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Abstract

Failure of Ceramic Composites in Non-Uniform Stress Fields

by

Varun P. Rajan

Continuous-fiber ceramic matrix composites (CMCs) are of interest as hot-

section components in gas turbine engines due to their refractoriness and low

density relative to metallic alloys. In service, CMCs will be subjected to spa-

tially inhomogeneous temperature and stress fields. Robust tools that enable

prediction of deformation and fracture under these conditions are therefore

required for component design and analysis. Such tools are presently lacking.

The present work helps to address this deficiency by developing models for

CMC mechanical behavior at two length scales: that of the constituents and

that of the components. Problems of interest are further divided into two cat-

egories: ‘1-D loadings,’ in which the stresses are aligned with the fiber axes,

and ‘2-D loadings,’ in which the stress state is more general.

For the former class of problems, the major outstanding issue is material

fracture, not deformation. A fracture criterion based on the attainment of a
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global load maximum is developed, which yields results for pure bending of

CMCs in reasonable agreement with available experimental data. For the lat-

ter class of problems, the understanding of both the micro-scale and macro-

scale behavior is relatively immature. An approach based upon analysis of

a unit cell (a single fiber surrounded by a matrix jacket) is pursued. Stress

fields in the constituents of the composite are estimated using analytical mod-

els, the accuracy of which is confirmed using finite element analysis. As part

of a fracture mechanics analysis, these fields enable estimation of the steady-

state matrix cracking stress for arbitrary in-plane loading of a unidirectional

ply. While insightful at the micro-scale, unit cell models are difficult to extend

to coarser scales. Instead, material deformation is typically predicted using

phenomenological constitutive models. One such model for CMC laminates

is investigated and found to predict material instability where none should

exist. Remedies to the model to correct this deficiency are proposed; the reme-

diated model is subsequently utilized in conjunction with an analytical model

to probe stress fields adjacent to holes and notches in CMC panels. However,

even the revised model is incapable of capturing the range of experimental

behavior reported for CMCs with both stiff and compliant matrices. To ame-

liorate this deficiency, a new elastic-plastic constitutive model is developed.

It extends the deformation theory of plasticity from metals to CMCs, and its

predictions of near-notch strain fields in an open-hole tension test compare fa-

ix



vorably to strains measured using digital image correlation. Based on these

developments, future experimental and modeling work is proposed. With re-

spect to the latter, cohesive interface simulations seem particularly suited for

capturing multiple interacting damage mechanisms at multiple length scales

in a physically sensible manner. In principle, they can function as virtual tests,

guiding both engineering design and materials development.

x
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Chapter 1

Introduction

1.1 Background

Composites comprising ceramic matrices, continuous ceramic fibers, and

weak fiber-matrix interfaces have been proposed as materials for use in gas

turbines in military and commercial aircraft engines and land-based power

generation systems. The superior high-temperature capability of ceramic ma-

trix composites (CMCs) relative to metals enables turbine engines to operate at

higher temperatures, thereby increasing their thermodynamic efficiency. The

resulting fuel savings can be enormous. For instance, in integrated gasifica-

tion combined-cycle power plants, a mere 30 ◦C increase in the firing temper-

ature of the gas turbine can increase the combined cycle efficiency by roughly

1



1 % (Eldrid et al., 2001). CMCs have the potential to increase firing tempera-

tures by 100–200 ◦C or more, saving millions of dollars in fuel over the lifetime

of the turbine. In addition to enabling higher operating temperatures, CMCs

have the potential for significant weight reductions due to their low density:

an attribute particularly important in aeroengine applications.

After almost three decades of development, CMCs are now beginning to be

integrated into commercial aircraft engines (Figure 1.1). In General Electric’s

Passport 20 engine, an oxide-oxide CMC is being used to replace metallic com-

ponents in the rear of the engine, reducing the mass of each engine by 20 kg

(Epstein, 2013). The engine in the Boeing 787 Dreamliner will use a similar

material for exhaust nozzles (Wood, 2013). Non-oxide CMCs will also be in-

corporated into gas turbine engines in the upcoming years: General Electric’s

LEAP Engine is expected to include a high-pressure turbine shroud made from

a SiC/SiC composite (Wood, 2013). Looking further into the future, CMCs are

also being targeted for use in turbine blades and vanes, where the savings aris-

ing from their lower density and refractoriness are potentially even larger.

In the aforementioned applications, CMC components are subjected to

complex thermal and/or mechanical loads. Because the resulting stress fields

are multidirectional, fiber architectures must also be multidirectional (the

strength of unidirectional CMCs subjected to transverse loads being very

2



poor). Two types of architectures are of particular interest: [0◦/90◦] cross-ply

laminates and [0◦/±45◦/90◦] quasi-isotropic laminates. Both types of com-

posite can be manufactured by laying up either unidirectional plies or 2-D

woven fabric. Typically, the lay-ups are both symmetric and balanced—i.e.

involving equal numbers of plies corresponding to each angle of reinforce-

ment. The present work focuses primarily on cross-ply materials and their

constituent unidirectional plies or tows, although extension of the results to

other fiber architectures should, in principle, be possible.

Design of CMC components with multidirectional fiber architectures that

experience spatially inhomogeneous stress and temperature fields is a signif-

icant challenge. Although the elastic behavior of a CMC can be readily pre-

dicted from laminate theory, prediction of inelastic behavior is much more dif-

ficult. Not only are several (possibly interacting) damage mechanisms present,

but models for these damage mechanisms must span multiple length scales:

from that of the constituents (µm) to that of the components (cm) (see Figure

1.2). Furthermore, stresses that give rise to damage are not necessarily aligned

with the fiber axes.

With respect to loadings, it is conceptually useful to divide the problems of

interest into two classes, based on the complexity of the stress state. In the first

class, termed ‘1-D problems,’ the principal stresses are aligned with the fiber
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axes (at 0◦ and 90◦). 1-D problems have received a great deal of study in the

literature, both experimental (Beyerle et al., 1992a,b; Marshall and Evans, 1985;

McNulty and Zok, 1997; Prewo, 1986; Jansson and Leckie, 1992) and theoret-

ical (Zok and Spearing, 1992; Spearing and Zok, 1993; Curtin, 1993; He et al.,

1994; Aveston et al., 1971; Marshall et al., 1985; Budiansky et al., 1986; Curtin,

1991a; Neumeister, 1993a; Hui et al., 1995; Zhou and Curtin, 1995; Landis et al.,

2000; Hild et al., 1994). In the second class, termed ‘2-D problems,’ stresses

are oriented at an arbitrary angle to the fiber axes. Both the on-axis (tensile)

and off-axis (shear) responses of the CMC govern the macroscopic behavior.

Relatively little experimental work (Brøndsted et al., 1994; Cady et al., 1995a;

Turner et al., 1995), and essentially no theoretical work, has been conducted on

this class of problems.

1.2 1-D loadings

The 1-D problem describes many loading scenarios of practical interest:

notably, uniaxial tension and in-plane and through-thickness flexure. Particu-

lar attention has been paid in the literature to the simplest possible system: a

unidirectional CMC subjected to uniaxial tension (Figure 1.3(a)). This system

provides a useful starting point because it exhibits many of the damage mecha-

nisms that govern CMC inelasticity: matrix cracking, interfacial slip, and fiber
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fragmentation. The current understanding of its mechanical behavior is as fol-

lows.

• Initially, the composite responds elastically with a modulus well de-

scribed by the rule of mixtures: Ec = Vf E f + VmEm, where V is volume

fraction, E is Young’s modulus, and the subscripts f and m refer to fiber

and matrix, respectively.

• At a critical stress, matrix cracks form and propagate long distances

transverse to the tensile axis. The cracks deflect at the (weak) fiber-matrix

interfaces, causing slip of the fibers relative to the matrix and bridging

of the cracks by intact fibers. (If the fiber-matrix interfaces were strong

and tough, such cracks would cause catastrophic fracture.) The stress

needed to grow a steady-state, fully-bridged matrix crack was derived

from energy arguments in the seminal paper of Aveston et al. (1971).

Their model was later extended by Marshall et al. (1985), Budiansky et al.

(1986), and Marshall and Cox (1988) to account for effects of non-zero

interface debond toughness and residual stress. Upon further loading,

the density of matrix cracks increases and eventually reaches saturation

with an average spacing of, typically, (5–20)d, where d is the fiber diame-

ter. The mechanics of the interactions between neighboring matrix cracks

were addressed by Zok and Spearing (1992). After crack saturation, the
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matrix bears no additional load and the composite tangent modulus ap-

proaches that of the fibers alone (dσ/dϵ ≈ Vf E f ).

• Additional non-linearity is obtained once the fibers begin to break. The

composite strength is the stress required to rupture the fiber bundle. Ex-

act solutions for the bundle fragmentation in the case where the fibers

are frictionally coupled to a cracked matrix were developed by Hui et al.

(1995) and useful approximations were derived by Curtin (1991b).

Essentially the same failure mechanisms are operative in cross-ply laminates

subjected to uniaxial tension (Figure 1.3(b)) and hence similar mechanics anal-

yses can be employed to describe the composite response. But here two addi-

tional features arise. First, tensile cracking of the transverse plies is usually the

first inelastic event. Once the length of a transverse ply crack exceeds the ply

thickness, the crack grows by ‘tunneling’ between adjacent axial plies under

steady-state conditions (Beyerle et al., 1992b; Xia et al., 1993). Furthermore,

multiple cracks are formed in each ply, eventually saturating when their spac-

ing becomes comparable to the ply thickness. Second, at higher stresses, the

cracks penetrate the axial plies. Because the segments of the cracks within

the transverse plies are unbridged, the stress needed for full penetration into

the axial plies is lower than the steady-state matrix cracking stress in unidirec-

tional materials (adjusting the stress to account for the reduced fraction of axial
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plies) (Xia and Hutchinson, 1994). The fiber fragmentation process that con-

trols ultimate strength is largely unaffected by the presence of the transverse

plies, apart from their effects on the volume fraction of fibers aligned with the

loading direction (Beyerle et al., 1992b).

To summarize, sophisticated models exist for the mechanical behavior of

unidirectional and cross-ply composites in uniform uniaxial tension, which is

the most basic type of ‘1-D problem.’ However, few studies have modeled

effects of non-uniform strains in 1-D problems. These arise in many cases of

practical interest: for instance, in flexure or when temperature gradients are

present. The experimental evidence suggests that there are two distinct effects

of non-uniform strains.

First, inelastic strain associated with matrix cracking and fiber fragmenta-

tion leads to stress re-distribution (Cady et al., 1995a; McNulty et al., 1999). In

the case of bending of a rectangular beam, for instance, inelasticity leads to a

non-linear stress distribution and a progressive shift in the neutral axis from

the beam center towards the compressive face. Even making the conservative

assumption that failure occurs upon attainment of a critical tensile strain, the

predicted nominal bending strength (calculated on the basis of elastic anal-

ysis) exceeds the uniaxial tensile strength by a large margin (Beyerle et al.,

1992a; Marshall and Evans, 1985; McNulty and Zok, 1997). Indeed, experi-
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mental measurements show that the bending strengths of typical CMCs are

about 50–120 % greater than their respective tensile strengths (Beyerle et al.,

1992a; Marshall and Evans, 1985; McNulty and Zok, 1997; Prewo, 1986).

A second effect (not broadly recognized) is manifested as a disparity be-

tween the peak tensile strain attained in pure bending and the failure strain in

uniaxial tension. Typical data for one CMC, investigated by McNulty and Zok

(1997), is shown in Figure 1.5; here the failure strain in bending is about 50 %

greater than that in tension. Yet higher values of tensile strains have been mea-

sured in the vicinity of notches or holes in tensile coupons of the same CMC

(McNulty et al., 1999). Similar trends have been reported for fiber-reinforced

metal-matrix composites. For instance, in SiC-fiber titanium-matrix systems,

the peak tensile strains attained in bending exceed that the uniaxial tensile

fracture strain by more than 60 % (Ramamurty, 2004). These results demon-

strate that the tensile strain for fracture of fiber-reinforced composites is not

unique and thus models based on a critical strain criterion are likely to under-

estimate their full potential.

Therefore, although the constitutive description of deformation in 1-D prob-

lems can be extended straightforwardly from uniaxial tension to the general

case (of non-uniform strains), the fracture criterion is not so readily extended.

The critical strain criterion is inadequate, and another fracture criterion must
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be employed. One such criterion, which yields predictions in markedly better

agreement with experimental data, is investigated in Chapter 2.

1.3 2-D loadings

Significantly less attention has been devoted to 2-D loadings, wherein the

stresses are not aligned with the fiber axes. Predicting deformation and frac-

ture in these loadings requires that the off-axis response of the composite, as

manifested in its 45◦ tensile and shear behavior, be accurately captured.

Once again, it is useful to review the experimental evidence (see Figure

1.4). Studies of cross-ply laminates in shear (Brøndsted et al., 1994; Cady et al.,

1995a; Turner et al., 1995) have shown that the principal damage mechanism

involves matrix cracking at approximately 45◦ to the fibers, i.e. perpendic-

ular to the direction of maximum principal stress. As in tension, the cracks

are initially fully bridged by intact fibers and propagate long distances with-

out catastrophic fracture. The average crack spacing at saturation is approx-

imately (10–20)d. For cross-ply laminates with dense matrices, typical values

of matrix cracking stress in shear are comparable to those in tension. (The

cracking stress in tension for a unidirectional material with the same fiber vol-

ume fraction tends to be significantly greater, for the reasons mentioned pre-
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viously.) In shear, the matrix cracking stress increases with the matrix stiff-

ness. For the specific example of SiC/CAS (Brøndsted et al., 1994), matrix

cracking ultimately saturates at a strain of roughly 1 %1: only slightly below

the corresponding fracture strain. This observation suggests the absence of a

fiber-dominated regime such as that observed in uniaxial tension. For cross-

ply laminates, failure strains in shear are somewhat larger than those in ten-

sion and are inversely related to the matrix stiffness. Brøndsted et al. (1994)

attempted to explain the latter observation by considering local bending of

fibers at matrix cracks, although a rigorous mechanistic understanding of the

phenomenon was lacking in that work.

While the experimental results reveal intriguing similarities (and notable

differences) between the tensile and shear responses of cross-ply laminates,

no mechanistic model yet exists for predicting the initiation and evolution

of damage in 2-D problems. The cracking stress appears to be the critical

quantity governing inelasticity in shear loading (and in tension at 45◦ to the

fibers), since the composite exhibits little hardening thereafter. In Chapter 3, a

model for steady-state cracking in 2-D problems is developed, assuming that

the fibers and matrix are initially unbonded from one another. The model

yields a result analogous to that of Aveston et al. (1971) and Budiansky et al.

(1986) for on-axis loading.

1All shear strains referred to herein are engineering shear strains.
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1.4 Component-level analysis

The previous sections have emphasized micromechanics-based models

that relate the properties of the constituents to the overall response of the com-

posite. These models are useful because they represent damage in a physi-

cally realistic way: i.e., by explicitly modeling matrix cracks or fiber breaks.

They necessarily operate at the length scale of the constituents of the compos-

ite (see Figure 1.2). However, such models are difficult to extend to coarser

length scales. The principal problem is that explicit representation of dam-

age (matrix crack formation in transverse plies, extension of cracks into axial

plies, debonding/slip, fiber fragmentation, etc.) is not possible at the coarse

scale. Instead, the inelasticity due to damage must be ‘smeared out’ over a

volume element representative of the microstructure of the CMC. While sig-

nificant progress on this front has been made for on-axis stressing of CMCs

(see, for instance, the constitutive law of Curtin (1991a)), comparable work for

off-axis stressing has yet to be conducted.

The latter is essential for prediction of, for instance, stresses arising in CMC

plates with geometric features such as holes or notches. Many experimental

studies have demonstrated that CMCs exhibit some degree of notch insensi-

tivity (McNulty et al., 1999; Cady et al., 1995b; Genin and Hutchinson, 1997;

Heredia et al., 1994; Levi et al., 1998; Mackin et al., 1995, 1996; Kramb et al.,
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1999; Mall et al., 1994): a desirable feature for component design. However, the

theoretical understanding of notch insensitivity in CMCs remains immature. It

must arise from near-notch stress redistribution, which, in turn, is governed by

the interplay between inelasticity arising from (on-axis) tension and (off-axis)

shear (Evans et al., 1994). Modeling near-notch stress redistribution and pre-

dicting notch insensitivity in CMC laminates thus requires a component-level

constitutive model that incorporates on-axis and off-axis inelasticity.

Given the previous discussion, it should be unsurprising that existing con-

stitutive models for this task have been phenomenological, not micromechan-

ical, in nature (Cox and Zok, 1996). That is, the models take as inputs not

the constituent properties, but instead other quantities, such as macroscopic

stress-strain curves. One class of models relies on concepts from continuum

damage mechanics (Talreja, 1991; Camus, 2000; Chaboche and Maire, 2001).

The state of damage within the composite is assumed to be described by inter-

nal damage variables that can be scalars, vectors, or tensors. As these damage

variables evolve with the applied load, the stiffness of the composite is de-

graded. The damage evolution laws are calibrated using experimental data.

In some models, such as that of Talreja (1991), the damage variables are mea-

surable quantities, such as crack density; in other models, such as that of Ca-

mus (2000), the damage variables are not measurable and must instead be in-
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ferred from macroscopic stress-strain data. The fundamental tradeoff in all

such models is between the sophistication of the representation of damage and

the amount of experimental data needed to calibrate the model. For instance,

the model of Talreja (1991) requires evolution laws for four different damage

tensors that represent crack densities, debond lengths, etc. A very extensive

experimental program is thus required to calibrate the model for general mul-

tiaxial loading. Despite the complexity of the calibration procedure, it remains

unclear whether the predictive capability of such models is actually enhanced

by utilizing such a large number of internal variables.

A second modeling approach dispenses with internal damage variables,

and instead assumes that the degradation of the composite stiffness can be re-

lated to macroscopic stress-strain functions from simple mechanical tests, such

as uniaxial tension and shear. Typically, it also assumes proportional loading.

This approach, in theory, should yield a mathematically simple model that

can be calibrated with little experimental data, since there are far fewer ‘fit-

ting constants’ than in damage mechanics models. Models of this type, devel-

oped mainly for use with polymer matrix composites, have been presented by

Hahn (1973); Jones (1977); Sandhu (1976). An attempt to extend the approach

to CMC laminates was made by Genin and Hutchinson (1997). However,

as demonstrated in Chapter 4, calculations employing the Genin-Hutchinson
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(GH) model frequently suffer from numerical convergence problems. Further-

more, for reasons elaborated upon in Chapter 6, even after modifications to

remedy these problems, the modified GH model suffers from an additional

deficiency: notably, it presupposes a particular form of the yield/cracking sur-

face that is approximately satisfied by certain systems (notably, CMCs with

relatively stiff matrices), but not others. A new approach for constitutive mod-

eling of CMCs that enables a broader range of material behavior to be captured

is introduced in Chapter 6.

1.5 Objectives and dissertation outline

The overarching goal of this work is to advance the understanding of the

mechanics of CMC deformation and fracture and to develop tools that can aid

in CMC component design and analysis. Two schemes for categorizing prob-

lems in CMC mechanics underpin this body of work. The first (introduced ear-

lier) is based on the complexity of the stress state: 1-D vs. 2-D. Given the extra

level of complexity inherent to 2-D problems, it is not surprising that the field

of CMC micromechanics for off-axis loading is essentially barren. The second

key distinction concerns the scales at which the phenomena are described and

analyzed. These are categorized as being either at the ‘micro-scale,’ i.e., tens to

hundreds of µm, or at the ‘macro-scale,’ typically greater than 1 mm.
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The dissertation is organized in the following way. Chapters 2 and 3 deal

with two problems at the micro-scale. The first, in Chapter 2, addresses the

issue of the failure condition in CMCs when non-uniform strains are present.

A constitutive model based on the analysis of fiber fragmentation and a fail-

ure criterion based on the attainment of a global load maximum is used to

examine the effects of non-uniformity in strain on fracture. Chapter 3 fo-

cuses on steady-state matrix cracking in CMCs under pure shear and mixed

shear/tension loadings. Although this work represents an important step for-

ward, much work remains to be done in the area of micromechanics of CMCs

(some of which is discussed in Chapter 7). This includes the development of

a modeling framework that integrates the constitutive descriptions that arise

from micromechanical models for on- and off-axis loading with constitutive

models for analyses at the component scale.

