient and,
second, to a monotonically increasing internal pressure. Fibers are oriented in the circumferential direction. The rotational
symmetry of the problem precludes bending; however, a net mechanical stress must develop over the cross-section to
counterbalance the internal pressure (Fig. 2(b)). Combining this equilibrium condition with the result in Eq. (4) yields the
reaction force R,

__pd
&_zmwm a3
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Fig. 6. Failure map for the linear temperature gradient problem (E'=1/3 and S,.=0).

where p is the internal pressure, d is the diameter of the tube, and h, is the thickness of the wall. With the wall mid-plane
held at the stress-free temperature, the thermal strain distribution is & = «AT(Y—1/2) where AT is the through-thickness
temperature difference and Y =y/h,. The mechanical strain therefore becomes &;ech = &ror +*AT(1/2—Y), where the total
strain is independent of Y since the tube is thin-walled. Upon normalization, this expression can be rewritten in the form of
Eq. (8), with

p_ oAl (14)
Oc
and
Y &otE v
Amax = Atot+ 5 = t;_tc ! + 2 (1 5)

Taking the temperature difference to be constant, the parameter describing the loading trajectory is Apax, Which increases
monotonically with pressure.

Select numerical results are plotted in Fig. 7. Here again the failure strain increases with the gradient (characterized in
this case by V), albeit with a significantly weaker dependence on p. Also, the failure stress and strain exhibit an even
weaker dependence on S, and E’ (not shown) because only a small portion of the tube wall remains in the elastic domain
at fracture.

The failure map for this problem is shown in Fig. 8. It exhibits characteristics similar to those seen in the previous
problem. Notably, for low strain gradients, all three of the approximate models are adequate since failure occurs shortly
after the peak stress is attained locally. The predictions of the plateau model and the critical strain model begin to break
down at a critical strain gradient, characterized by ¥ < 0.2 (almost independent of p), while the softening model yields
accurate results over most of the parameter space. However, the softening model also eventually breaks down, at very high
gradients and high p. The increasing error in the predictions from the softening model with increasing p are evident in
Fig. 7(b) for the case ¥=0.9.

3.4. Combined bending and tensile loading

Finally, we consider a beam with rectangular cross-section subjected to proportional bending plus tension (Fig. 2(c)).
From Euler-Bernoulli bending theory, the strain distribution is linear through the cross-section and can be written in the
form of Eq. (8), with

&maxE;
Amax = %f (16)
C
and
hyE
g KyEr 17)
Oc

where &max is the tensile-face strain, x is the curvature, and h,, is the beam thickness.
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Fig. 7. Effects of Weibull modulus p and strain gradient ¥ on (a) failure strain and (b) failure strength (i.e. average hoop stress at failure) for the
pressurized tube problem (E'=1/3 and S;;,=0).

Results for the limiting case of pure bending (1 = t/2) are plotted in Fig. 9. In contrast to the preceding model problems,
bending failure occurs in one of two ways:

(i) At low p, a limit moment is obtained. Consequently, the tensile-face strain approaches infinity. Moreover, in the limit
state, the stress throughout the beam is essentially uniform and equal to the plateau flow stress, S,;: the exception
being the compressive face itself, where the stress approaches — co. In this domain the plateau model yields exact
results; the limit stress is simply S’; =35,

(ii) At higher values of p, a maximum moment is obtained. In this domain, failure occurs while the peak strain is on the
softening portion of the stress-strain curve and thus the softening model yields highly accurate results. Furthermore,
the failure stress is almost independent of p and given to high accuracy by Sf; =C/(1++E)with C=1.92 ( < 2% error for
1/4<E <1, p<20)' . Note that in contrast to the other two problems, the failure load in bending is somewhat
sensitive to the elastic modulus, because much of the material is in compression. Similar results were obtained by Steif
and Trojnacki (1994) using a tri-linear representation of the stress—strain curve. But, because of the absence of an
explicit connection between the post-peak softening rate and the fiber properties as well as the absence of a plateau
flow stress, their model is unable to predict the behavior at low p, especially the nature of the failure condition.