Chapters 4–6 address phenomenological constitutive models at the macro-

scale. In Chapter 4, the origin of the the numerical stability problems in cal-

culations employing the Genin-Hutchinson model is identified. Accordingly,

modifications are made to the model to remedy its physical and numerical de-

ficiencies. The resulting modified GH model is used in Chapter 5 to investigate

near-notch stress distributions in laminates subjected to (global) uniaxial ten-

sion. An analytical model is also developed and compared with finite element
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predictions. The analytical model is shown to capture the stress distributions

with excellent accuracy. Its main advantage over numerical simulations is that

it enables rapid calculation of stress concentration factors, inelastic zone sizes,

and possibly even material fracture (associated with the onset of fiber bun-

dle rupture and localization of deformation). Then, in Chapter 6, a new ap-

proach for constitutive modeling of CMCs is introduced. It allows a broader

range of material behavior to be captured. The efficacy of this framework is

demonstrated using a case study: an open-hole tension test. The model is val-

idated by comparing predicted strain fields from finite element simulations

with those measured experimentally by digital image correlation.

Finally, Chapter 7 summarizes the key findings of the work and identifies

opportunities for future research, in both the experimental and modeling are-

nas. Virtual tests of CMCs, based on cohesive element simulations of represen-

tative volume elements, are identified as an important area for future research.

They enable multiple interacting inelastic mechanisms to be simulated in a

physically realistic manner, without recourse to the simplifying assumptions

(global load sharing, steady-state cracking, etc.) commonly employed in the

CMC mechanics literature.
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(a)

(b)

Figure 1.1: Examples of CMCs in commercial engines: (a) all-oxide CMC for
mixer and center body assemblies in General Electric Passport 20 engine (Ep-
stein, 2013); (b) all-oxide CMC for exhaust nozzle in the Boeing 787 Dreamliner
engine (Wood, 2013).
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Figure 1.2: Length scales of interest in CMC mechanics.
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Figure 1.3: Schematics of stress-strain curves in uniaxial, on-axis tension of (a)
a unidirectional CMC and (b) a cross-ply CMC.
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posite (from McNulty and Zok (1997)).
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Chapter 2

Tensile fracture of CMCs in 1-D

problems

2.1 Introduction

As discussed in Chapter 1, fracture of CMCs in 1-D loadings is related not

to the development of matrix cracks, but instead to the mechanics and statis-

tics of fiber fragmentation, which dictate the fiber bundle strength. Numerous

This chapter is adapted from a peer-reviewed publication: V. P. Rajan and F. W. Zok.
Effects of Non-Uniform Strains on Tensile Fracture of Fiber-Reinforced Ceramic Compos-
ites. Journal of the Mechanics and Physics of Solids, 60(12):2003–2018, 2012. Available at:
http://dx.doi.org/10.1016/j.jmps.2012.07.006
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studies have addressed this problem (Curtin, 1991a; Neumeister, 1993a; Hui

et al., 1995; Curtin, 1991b; Thouless and Evans, 1988; Phoenix, 1993; Curtin

et al., 1998), and a review article by Curtin (1998) summarizes many of the

important developments. Most of the studies have been based on a one-

dimensional shear lag analysis to describe the stress build-up around broken

fibers, assuming that the frictional resistance between the fibers and matrix is

constant within the region in which the fibers have slipped past the matrix.

Furthermore, most have been based on the assumption of global load shar-

ing; that is, the load carried previously by a broken fiber is shed equally to

all other fibers in the plane of the break without generating stress concentra-

tions in neighboring fibers. Notable exceptions to the latter include the work

of Ibnabdeljalil and Curtin (1997a).

As also discussed in Chapter 1, the constitutive law that arises from afore-

mentioned analyses of fiber fragmentation must be coupled with a fracture

criterion in order to predict fracture in 1-D loadings. This approach was, for

instance, utilized by Hild et al. (1994) to analyze the mechanical response of

a unidirectional CMC in flexure. In this analysis, a failure criterion based on

a critical local strain was employed. Although some of the effects of inelas-

ticity on the stress distribution in bending were captured, the differing failure

strains in bending and tension were obviously not. Neumeister (1993b) used
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a similar approach to address the same problem but with an alternate (ad hoc)

fracture criterion: notably, one based on the attainment of a critical number

of fiber breaks within a prescribed volume element. In addition to lacking a

sound fundamental basis, the fracture criterion leads to a predicted tensile-

face failure strain in bending comparable to the failure strain in tension: again

inconsistent with experimental measurements (McNulty and Zok, 1997). Yet

others have attempted to rationalize the effects of non-uniform strains on the

basis of weakest link scaling laws, wherein strength increases as the volume of

stressed material decreases (McNulty and Zok, 1997; Bullock, 1974; Whitney

and Knight, 1980). Although this approach has been made to bring some ex-

perimental results into agreement with the model—by tuning the parameters

in an assumed Weibull distribution, for instance—it is purely phenomenolog-

ical and lacks predictive power.

Steif and Trojnacki (1994) presented an analysis of the bending problem

that was based on a purely phenomenological representation of the tensile re-

sponse of a composite (without any explicit connection to fiber properties)

but proved to be useful in demonstrating the role of the post-peak strain-

softening rate on the composite bending strength. To this end, they used a

one-dimensional tri-linear constitutive law for the composite. The three parts

were intended to depict: (i) the linear-elastic portion before matrix cracking in
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tension as well as that in compression; (ii) the reduction in tangent modulus

due to matrix cracking; and (iii) the strain softening beyond the peak stress.

They then used standard Euler-Bernoulli beam theory coupled with a fracture

criterion based on the attainment of a maximum bending moment to compute the

nominal bending strength. They concluded that the degree to which the bend-

ing strength exceeds the tensile strength is governed predominantly by the rate

of post-peak strain softening. In the present chapter, it is shown, using a sim-

ilar analysis but with a mechanistic model for fiber fragmentation, that there

are indeed circumstances in which the bending/tension strength differential

can be attributed to the post-peak softening. It is also shown that there are

other circumstances in which this is not the case; instead, the dominant effect

is associated with the attainment of a plateau flow stress after fiber fragmen-

tation is complete (a feature not captured by the model of Steif and Trojnacki

(1994)). The effects of strain softening and plateau flow on failure in other

loading scenarios in which strain gradients are present are also examined.

An argument could be made that, once the stress in a composite struc-

ture locally reaches the peak in its tensile stress-strain curve, the deformation

would localize into a narrow band and thus the assumption of deformation ho-

mogeneity implicit to the load-maximum failure criterion would break down.

If this were the case, the preferred approach to failure prediction would in-
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volve use of a cohesive zone model. Later in the chapter, it is argued that,

if the localization spreads under a progressively increasing macroscopic load

(i.e. with structural hardening), then other potential localization sites remote

from the first can be triggered, leading to an array of such bands with a char-

acteristic spacing controlled by the fragment length. Thus, although the de-

formation would not be homogeneous over distances comparable to the crack

spacing, the displacements could be averaged over an appropriate length scale

so as to compute a physically-meaningful strain.

Assessments of the fidelity of predicted bending strengths have been based

on comparisons between such predictions and experimental measurements.

However, some of these assessments are tainted by the fact that failure in the

experiments had not occurred in a purely tensile mode. For example, in the

studies of Marshall and Evans (1985), Prewo (1986), and Jansson and Leckie

(1992) on unidirectional SiC/LAS, tensile fracture was preceded by compres-

sive crushing at the loading points in the bend tests. In another study, by Bey-

erle et al. (1992a) on unidirectional SiC/CAS, fracture in bending occurred via

delamination in the regions between the inner and outer loading points: not in

the region of maximum moment. Consequently, conclusions drawn from such

comparisons (Hild et al., 1994; Neumeister, 1993b; Steif and Trojnacki, 1994)

should be judged skeptically. (It is noted parenthetically that, because of the
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very high tensile strength of unidirectional CMCs coupled with their low resis-

tance to in-plane shear loads, true tensile failure is generally difficult to attain

under flexural loading. The problem is less pronounced in multidirectional

laminates.)

The principal objective of this chapter is to develop a mechanics framework

capable of capturing the effects of non-uniform strains on fracture of fiber-

reinforced CMCs in 1-D loadings (assuming monotonic loading). The outline

of the chapter is as follows. First, the constitutive law for the composite ten-

sile stress-strain response, based on the fiber fragmentation model of Hui et al.

(1995), is described. Next, we present a framework that utilizes this constitu-

tive law to ascertain the maximum load-bearing capacity of composite struc-

tures in the presence of non-uniform strains. The key assumption (as noted

earlier) is that failure occurs upon attainment of a global load maximum. This

framework is then applied to three model problems of engineering interest: (i)

an end-constrained plate subjected to a linear transverse temperature gradient;

(ii) a cylindrical thin-walled tube with a linear through-thickness temperature

gradient and internal pressure; and (iii) a beam with rectangular cross-section

undergoing combined bending and tension. Each problem produces a con-

stant strain gradient in one of the directions transverse to the fibers. It is found

that the peak tensile strain at the load maximum increases with the magnitude
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of the strain gradient; the sensitivity of the failure strain to the strain gradient

is not unique but rather depends on the loading path. Furthermore, in order to

glean insights into the characteristics of the tensile response that control fail-

ure, approximate representations that decouple the effects of strain softening

from the plateau flow stress at large strains are developed. Finally, calcula-

tions of failure strain and stress for the problem of pure bending are assessed

against the experimental data of McNulty and Zok (1997).

2.2 Constitutive laws

2.2.1 Fiber fragmentation

The inelasticity in the post matrix-cracking tensile response is governed by

the process of fiber fragmentation and sliding along the fiber-matrix interfaces.

A convenient description of the statistical variation in fiber strength is the two-

parameter Weibull distribution:

F = 1 − exp
[

L
L0

(
σf

σ0

)ρ]
(2.1)

where F is the cumulative failure probability of a fiber of length L at a stress

σf , L0 and σ0 are reference values of length and strength, respectively, and ρ is

the Weibull modulus. Shear-lag theory describes how fiber stress away from
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a break is restored to its far-field value, via the frictional resistance τs of the

fiber-matrix interface (Cox, 1952). Assuming that τs is a constant, the fiber

stress varies linearly within a ‘recovery zone’ adjacent to the fiber break, over

a length l = 2Rσf /τs, where σf is the fiber stress remote from the break, given

by σf = E f ϵ, with E f being the fiber modulus and ϵ the applied strain.

The fiber fragmentation problem has been analyzed approximately by

Curtin (1991a,b) and Neumeister (1993a), and solved exactly by Hui et al.

(1995). The differences in the resulting constitutive laws from the exact and

the approximate analyses arise from differing assumptions about two phys-

ical phenomena: shadowing of fiber defects within the recovery zone and

overlap of recovery zones adjacent to neighboring breaks (Neumeister, 1993a).

Neglecting these phenomena leads to erroneous predictions in the post-peak

softening regime (Neumeister, 1993a). The constitutive law employed here

is the one based on Hui’s solution. The model is based on the assumptions

that: (i) the frictional resistance of the fiber/matrix interface is uniform along

the length of the fibers (unaffected by local perturbations associated with dis-

crete matrix cracks); (ii) the characteristic terminal fragment length is small

compared to the gauge length of stressed material; and (iii) the fiber strength

follows a Weibull distribution (Equation 2.1). Suitable normalizations yield

three key parameters: (i) a non-dimensional stress, S = σ/Vf σc where σ
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is the average composite stress, Vf is the volume fraction of fibers aligned

with the tensile loading direction and σc is a characteristic strength defined

by σc =

(
σ

ρ
0 τsL0

R

) 1
ρ+1

; (ii) the corresponding tensile strain, ∆ = ϵE f /σc; and

(iii) a characteristic length, given by δc =

(
Rσ0

τsL1/ρ
0

) ρ
ρ+1

. The full analytical

description of the stress-strain response is presented in Appendix A. The inte-

grals contained therein were computed numerically in MATLAB (Mathworks,

2009) using adaptive Simpson quadrature.

Tensile stress-strain curves computed from Hui’s model for representative

values of ρ are depicted in Figure 2.1. The notable features include the gradual

strain softening following the peak and a ‘plateau’ flow stress at large strains

(once the fragmentation process is complete). Also shown for comparison are

the stress-strain curves from Curtin’s approximate model. The latter yields

reasonably accurate results up to the peak stress but not in the post-peak (soft-

ening) regime.

2.2.2 Complete constitutive law

To ensure that the composite is modeled in a physically-realistic manner in

the elastic regime as well as under compressive loading, the preceding frag-

mentation model is supplemented with a pre-matrix cracking constitutive law.
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The compressive response of the composite is taken to be elastic for all strains,

and the elastic moduli in compression and tension are assumed to be equal

to one another. The ratio E′ of the post-matrix cracking tangent modulus to

the longitudinal composite modulus Ec is defined by E′ = Vf E f /Ec. For typ-

ical fiber volume fractions and fiber/matrix moduli, E′ falls between 1/4 and

1/2. In addition, although matrix cracking is experimentally observed to com-

mence and saturate at somewhat different stress levels (Evans and Zok, 1994),

the constitutive law used in the present analysis assumes that these stresses

are the same. The consequence is that the stress-strain curve exhibits a strain

burst upon matrix cracking, in accord with the prediction of the well-known

micromechanical model of Aveston et al. (1971). A non-dimensional matrix

cracking stress is defined by Smc = σmc/Vf σc. The complete constitutive law

can thus be expressed in piecewise form as

S(∆) =



∆/E′ ∆ < SmcE′

Smc SmcE′ < ∆ < Smc

f (∆) Smc < ∆

(2.2)

where f (∆) is the stress-strain response in the post-matrix cracking regime.

In the model problems considered in the present article, the structures do

not undergo unloading either globally or locally. Consequently, differences in

the loading/unloading response (common in CMCs) are neglected.
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2.2.3 Approximate representations

In order to glean insights into the important post-peak characteristics that

govern failure, two approximate formulations of the constitutive law obtained

from Hui’s model (Figure 2.2) are developed. In the first, termed the plateau

model, the post-peak response is represented by instantaneous softening from

the peak to the plateau and the subsequent flow stress is assumed to remain

at the plateau level for higher strains. This representation neglects the strain-

softening portion of the curve and is expected to yield a lower bound on the

predicted failure stress and strain. In the second, termed the softening model,

the post-peak response is assumed to follow a linear softening law, with the

rate of softening obtained from a linear fit of the exact results in the regime

between the peak and the plateau (Figure 2.2). The expectation is that, for

small strain gradients, failure will occur at strains only slightly beyond the

peak and hence the linear softening model should yield reasonably accurate re-

sults. Conversely, for large gradients, the failure strain will fall well within the

plateau regime, and thus the perfectly-plastic post-peak representation should

yield more accurate results. A further expectation is that the suitability of the

two approximate representations will depend on ρ. This is because, as ρ de-

creases, the ratio of the plateau stress to the peak stress increases and the rate

of strain softening decreases.
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Assessments of the two approximate representations are made on the basis

of the errors in the predicted strengths of the composite structures relative to

those obtained from the exact Hui model. The results are presented as maps

in coordinates of fiber Weibull modulus and a measure of the strain gradient.

The maps depict the regimes in which the approximate models yield suffi-

ciently accurate results: an error of less than 5 % being deemed to be adequate.

For comparison, a model based on the attainment of a critical fracture strain is

also considered. Consequently, in general, three (potentially overlapping) do-

mains emerge, one for each of the three approximate representations. A fourth

domain — one in which none of the three approximations provide adequate

accuracy — can also be present.

2.3 Model problems

2.3.1 Approach

The approach for solving the problem of fracture with non-uniform strains

is as follows. Equation 2.2 defines a constitutive law that relates normal strains

and stresses in the fiber direction, x. The axial strain is permitted to vary only

in the transverse directions, y and z. The reaction force, rx, in the fiber direction
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can therefore be expressed as

rx =
∫∫
A

σxx(ϵxx(y, z))dy dz (2.3)

The y and z coordinates are non-dimensionalized as Y = y/hy and Z = z/hz,

where hi is the dimension of the specimen in the i direction. Then, utilizing the

normalizations introduced in Section 2.2, Equation 2.3 reduces to

Rx =
rx

hyhzVf σc
=
∫∫
A

S(∆(Y, Z))dY dZ (2.4)

The strain distribution, ∆(Y, Z), is assumed to be known a priori. The loading

trajectory is expressed in terms of a single parameter, t: for instance, an applied

displacement, a rotation, or a temperature gradient. Fracture is deemed to

have occurred once the load-bearing capacity attains a maximum (not when a

material element locally reaches the peak in its stress-strain curve). Under this

assumption, the non-dimensional fracture strength, S f , is thus obtained by

maximizing Rx with respect to t. Similarly, the fracture strain, ∆ f
max, is taken

as the maximum value of ∆(Y, Z) anywhere within the body when the critical

value of t is reached. Numerical solutions were obtained using a minimization

algorithm in the optimization toolbox of MATLAB (Mathworks, 2009).

For problems involving bending, a non-dimensional moment is defined as

Mz =
mz

h2
yhzVf σc

=
∫∫
A

(Y − Yt)S(∆(Y, Z))dY dZ (2.5)
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Yt is the Y-coordinate of the axis of applied tension. Proportional loading is

assumed, with Mz/Rx = tan λ, where λ characterizes the mixity of loading;

the loading reduces to pure bending for λ = π/2 and pure tension for λ = 0.

Intermediate values of λ describe combined bending and tension. Numerical

solutions were again obtained using MATLAB (Mathworks, 2009). Since the

moment and the axial load are proportional, either quantity can be used as

the objective function for maximization. The loading parameter was taken to

be the tensile-face strain ∆max. For each prescribed value of ∆max, a subrou-

tine was used to solve numerically for the strain gradient, Ψ, that satisfies the

proportional loading equation

Mz (∆max, Ψ) = Rx (∆max, Ψ) tan λ (2.6)

For pure bending, the quantities of interest obtained from the numerical solu-

tion are the tensile-face strain at failure, ∆ f
max, and the failure moment, M f

z . The

flexural strength, σ
f
b , can be expressed in non-dimensional form in accordance

with

S f
b =

σ
f
b

Vf σc
= 6M f

z (2.7)

where S f
b is the non-dimensional flexural strength. For combined bending and

tension, a failure locus can be constructed at a constant value of ρ. The moment

at failure, M f
z , is converted into a flexural strength using Equation 2.7, while

the axial load at failure, R f
x, becomes the tensile strength, S f

t .
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In each of the three model problems considered below, the strain distribu-

tion is linear and varies in only the Y-direction. The strain distribution can

therefore be expressed as

∆(Y, Z) = ∆max − Ψ · Y (2.8)

where ∆max is the maximum tensile strain; the origin of the Y-axis is positioned

so that the maximum strain is located at Y = 0; and Ψ characterizes the strain

gradient. Both ∆max and Y are functions of the loading parameter t.

2.3.2 Constrained plate with temperature gradient

The first model problem is that of a composite plate with rectangular cross-

section, fixed between two rigid supports and initially at a uniform (stress-

free) temperature T0 (Figure 2.3(a)). The left side of the plate is positioned at

Y = 0, and its temperature, TL, is then reduced at a constant rate so that TL =

−ṪLτ + T0, where τ is time. Similarly, the right side of the plate is cooled at a

different rate in accordance with TR = −ṪRτ + T0. Without loss of generality,

it is assumed that ṪL ≥ ṪR. Further assuming that the temperature gradient

thereby developed is linear, the thermal strain field becomes

ϵth(Y, t) = α[TL(1 − Y) + TRY − T0] = −ατ[ṪL(1 − Y) + ṪRY] (2.9)
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where α is the coefficient of thermal expansion of the composite in the fiber

direction. Since the total strain is zero, the mechanical strain is ϵm = −ϵth. Its

maximum value, written in the form of Equation 2.8, is

∆max(τ) =
E f αṪLτ

σc
(2.10)

The corresponding strain gradient is

Ψ(τ) = Θ · ∆max(τ) (2.11)

and

Θ = 1 − ṪR

ṪL
(2.12)

All physically-plausible scenarios fall in the domain 0 ≤ Θ ≤ 1.

Illustrative numerical results showing the effects of ρ, E′, and Smc on the

fracture strength and strain are presented in Figures 2.4 and 2.5. They show

that the fracture strain increases monotonically with strain gradient (character-

ized by Θ). The effects are most pronounced for small Weibull moduli (ρ ≤ 5,

typical of SiC fibers). The fracture stress, however, decreases with Θ. The

results also indicate that the fracture stress and strain are insensitive to both

E′ and Smc. This insensitivity arises because, at fracture, the majority of the

material resides in the post-matrix-cracking regime.

Also shown for comparison in Figure 2.4(b) are the predictions based on

the linear softening model and the plateau model. Here the softening model
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yields accurate results over the entire range of ρ and Θ. The plateau model, in

contrast, is adequate at low strain gradients but underestimates the strength

for Θ ≥ 0.3.

A map showing the domains in which the approximate models yield accu-

rate results is presented in Figure 2.6. It comprises three regimes. (i) For small

gradients, characterized approximately by Θ ≤ 1/3, fracture occurs shortly

after the peak in the stress-strain curve. Consequently, all three of the approx-

imate models yield adequate results. The boundary of this domain is almost

independent of ρ. (ii) The plateau model is also accurate in the domain of

very low values of ρ and high strain gradients. This result arises because the

plateau stress is a significant fraction of the peak value at low values of ρ and

thus, under large strain gradients, failure occurs when the peak strain is well

within the plateau domain. (iii) The linear softening model provides adequate

results over the entire parameter space. The inference is that the additional

load-bearing capacity (beyond that at the attainment of the peak stress locally)

is attributable largely to the finite post-peak strain-softening rate; the plateau

flow stress plays a decidedly secondary role.
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2.3.3 Pressurized tube with temperature gradient

The next model problem is that of a thin-walled cylindrical tube. It is sub-

ject, first, to a linear through-thickness temperature gradient, and, second, to a

monotonically increasing internal pressure. Fibers are oriented in the circum-

ferential direction. The rotational symmetry of the problem precludes bend-

ing; however, a net mechanical stress must develop over the cross-section to

counterbalance the internal pressure (Figure 2.3(b)). Combining this equilib-

rium condition with the result in Equation 2.4 yields the reaction force Rx:

Rx =
pd

2hyVf σc
(2.13)

where p is the internal pressure, d is the diameter of the tube, and hy is the

thickness of the wall. With the wall mid-plane held at the stress-free tem-

perature, the thermal strain distribution is ϵth =
α∆T

2
(2Y − 1), where ∆T is

the through-thickness temperature difference and Y = y/hy. The mechanical

strain therefore becomes ϵmech = ϵtot +
α∆T

2
(1 − 2Y), where the total strain

is independent of Y since the tube is thin-walled. Upon normalization this

expression can be rewritten in the form of Equation 2.8, with

Ψ =
E f α∆T

σc
(2.14)

and

∆max = ∆tot +
Ψ
2
=

ϵtotE f

σc
+

Ψ
2

(2.15)
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Taking the temperature difference to be constant, the parameter describing the

loading trajectory is ∆max, which increases monotonically with pressure.

Select numerical results are plotted in Figure 2.7. Here again the failure

strain increases with the gradient (characterized in this case by Ψ), albeit with

a significantly weaker dependence on ρ. Also, the failure stress and strain

exhibit an even weaker dependence on Smc and E′ (not shown) because only a

small portion of the tube wall remains in the elastic domain at fracture.

The failure map for this problem is shown in Figure 2.8. It exhibits charac-

teristics similar to those seen in the previous problem. Notably, for low strain

gradients, all three of the approximate models are adequate since failure oc-

curs shortly after the peak stress is attained locally. The predictions of the

plateau model and the critical strain model begin to break down at a critical

strain gradient, characterized by Ψ ≤ 0.2 (almost independent of ρ), while

the softening model yields accurate results over most of the parameter space.

However, the softening model also eventually breaks down, at very high gra-

dients and high ρ. The increasing error in the predictions from the softening

model with increasing ρ are evident in Figure 2.7(b) for the case Ψ = 0.9.
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2.3.4 Combined bending and tensile loading

The final model problem is that of a beam with rectangular cross-section

subjected to proportional bending plus tension (Figure 2.3(c)). From Euler-

Bernoulli bending theory, the strain distribution is linear through the cross-

section and can be written in the form of Equation 2.8, with

∆max =
ϵmaxE f

σc
(2.16)

and

Ψ =
κhyE f

σc
(2.17)

where ϵmax is the tensile-face strain, κ is the curvature and hy is the beam thick-

ness.

Results for the limiting case of pure bending (λ = π/2) are plotted in Fig-

ure 2.9. In contrast to the preceding model problems, bending failure occurs

in one of two ways:

(i) At low ρ, a limit moment is obtained. Consequently, the tensile-face strain

approaches infinity. Moreover, in the limit state, the stress throughout the

beam is essentially uniform and equal to the plateau flow stress, Spl: the

exception being the compressive face itself, where the stress approaches

−∞. In this domain the plateau model yields exact results; the limit stress is

simply S f
b = 3Spl.
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(ii) At higher values of ρ, a maximum moment is obtained. In this domain, fail-

ure occurs while the peak strain is on the softening portion of the stress-

strain curve and thus the softening model yields highly accurate results.

Furthermore, the failure stress is almost independent of ρ and given to

high accuracy by S f
b = C/(1 +

√
E′), with C = 1.92 (< 2 % error for

1/4 ≤ E′ ≤ 1, ρ ≤ 20)1. Note that in contrast to the other two problems,

the failure load in bending is somewhat sensitive to the elastic modulus,

because much of the material is in compression. Similar results were ob-

tained by Steif and Trojnacki (1994) using a tri-linear representation of the

stress-strain curve. But, because of the absence of an explicit connection

between the post-peak softening rate and the fiber properties as well as

the absence of a plateau flow stress, their model is unable to predict the

behavior at low ρ, especially the nature of the failure condition.

The transition between the two domains is discontinuous and occurs at a crit-

ical value of ρ; for the case shown in Figure 2.9, it occurs at ρ ≈ 4. The plateau

model also predicts a discontinuity, but not at the correct value of ρ. The soft-

ening model, on the other hand, does not predict the discontinuity, though it

is accurate at high ρ. A key conclusion is that, despite the merits of the two

approximate models in certain domains, neither satisfactorily predicts the be-

1The functional dependence of S f
b on E′ was obtained using Curtin’s approximate model.

The parameter C was then obtained by fitting this equation to the exact results from the Hui
model.
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havior across the entire parameter range of interest.

The failure loci for combined bending/tension are plotted in Figure 2.10.

The corresponding map showing the domains in which the approximate mod-

els yield adequate results is in Figure 2.11. For the latter, the gradient is charac-

terized by the tension/bending loading mixity parameter λ. The failure loci in

S f
t –S f

b space are approximately linear for fixed ρ. Indeed, for low ρ and mod-

erately high values of λ, wherein failure occurs via a limit condition, one can

readily show using the plateau model that the failure locus is exactly linear and

given by

S f
t +

S f
b

3
= Spl (2.18)

Interestingly, this result is independent of the peak stress in the fiber bundle

response. But it breaks down at higher ρ and lower λ, wherein failure occurs

while the peak strain is in the softening regime, as evident in the map in Figure

2.11. This behavior is seen in Figure 2.10. For ρ = 3, a discontinuity in the

bending and tensile strengths occurs at low tension/bending mixity λ, since

the failure condition transitions from a limit load to a load maximum.

2.3.5 Comparisons of results from the three model problems

Comparisons of the results from each of the three model problems are made

on the basis of the variation in failure strain ∆ f
max with the strain gradient Ψ f
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at failure (Figure 2.12). Though the trends are qualitatively similar, there are

significant differences in the details. This result is not unexpected, given the

differences in loading trajectories. That is, in the linear temperature gradient

problem, the strain gradient increases proportionally with strain; in the pres-

surized tube problem, the strain gradient is applied first and remains fixed

while the pressure is increased; and for combined bending/tension, the loads

are applied proportionally and thus the strain gradient is neither constant nor

proportional to the maximum strain.

2.4 Discussion

A preliminary assessment of the present model has been made through

comparisons with experimental measurements of failure stresses and strains

under tensile and bending loads. Because of issues of delamination and/or

compressive failure, the data on unidirectional CMCs is neglected. Instead,

only data for composites with multidirectional architectures that are known to

fail in a tensile mode under bending (McNulty and Zok, 1997) are considered.

The data employed here are for a composite consisting of Nicalon fibers in

a [0◦/90◦] layup and a magnesium aluminosilicate (MAS) matrix (Table 2.1).

Both the tensile and compressive surfaces of the bend specimens had been in-

strumented with strain gauges. The ratios of bending/tension strengths and
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failure strains are 1.85–2.2 and 1.4–1.6, respectively. For the model predictions,

a range of values of E′ and Smc that realistically match those obtained from the

measured tensile stress-strain curves (E′ = 0.17–0.25, Smc = 0.3–0.4) is selected.

Furthermore, a fiber Weibull modulus ρ = 4 (typical of Nicalon fibers (Mc-

Nulty and Zok, 1997)) is assumed. The predicted ratios of bending/tension

strength and failure strain are 1.85–2 and 1.5–1.6, respectively. The predic-

tions agree quite well with the experimental results. By comparison, using

the same parameter values along with a critical strain criterion for fracture,

the predicted strength and failure strain ratios are 1.5–1.7 and 1, respectively.

The latter results indicate that neglecting the contribution from the post-peak

regime results in the flexural strength being underestimated by approximately

20 %. The ratio of failure strains is (naturally) underestimated by an even

larger margin. Other mechanics-based models for composite fracture also fail

to accurately predict the ratio of failure strains (Hild et al., 1994; Neumeister,

1993b).

As noted at the outset, the present analysis is predicated on the assumption

of global load sharing (GLS) among fibers: a condition obtained when the in-

terface toughness and sliding stress are low. Otherwise, some degree of stress

concentration is obtained around a fiber failure site (Hedgepeth and van Dyke,

1967). The effects of local load sharing (LLS) on fiber bundle properties have
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been studied by Curtin and co-workers (Zhou and Curtin, 1995; Ibnabdeljalil

and Curtin, 1997a) using three-dimensional lattice spring models. Their results

show that, for spring constants that yield realistic values of stress concentra-

tions around fiber breaks, the fiber bundle strength is reduced only slightly

relative to the GLS prediction and exhibits only a small amount of variability

and volume-sensitivity. Furthermore, the bundle properties follow the same

scalings with the characteristic strength σc and the characteristic length δc. The

inference is that, although the present work has been based on the GLS as-

sumption, the results for LLS conditions are likely to be similar. Furthermore,

the ratios of quantities, such as flexural/tensile strengths, should be predicted

with reasonable accuracy.

Finally, the issue of deformation localization once the stress locally reaches

the peak in the stress-strain curve is discussed. As argued earlier, if a local-

ization band were to spread under an increasing macroscopic load, then other

potential localization sites remote from the first could be triggered. Averaging

the displacements over an appropriate length scale would yield a physically-

meaningful strain. Indeed, this situation is the same as that of a matrix crack

in a CMC bridged by fully-intact fibers under uniaxial tensile loading. In the

latter scenario, the deformation is clearly localized in the vicinity of the crack

(manifested as a crack opening displacement). But, because of structural hard-
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ening (in this case resulting from a rising traction law), other cracks form in an

approximately periodic manner, ultimately reaching a spacing dictated by the

slip length along the fiber-matrix interface; the displacements are averaged ac-

cordingly to yield a macroscopic inelastic strain. There is no reason to believe

that the same macroscopic response—with multiple periodic cracks—should

not be obtained in cases where the traction law associated with a crack exhibits

a softening portion provided the loading is such that crack extension occurs under

an increasing macroscopic load. The expectation therefore is that a cohesive ap-

proach should yield a peak macroscopic load that is virtually identical to that

obtained from a continuum description of the inelastic deformation.

The latter equivalence can be demonstrated using a specific example: the

problem of pure bending of a composite with a low fiber Weibull modulus

and hence a high plateau flow stress. The results in Section 2.3.4 show that, in

this scenario, a limit moment is obtained, with a predicted bending strength of

S f
b = 3Spl. Arguably the problem could be tackled equivalently by considering

the extension of a single localized deformation band from the tensile face to-

wards the compressive face, with a bridging stress equal to Spl. The growth of

the band can be readily computed using a standard cohesive zone approach2.

2The results were computed using the analytical formulae for weight functions on pages
2.13 and 2.27 of Tada et al. (1985), assuming zero crack tip toughness. Note that, since the
bridging stress is constant, there is no additional (bridging) length scale in the problem. A
corollary to this statement is the tacit assumption that the peak crack opening displacement
remains small in relation to the characteristic fiber pull-out length.
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The corresponding fracture resistance curve, couched in terms of the macro-

scopic bending stress and the current length of the localized band, is plotted

in Figure 2.13. The band grows stably from a stress of Spl at its inception to a

maximum value of 3Spl when it reaches the back face: the latter being identi-

cal to that predicted from the limit moment calculation. Despite the utility of

the cohesive zone model in predicting the ultimate bending strength of such

a composite, the model provides no information about the density of local-

ized bands and the associated macroscopic strain. This aspect of the problem

would require consideration of the pull-out lengths of fiber fragments and the

interactions between adjacent localized bands. The result is likely to be very

similar to that obtained from Hui’s fragmentation model.
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Table 2.1: Measured failure strains and stresses in uniaxial tension, four-point
bending, and open-hole tension of a Nicalon/MAS composite (McNulty and
Zok, 1997)

Test Maximum local strain at failure Strength
(%) (MPa)

Uniaxial tension 0.86–0.93 299–324
Four-point bending 1.30–1.40 600–650 (flexural)
Open-hole tension 1.60 –
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Figure 2.1: Comparison of constitutive laws for three typical values of ρ.
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strain and (b) failure strength (i.e. average hoop stress at failure) for the pres-
surized tube problem (E′ = 1/3 and Smc = 0).
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Chapter 3

Steady-state matrix cracking of

unidirectional CMCs in shear

3.1 Introduction

As intimated in Chapter 1, a general constitutive model for the inelastic

mechanical response of fiber-reinforced ceramic composites must account for

both on- and off-axis loading. Therefore, with respect to ply response, the key

inelastic properties are those measured in tension and in shear parallel to the

fiber axis. The latter is the focus of the present chapter. Specifically, the princi-

pal objective is to develop the mechanics underlying the onset of matrix crack-

ing in fiber-reinforced ceramic composites under shear loading. The study is
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restricted to unidirectional materials, with the understanding that some modi-

fication will be required to adapt the results to multidirectional laminates. The

focus is on the stress distributions in the fibers and matrix before and after ma-

trix cracking. The corresponding differences in total potential energy are used

to determine the critical applied shear stress for cracking under steady-state

conditions.

The outline of the chapter is as follows. First, a governing equation,

adapted from the work of Budiansky et al. (1986), is presented for the steady-

state matrix cracking stress in shear. The driving force for crack growth is

seen to depend upon the differences in stresses in the uncracked and cracked

states. Second, the stresses in the uncracked composite are approximated us-

ing an analytical model, originally developed by Hashin and Rosen (1964),

for a cylindrical unit cell undergoing shear loading. Third, the stresses in the

cracked composite are obtained from finite element (FE) analyses of a represen-

tative volume element (RVE). The model employs periodic boundary condi-

tions that ensure stress and displacement continuity between adjacent RVEs.

The approach is highly versatile: effects of fiber volume fraction, fiber and

matrix constitutive properties, matrix crack spacing, and interface constitutive

behavior can be readily explored. Fourth, the results of the FE model are used

to guide the development of approximate analytical solutions for fiber and
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matrix stresses in a cracked composite. Comparison with the FE results shows

that the analytical results yield the correct scalings with constituent proper-

ties. Finally, using the analytical results for the stresses within the fibers and

the matrix in the cracked and uncracked states, expressions are derived for the

steady-state matrix cracking stress in shear. The cracking stress in shear and

that in tension (Aveston et al., 1971; Budiansky et al., 1986) are found to exhibit

similar (though not identical) scalings with the constituent properties.

As a prelude to the results that follow, two key differences between the

shear cracking problem considered here and the tensile cracking problem ad-

dressed by Aveston et al. (1971) and Budiansky et al. (1986) are highlighted.

The discussion is restricted to cases where the fiber/matrix interfaces are ini-

tially unbonded but frictionally-coupled. (Additional complications arise if

the interfaces are initially bonded.) Accompanying schematic illustrations are

shown in Figure 3.1. (i) In tension, prior to cracking, there is no driving force

for interfacial separation or slip and thus the material response is purely elas-

tic: obtaining stresses and strain energies for this state is trivial. In contrast,

when the composite is loaded in shear, the fiber-matrix interface experiences

a shear stress that varies linearly across the fiber diameter: the maximum oc-

curring at the the two ‘poles’ and zero stress occurring along the fiber mid-

plane. This raises the possibility of interfacial slip prior to matrix cracking.
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Furthermore, the non-uniformity of the shear stresses adds complexity to the

prediction of the slip processes. (ii) In tension, after cracking, frictional slip

occurs in an axisymmetric manner, significantly simplifying the stress analy-

sis. In contrast, in shear, frictional slip manifests itself in two distinct ways. In

the first, termed ‘antisymmetric slip’, the average axial displacements of the

fiber and the matrix are identical. (The ‘average’ is computed by integrating

the quantity over the interface at a particular value of the axial coordinate x).

In this case, the matrix slips positively relative to the fiber along one half of the

interface and negatively with respect to the fiber along the other half. In the

second, termed ‘axial slip,’ the average axial displacements of the fiber and the

matrix differ. It is shown below that this occurs as a consequence of the tensile

stresses developed within the fiber after matrix cracking in shear.

3.2 Matrix cracking model

The critical stress for steady-state matrix cracking in shear is derived using

a fracture mechanics-based approach, closely analogous to that presented by

Budiansky et al. (1986) for matrix cracking in axial tension. The driving force

for crack growth is the potential energy difference between the cracked and

uncracked segments; crack growth occurs when this energy difference is equal

to the fracture resistance. Computation of the potential energy difference re-
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quires stresses in the ‘upstream’ and the ‘downstream’ locations with respect

to the crack tip.

The fibers are assumed to be frictionally-coupled but initially unbonded

from the matrix (i.e., the interfacial toughness is zero). It is shown below that,

in cases where the conditions for frictional slip are met in the uncracked state,

the introduction of a matrix crack leaves the shear stresses in the fibers and the

matrix largely unaffected. However, the presence of the matrix crack creates

axial tension in the fibers and axial compression in the matrix. The differences

in these stresses provide the driving force for cracking; the corresponding re-

sistance is the energy needed to create the matrix crack surfaces. The gov-

erning equation for steady-state growth of a shear crack is found through an

adaptation of Equation 11 in Budiansky et al. (1986), notably:

1
2Ac

∞∫
−∞

∫
Ac

(σU − σD) : (ϵU − ϵD)dA dx =
√

2VmGm (3.1)

Here, σ and ϵ are stress and strain tensors, respectively, in the upstream (U)

and downstream (D) locations. The area integral is taken over a representa-

tive cross-sectional area of the composite, Ac, comprising a fiber and the sur-

rounding matrix jacket. The x-direction is aligned with the fiber axis, Gm is the

fracture energy of the matrix, and the factor
√

2 accounts for the fact that the

crack is oriented at 45◦ to the fiber axis. Equation 3.1 assumes that no point on

the fiber-matrix interface experiences variable-direction slip between the up-
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stream and downstream states, and that the slip process at each point occurs

at a constant sliding stress.

As demonstrated in a forthcoming section, the upstream stresses can be

well approximated using an analytical model of a cylindrical unit cell (Section

3.4). In contrast, the downstream stresses are not amenable to a fully ana-

lytical solution. Consequently, finite element analyses (Section 3.3) are used

to generate numerical results that are then used to guide the formulation of

semi-analytical solutions that capture the dominant stress components (Sec-

tion 3.5). The stresses are then combined with Equation 3.1 in order to ascer-

tain the steady-state matrix cracking stress (Sections 3.6 and 3.7).