1 The functional dependence of 5{7 on E’ was obtained using Curtin’s approximate model. The parameter C was then obtained by fitting this equation
to the exact results from the Hui model.
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The transition between the two domains is discontinuous and occurs at a critical value of p; for the case shown in Fig. 9,
it occurs at p ~ 4. The plateau model also predicts a discontinuity, but not at the correct value of p. The softening model, on
the other hand, does not predict the discontinuity, though it is accurate at high p. A key conclusion is that, despite the
merits of the two approximate models in certain domains, neither satisfactorily predicts the behavior across the entire
parameter range of interest.
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The failure loci for combined bending/tension are plotted in Fig. 10. The corresponding map showing the domains in
which the approximate models yield adequate results is in Fig. 11. For the latter, the gradient is characterized by the
tension/bending loading mixity parameter /. The failure loci in S{ —Slf, space are approximately linear for fixed p. Indeed, for
low p and moderately high values of A, wherein failure occurs via a limit condition, one can readily show using the plateau
model that the failure locus is exactly linear and given by

wla,

S+ =5, (18)

Interestingly, this result is independent of the peak stress in the fiber bundle response. But it breaks down at higher p
and lower A, wherein failure occurs while the peak strain is in the softening regime, as evident in the map in Fig. 11. This
behavior is seen in Fig. 10. For p=3, a discontinuity in the bending and tensile strengths occurs at low tension/bending
mixity A, since the failure condition transitions from a limit load to a load maximum.

Uniaxial strength, Sf

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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Fig. 10. Failure loci for combined bending and tension (E'=1/3 and S;;,c=0).
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3.5. Comparisons of results from the three model problems

Comparisons of the results from each of the three model problems are made on the basis of the variation in failure strain
A{nax with the strain gradient ¥/ at failure (Fig. 12). Though the trends are qualitatively similar, there are significant differences
in the details. This result is not unexpected, given the differences in loading trajectories. That is, in the linear temperature
gradient problem, the strain gradient increases proportionally with strain; in the pressurized tube problem, the strain gradient
is applied first and remains fixed while the pressure is increased; and for combined bending/tension, the loads are applied
proportionally and thus the strain gradient is neither constant nor proportional to the maximum strain.

4. Discussion

A preliminary assessment of the present model has been made through comparisons with experimental measurements
of failure stresses and strains under tensile and bending loads. Because of issues of delamination and/or compressive
failure, we neglect the data on unidirectional CMCs and rely only on those for composites with multidirectional
architectures and that are known to fail in a tensile mode under bending (McNulty and Zok, 1997). The data employed
here are for a composite consisting of Nicalon fibers in a [0°/90°] layup and a magnesium aluminosilicate (MAS) matrix
(Table 1). Both the tensile and compressive surfaces of the bend specimens had been instrumented with strain gauges. The
ratios of bending/tension strengths and failure strains are 1.85-2.2 and 1.4-1.6, respectively. For the model predictions, we
select a range of values of F’and S, that realistically match those obtained from the measured tensile stress—strain curves
(E'=0.17-0.25, S;;;,=0.3-0.4). Furthermore, we assume a fiber Weibull modulus p=4 (typical of Nicalon fibers (McNulty
and Zok, 1997)). The predicted ratios of bending/tension strength and failure strain are 1.85-2 and 1.5-1.6, respectively.
The predictions agree quite well with the experimental results. By comparison, using the same parameter values along
with a critical strain criterion for fracture, the predicted strength and failure strain ratios are 1.5-1.7 and 1, respectively.
The latter results indicate that neglecting the contribution from the post-peak regime results in the flexural strength being
underestimated by approximately 20%. The ratio of failure strains is (naturally) underestimated by an even larger margin.
We further note that other mechanics-based models for composite fracture also fail to accurately predict the ratio of
failure strains (Neumeister, 1993b; Hild et al., 1994). Additional critical experiments to probe effects of gradients on failure
are in progress and will be reported elsewhere.

As noted at the outset, the present analysis is predicated on the assumption of global load sharing (GLS) among fibers: a
condition obtained when the interface toughness and sliding stress are low. Otherwise, some degree of stress concentration is
obtained around a fiber failure site (Hedgepeth and van Dyke, 1967). The effects of local load sharing (LLS) on fiber bundle
properties have been studied by Curtin and co-workers (Ibnabdeljalil and Curtin, 1997; Zhou and Curtin, 1995) using three-
dimensional lattice spring models. Their results show that, for spring constants that yield realistic values of stress
concentrations around fiber breaks, the fiber bundle strength is reduced only slightly relative to the GLS prediction and
exhibits only a small amount of variability and volume-sensitivity. Furthermore, the bundle properties follow the same scalings
with the characteristic strength ¢, and the characteristic length J.. The inference is that, although the present work has been
based on the GLS assumption, the results for LLS conditions are likely to be similar. Furthermore, the ratios of quantities, such as
flexural/tensile strengths, should be predicted with reasonable accuracy.