3.3 Finite element model

3.3.1 Geometry and mesh

One crucial consideration in computational micromechanical modeling is

the fidelity with which heterogeneities in microstructure are captured. In lam-

inates undergoing shear loading, the fibers and the matrix cracks are generally

distributed non-uniformly. Capturing these heterogeneities requires that at

least tens of fibers and several matrix cracks comprise the RVE; the minimum

size of the resulting RVE for a typical composite with fiber diameter d = 10 µm
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would be approximately 100 µm × 100 µm × 1 mm. Assuming that an element

size of d/10 is necessary to properly resolve local stresses, a conservative esti-

mate of the number of elements within such a model is 107: beyond that which

is computationally feasible. (Note that this situation contrasts markedly with

RVE models used to compute the deformation response of polymer matrix com-

posites (PMCs). In PMCs undergoing plastic deformation, the length of the

RVE can be taken to be arbitrarily small, thereby allowing for a large number

of fibers with non-uniform spacing to be readily tackled with existing compu-

tational capabilities (see, for instance, Totry et al. (2010)).)

In order to strike a balance between computational efficiency and model

accuracy, the fibers are assumed to be are arranged in a regular, square ar-

ray and the matrix cracks are assumed to be evenly spaced. The RVE thus

becomes a parallelepiped unit cell, composed of a single fiber enclosed in a

cracked matrix jacket (Figure 3.2(a)). The unit cell is tiled in space in a stag-

gered manner to generate the entire unidirectional composite. The two cell

dimensions transverse to the fiber axis, Ly = Lz, are equivalent to the center-to-

center fiber spacing and the fiber volume fraction is related to the dimensions

by Vf = πd2/4L2
y. The third RVE dimension, Lx, represents the matrix crack

spacing. In principle, the matrix crack can be positioned anywhere within the

RVE; here it is located centrally to preserve the antisymmetry of the deforma-
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tion. The origin of the coordinate system defining material locations is taken

to be the intersection of the matrix crack plane with the fiber axis.

Finite element simulations were conducted in ABAQUS Standard (Version

6.9-EF1, Dassault Systèmes). The mesh was carefully constructed to enable ap-

plication of periodic boundary conditions (Section 3.3.2). Specifically, when a

node exists on the boundary of the RVE, all points equivalent to it—i.e., points

that are periodically related to it—must also exist as nodes on the boundary of

the RVE. This condition was operationally realized using the following proce-

dure. First, a 2-D mesh was generated of a fiber enclosed by a matrix jacket. In

the 2-D mesh, both the left and right edges as well as the top and bottom edges

contained periodic pairs of nodes. Furthermore, the fiber and matrix nodes

were constructed to be coincident at the fiber-matrix interface; this choice was

found to greatly reduce numerical oscillations in contact pressure along the

interface. The mesh was then transformed to create the (45◦) right face of the

unit cell, and was swept in the x-direction to generate the entire parallelepiped.

Because the mesh is swept, the 4-noded elements that comprise the 2-D mesh

become 8-noded bricks within the 3-D mesh. Finally, the matrix crack was in-

serted by dividing the matrix jacket into two separate parts. A typical finite el-

ement simulation used first-order, reduced integration elements (C3D8R) with

a characteristic length of 5 % of the fiber diameter; for typical matrix crack
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spacings (e.g. Lx/d = 10), the total number of elements within the model was

approximately 120 000. For a limited number of representative simulations, a

study was performed to ensure that the quantities of interest (e.g. fiber bend-

ing stress) converged with respect to mesh density.

3.3.2 Boundary conditions

The boundary conditions were designed to create a state of simple shear

and to enforce stress and displacement continuity between adjacent RVEs.

Both objectives are met by utilizing the periodicity condition (Suquet, 1987;

Xia et al., 2003). Displacements on the boundary of a RVE are decomposed

into two parts: a systematic component, which is related to the applied strain

field, and a periodic component, which is generally unknown. The condition

can be expressed as (Suquet, 1987; Xia et al., 2003):

ui = ϵ̂ikxk + u∗
i (3.2)

where ui is the displacement of the point in the i-direction, ϵ̂ik is the tensor of

average applied strains, x is the position of the point, and u∗
i is the periodic com-

ponent of displacement in the i-direction. For points within the RVE that are

equivalent (i.e., periodically related to one another), u∗
i must be identical. This

ensures that the deformations of neighboring RVEs are compatible. By con-

sidering differences in displacements between equivalent points, the periodic
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component of displacement cancels out, which results in a simple relationship

between the displacement difference and the applied strain.

To formulate the displacement difference for the parallelepiped unit cell,

the three pairs of surfaces in the unit cell that are equivalent/periodic (see Fig-

ure 3.2(b)) are identified: (i) the right (R) and left (LF) surfaces of the fiber and

matrix; (ii) the top (T) and bottom (BM) surfaces of the matrix; and (iii) the

front (F) and back (BK) surfaces of the matrix. For surface pair (i), the follow-

ing expressions are obtained:

ux(R)− ux(LF) = ϵ̂xxLx

uy(R)− uy(LF) = ϵ̂yxLx

uz(R)− uz(LF) = ϵ̂zxLx

(3.3)

Similarly, for surface pair (ii),

ux(T)− ux(BM) = −ϵ̂xx∆x + ϵ̂xyLy

uy(T)− uy(BM) = −ϵ̂yx∆x + ϵ̂yyLy

uz(T)− uz(BM) = −ϵ̂zx∆x + ϵ̂zyLy

(3.4)

where ∆x = Ly since the left and right surfaces are oriented at 45◦ to the x-axis.

Ideally, the boundary conditions would be written so that either average

strains or average stresses could be prescribed. In their current form, Equations

3.3 – 3.4 allow only average strains to be imposed. To correct this deficiency,

three ‘fictitious’ nodes, denoted Fx, Fy, and Fz, are constructed. The nodes are

68



fictitious in the sense that they are not part of either the fiber or matrix meshes.

Instead, they are connected to ‘real’ nodes on the RVE boundary through con-

straint equations. A length, L(Fj) = Lj, and an area, A(Fj) = V/Lj, are associ-

ated with each fictitious node Fj (where V = LxLyLz). Each strain component

is written in terms of the displacement of a fictitious node, u(Fj):

ϵ̂ij =
ui(Fj)
L(Fj)

(3.5)

Combining with Equation 3.4, for instance, yields:

ux(T)− ux(BM) = −∆x
Lx

ux(Fx) + ux(Fy)

uy(T)− uy(BM) = −∆x
Lx

uy(Fx) + uy(Fy)

uz(T)− uz(BM) = −∆x
Lx

uz(Fx) + uz(Fy)

(3.6)

Similarly, each stress component is written in terms of the force applied to a

fictitious node, F(Fj):

σ̂ij =
Fi(Fj)
A(Fj)

(3.7)

To impose an average strain, a displacement is applied to the appropriate fic-

titious node according to Equation 3.5; to impose an average stress, a force is

applied according to Equation 3.7. In the case of zero average stress, zero force

is applied to the fictitious node: the node relaxes to ensure that the net reaction

force is zero. The fictitious node approach is versatile in that a mixture of stress

and strain conditions can be enforced. In the case of simple shear loading con-
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sidered here, two strain components are prescribed (ϵ̂xy = 0, ϵ̂yx = γ), and all

stress components apart from σxy (= σyx) are set to zero.

3.3.3 Constitutive behavior

The fibers and matrix were assumed to be linear elastic and isotropic with a

Poisson’s ratio of 0.2 (a value representative of ceramics). Two surface interac-

tions were specified: that between the matrix crack faces (when present) and

that between the fiber and the matrix. The matrix crack faces were allowed

to undergo frictionless slip in the tangential direction and were subjected to

‘hard contact’ in the normal direction. (As a practical matter, the crack faces

are found to separate during shear loading and thus the results are unaffected

by the prescribed contact interaction.) Frictional slip between the fiber and the

matrix was allowed to occur at a critical value of the interfacial shear stress

τs, as in the works of Aveston et al. (1971) and Curtin (1991b). This interac-

tion was implemented in ABAQUS using a Coulomb friction law with a shear

stress ‘cap.’ In this model, no interaction occurs between the fiber and the ma-

trix when the interface is open. In contrast, when the interface is closed, with

contact pressure p > 0, either a ‘sticking’ or a ‘slip’ condition obtains, depend-

ing on the interfacial shear stress. The critical shear stress for slip is defined as

τcr = min(µp, τs) where µ is the friction coefficient and τs is the shear stress
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‘cap.’ When the equivalent shear stress1 along the interface exceeds τcr, the

fiber slides relative to the matrix and the sliding stress along the interface is

equal to τcr; conversely, ’sticking’ occurs if the shear stress is less than τcr. Op-

erationally, a positive contact pressure between fiber and matrix was effected

by specifying a mismatch in thermal expansion coefficients of the two phases,

and subsequently imposing an isothermal temperature change that yielded

the desired average interfacial pressure, p̂. This process also yields residual

axial compression in the fiber and residual axial tension in the matrix (in the

x-direction). The latter stresses are on the order of p̂ (Budiansky et al., 1986). In

order to obtain an approximately constant interfacial sliding stress, the friction

coefficient µ is selected to be large enough so that, when slip occurs, it does so

essentially at τs.

3.4 Response of uncracked composite

3.4.1 Preliminaries

Here solutions are presented for the stress distributions in both phases and

the global response of the uncracked composite under shear loading. The solu-

1The equivalent shear stress is τeq =
√

τ2
xr + τ2

θr, where τxr and τθr are the components of
shear stress in the two tangential directions along the interface. The results of the simulation
demonstrate that τθr = 0 almost everywhere; τeq is dominated by the τxr, the shear stress in
the axial direction.
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tions rely on formulae obtained from analyses of a cylindrical unit cell (Hashin

and Rosen, 1964). The diameter of the matrix jacket in this cell is taken as

dm = d/
√

Vf . Displacements (in cylindrical coordinates) are taken to have the

form:

ur = Cx sin θ

uθ = Cx cos θ

ux =

(
Ar +

B
r

)
sin θ

(3.8)

All stress components are zero, except:

σxθ = G
(

A + C +
B
r2

)
cos θ

σxr = G
(

A + C − B
r2

)
sin θ

(3.9)

where G is the shear modulus of the appropriate phase. There are six unknown

constants: A, B, and C for each of the two phases. They are obtained by assign-

ing appropriate boundary conditions. Continuity of radial displacement (ur)

and shear stress (σxr) must hold at the fiber-matrix interface (r = d/2). The

shear stress σxr at the external boundary (r = dm/2) must equal the applied

shear traction, which has the form τ0
app(r, θ) = τapp sin θ. Also, the applied

shear traction must be in equilibrium with the resultant of the shear stresses

along a plane of constant x. The condition for axial displacements (ux) at the

fiber-matrix interface depends on the state of the interface. That is, when the

applied stress is sufficiently small, the interface remains unslipped and the ax-
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ial displacements in the fiber and the matrix are equal. The solutions for this

scenario are presented in Section 3.4.2. Conversely, when the applied stress

is large, antisymmetric slip occurs between the fiber and the matrix, and the

condition of continuity of ux is no longer met. The pertinent solutions are pre-

sented in Section 3.4.3. The analytical predictions are assessed through com-

parisons with results from finite element solutions for several cases of practical

interest.

With the stresses and strains in hand, the tangent modulus of the unit cell

is derived using the principle of virtual work. All stresses, strains and dis-

placements are expressed in terms of the applied shear load P (for a unit cell

in shear, P = πd2
mτapp/4). The statement reads:∫

V

σ(P) : δϵ(P)dV +
∫
S

τδ∆uτ(P)dS = PδuP(P) (3.10)

where ∆uτ is the difference in axial (ux) displacement between the fiber and

matrix, and uP is the shear displacement of the cell (i.e., the work conjugate to

P).

Using the chain rule,∫
V

σ(P) :
dϵ(P)

dP
δP dV +

∫
S

τ
d∆uτ(P)

dP
δP dS = P

duP(P)
dP

δP (3.11)

Since δP is arbitrary,

dτapp

dγ
=

4Lx

πd2
m

dP
duP

=
4Lx

πd2
m

P∫
V

σ(P) : dϵ(P)
dP dV +

∫
S

τ
d∆uτ(P)

dP dS
(3.12)
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3.4.2 Elastic response

For small applied stresses, the composite response is elastic. In this sce-

nario, analytical solutions for the constants A, B, and C (previously presented

by Hashin and Rosen (1964)) are:

Am =
τapp(Gm + G f )

Gm(GmVm + G f (1 + Vf ))
− C0

Bm =
d2τapp(Gm − G f )

4Gm(GmVm + G f (1 + Vf ))

A f =
2τapp

GmVm + G f (1 + Vf )
− C0

B f = 0

C f = Cm = C0

(3.13)

where C0 is an unknown constant related to rigid body rotation that does not

affect the stresses. Combining with Equation 3.9 yields the pertinent stresses:

σxr, f =
2G f

GmVm + G f (1 + Vf )
τapp sin θ

σxθ, f =
2G f

GmVm + G f (1 + Vf )
τapp cos θ

σxr,m =
Gm(1 − (d/2r)2) + G f (1 + (d/2r)2)

GmVm + G f (1 + Vf )
τapp sin θ

σxθ,m =
G f (1 − (d/2r)2) + Gm(1 + (d/2r)2)

GmVm + G f (1 + Vf )
τapp cos θ

(3.14)

Further combining these results with Equation 3.12 recovers the result for the

shear modulus from the composite cylinder assemblage (CCA) model (Hashin,
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1983):

Gxy =
dτapp

dγ
= Gm

G f (1 + Vf ) + GmVm

G f Vm + Gm(1 + Vf )
(3.15)

Comparisons of stress distributions for one specific case are shown in Figure

3.3. Very good agreement is obtained within the entire fiber and over most of

the matrix volume; differences naturally arise at the cell boundaries because

of the differing cell cross-sections (circular vs. square). Moreover, stress com-

ponents predicted to be zero by the analytical model (σxx, σyy, σzz, and σyz) are

indeed very small (after subtracting the residual stresses) in the finite element

simulations (not shown). Analogous comparisons for other material property

combinations yielded similarly good agreement.

Comparisons of the global shear response are presented in Figure 3.4. Here

the fiber is assumed to be ceramic grade Nicalon (210 GPa), the fiber volume

fraction is 0.2 or 0.4, and the matrix modulus Em is selected to be representative

of one of three common matrix materials: 37 GPa for carbon, 100 GPa for glass-

ceramics, and 400 GPa for SiC. For all cases, the analytical predictions and the

computational results agree to within 0.6 %. The agreement indicates that the

difference in the unit cell geometry in the finite element and analytical models

is inconsequential for prediction of macroscopic properties.
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3.4.3 Inelastic response

For sufficiently large applied stresses, the composite response is inelastic

because antisymmetric slip occurs between the fiber and matrix. The condition

of continuity of ux at r = d/2 is replaced by the condition that the shear stress

σxr at r = d/2 must equal the frictional sliding stress, which must take the

form τ(r, θ) = τs2 sin θ. To maintain consistency with the FE model, where

|τ(r, θ)| = τs everywhere, the effective sliding stress τs2 is selected to be that

which gives the equivalent frictional dissipation during sliding, notably τs2 =

4τs/π. Using these formulae yields:

Am =
τapp − τs2Vf

GmVm
− C0

Bm =
d2(τapp − τs2)

4GmVm

A f =
τs2

G f
− C0

B f = 0

C f = Cm = C0

(3.16)

Combining with Equation 3.9 gives the stresses as:

σxr, f = τs2 sin θ

σxθ, f = τs2 cos θ

σxr,m =
(τapp − τs2Vf )− (τapp − τs2)(d/2r)2

Vm
sin θ

σxθ,m =
(τapp − τs2Vf ) + (τapp − τs2)(d/2r)2

Vm
cos θ

(3.17)
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Additionally, the tangent modulus at large applied stresses becomes

dτapp

dγ
= Gm

Vm

1 + Vf
(3.18)

This is identical to the shear modulus predicted by the CCA model (Equation

3.15) when G f → 0. The applied stress, τtr
app, at which the response transitions

from Equation 3.15 to Equation 3.18 can be derived by equating the interfacial

shear stress for the unslipped composite to the shear sliding stress. Doing so

yields:

τtr
app =

G f (1 + Vf ) + GmVm

2G f
τs2 (3.19)

For typical constituent properties, τtr
app is of the same order as τs.

Comparisons of stress distributions in the fiber and the matrix for one case

are shown in Figure 3.5. Again, very good agreement is obtained between ana-

lytical predictions and computational results over most of the unit cell volume;

differences arise at the cell boundaries because of differences in cell geometry.

The predicted global responses (plotted in Figure 3.6) are also in close agree-

ment. Specifically, the tangent moduli in the high stress domain agree within

2 % for all cases. The stress at which the behavior transitions from elastic to

inelastic is also predicted fairly well, although the computational stress-strain

curve is somewhat ‘smeared’ at the transition point. The latter occurs because

the interfacial shear stress distribution must transition from the sinusoidal spa-

tial variation to a step-like one over a finite strain range.
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3.5 Response of cracked composite

3.5.1 Preliminaries

No simple analytical model exists for the stresses in the cracked unit cell.

Consequently, finite element simulations are employed to establish the form

of the dominant stress components for cases of practical interest, and, in turn,

to develop approximate analytical solutions for these stress components. The

baseline FE simulation assumes a matrix crack spacing of Lx/d = 10, which

is large enough to differentiate the stresses arising from the presence of the

matrix crack from the far-field stresses. The parameter values for this and

other simulations are summarized in Table 3.1.

The principal result that arises from the FE simulations is that large bend-

ing and tensile stresses develop within the fiber adjacent to the matrix crack,

as conjectured by Brøndsted et al. (1994). To illustrate, the distribution of σxx

within the fiber (at z = 0) for the baseline simulation is shown in Figure 3.7.

The maximum tensile stress within the fiber, roughly 1.3 GPa, is more than

an order of magnitude larger than the applied shear stress (100 MPa). Fur-

thermore, the difference between the magnitude of stresses on the tensile and

compressive faces indicates that a net tensile stress—again, significantly in ex-

cess of the applied shear stress—is also present.
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3.5.2 Free body analysis

The origin of the tensile and bending stresses in the fibers can be under-

stood through a two-dimensional free body analysis of the unit cell (Figure

3.8(a)). (For convenience, the unit cell selected for this analysis differs slightly

from the one depicted in Figure 3.2, in that the matrix crack planes lie along

the left and right surfaces rather than in the cell center.) The R vectors are force

resultants, obtained by integrating the traction over the surface. As discussed

by Xia et al. (2003), the average stress within the unit cell, σ̂, can be expressed

as

σ̂ij =
1
V

∫
V

σij dV =
1
V

∫
S

σikxjnk dS =
1
V

∫
S

Tixj dS (3.20)

where V is the volume of the unit cell (V = LxLyLz), n is the surface normal,

and T is the surface traction. Combining this equation with the condition of

stress periodicity yields the following relationships:

σ̂xx =
1
V
(R f xLx − RmxLy)

σ̂xy =
1
V

RmxLy

σ̂yx =
1
V
(R f yLx − RmyLy)

σ̂yy =
1
V

RmyLy

(3.21)
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Solving (with σ̂xy = σ̂yx),

R f x = (σ̂xx + σ̂xy)LyLz

Rmx = σ̂xyLxLz

R f y = (σ̂yy + σ̂xy)LyLz

Rmy = σ̂yyLxLz

(3.22)

For shear loading, σ̂xx = σ̂yy = 0 and σ̂xy = σ̂yx = τapp. Therefore, the force

resultants become

R f x = τappLyLz

Rmx = τappLxLz

R f y = τappLyLz

Rmy = 0

(3.23)

The net tension arises because R f x is not zero. Rearranging Equation 3.23 (us-

ing Ly = Lz and Vf = πd2/4L2
y) reveals that both the average tensile and

average shear stresses on the fiber at the matrix crack plane equal τapp/Vf .

Ancillary relationships are established by enforcing mechanical equilib-

rium for the individual phases (fiber and matrix) of the composite (Figures

3.8(b) and (c)). Considering first the matrix, a pressure distribution must de-

velop along the fiber-matrix interface in order to preserve angular equilibrium.

The results of the finite element simulation indicate that the ‘contact patch’ be-

tween fiber and matrix is confined to a small region around the matrix crack of
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length ≈ (1–1.5)d (in the x-direction). This is indicated schematically by a dis-

tributed load in Figure 3.8(b). The fiber must be subjected to a distributed load

of equal magnitude and of opposite sign. Inspection of Figure 3.8(c) clearly

reveals that local bending of the fiber in the vicinity of the matrix crack will

result.

3.5.3 Fiber stress distribution

The importance of the various stress components within the fiber can be

parsed in an approximate way by considering their relative contributions to

the total elastic strain energy. This analysis (which neglects the Poisson effect)

reveals that, for the unit cell with crack spacing Lx/d = 10, σxx accounts for

75–80 % of the strain energy in the fiber and σxy accounts for an additional

10 %. The strain energy from the remaining stress components is mostly con-

fined to a narrow ‘core’ adjacent to the matrix crack, where contact stresses are

significant: approximately 95 % of this remaining strain energy lies within a

distance Ly of x = 0.

In light of the preceding results, the dominant stresses within the fiber

can be captured by accounting for bending and axial tension in the follow-

ing way. Shear stresses within the fiber are entirely attributable to bending;

these stresses are significant compared to the bending stresses because the
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length over which bending persists is not very large compared to the fiber

diameter (i.e., the Bernoulli-Euler assumption does not hold). Equation 3.23

implies, crucially, that both the average shear and the average axial stress in

the fiber at x = 0 scale with τapp/Vf . Therefore, a suitable normalization (de-

noted by an overbar) for fiber stresses is σ = σVf /τapp. Positions and other

geometrical quantities are normalized by the fiber diameter: e.g. x = x/d,

A = A/d2 = π/4, I = I/d4 = π/64, where x is the axial coordinate, A is

the area of the fiber, and I is the second moment of area. Two functions are

taken as unknown: the normalized moment, M(x) = M(x)Vf /(τappd3), and

the normalized axial stress, σ(x) = σ(x)Vf /τapp. Using these normalizations,

σxx and σyy within the fiber can be expressed as

σxx(x, y) =
Vf

τapp
σxx(x, y) =

M(x)
I

y + σ(x) (3.24)

and

σxy(x) =
Vf

τapp
σxy(x) =

1
A

dM(x)
dx

(3.25)

where σxy is the average shear stress over the fiber cross-section. The normal-

ized distributions M(x) and σ(x), depicted in Figures 3.9 and 3.10, are ob-

tained by fitting the σxx stresses from the FE simulations to the form suggested

by Equation 3.24. That Equation 3.24 describes the stress distribution well can

be seen in Figure 3.7: at a given value of x, the distribution in σxx is approx-

imately linear in y. The agreement between M obtained from Equation 3.24

82



and that obtained from Equation 3.25 (not shown) is also quite good. Taken

together, these results indicate that fiber bending and tension are indeed the

dominant deformation modes.

The results for M(x) for the base simulation are shown by the solid line in

Figure 3.9; those for all other simulations (summarized in Table 3.1) are shown

by the dashed lines. Evidently, M(x) is insensitive to the interfacial slid-

ing stress, interfacial pressure, and matrix crack spacing (provided it is large

enough that no interaction between matrix cracks occurs), and only weakly

sensitive to the ratio of the matrix modulus to fiber modulus. Any effect aris-

ing from these variables reflects minor changes in the shape of the pressure

distribution at the fiber-matrix contact patch. Furthermore, normalization of

the fiber stress by τapp/Vf essentially eliminates the effects of both τapp and Vf ,

consistent with the conclusions drawn from the free body analysis.

Representative numerical results for the axial fiber stress distribution σ(x)

are shown in Figure 3.10 for the base simulation with Lx/d = 15. (Results

for the other simulations (not shown) are similar, with exceptions discussed

below.) The axial stress in the fiber is largest at x = 0 and decays away from the

matrix crack plane because of frictional slip between the fiber and the matrix.

The distribution of axial stress in the fiber can be rationalized using a basic

shear-lag model. In this model, the stress decays away from the matrix crack at
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a rate dσ/dx = −4τs/d until it reaches its initial (residual) value. The resulting

stress distribution is given by

σ(x) ≈


1 −

4τsVf

τapp
|x|, |x| < Lax

σ
f ,I
xx Vf

τapp
, |x| ≥ Lax

(3.26)

where σ
f ,I
xx is the residual stress in the fiber and Lax = Lax/d is the normalized

axial slip length. Equating the two expressions in Equation 3.26 yields the slip

length:

Lax ≈
τapp/Vf − σ

f ,I
xx

4τs
(3.27)

The predictions of the shear-lag model are in excellent agreement with the

FE results over much of the slip zone; discrepancies arise only in the ‘core’

region (within a distance of about ± (1–2)d from the crack plane) and in the

transition zone to the residual stress. The latter is a consequence of elastic

shear transfer where the interfacial shear stress is insufficient for axial slip.

(Additional discrepancies arise when the axial slip length exceeds the length

of the RVE, but these are merely artifacts of the finite RVE length, selected for

computational expediency; the real composite would be essentially infinitely

long before the first steady-state matrix crack would emerge and thus there

would be no interactions with the boundaries.)

The agreement between the shear-lag model and the FE results breaks

down when partial separation between the fiber and matrix occurs. This be-
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havior is observed in the ‘core’ region, as well as when as the interfacial pres-

sure, p̂, becomes vanishingly small. If the interface is partially separated, the

stress decay occurs at a rate lower than that predicted by the shear-lag model,

which is based on full contact. But the results in this limit are not expected to

be representative of real composite materials. The reason is that, whereas the

model assumes that no shear stresses can be transmitted along the interface for

even an infinitesimal separation distance, the finite roughness of real interfaces

will enable such transfer even after separation is predicted to occur. Thus, the

shear-lag model should provide a satisfactory description of the axial stresses

even in regions where the computational model predicts partial separation.

3.5.4 Matrix stress distribution

The dominant stress components in the matrix are σxx, σxy, and σxz; the

cumulative strain energy from these components comprises 70–85 % of the to-

tal strain energy in the matrix (for Lx/d = 10), depending somewhat on the

fiber volume fraction. (The contribution is even larger for larger matrix crack

spacings.) The axial compressive stress σxx counterbalances the axial tension

in the fiber. The shear stresses σxy and σxz arise from shearing of the matrix

jacket, and are present even in the uncracked unit cell (Section 3.4). The re-

maining stress components are again confined to the ‘core’ region surrounding
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the crack: approximately 85 % of the strain energy from σyy, σyz, and σzz lies

within ±Ly of x = 0.

Figure 3.11 shows comparisons of the shear stresses (σxy and σxz) in the ma-

trix of the cracked body at the edge of the core region (at |x| = Ly) and those in

the uncracked body, at an applied stress significantly larger than the interfacial

sliding stress. Evidently the matrix shear stresses are almost identical before

and after matrix cracking. Moreover, at greater distances from the crack plane

(|x| > Ly), the stresses grow ever closer and become identical in the limit as

|x| → ∞. The key implication is that the potential energy difference associated

with matrix shear stresses is negligible (apart from that inside the core region).

The axial compressive stress in the matrix can be estimated reasonably

well by utilizing the approximate2 condition for force equilibrium: σ
f
xx(x)Vf +

σm
xx(x)Vm = 0. Rearranging this equation yields the matrix stress in terms of

the axial tension in the fiber:

σm
xx(x) = −

Vf

Vm
σ

f
xx(x) = −

τapp

Vm
σ(x) (3.28)

In the context of the potential energy change given by Equation 3.1, the stress

in Equation 3.28 represents the only significant contribution from the matrix.

2The exact force equilibrium condition involves equilibrium on planes oriented at 45◦, as
discussed in Section 3.5.2. However, the approximate load equilibrium condition is highly
accurate outside of the core region.
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3.6 Matrix cracking in shear

The preceding results for stresses are utilized to determine the matrix

cracking stress in the limit of large axial slip lengths. (The same limit was con-

sidered by Aveston et al. (1971) in deriving their classical result for the matrix

cracking stress in uniaxial tension.) In this limit, the potential energy change

arising from stress components confined to the near-crack (‘core’) region are

neglected.3 Furthermore, provided the stress for cracking is sufficiently high

to cause slip to occur before cracking, the shear stresses in the constituents

outside of the core region are largely unaffected by the presence of the crack

and thus the only relevant stress differences, σU − σD, derive from the axial

stresses σxx. The governing equation for steady-state matrix cracking, Equa-

tion 3.1, becomes:

d
2

∞∫
−∞

[
Vf

E f

(
σ

f ,U
xx − σ

f ,D
xx

)2
+

Vm

Em

(
σm,U

xx − σm,D
xx

)2
]

dx =
√

2VmGm (3.29)

Clearly, the upstream axial stresses are simply the residual stresses:

σ
f ,U
xx = σ

f ,I
xx

σm,U
xx = σm,I

xx

(3.30)

where

Vf σ
f ,I
xx + Vmσm,I

xx = 0 (3.31)

3Note that consideration of these energies would reduce the estimate of the matrix cracking
stress.
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The downstream axial stresses in the slipped region (|x| < Lax) are given ap-

proximately by Equations 3.26 and 3.28. Upon combining the expressions for

the upstream and downstream stresses with the governing equation for crack

growth (Equation 3.29), the steady-state matrix cracking stress is obtained:

τcr =

(
12
√

2V2
f V2

mE f EmτsGm

Ecd

)1/3

− Vmσm,I
xx (3.32)

For comparison, the tensile cracking stress in the absence of residual stress, σ0
1 ,

originally derived by Aveston et al. (1971), is:

σ0
1 =

(
12V2

f E f E2
c τsGm

VmE2
md

)1/3

(3.33)

Combining with Equation 3.32 yields:

τcr =
21/6VmEm

Ec
σ0

1 − Vmσm,I
xx (3.34)

This equation represents one of the key results of the present work. In the

absence of residual stress, the ratio of cracking stresses in shear and in tension

is given by

τcr,0

σ0
1

=
21/6VmEm

Ec
(3.35)

For typical values of constituent properties, this ratio equals 0.2–0.6.
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3.7 Matrix cracking stress for arbitrary in-plane

loading

The preceding results for matrix cracking in shear and in tension are ex-

tended to cracking under arbitrary in-plane loadings, again subject to the as-

sumptions of large-scale slip and of slip preceding matrix cracking. Two fur-

ther assumptions are made. (i) The matrix crack normal is oriented an an-

gle θ to the fiber axis. (ii) The normal stress transverse to the fiber axis does

not affect the cracking stress. The latter assumption is justified on the basis

that this stress component does not alter the axial stresses in the fiber or the

matrix. This assumption also implies that the transverse stress does not alter

the interfacial constitutive behavior (e.g. by causing interfacial separation). A

free-body analysis of a unit cell with a crack oriented at θ (analogous to that in

Section 3.5.2) shows that the average fiber stress at the crack plane is given by

σ
f
xx(0) =

σapp + τapp tan θ

Vf
(3.36)

where σapp and τapp are the applied normal and shear stresses, respectively.

The governing equation for steady-state matrix cracking, Equation 3.1, be-

comes:

d
2

∞∫
−∞

[
Vf

E f

(
σ

f ,U
xx − σ

f ,D
xx

)2
+

Vm

Em

(
σm,U

xx − σm,D
xx

)2
]

dx = VmGm sec θ (3.37)
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where the term sec θ accounts for the area associated with an inclined crack.

The upstream axial stresses are given simply by the elastic solution (incorpo-

rating residual stresses):

σ
f ,U
xx =

E f σapp

Ec
+ σ

f ,I
xx

σm,U
xx =

Emσapp

Ec
+ σm,I

xx

(3.38)

The downstream axial stresses in the slipped region are given by the shear-lag

result (Equations 3.26 and 3.28), modified using Equation 3.36 to account for

an arbitrarily oriented crack:

σ
f ,D
xx =


σapp + τapp tan θ

Vf
− 4τs|x|, |x| < Lax

E f σapp

Ec
+ σ

f ,I
xx , |x| ≥ Lax

(3.39)

and

σm,D
xx (x) =

σapp − Vf σ
f ,D
xx (x)

Vm
(3.40)

Proportional loading, characterized by λ = σapp/τapp, is assumed. Upon sub-

stituting the expressions for the upstream and downstream stresses (Equations

3.38–3.40) into the governing equation for crack growth, the steady-state crack-

ing stresses, σcr
app and τcr

app, are obtained:

σcr
app =

λVmEmσ0
1 (sec θ)1/3 − λVmEcσm,I

xx

Ec tan θ + λVmEm

τcr
app =

VmEmσ0
1 (sec θ)1/3 − VmEcσm,I

xx

Ec tan θ + λVmEm

(3.41)

90



In the limit of uniaxial tension (λ → ∞, θ = 0), Equation 3.41 reduces to the

tensile cracking stress derived by Budiansky et al. (1986):

σcr = σ0
1 − Ec

Em
σm,I

xx (3.42)

Also, in the limit of pure shear (λ → 0, θ = π/4), it reduces to Equation 3.34

in the preceding section. An additional case of interest is one in which tension

is applied at 45◦ to the fiber axis. Here the steady-state cracking stress (again,

in the fiber coordinate system) becomes:

σcr
app = τcr

app =
21/6VmEmσ0

1 − VmEcσm,I
xx

Ec + VmEm
(3.43)

so that the 45◦ tensile cracking stress is:

σcr
45 = 2σcr

app = 2
21/6VmEmσ0

1 − VmEcσm,I
xx

Ec + VmEm
(3.44)

In the absence of residual stress, each of these stresses scales with σ0
1 . Since

VmEm < Ec, the order of the cracking stresses follows: σcr > σcr
45 > τcr.

The results in Equation 3.41 can also be expressed in the form of a ‘yield

surface’ in σ-τ space by eliminating λ. The result is

σcr
app +

Ec

VmEm
τcr

app tan θ = σ0
1 (sec θ)1/3 − Ec

Em
σm,I

xx (3.45)

The form of the yield surface is illustrated in Figure 3.12 for representative

values of VmEm/Ec (absent residual stress). The surfaces are constructed by

assuming that the matrix crack is oriented normal to the maximum principal

stress.
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3.8 Discussion

Extension of the preceding results on unidirectional plies to composites

with multi-directional reinforcement (e.g. cross-ply laminates) requires account-

ing for stresses induced by the incompatibility between deformations of indi-

vidual plies. Consider, for instance, a cross-ply laminate loaded in uniaxial

tension at ±45◦ to the fibers. A continuum-level treatment, in which each ply

is treated as a homogeneous, elastic, orthotropic medium, reveals the follow-

ing effects (Pipes and Pagano, 1970). Each ply experiences not only σ45, the

macroscopic applied tension at 45◦, but also a shear stress that arises from the

incompatibility of ply deformations. Its magnitude is Cσ45, where C is propor-

tional to the difference between the axial and transverse stiffnesses of an indi-

vidual ply. However, at a crack (or any free surface) oriented perpendicular to

the direction of loading, the shear stress must vanish. Therefore, interlaminar

stresses must arise at the intersection of the crack with the inter-ply boundary.

These stresses decay rapidly away from the crack, over a length scale propor-

tional to the ply thickness.

To our knowledge, a micromechanical analysis of stresses arising from

incompatible ply deformations has yet to be conducted. The preceding

continuum-level analysis, however, implies that these stresses can be ne-

glected if either (i) the external state of loading does not give rise to macro-
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scopic ply deformations that are incompatible (a notable example being shear

loading); or (ii) the axial and transverse ply stiffnesses are similar, or, equiva-

lently, the fiber and matrix moduli are similar. Therefore, the results presented

in Section 3.6 (on matrix cracking in pure shear) are expected to be applica-

ble to all cross-ply laminates (regardless of constituent properties); conversely,

those in Section 3.7 (on cracking under arbitrary in-plane loads) would be re-

stricted to cross-ply laminates in which the matrix and the fibers exhibit similar

stiffness. When the ‘incompatibility stresses’ are non-negligible, as can be de-

duced from an analysis similar to that in Pipes and Pagano (1970), they provide

another contribution to the crack driving force and thus reduce the estimate of

the steady-state matrix cracking stress.
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Table 3.1: Parameters used for FE simulations of cracked unit cell.

Vf Lx/d E f Em τs p̂ τapp
(GPa) (GPa) (MPa) (MPa) (MPa)

Base simulation 0.4 10 210 100 10 50 100
Other 0.2 15 100 37, 400 2 5 40

No applied load

Applied load,

uncracked

Applied load,

cracked

No applied load

Applied load, 

uncracked

Unslipped

(small τ
app

)

(a) TENSION

(b) SHEAR

Lax

Matrix

Fiber

Matrix

Fiber

Applied load, 

cracked

Slipped

(large τ
app

)

Lax

Figure 3.1: Development of frictional slip in a unidirectional CMC in (a) ten-
sion and (b) shear.
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Figure 3.2: Parallelepiped unit cell used in finite element model.
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Figure 3.3: Contour plots of σxy and σxz from the analytical model (cylindrical
unit cell) and the finite element model for the uncracked, elastic composite
(Vf = 0.4, E f = 210 GPa, Em = 100 GPa, p̂ = 50 MPa, and τapp = 100 MPa).
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Figure 3.4: Analytical predictions and finite element results of the global
stress-strain behavior of the uncracked, elastic composite for various values
of matrix modulus and fiber volume fraction (E f = 210 GPa and p̂ = 50 MPa).
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Figure 3.5: Contour plots of σxy and σxz from the analytical model (cylindrical
unit cell) and the finite element model for the uncracked, inelastic composite
(τapp = 100 MPa, Vf = 0.4, E f = 210 GPa, Em = 100 GPa, p̂ = 50 MPa, and
τs = 10 MPa).
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Figure 3.6: Analytical predictions and finite element results of the global
stress-strain behavior of the uncracked, inelastic composite for various values
of matrix modulus and fiber volume fraction (E f = 210 GPa, p̂ = 50 MPa, and
τs = 10 MPa).
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Chapter 4

Remediation of the

Genin-Hutchinson constitutive

model for CMC laminates

This chapter is adapted from a peer-reviewed publication: V. P. Rajan and F. W. Zok.
Remediation of a Constitutive Model for Ceramic Composite Laminates. Composites Part A,
52:80–88, 2013. Available at: http://dx.doi.org/10.1016/j.compositesa.2013.05.010
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4.1 Introduction

Chapter 1 provided motivation for the development of a physically-valid,

experimentally-validated constitutive model for CMC laminates at the compo-

nent scale. It would enable, for instance, prediction of knockdown factors due

to stress concentrations such as holes and notches: a result that presently can-

not be obtained from micro-scale mechanics analyses. Genin and Hutchinson

(1997) attempted to develop such a constitutive model. The Genin-Hutchinson

(GH) model is closely analogous in many respects to deformation theory

for metal plasticity; it can be readily calibrated using standardized mechan-

ical tests and implemented in finite element codes as a user-defined material

model. However, the model suffers from numerical convergence problems,

which arise from the fact that the model predicts strain-softening in the post-

matrix cracking regime even when the stress-strain curves used for calibration

exhibit strain hardening.

In this chapter, the source of instability in the GH model is identified, and

the model formulation is remedied to ensure stability for strain-hardening ma-

terials. The modifications to the original model are necessarily minimal, in

order to retain the positive features of the original formulation: notably, the

excellent agreement between experimental and predicted stress-strain curves

for 45◦ tension and pure shear (Genin and Hutchinson, 1997), as well as be-
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tween experimental and predicted strains in notched tension tests (McNulty

et al., 1999).

The outline of the chapter is as follows. First, the essential features of the

original GH model are recapitulated. Second, a mathematically-equivalent in-

cremental version of the model is derived. Here the increments in stress are

related to increments in strain via a tangential stiffness matrix that depends on

the current stress state. Third, it is demonstrated that, for certain anisotropic

laminates, the incremental model, and hence the original model, can be unsta-

ble after matrix cracking. Fourth, the incremental formulation is modified to

ensure stability. This is accomplished by judiciously adjusting the entries in

the tangential stiffness matrix so it is positive-definite for all strain-hardening

laminates. The remedy has been devised to not only ensure stability but also

satisfy a number of additional conditions, notably, that: (i) the stress-strain re-

lationships in the elastic domain are preserved exactly; (ii) the responses in 0◦

tension, 45◦ tension, equibiaxial tension, and pure shear are recovered; (iii) it

reduces to the original model for the special case of a quasi-isotropic laminate;

and (iv) it be based in part on the mechanics of CMC laminates after matrix

cracking (rather than being purely mathematical). The modified version of the

model is shown to satisfy all of the aforementioned conditions. Finally, this

model is applied to simulate open-hole tension tests of CMC plates. Whereas
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the finite element simulations employing the original model fail to converge

for certain inelastically-anisotropic laminates, the new model exhibits no such

convergence problems. Furthermore, the original and modified models yield

identical results for quasi-isotropic laminates, as required.