Finally, we return to the issue of deformation localization once the stress locally reaches the peak in the stress—strain
curve. As argued earlier, if a localization band were to spread under an increasing macroscopic load, then other potential
localization sites remote from the first could be triggered. Averaging the displacements over an appropriate length scale
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Fig. 13. Flexural stress corresponding to the growth of a localized deformation band through a bend specimen.

would yield a physically-meaningful strain. Indeed, this situation is the same as that of a matrix crack in a CMC bridged by
fully-intact fibers under uniaxial tensile loading. In the latter scenario, the deformation is clearly localized in the vicinity of
the crack (manifested as a crack opening displacement). But, because of structural hardening (in this case resulting from a
rising traction law), other cracks form in an approximately periodic manner, ultimately reaching a spacing dictated by the
slip length along the fiber-matrix interface; the displacements are averaged accordingly to yield a macroscopic inelastic
strain. There is no reason to believe that the same macroscopic response — with multiple periodic cracks - should not be
obtained in cases where the traction law associated with a crack exhibits a softening portion provided the loading is such
that crack extension occurs under an increasing macroscopic load. The expectation therefore is that a cohesive approach
should yield a peak macroscopic load that is virtually identical to that obtained from a continuum description of the
inelastic deformation.

The latter equivalence can be demonstrated using a specific example. We consider the problem of pure bending of a
composite with a low fiber Weibull modulus and hence a high plateau flow stress. The results in Section 3.4 show that, in
this scenario, a limit moment is obtained, with a predicted bending strength of S’; = 35p;. Arguably the problem could be
tackled equivalently by considering the extension of a single localized deformation band from the tensile face towards the
compressive face, with a bridging stress equal to Sp,;. The growth of the band can be readily computed using a standard
cohesive zone approach.? The corresponding fracture resistance curve, couched in terms of the macroscopic bending stress
and the current length of the localized band, is plotted in Fig. 13. The band grows stably from a stress of Sy, at its inception
to a maximum value of 3S, when it reaches the back face: the latter being identical to that predicted from the limit
moment calculation. Despite the utility of the cohesive zone model in predicting the ultimate bending strength of such a
composite, the model provides no information about the density of localized bands and the associated macroscopic strain.
This aspect of the problem would require consideration of the pull-out lengths of fiber fragments and the interactions
between adjacent localized bands. The result is likely to be very similar to that obtained from Hui’s fragmentation model.

5. Conclusions

In this paper, we have employed an exact model of fiber fragmentation to predict failure of CMCs in non-uniform strain
fields. A key distinction from approaches adopted by others is in the use of a failure criterion based on the attainment of a
load maximum. Assessments based on comparisons with the few reliable experimental data available in the literature on
bending and tensile properties of CMCs are encouraging. In particular, the model is able to predict rather well the failure
strain ratio: a feature not captured by previous models, especially those based on a critical-strain failure criterion.

Approximations to the exact fragmentation model have also been assessed. The approximations were selected to
decouple the effects of the post-peak strain softening and the plateau “flow” stress at high strains. While neither of the two
approximate representations yields accurate results for strengths over the entire parameter space of interest, each exhibits
merits over limited domains. For instance, in cases in which the fiber Weibull modulus is low and the loading yields a
sufficiently high strain gradient, the failure strain lies well within the plateau regime. Consequently, strengths can be
predicted with good accuracy using a perfectly-plastic representation of the post-peak response. Indeed, in the limiting
case of pure bending, the latter model yields exact results for low values of Weibull modulus. In contrast, for cases in
which the fiber Weibull modulus is high, the failure strain lies in the softening portion of the curve. Here a linear-softening

2 The results were computed using the analytical formulae for weight functions on pages 2.13 and 2.27 of Tada et al. (1985), assuming zero crack tip
toughness. Note that, since the bridging stress is constant, there is no additional (bridging) length scale in the problem. A corollary to this statement is the
tacit assumption that the peak crack opening displacement remains small in relation to the characteristic fiber pull-out length.
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model is found to yield accurate results. In yet other (rarer) circumstances, the salient features of fracture cannot be
captured by either one of the two approximations and thus the full fragmentation model is required for accurate strength
predictions.
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Appendix A. Exact fragmentation model

Here we present the exact analytical descriptions of the fragmentation model developed by Hui et al (1995). The
average fiber stress is partitioned into three terms:

p3(A,0de (A19)

A2 g2 A g2 0 A2
s= [ Sp@odcs [ Spaandes | [(5—A)A+7
0 A2 A

The three integrals on the right side correspond to contributions from fragments of length ¢ <A /2, A/2 < ¢ <A, and ¢ > A,
respectively. The fragment lengths are normalized by the characteristic length, .. The functions p;(A,¢) represent fiber
fragment densities, given by

20
P1(A0)=p(&)+2p / @exp {—t" <€+ %)} dt (A20)
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A
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