The weakness of the remediation approach is that it is necessarily ad hoc.

Ideally, in converting a deformation theory into an incremental theory, a yield

surface and a flow rule would be utilized. However, our ad hoc incremen-

tal formulation should be sufficient for scenarios in which material elements

undergo nearly proportional straining: a limitation also of the original GH

formulation.

4.2 Original formulation of GH model

In its original formulation, the GH model expresses the stress state in

terms of the total strain components. The procedure, described in Genin and

Hutchinson (1997), is summarized below. It is restricted to loadings with pro-

portional straining and thus the axes of principal strain are assumed not to

rotate significantly during deformation.

The contributions of principal stresses to the principal strains are assumed

to be additive when the principal strains are oriented along directions of ma-
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terial symmetry. For principal strains oriented at 0◦, the strains are written

as

ϵI = f0(σI) + f0T(σI I)

ϵI I = f0T(σI) + f0(σI I)

(4.1)

Similarly, for principal strains oriented at 45◦ to the fiber directions:

ϵI = f45(σI) + f45T(σI I)

ϵI I = f45T(σI) + f45(σI I)

(4.2)

Here the functions f are stress-strain curves measured in uniaxial tension tests

conducted at either 0◦ or 45◦. f0 and f45 refer to normal strains aligned with

the load axis, whereas f0T and f45T refer to normal strains transverse to the

load axis. Considering the special case of equibiaxial loading (σI = σI I = σ),

wherein the axes of principal stress are indeterminate, the four functions f are

found to be related by

f0(σ) + f0T(σ) = f45(σ) + f45T(σ) (4.3)

Hence, only three of the four functions are independent. Equation 4.3 has

been shown to be approximately satisfied by stress-strain curves measured on

a SiC/CAS [0◦/90◦] laminate (Genin and Hutchinson, 1997).

Non-linearity in the GH model is couched in terms of so-called ‘stress

deficits’: that is, differences between elastic and actual stress values. The elas-

tic stresses are obtained from Hooke’s law. For instance, when the principal
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strains are oriented at 0◦, the elastic (principal) stresses are given by σ0
el,I

σ0
el,I I

 =

 E0
1−ν2

0

ν0E0
1−ν2

0

ν0E0
1−ν2

0

E0
1−ν2

0


 ϵI

ϵI I

 = C0
el

 ϵI

ϵI I

 (4.4)

where C0
el is the elastic stiffness matrix for principal strains oriented at 0◦.

Similarly, the elastic (principal) stresses for principal strains oriented at 45◦

are  σ45
el,I

σ45
el,I I

 =

 E45
1−ν2

45

ν45E45
1−ν2

45

ν45E45
1−ν2

45

E45
1−ν2

45


 ϵI

ϵI I

 = C45
el

 ϵI

ϵI I

 (4.5)

Using these results, the stress deficits at 0◦ can be written as∆σ0
I

∆σ0
I I

 = C0
el

 ϵI

ϵI I

−

Σ0(ϵI , ϵI I)

Σ0(ϵI I , ϵI)

 (4.6)

The Σ terms in Equation 4.6 correspond to the solution (inversion) of Equation

4.1. A similar statement can be written for the 45◦ direction, with the Σ terms

corresponding to the solution (inversion) of Equation 4.2.

To obtain the stress deficits at the angle of principal strains, θϵ, the stress

deficits at 0◦ and 45◦ are interpolated in accordance with

∆σθϵ
I = ∆σ0

I cos2(2θϵ) + ∆σ45
I sin2(2θϵ)

∆σθϵ
I I = ∆σ0

I I cos2(2θϵ) + ∆σ45
I I sin2(2θϵ)

(4.7)
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Combining the previous results:σθϵ
I

σθϵ
I I

 = Cθϵ
el

 ϵI

ϵI I

− cos2(2θϵ)

C0
el

 ϵI

ϵI I

−

Σ0(ϵI , ϵI I)

Σ0(ϵI I , ϵI)




− sin2(2θϵ)

C45
el

 ϵI

ϵI I

−

Σ45(ϵI , ϵI I)

Σ45(ϵI I , ϵI)




(4.8)

It can further be shown through standard procedures of coordinate transfor-

mations that

Cθ
el = C0

el cos2(2θ) + C45
el sin2(2θ) (4.9)

so Equation 4.8 reduces toσθϵ
I

σθϵ
I I

 = cos2(2θϵ)

Σ0(ϵI , ϵI I)

Σ0(ϵI I , ϵI)

+ sin2(2θϵ)

Σ45(ϵI , ϵI I)

Σ45(ϵI I , ϵI)

 (4.10)

Because the shear stress deficit is assumed to be zero, the actual shear stress

(again, oriented at θϵ) is merely the elastic shear stress:

τθϵ =
E45 − E0

2(1 + ν45)(1 + ν0)
(ϵI − ϵI I) sin(4θϵ) (4.11)

4.3 Incremental formulation of GH model

The objective in this section is to convert the original GH model into an

incremental formulation. Not only is the incremental formulation useful for
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assessing stability, but it is also amenable to modification to correct instabili-

ties, as demonstrated below.

4.3.1 Approach

Consider two strain/stress states: the current state, denoted by the super-

script c, and the new state, denoted by the superscript n. The states are related

to one another by a prescribed strain increment. The goal is to determine the

new stress state (or, equivalently, the increments in each of the stress compo-

nents) in terms of the strain increment and the current strain and stress states.

The current strain state is given by two principal strains oriented at the

principal angle, θc
ϵ, expressed generally as:

ϵc = [ϵc
I , ϵc

I I , 0] (4.12)

The increment in strain is also oriented at θc
ϵ. Although proportional straining

is assumed, a non-zero shear strain component is allowed in order to assess

stability with respect to any incremental deformation. The incremental strain

tensor is thus expressed as:

dϵ = [dϵI , dϵI I , dγ] (4.13)

Increments in principal strains are first-order in dϵI and dϵI I , but are only

second-order in dγ. If the increment is small, the latter term is negligible.
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Conversely, the increment in θϵ (the orientation of the principal strain axes)

is first-order in dγ, and higher-order in the other components. Therefore, the

shear strain increment rotates the principal axes while leaving the magnitudes

of the principal strains unchanged, and vice versa for the normal strain incre-

ments.

The new strain state, oriented at an angle θn
ϵ , is thus given by

ϵn = [ϵo
I + dϵI , ϵo

I I + dϵI I , 0] (4.14)

where

θn
ϵ = θc

ϵ + dθϵ (4.15)

and

dθϵ =
dγ

2(ϵo
I − ϵo

I I)
(4.16)

The stresses in the current state are also rotated into θc
ϵ. Since the principal

axes of stress and strain do not necessarily coincide, a nonzero shear stress

component may also be present, and thus the current stress state is written as

σc = [σc
I , σc

I I , τc] (4.17)

4.3.2 Formulation

The incremental model is derived by linearizing Equations 4.10 and 4.11

about dϵ = 0.
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Using Equation 4.1, the following result is obtained:dϵI

dϵI I

 =

 f ′0(σ
0
I ) f ′0T(σ

0
I I)

f ′0T(σ
0
I ) f ′0(σ

0
I I)


dσ0

I

dσ0
I I

 = S0(σ)

dσ0
I

dσ0
I I

 (4.18)

where the prime symbols denote derivatives. Similarly, using Equation 4.2,dϵI

dϵI I

 =

 f ′45(σ
45
I ) f ′45T(σ

45
I I )

f ′45T(σ
45
I ) f ′45(σ

45
I I )


dσ45

I

dσ45
I I

 = S45(σ)

dσ45
I

dσ45
I I

 (4.19)

Expanding Equation 4.10 about dϵ = 0 yieldsσn
I

σn
II

 = cos2(2(θc
ϵ + dθϵ))

Σ0(ϵc
I + dϵI , ϵc

I I + dϵI I)

Σ0(ϵc
I I + dϵI I , ϵc

I + dϵI)



+ sin2(2(θc
ϵ + dθϵ))

Σ45(ϵc
I + dϵI , ϵc

I I + dϵI I)

Σ45(ϵc
I I + dϵI I , ϵc

I + dϵI)


(4.20)

where σn
I,I I are normal stresses oriented at θn

ϵ . Substituting the previous results

into Equation 4.20 and neglecting higher-order terms yieldsdσI

dσI I

 = 2 sin(4θc
ϵ)dθϵ


Σ45(ϵc

I , ϵc
I I)

Σ45(ϵc
I I , ϵc

I)

−

Σ0(ϵc
I , ϵc

I I)

Σ0(ϵc
I I , ϵc

I)




+

([
S0(σc)

]−1
cos2(2θc

ϵ) +
[
S45(σc)

]−1
sin2(2θc

ϵ)

)dϵI

dϵI I


(4.21)

Note that the first term scales with the product of a modulus and dγ (per Equa-

tion 4.16), whereas the second term scales with the product of a modulus and
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dϵI,I I . For nearly proportional straining, the former term is negligible in com-

parison to the latter. Using this simplification yields the result:dσI

dσI I

 =

([
S0(σc)

]−1
cos2(2θc

ϵ) +
[
S45(σc)

]−1
sin2(2θc

ϵ)

)dϵI

dϵI I

 (4.22)

Finally, linearizing the shear stress equation yields

dτ =
E45 − E0

2(1 + ν45)(1 + ν0)
(4(ϵc

I − ϵc
I I) cos(4θc

ϵ)dθϵ + (dϵI − dϵI I) sin(4θc
ϵ))

(4.23)

4.4 Assessment of stability

4.4.1 Stability criterion

As discussed by Hill (1958), a structure is stable if the condition

d2W =
∫

V

1
2

dσ : dϵ dV ≥ 0 (4.24)

is satisfied for the strain increment dϵ associated with any incremental dis-

placement dq of the structure (Bažant and Cedolin, 2010). For Equation 4.24 to

hold, it is sufficient that the second-order work be positive ‘in the small’ (Maier

and Hueckel, 1979; Bigoni and Hueckel, 1991). This implies that the condition

dσ : dϵ ≥ 0 (4.25)
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should be satisfied locally, for every material element. Equation 4.25 imposes

a condition on the constitutive law: notably, that the tangential stiffness ma-

trix, Cij = dσi/dϵj, be positive-definite (Bigoni and Hueckel, 1991), or, equiv-

alently, that the symmetric part of the tangential stiffness, (C + CT)/2, pos-

sess no negative eigenvalues. This condition will be used to assess stability

in the present work. Since Equation 4.25 implies positive material stiffness

in every strain direction, it is not expected to hold for strain states in which

the input stress-strain curves exhibit strain-softening. Conversely, the stabil-

ity condition should be satisfied when the input stress-strain curves exhibit

strain-hardening.

The incremental formulation, described above, involves changes in the

magnitudes of the stress components and rotation of the stress vector through

the angle dθϵ. To assess stability using Equation 4.25, the incremental stress

and strain vectors must be written with respect to the same coordinate axes.

For this purpose, the new stress vector, oriented at θn
ϵ , is rotated back to the

current principal axes, oriented at θc
ϵ. Neglecting higher-order terms, the prin-

cipal stress increment (Equation 4.22) remains unchanged, but the shear stress
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increment has an additional term, now written as:

dτc =
E45 − E0

2(1 + ν45)(1 + ν0)
(4(ϵc

I − ϵc
I I) cos(4θc

ϵ)dθϵ + (dϵI − dϵI I) sin(4θc
ϵ))

+ (σc
I − σc

I I)dθϵ

(4.26)

Using Equations 4.22 and 4.26, he stability of the incremental formulation can

now be assessed. Furthermore, since the two formulations of the model are

mathematically equivalent, conclusions regarding the stability of the incre-

mental formulation are also applicable to the original formulation.

Using the preceding framework, two types of instabilities are found in the

inelastic regime: one associated with Equation 4.26, and the other with Equa-

tion 4.22. Each, in turn, is described below.

4.4.2 Shear strain instability

Establishing general conditions for stability is difficult (and not particularly

enlightening), so a special case is examined here: notably, a uniaxial tension

test conducted in the 0◦ direction. The material is assumed to have ν0 = 0

(not unreasonable for CMCs). Then, an incremental shear strain is applied.

Obviously, ϵc
I I = 0, σc

I I = 0, dϵI = dϵI I = 0, θc
ϵ = 0 and ν45 = 1 − E45/E0.
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Defining β = E45/E0, Equation 4.26 simplifies to

dτc =
−2E0(1 − β)

(2 − β)
ϵc

Idθϵ + σc
I dθϵ (4.27)

A good approximation of the first principal stress is σc
I = αE0(ϵ

c
I − ϵmc) +

E0ϵmc, where α is the ratio of the post-matrix cracking modulus to the pre-

matrix cracking modulus in the 0◦ direction, and ϵmc is the matrix cracking

strain. Since dθϵ is proportional to dγ, stability requires that dτcdθϵ ≥ 0. Fol-

lowing some algebra, the stability condition is obtained:

1 − α − 1
ϵc

I/ϵmc − 1
≤ β

2 − β
(4.28)

It is trivial to show that, although this equation is automatically satisfied for

elastically-isotropic materials (β = 1), it is not generally true for elastically-

anisotropic materials. For one set of typical values of material parameters (α =

1/4, ϵmc = 0.001, ϵc
I = 0.006), stability requires that β exceed 0.71. Laminates

in which the fiber modulus is significantly higher than the matrix modulus

(perhaps because of remnant porosity in the matrix) are unlikely to satisfy this

condition.
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4.4.3 Principal strain instability

Here, a uniaxial tension test conducted at 45◦ is examined. In this case,

Equation 4.22 reduces todσc
I

dσc
I I

 =
[
S45(σc)

]−1

dϵI

dϵI I

 (4.29)

and thus the stability condition is satisfied if S45 is positive-definite. Note

that, after matrix cracking, the compliances in the 45◦ and 45◦-transverse di-

rections are essentially equal and of opposite sign because of ‘fiber scissoring’

(see Equation 4.3). So:

S45 =

 f ′45(σ
45
I ) f ′45T(σ

45
I I )

f ′45T(σ
45
I ) f ′45(σ

45
I I )

 =

 1/E45,pmc −ν45/E45

−1/E45,pmc 1/E45

 (4.30)

where the subscript ‘pmc’ denotes post-matrix cracking. If the material is

elastically-isotropic, but inelastically very anisotropic (for instance, E0 = E45 =

200 GPa, ν0 = ν45 = 0.1, and E45,pmc = 5 GPa), it is readily seen that S45 is

non-positive-definite. This result arises because of the large dissimilarity in

the off-diagonal terms that describe coupling between strains and stresses in

orthogonal directions.
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4.4.4 Numerical calculations

To illustrate the effects of the instabilities in finite element analyses, the

uniaxial tension tests described above were simulated using ABAQUS Stan-

dard (Version 6-9.2, Dassault Systèmes) with the original GH model as a user-

defined constitutive law. Relatively coarse meshes (16 four-noded, quadrilat-

eral, plane stress elements), depicted in Figure 4.1(b) and 4.1(d), were used.

(Note that mesh refinement does not fix, and can actually exacerbate, the con-

vergence problems associated with unstable materials.) In an attempt to sup-

press local material instabilities, automatic stabilization (damping) was em-

ployed.

The input stress-strain curves for the 0◦ tension test of the elastically-

anisotropic material are shown in Figure 4.1(a). The stress-strain curves are

bi-linear, with elastic constants E0 = 200 GPa, ν0 = 0.1, and E45 = 100 GPa.

Thus β = E45/E0 = 0.5, below the predicted critical value for stability (0.71) in

Equation 4.28. In the post-matrix cracking regime, the tangent moduli of the

0◦ and 45◦ stress-strain curves are equal.

The stress in the direction of loading is plotted in Figure 4.2(a) for all in-

tegration points within the mesh. In the elastic regime and in a portion of

the inelastic regime, each element possesses a positive-definite tangential stiff-

ness matrix. No instability results, and the stress-strain curve predicted by
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the finite element analysis therefore agrees with the 0◦ stress-strain curve ( f0)

used as input. However, at a sufficiently large strain in the inelastic regime,

the smallest eigenvalue of the symmetric part of the tangential stiffness ma-

trix becomes negative (see Figure 4.2(c)), causing the stiffness matrix to lose

positive-definiteness. When this occurs, the numerical solver (based on the

Newton-Raphson method) encounters convergence difficulties. As a conse-

quence, the stresses at the integration points diverge from the 0◦ stress-strain

curve. The magnitude of the errors exceeds 25%.

Next the tensile response of an inelastically-anisotropic material (defined in

Figure 4.1(c)) in the 45◦ orientation is examined. Once again, bi-linear behavior

is assumed. The material is elastically-isotropic, so the shear strain-induced

instability illustrated above does not arise. However, inelastic anisotropy is

present: the ratio of the post-matrix cracking moduli being E45,pmc/E0,pmc =

1/100.

The normal stress in the 0◦ direction (not in the loading direction) is plotted

in Figure 4.2(b) for all integration points within the mesh. Once again, the

elastic behavior is correctly modeled by the finite element simulation, while

the inelastic behavior is poorly modeled due to convergence problems. Loss

of positive-definiteness occurs immediately after matrix cracking, as indicated

in Figure 4.2(d). The errors in the computed stresses exceed 20% for several
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integration points. (The normal stress in the loading direction—at 45◦ to the

fiber axes—displays lower error, because errors of opposite sign in the normal

and shear stresses at 0◦ tend to cancel one another out.)

In the relatively simple loadings and geometries considered here, the fi-

nite element analyses yield inaccurate results. In other circumstances (such as

those considered below), the finite element solver can fail to converge entirely.

This can occur, for instance, when more complex geometries are simulated.

4.5 Remediation of instabilities

As demonstrated, the instabilities associated with the original model pre-

vent accurate finite element simulations for certain anisotropic materials. The

problem is remedied by adjusting the entries of the tangential stiffness matrix

in the inelastic domain. The adjustments are physically motivated, as opposed

to being purely mathematical. One adjustment corrects for the problem of the

shear strain instability in elastically-anisotropic materials; the other addresses

the problem of the principal strain instability in inelastically-anisotropic ma-

terials. Stability of the new model is ensured by verifying that the tangential

stiffness matrix is positive-definite when the input stress-strain curves exhibit

strain-hardening.
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4.5.1 Shear strain instability

Prior to matrix cracking, shear-extension coupling can exist if E0 ̸= E45.

Specifically, a difference in principal strains causes shear stresses to develop if

the orientation of the principal axes lies between 0◦ and 45◦. The original GH

model predicts that, even after matrix cracking, shear stresses within the mate-

rial continue to rise with additional normal strain. This scenario is somewhat

implausible, however, since matrix cracking alleviates the constraint that gives

rise to shear-extension coupling. Contrary to the original model, it is expected

that matrix cracking causes a de-coupling of shear and extension, and thus no

additional shear stress should build up from this coupling. It is therefore as-

sumed that increments in shear stress in the inelastic regime are caused solely

by increments in shear strain. But the proportionality constant cannot be cho-

sen arbitrarily: the requirement of objectivity must be enforced (Bažant, 1983).

Specifically, for quasi-isotropic materials, the axes of principal stress and strain

must be aligned. Therefore, in the incremental model, these axes must rotate

by the same angle. As noted by Bažant (1983), this requirement is equivalent

to the relationship

dτc = (σc
I − σc

I I)dθϵ =
σc

I − σc
I I

2
(
ϵc

I − ϵc
I I
)dγ (4.31)

where both the stress and the stress increment are oriented at θc
ϵ. Since the pro-

portionality constant is guaranteed to be positive, this modification resolves
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the problem of shear strain instability. Note that Equation 4.31 is identical

to that in the original GH model for laminates that are elastically-isotropic

(E0 = E45).

The elimination of the shear-extension coupling term renders the tangen-

tial stiffness matrix in the modified model orthotropic in the inelastic do-

main. Therefore, the modified model can be classified as an incrementally

orthotropic model, as discussed by Bažant (1983).

4.5.2 Principal strain instability

As noted previously, the principal strain instability arises because the de-

scription of the coupling between stresses and strains in the two principal di-

rections is incomplete. To properly describe this coupling, the phenomenon of

fiber scissoring must be taken into account.

Scissoring represents a low-stiffness deformation mode in which fibers ro-

tate and bend in order to align themselves with the load axis. It occurs in the

inelastic domain, wherein matrix cracks partially alleviate the constraints on

fiber motion. Scissoring does not operate in the elastic domain (provided the

matrix is sufficiently stiff) nor when the load is aligned with one of the fiber

axes (i.e. at 0◦ or 90◦).
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The GH model evidently fails to capture the scissoring mechanism. A par-

ticular example, shown in Figure 4.5, illustrates the point. A [0◦/90◦] laminate

is first loaded in tension at 45◦ to the fiber axes, along the I-direction defined

in Figure 4.5. This loading produces a series of periodic matrix cracks normal

to the I-direction. The laminate is subsequently loaded by a pair of incremen-

tal stresses ∆σ in the I- and I I-directions, with ∆σI I ≫ ∆σI . The compliance

matrix from the original GH model, notably

S45 =

 f ′45(σ
45
I ) f ′45T(σ

45
I I )

f ′45T(σ
45
I ) f ′45(σ

45
I I )

 (4.32)

would predict that the incremental strain in the I-direction would be much

greater than that in the I I-direction. In contrast, upon consideration of the

scissoring process, the magnitudes of the incremental strains are expected to

be reversed.

Here an alternative compliance matrix to describe the strains resulting from

fiber scissoring is proposed. To this end, the cracked matrix is conceptualized,

to a first approximation, as a very compliant elastic medium with a large fail-

ure strain: an assumption also made in models of the post-cracking response of

CMCs under 0◦ loading (Curtin, 1991b). In order for scissoring to be treated as

an elastic phenomenon, the compliance matrix must be symmetric. (This sym-

metry makes sense in physical terms: when fiber scissoring is the predominant
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mode of deformation, large transverse strains should develop for stresses ap-

plied in either of the principal directions.) Additionally, the compliance matrix

must preserve the 45◦, 45◦-transverse, and equibiaxial stress-strain relations.

The simplest compliance matrix that satisfies these conditions is

S45 =

 f ′45(σ
45
I ) f ′45T(σ

45
I )

f ′45T(σ
45
I ) f ′45(σ

45
I )

 (4.33)

Here the second principal stress plays no role because the first principal stress

governs the state of damage and therefore the propensity for scissoring to oc-

cur.

The response of real laminates is expected to fall between the extremes of

Equation 4.33, which accounts for fiber scissoring, and Equation 4.32, which

accounts for fiber stretching and fragmentation. It is assumed that, for general

loading in the θ-direction, the pertinent compliance is a weighted sum of those

in Equations 4.32 and 4.33. Enforcing the condition that the stress-strain curves

for uniaxial tension at 0◦ and 45◦ should be recovered, the new compliance

matrix becomes

Sθ = Dθ

 f ′θ(σ
θ
I ) f ′θT(σ

θ
I )

f ′θT(σ
θ
I ) f ′θ(σ

θ
I )

+ (1 − Dθ)

 f ′θ(σ
θ
I ) f ′θT(σ

θ
I I)

f ′θT(σ
θ
I ) f ′θ(σ

θ
I I)

 (4.34)

where Dθ is a constant that characterizes the tendency of the laminate to scis-

sor in the θ-direction. It is defined such that, when Dθ = 1, the compliance
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matrix is governed by fiber rotation (scissoring); conversely, when Dθ = 0, it

is governed by fiber stretching and fragmentation.

In implementing this modification in the GH model, only D0 and D45 are

required; in general, these quantities will be different from one another. In

the 0◦ direction, the fibers are aligned with the load axis, so there is no ten-

dency to scissor and thus D0 = 0. In contrast, in the 45◦ direction, the laminate

may undergo scissoring, so 0 ≤ D45 ≤ 1. For a quasi-isotropic laminate, D45

must equal 0, since the 0◦ and 45◦ directions are equivalent. In contrast, for

a [0◦/90◦] laminate, deformation is expected to be dominated by the scissor-

ing mechanism; therefore, D45 should be close to unity. Determination of the

precise value of D45 for the latter laminate is outside the scope of this work;

micro-mechanical models may be required for this task. However, as shown in

Section 4.6.2, stress distributions that arise during on-axis loading of [0◦/90◦]

laminates are insensitive to D45.

For D45 = 1, the modified compliance matrix, and therefore the tangential

stiffness matrix, is positive-definite when f ′45(σ
45
I ) > − f ′45T(σ

45
I ). This condi-

tion is automatically satisfied, per Equation 4.3.

127



4.5.3 Material instability

The aforementioned approach remedies material instability in the GH con-

stitutive model. It yields a tangential stiffness matrix that is guaranteed to be

positive-definite provided the stress-strain curves used for calibration exhibit

strain hardening. One possible criticism of this strategy is that physically re-

alistic instabilities, resulting from fiber fragmentation or shear banding (Hui

et al., 1995; Cady et al., 1995a), may be artificially suppressed. The counter-

argument is that the input stress-strain curves f0 and f45 could be readily mod-

ified to account for phenomena that lead to instabilities in the 0◦ and 45◦ di-

rections. If, for instance, a strain softening portion were included in f45, the

model would predict a negative shear stiffness and the formation of a shear

band; if, on the other hand, a softening portion were included in f0, the model

would predict a negative tensile stiffness and the formation of a tensile crack.

Furthermore, since the 0◦ and 45◦ tension tests probe the extremes of the com-

posite response, it seems unlikely that instabilities would occur for loadings at

intermediate angles if these instabilities were not present in the input stress-

strain curves. Although this approach requires further experimental and theo-

retical study for validation, it appears to offer a promising route for modeling

material instability in CMC laminates.
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4.5.4 Criterion for inelasticity

The modified constitutive model requires a criterion to distinguish be-

tween the elastic and inelastic regimes, since the procedures for computing

stresses differ in the two regimes. For instance, in the original GH model, in-

elasticity is deemed to occur if any of the stress deficits are non-zero. But, this

criterion leads to contradictory results if the matrix cracking stresses or strains

differ in the 0◦ and 45◦ directions. To demonstrate the contradiction, consider

a material element undergoing equibiaxial stressing with a stress σ = σI = σI I

in the range σ45
mc < σ < σ0

mc. The original GH model predicts a nonzero stress

deficit in the 45◦ direction (since ∆σ45
I > 0) and a zero stress deficit in the 0◦

direction (since ∆σ0
I = 0). Therefore, per Equation 4.7, if the principal stresses

are considered to be aligned at 45◦, the material element is deemed to be inelas-

tic, but if the principal stresses are considered to be aligned at 0◦, the material

element is deemed to be elastic. This result is contradictory since the axes of

principal stress are arbitrary for equibiaxial stressing.

The contradiction arises from the assumption that matrix cracking is gov-

erned only by the largest principal stress: a natural consequence of the stress

deficit criterion for matrix cracking. Therefore, if this criterion is used, both

the original and modified GH models are appropriate only for materials that

possess (nearly) identical matrix cracking stresses and strains in the 0◦ and 45◦
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directions. While this condition may be approximately satisfied in CMCs with

relatively dense, stiff matrices, e.g. SiC/CAS, it will not be satisfied in CMCs

with compliant, weak matrices, e.g. C/C. (According to the categorization

scheme of Evans and co-workers, the former composites are Class II materials

whereas the latter are Class III. The classes can be distinguished by the ratio of

the matrix shear modulus to the fiber Young’s modulus (Cady et al., 1995a).)

The modified GH model would be suitable for elastically-anisotropic ma-

terials provided that a different criterion for matrix cracking were employed.

This criterion remains to be developed. As argued above, it would need to

involve the second principal stress, to avoid the contradiction that arises for

equibiaxial stressing.

In this work, the stress deficit criterion is used to assess the presence of

matrix cracking within an element. Therefore, the finite element simulations

that use the modified GH model are limited to elastically-isotropic laminates.

For these materials, the shear strain instability discussed previously becomes

irrelevant. However, the original GH model remains unsuitable for finite

element calculations because of the principal strain instability that arises in

inelastically-anisotropic materials.
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4.5.5 Predictions for simple loading scenarios

By inspection, the modified model agrees with the original model for 0◦

and 45◦ tension. The models also agree for equibiaxial tension, according to

Equation 4.3.

For the case of pure shear, the predictions of the original and modified

models are somewhat different. In the original model, the tangent shear com-

pliance in the inelastic domain is well approximated by

dγ

dτ
≈ f ′45(τ)− f ′45T(τ) (4.35)

In the modified model, the material is somewhat more compliant in shear:

dγ

dτ
≈ (1 + D45)( f ′45(τ)− f ′45T(τ)) (4.36)

Since the tangent modulus in the inelastic regime is usually very small

(roughly 1–5 GPa)—that is, the response is nearly perfectly-plastic (McNulty

et al., 1999; Genin and Hutchinson, 1997)—the factor 1 + D45 will have only

a small influence on the shear flow stress. The predictions of the modified

model are therefore expected to be almost indistinguishable from the experi-

mental results for the loading scenarios considered in Genin and Hutchinson

(1997): 0◦ tension, 45◦ tension, and pure shear.

For a quasi-isotropic laminate, the shear-extension coupling term is zero,

and the material does not scissor in either the 0◦ or 45◦ direction, so D0 =
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D45 = 0. Therefore, not only is the pure shear behavior identical in the modi-

fied and original models, but the models are actually equivalent.

4.6 Open-hole tension simulations

4.6.1 Simulations

For ease of implementation, the constitutive equations in the modified

model are integrated explicitly using the modified Euler scheme discussed by

Sloan et al. (2001). The scheme utilizes automatic sub-stepping to limit the

error arising from the integration procedure to within a prescribed error toler-

ance for each time step. It has been implemented in a user-material subroutine

(UMAT) for use in ABAQUS.

The UMATs for the modified and original models are utilized to simulate

an open-hole tension test of a composite laminate. Two materials are inves-

tigated. In one simulation, the laminate is elastically isotropic but inelasti-

cally anisotropic, with stress-strain curves identical to those depicted in Figure

4.1(c). In this simulation, the original GH model is expected to fail to converge

in the inelastic domain, due to material elements that are unstable. In contrast,

the modified GH model is expected to remain stable and encounter no conver-

gence problems throughout the inelastic domain. In the second, the geometry
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and loading are identical to the first, but the laminate is quasi-isotropic. The

45◦ stress-strain curve is modified to have a tangent modulus of 50 GPa in the

inelastic domain, so that f45 = f0. As noted above, the modified and original

models are expected to yield identical results for this material and, for both

models, all material elements should be stable.

The finite element simulation was conducted in ABAQUS Standard (Ver-

sion 6.9-2, Dassault Systèmes). The specimen geometry is depicted in Figure

4.3. The plate width is five times the hole diameter. A quarter-symmetry fi-

nite element model is employed, with four-noded, quadrilateral, plane-stress

elements. Load is applied in the y-direction (i.e. at 90◦). A study was per-

formed to ensure that the stresses and strains converged with respect to mesh

density. For the quasi-isotropic material, the scissoring parameters D0 and D45

both equal 0, by definition. For the inelastically anisotropic material, these

parameters were set to 0 and 1 for the 0◦ and 45◦ directions, respectively. To

explore the sensitivity of the results to D45, a simulation was also run using

the minimum value of this parameter that guaranteed stability (D45 = 0.76).

4.6.2 Results

For the quasi-isotropic laminate, stresses and strains in the direction of

loading for the modified and original models are virtually identical to one an-
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other (within 0.05 %) in both the elastic and inelastic regimes, as expected. The

computed stress concentration factor k at the hole edge, normalized by that ob-

tained in the elastic domain, kel, is plotted in Figure 4.4(a) against the applied

net-section stress, σnet, normalized by the matrix cracking stress, σmc. The re-

sults show that stress redistribution due to inelasticity initially mitigates the

stress concentration at the hole edge, thereby allowing the laminate to sustain

larger loads before tensile fracture: a common feature in CMCs. More im-

portantly, the stress concentration factors predicted by both models are iden-

tical. Furthermore, the tangential stiffness matrix for every element remains

positive-definite throughout both simulations, and no convergence difficulties

are encountered.

In contrast, for the anisotropic laminate, stresses and strains for the two

models differ slightly, since the scissoring adjustment is present in the modi-

fied model but absent in the original model. Therefore, the stress concentration

factors, shown in Figure 4.4(b), are also slightly different (by approximately

0.3–0.6 % after net-section matrix cracking). The original model yields unsta-

ble behavior after matrix cracking. As a consequence, the solver eventually

fails to obtain a solution; in the present case, this occurs at an applied stress of

σnet/σmc = 1.34. The stress history for one unstable element (see Figure 4.3)

is plotted in Figure 4.6. The stresses (σyy, in the direction of loading) initially
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increase monotonically and smoothly; however, at σnet/σmc = 1.15, matrix

cracking commences within the element. The tangential stiffness matrix loses

positive-definiteness shortly thereafter, causing the stresses to diverge and the

stress history to lose monotonicity. The stress history for the same element in

the modified model is also plotted in Figure 4.6; the element is seen to exhibit

stable behavior.

The simulation using the value D45 = 0.76 yields results almost identical

to those for D45 = 1. The discrepancy between the axial stresses along the net-

section symmetry plane (i.e. the incipient fracture plane) is very small: less

than 0.2 % for all values of applied stress. Results for the stress concentration

factor for D45 = 0.76 are shown in Figure 4.4(b). They indicate that the stress

concentration factor is essentially independent of D45. Physically, these re-

sults arise because, in notched tension simulations, the 0◦ properties dominate

the behavior, whereas the shear properties have a decidedly secondary effect.

This fact can be verified by comparing the stress concentration factor for the

quasi-isotropic material (in which the laminate is stiff in shear) with that for

the anisotropic material (in which the laminate is compliant in shear after ma-

trix cracking). Recall that the only effect of D45 is to marginally alter the shear

compliance in the post-matrix cracking regime; D45 leaves the 0◦ response un-

changed. The implication is that, for open-hole tension tests, D45 can be set to
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unity without greatly affecting the accuracy of the results. However, for tests

in which the shear properties predominate, the scissoring parameter must be

selected more carefully.

The assumption of nearly proportional straining, used to derive the in-

cremental model, was checked numerically for both the quasi-isotropic and

anisotropic laminates. The orientation of the axes of principal strain (θϵ) was

found to rotate by less than 0.1 rad (5.7◦) for almost all elements. In a few ele-

ments along the hole boundary, which experienced larger shear strains, θϵ ro-

tated by a larger angle, with the maximum rotation angle being 0.35 rad (20◦).

Therefore, the strains are nearly proportional for the vast majority of the lam-

inate; the presence of mildly non-proportional straining in a small number

of elements is surmised to negligibly affect the accuracy of the finite element

analysis.
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Figure 4.1: (a) Input stress-strain curves and (b) finite element mesh for a sim-
ulation of an elastically-anisotropic material in 0◦ tension. (c) Input stress-
strain curves and (d) finite element mesh for a simulation of an inelastically-
anisotropic material in 45◦ tension.
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Figure 4.2: Normal stresses parallel to the fiber directions at all integration
points within the two finite element models defined in Figure 4.1: (a) 0◦ ten-
sion of the material defined in Figure 4.1(a) and (b) 45◦ tension of the material
defined in Figure 4.1(c). Smallest eigenvalue of the symmetric part of the tan-
gential stiffness matrix in each test ((c) and (d)). Loss of positive-definiteness
occurs when the smallest eigenvalue becomes negative.
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Figure 4.3: Finite element mesh used to compute stress concentrations in open-
hole tensile specimens. The element labeled A is the one interrogated to obtain
the results in Figure 4.6.
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Figure 4.4: Stress concentration factor at hole edge vs. applied stress for (a) the
quasi-isotropic material and (b) the inelastically-anisotropic material. Results
for the original and modified GH models are shown. For the anisotropic ma-
terial, two values of D45 (0.76 and 1) are examined. The stress concentration
factor is normalized by that in the elastic domain. The applied stress is com-
puted on a net-section basis and is normalized by the matrix cracking stress.
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Figure 4.5: Deformation of a cracked crossply laminate undergoing fiber scis-
soring. The behavior predicted by the GH model is shown at top right; that
expected from consideration of fiber scissoring is shown at bottom right.
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cific unstable element (indicated in Figure 4.3) in the notched tension simula-
tion. Stresses are plotted at all four integration points within the element.
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Chapter 5

Stress distributions in notched

CMC laminates

5.1 Introduction

In this chapter, the effect of notches on stress distributions in CMC lami-

nates is investigated. In tough CMCs, inelasticity arising from matrix cracking

and fiber fragmentation redistributes stress away from notches, thus enabling

This chapter is adapted from a peer-reviewed publication: V. P. Rajan and F. W. Zok. Stress
Distributions in Bluntly-Notched Ceramic Composite Laminates. Composites Part A, 60:15–23,
2014. Available at: http://dx.doi.org/10.1016/j.compositesa.2014.01.010
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design of components with complex geometric features and with attendant

stress concentrations using elastic analyses and low ‘knock-down’ factors. The

principal goal of this chapter is to predict these stress fields using an analyti-

cal framework, the accuracy of which is assessed by finite element simulations

that utilize the modified GH model. As part of a broader effort to assess notch-

sensitivity, the analytical stress fields could be used subsequently for predict-

ing fracture (associated with the onset of fiber bundle rupture and localization

of deformation).

The chapter is organized in the following way. Finite element analyses of

notched CMC plates are conducted using the modified GH constitutive model,

developed in Chapter 4. For the purpose of generating generally applicable re-

sults and identifying important trends, the tensile stress-strain curves used to

calibrate the model are idealized as being bilinear. This is followed by pre-

sentation of the proposed analytical framework, which is based on Neuber’s

law (Neuber, 1961) for stress concentration factors (SCFs) in elastic-plastic ma-

terials. Using this framework, solutions are derived for both SCFs and near-

notch stress distributions in CMC laminates exhibiting bilinear tensile behav-

ior. The latter are based on a series of proposed linear transformations to the

elastic stress distributions. The predicted SCFs and stress distributions are

then assessed through comparisons with results from FEA. Effects of the post-
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cracking tangent modulus, the degree of in-plane anisotropy, and the notch

size and shape are examined. The study is directed at systems in which the

matrix modulus is of the same order as the fiber modulus and which therefore

exhibit minimal elastic anisotropy. This behavior is obtained in SiC/SiC com-

posites. Effects of elastic anisotropy, obtained in C/C, C/SiC and some oxide

composites (Cady et al., 1995a; Heathcote et al., 1999), are not considered.

5.2 Finite element analysis

5.2.1 Constitutive law

The material response is taken to follow a modified form of the Genin-

Hutchinson constitutive model for CMC laminates (Chapter 4). To recapit-

ulate, the model is calibrated using measurements from two types of tensile

tests: parallel to one of the fiber directions (in the 0◦/90◦ orientation) and at

45◦ to this direction. For each test, both the longitudinal and the transverse

(in-plane) strains are measured. The longitudinal and transverse strain-stress

functions in the 0◦/90◦ orientation are denoted f0 and f0T, respectively. Simi-

larly, at 45◦, the functions are denoted f45 and f45T.

The subsequent numerical simulations are based on the assumption that f0

and f45 are bilinear functions of applied stress, each characterized by: (i) a
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Young’s modulus, E = E0 = E45, (ii) a matrix cracking stress, σmc = σmc,0 =

σmc,45, and (iii) a post-cracking tangent modulus, EP, which may differ in the

0◦ and 45◦ directions (Figure 5.1). The transverse strain function f0T obtained

in the 0◦/90◦ orientation is assumed to be linear with applied stress in both

the elastic and the post-cracking domains (Poisson’s ratio = 0.1). This assump-

tion is supported by experimental studies which have shown that, following

cracking, the transverse strain in this orientation either remains constant or

decreases only very slightly in magnitude (McNulty et al., 1999; Lynch and

Evans, 1996). Since the Poisson’s ratio of these composites is small (< 0.2), the

elastic strains themselves are small and hence deviations from linearity have

little effect on the notched composite behavior.

The baseline case is taken as one for which: (i) the normalized post-

cracking tangent modulus in the 0◦/90◦ orientation, defined as α ≡ EP
0 /E0,

is 1/4 (a value representative of [0◦/90◦] elastically-isotropic laminates with a

fiber volume fraction of 50 %); and (ii) the post-cracking response is isotropic

(EP ≡ EP
45/EP

0 = 1) and hence f45 = f0. A limited parametric study is also

conducted to assess the effects of both the post-cracking tangent modulus

(α = 1/10), and the inelastic anisotropy (EP = 1/5 and 1/50).

When loaded in the ±45◦ direction beyond the cracking stress, the latter

laminates exhibit some degree of ‘scissoring’: a deformation mode in which
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fibers rotate towards the direction of the largest principal stress. In the modi-

fied Genin-Hutchinson model, the propensity for scissoring in this orientation

is characterized by a non-dimensional parameter, 0 ≤ D45 ≤ 1, as discussed

in Chapter 4. D45 is largely controlled by the post-cracking matrix properties,

which is reflected in EP. When the matrix provides minimal constraint against

scissoring, D45 tends towards unity; in the opposite scenario, D45 tends to-

wards zero. In the present study, the values D45 = 0, 0.5, and 1 are selected for

laminates with EP = 1, 1/5, and 1/50, respectively.

5.2.2 Geometry and mesh

As in Chapter 4, finite element simulations were carried out in Abaqus

Standard (Version 6.9-2, Dassault Systèmes) using the modified Genin-

Hutchinson constitutive model as a user-material subroutine.

The specimen geometry is depicted in Figure 5.2. Quarter-symmetry mod-

els with four-noded, quadrilateral, plane-stress elements were used. The plate

height H was set to twice the plate width (defined as 2W); this ensures that sig-

nificant bending stresses do not develop in the ligament between the loaded

boundary and the notch (Genin and Hutchinson, 1999). For the circular holes,

the hole radius, a, was varied between a/W = 0.05 and 0.5. For elliptical holes,

the principal radius, a, in the x-direction was selected to be a/W = 0.2, and
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that in the y-direction, b, was set to either b/a = 1/3 or 3. Load was applied at

the upper boundary in the y-direction. A study was performed to ensure that

the stresses and strains converged with respect to mesh density.

5.3 Analytical models

5.3.1 Stress concentration factors

An analytical solution for the stress concentration factor (SCF) following

the onset of inelastic straining is obtained from Neuber’s law (Neuber, 1961).

The law is based on the assumption that the stress and strain concentration

factors, kσ and kϵ, following the onset of local inelastic straining are related to

the elastic stress concentration factor, kel, through

√
kσkϵ = kel (5.1)

Neuber (1961) demonstrated this relation to be strictly valid for isotropic

metals subject to anti-plane shear loading. Subsequently, the law has been

used extensively for predicting stress concentrations in metallic specimens for

a variety of notch shapes and loading configurations (Agnihotri, 1995; Guo

et al., 1998; Jiang and Xu, 2001; Moftakhar et al., 1995; Zeng and Fatemi, 2001;

Härkegård and Mann, 2003).

148



Operationally, the law is implemented by finding the intersection point be-

tween the tensile stress-strain curve and a hyperbola described by

σϵ = k2
elσnetϵnet (5.2)

where σnet and ϵnet are the nominal net-section values (calculated from the

applied load and the uniaxial tensile stress-strain curve). The SCF is then given

by the ratio of the stress at the intersection point of the two curves and the

applied stress (Figure 5.3). In applying the Neuber law to CMCs loaded in the

0◦/90◦ orientation, the relevant stress-strain curve is the one measured in that

same orientation. A tacit assumption, therefore, is that the off-axis properties,

as manifested in the ±45◦ tensile response, do not affect the SCF. The veracity

of this assumption is addressed in due course.

For isotropic CMCs that exhibit a bilinear stress-strain response, the SCF

can be evaluated analytically. Three solution regimes exist. (i) At low stresses,

defined by β = σnet/σmc ≤ 1/kel, the material remains elastic everywhere and

thus kσ = kel. (ii) At higher stresses, in the range 1/kel ≤ β ≤ 1, cracking

occurs locally around the hole. Following the procedure described above, the

SCF is determined by combining Equation 5.2 with the tensile stress-strain

curve. (That is, ϵnet = f0(σnet) and ϵ = f0(σ).) This yields (after some algebra):

kσ =
1 − α +

√
(1 − α)2 + 4αβ2k2

el

2β
(5.3)
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(iii) At yet higher stresses, notably β ≥ 1, cracking occurs across the entire

section and the SCF is given by:

kσ =
1 − α +

√
(1 − α)2 + 4β(α + β − 1)k2

el

2β
(5.4)

5.3.2 Stress distributions

A first approximation to the longitudinal stress distribution, σ(x)1, along

the incipient fracture plane following the onset of inelastic straining is ob-

tained through a straightforward modification of the elastic distribution. The

modification involves application of Neuber’s law to every point along this

plane. This is accomplished by re-interpreting kel in Equations 5.3 and 5.4 as

the ratio of the (original) elastic stress at the point of interest, σo
el(x), to the net-

section stress, σnet, and kσ as the ratio of the actual stress, σ(x), in the inelastic

zone to σnet. Accordingly, the modified stress along this plane in the inelastic

zone is given by:

σo
in(x)
σnet

=
1 − α +

√
(1 − α)2 + 4αβ2(σo

el(x)/σnet)2

2β
(5.5)

for 1/kel ≤ β ≤ 1, and

σo
in(x)
σnet

=
1 − α +

√
(1 − α)2 + 4β(α + β − 1)(σo

el(x)/σnet)2

2β
(5.6)

1Throughout the article σ(x) refers to the distribution in the normal stress acting in the
direction of the applied load.
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for β ≥ 1.

A comparison of the Neuber-modified stress distribution with that ob-

tained from FEA for a plate with a circular hole with a/W = 0.2 is shown

in Figure 5.4. Although the proposed modification brings the elastic distribu-

tion into somewhat closer agreement with the FEA results, it underestimates

both the stresses in the near-tip region and the size of the inelastic zone. The

discrepancies arise because the spatial re-distribution of stress associated with

inelastic straining is neglected.

The discrepancies are ameliorated through further transformations of the

elastic stress distribution. The transformations build on the requirement that

the net-section must support the same load before and after stress redistribu-

tion and, as a result, the size of the inelastic zone must increase in order to

compensate for the reduction in stress at the notch tip. The transformations

should yield stress distributions that satisfy the equilibrium condition:
xin∫
0

σin(x)dx +

W−a∫
xin

σel(x)dx = (W − a)σnet (5.7)

where σel(x) and σin(x) refer to the stress distributions in the elastic and inelas-

tic zones, respectively, after transformation, and xin denotes the elastic-inelastic

boundary. They must also satisfy the condition of continuity of stress at the

inelastic zone boundary, notably

σin(xin) = σel(xin) (5.8)
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Numerous approaches for transforming stress distributions and estimating the

size of inelastic zones have previously been proposed (Agnihotri, 1995; Guo

et al., 1998; Glinka, 1985): the most well-known being Irwin’s method for esti-

mating the plastic zone size ahead of a crack in an elastic/plastic plate (Irwin,

1960). The transformations are typically linear, i.e. translation, scaling, or a

combination thereof. To capture the stress within the elastic zone (away from

the notch tip), a simple translation of the original elastic stress distribution,

σo
el(x), is employed. Specifically, as done by Irwin (1960):

σel(x) = σo
el(x + A) (5.9)

where A is a positional shift along the x-direction, taken to be

A = xo
in − xin (5.10)

Here xo
in is the original estimate of the elastic-inelastic boundary, obtained by

equating the elastic stress distribution to the matrix cracking stress (see Figure

5.5), and xin is obtained in the manner described below.

For the stress distribution in the inelastic zone, the complete linear transfor-

mation is used:

σin(x) = σo
in(Bx + C) (5.11)

where σo
in(x) is obtained from Equation 5.5 or 5.6, as appropriate. The con-

stants B and C are found by enforcing the continuity condition (Equation 5.8)
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in conjunction with the requirement that the stress at the notch tip (at x = 0)

equal that predicted by Neuber’s law (Equation 5.1). Doing so yields C = 0

and

B =
xo

in
xin

(5.12)

This procedure is shown graphically in Figure 5.5. The only unknown variable

is the new estimate of xin. It can, in principle, be obtained from Equation 5.7,

which is nonlinear and must be solved numerically. Alternatively, in order to

facilitate the development of analytical solutions, it is noted that, by taking

B =
kσ

kel
(5.13)

the resulting stress distributions (presented in Section 5.4.3) are in excellent

agreement with those computed by FEA. Combining Equations 5.12 and 5.13

yields:

xin =
kel
kσ

xo
in (5.14)

Combining the preceding results yields the final estimates of the stresses in the

elastic and inelastic zones, notably:

σel(x) = σo
el

(
x − xo

in

[
kel
kσ

− 1
])

, xin ≤ x ≤ W − a (5.15a)

σin(x) = σo
in

(
kσ

kel
x
)

, 0 ≤ x ≤ xin (5.15b)

where the function σo
in(x) is given by Equation 5.5, kσ is from Equation 5.3, and

xin is from Equation 5.14.
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Once the entire net-section has cracked, the inelastic zone size is taken to

be xin = W − a. The equilibrium condition in this domain is

W−a∫
0

σin(x)dx = (W − a)σnet (5.16)

The stress distribution is again given by Equation 5.15b, but with kσ and σo
in(x)

now obtained from Equations 5.4 and 5.6, respectively.

5.4 Assessment of analytical solutions

5.4.1 Preliminaries

The accuracy of the preceding analytical solutions is evaluated by com-

paring the predictions with the results obtained from FEA. To this end, several

metrics are used: (i) the error in the SCF, (ii) the error in xin, (iii) the error in sat-

isfying the equilibrium condition (Equation 5.7), and (iv) the average error in

stress along the net-section plane. In the results that follow, FEA is employed

to ascertain both the inelastic and the elastic stress distributions. In principle,

analytical solutions for the elastic fields could be used, thereby yielding fully-

analytical solutions for the stress distributions after cracking.

Neuber’s law, which forms the basis for the present model, is strictly ap-

plicable only for small-scale yielding, wherein the inelastic zone size is small
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compared to the notch size and the net-section width (Rice, 1967; Zappalorto

and Lazzarin, 2007). However, it is found, surprisingly, that the resulting SCFs

and stress distributions in bluntly-notched CMCs are in excellent agreement

with the FEA results even for large-scale and net-section inelasticity. With few

exceptions, this conclusion holds over the range of notch geometries consid-

ered in the present study. The basis for this conclusion follows.

5.4.2 Stress concentration factors

Comparisons of the SCFs obtained from Neuber’s law (Equations 5.3 and

5.4) and those from FEA for the isotropic laminate (α = 1/4, EP = 1) are shown

in Figure 5.6. Results are for circular holes with three radii (a/W = 0.05, 0.2,

or 0.5) and elliptical holes with two aspect ratios (b/a = 1/3 or 3, both with

a/W = 0.2). Here the SCF is normalized by is elastic counterpart, kel. Matrix

cracking is seen to significantly reduce the stress concentration factor at the

notch tip; at the nominal net-section cracking stress (β = 1), typical reductions

in stress concentration are 20–50 %, with larger reductions being attained for

sharper notches.

The comparisons also show that Neuber’s law provides a reasonably accu-

rate description of kσ over the pertinent range of applied stress (0 ≤ β ≤ 2).

For all notch geometries investigated, errors in kσ are less than 10 %. Neuber’s
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law performs especially well, with error less than 5 %, for plates with small,

low aspect-ratio features. For notches that are large relative to the plate width

(e.g. holes with a/W = 0.5), Neuber’s law somewhat over-predicts the SCF

after net-section cracking, likely because of the interaction of the stress field

with the plate boundaries. For sharper features, such as the elliptical hole with

b/a = 1/3, Neuber’s law again yields slightly conservative estimates of kσ at

high stress. Qualitatively similar results have been reported for notched metal-

lic plates by Guo et al. (1998), who proposed that a more accurate estimate of

the SCF could be obtained by applying Neuber’s law a small distance ahead

of the notch-tip. However, since the errors in the present study are far lower

than those reported by Guo et al. (1998), this additional ad hoc adjustment is

deemed unnecessary.

5.4.3 Stress distribution and inelastic zones

The proposed method for calculating the stress distribution along the net-

section works exceedingly well for stress concentrating features that are small

in comparison to the plate width. Typical stress distributions are shown in

Figure 5.7(a) for a plate with a circular hole of radius a/W = 0.2. For an

applied stress sufficient to cause large-scale cracking (β = 0.75), the method

accurately captures both the location of the elastic-inelastic boundary and the
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stress distributions in the elastic and inelastic zones. Even in the domain of

net-section cracking (β = 1.5), the stresses close to the hole are captured very

well, although those near the plate edge are slightly overestimated. Clearly,

the utility of the method is not limited to the restrictive case of small-scale

yielding.

The accuracy of the method improves as the hole size decreases. For net-

section cracking (1 ≤ β ≤ 2), the normalized root-mean-squared error in

the predicted stresses falls in the range 1–2.5 % for a/W = 0.05, 3.5–7 % for

a/W = 0.2, and 6.5–19 % for a/W = 0.5. To understand this result, note that

the length scale for stress decay away from the hole is governed by the hole

radius, a. To compensate for the increase in stress near the notch (relative to

the net-section stress), a reduction in stress (again, relative to the net-section

stress) must occur near the plate edge. The magnitude of this stress drop is

proportional to a/W. The present transformation method neglects this effect;

consequently, stresses near the plate edge are overestimated in plates that have

large stress concentrating features and that are subjected to high stresses. One

important corollary is that the method should be highly accurate in the limit

of infinite plates. Indeed, this conclusion is borne out by the present results.

The variations in the inelastic zone size with applied stress are plotted in

Figure 5.8. For moderate stress levels (β ≤ 0.9), excellent agreement is ob-

157



tained between the model predictions and the FEA results. In this domain,

the error between the two is less than 5 %. Similar agreement is obtained for

the other notch geometries considered in this study (not shown); the one ex-

ception is the plate with an elliptical hole with b/a = 3, for which the error

is still less than 10 %. Once the net-section cracking condition is met (β = 1),

the analytical model predicts that the inelastic zone encompasses the entire

net-section (xin = W − a). In reality, because of the stress reduction effect that

occurs for larger holes, this boundary may exist within the bounds of the plate

even when β = 1. Thus the computed transition at and slightly beyond β = 1

is somewhat more gradual, especially for large a/W.

The models for the stress distribution and the inelastic zone size perform

equally well for plates with elliptical holes (Figure 5.9). Here, again, the near-

tip stresses are captured very well by the analytical model; the errors are

slightly greater near the plate edge at high stress (β ≥ 1).

Because stresses at the plate edge tend to be overestimated by the present

model, the equilibrium condition (Equations 5.7 and 5.16) is only approxi-

mately satisfied. For plates with larger notches, the net-section reaction force

predicted by the analytical model is approximately 2–6 % larger than the ap-

plied load at high applied stresses. Enforcing the equilibrium condition, by

numerically solving Equation 5.7 to find xin, brings the stresses near the plate
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edge into somewhat better agreement with the FEA results. However, this

improvement is offset by poorer agreement in the stress near the notch tip,

particularly for sharp notches. Since the near-tip stresses are arguably most

important in failure prediction, this alternative approach is not recommended.

5.4.4 Effects of post-cracking tangent moduli

Neuber’s law assumes isotropic mechanical response. When applied to

anisotropic laminates, it tacitly neglects the off-axis properties (at 45◦). This

assumption is assessed by examining the effects of the post-cracking tangent

moduli, EP
0 and EP

45, on the correspondence between the predicted and com-

puted stress fields and, in turn, on the accuracy of the proposed transforma-

tion method. Finite element results for the SCF for α = 1/10 (shown in Figure

5.6(a)) reveal only slight increases in error relative to those obtained for the

higher hardening laminate (α = 1/4). Analogous results for the SCFs in a

highly anisotropic laminate (EP = 1/50) are plotted on Figure 5.6(b) and the

stress distribution at one stress level (β = 2) is plotted in Figure 5.11. Compar-

isons with the analytical results reveal that, for features with inherently low

SCF (say, b/a ≥ 1), the errors in the predicted SCFs are no greater than those

for the isotropic laminate. For features that yield higher stress concentrations

(e.g. elliptical hole with b/a = 1/3), the errors in SCF are somewhat greater
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than those of the isotropic laminate, although the predicted SCF values are

conservative over the entire stress range (i.e. lower than those obtained from

FEA).

The origin of the differences in behavior of the isotropic and anisotropic

laminates at high stress can be elucidated from examination of strain distri-

butions obtained from FEA. Two sets of results, for EP = 1 and 1/50, are

shown in Figure 5.10. The comparisons show that, at high stresses (well be-

yond the onset of cracking), the shear strain γxy in the notch-tip region adja-

cent to the net-section plane is almost twice that obtained at the same location

in the isotropic laminate (see, for example, the points indicated on Figures

5.10(c) and (d)). The additional shear strain has the effect of mitigating the

axial tensile strains directly ahead of the notch tip. Moreover, the somewhat

elongated shape of the zone of high shear is reminiscent of the deformation

preceding the formation of a shear band. Indeed, the increased propensity for

shear banding in the anisotropic laminate gives rise to the reduced SCF. Anal-

ogous effects have been found in some anisotropic fiber-reinforced polymer-

matrix composites (Yang and Cox, 2005) and ceramic/metal laminates (Chan

et al., 1993). Examinations of other strain distributions (not shown) reveal that

the notch shape also plays a role: sharp notches inducing larger shear strains

than circular holes.
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5.4.5 Extension to multiaxial loading

Here a preliminary assessment of the utility of the analytical method in

predicting SCFs and stress distributions under multiaxial loading conditions

is presented. It is motivated in part by reports that, in metallic alloys, Neuber’s

law yields inaccurate results when stress multiaxiality is significant (Guo et al.,

1998; Moftakhar et al., 1995; Zeng and Fatemi, 2001; Glinka, 1985; Molski and

Glinka, 1981; Hoffman and Seeger, 1985). The errors are attributed to effects

of stress multiaxiality on plastic straining in metals (Zeng and Fatemi, 2001).

Local stress multiaxiality can arise in plates that are sufficiently thick to create

plane strain conditions at the notch tip or when the applied loads themselves

are multiaxial. Our expectation at the outset is that such effects should be less

important for isotropic ceramic composite laminates. This expectation is based

on three observations. First, inelasticity (i.e. cracking) in ceramic composites

is driven by the maximum principal tension (in contrast, metal plasticity is

driven by the deviatoric stress). Second, the coupling of axial stresses with

transverse strains is weak in ceramic composites, both in the elastic and the

inelastic domains (Genin and Hutchinson, 1997). Third, plane strain condi-

tions are not obtained in CMC plates. Thus the analytical method is expected

to remain applicable when uniaxial tension is combined with other in-plane

loadings, provided that the loading remains proportional.
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To assess this hypothesis, a specific example is considered: that of propor-

tional biaxial loading of a square plate (W = H) with a circular center hole

(a/W = 0.2). The applied stress in the x-direction (at 0◦) is half of that in

the y-direction. The FEA is otherwise identical to that described previously.

The variation in SCF with applied stress is plotted in Figure 5.12(a) and rep-

resentative stress distributions are shown in Figure 5.12(b). The correlations

between the analytical predictions and the FEA results are very good: com-

parable to those obtained for uniaxial tensile loading. Therefore, for isotropic

CMC laminates, the current analytical method should find utility in predicting

stress concentrations and stress distributions in scenarios involving multiaxial

in-plane loading.
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Chapter 6

A new elastic-plastic constitutive

model for CMC laminates

6.1 Introduction

As discussed in Chapter 1, notch insensitivity in CMCs results from near-

notch inelasticity, just as notch insensitivity in metals arises from near-notch

plastic deformation. A component-scale elastic-plastic constitutive model for

CMCs should therefore enable less conservative designs of components that

contain stress concentrating features.

In CMCs with matrices that are relatively stiff (e.g. SiC/SiC or SiC/CAS),

near-notch inelasticity is associated with the formation of multiple matrix
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cracks oriented perpendicular to the axis of applied load. Cracking takes place

over a large area of the composite in a spatially distributed manner (Cady et al.,

1995b; Mackin et al., 1995; Evans et al., 1994). In contrast, CMCs with relatively

compliant matrices (e.g. SiC/C or C/C), near-notch inelasticity has been at-

tributed to spatially localized bands of shear damage that extend parallel to the

axis of applied load (Heredia et al., 1994; Evans et al., 1994). The former type

of composite has been termed ‘Class II’ and the latter type ‘Class III’ (Evans

and Zok, 1994).

In Chapter 1, it was noted that efforts to model either type of inelasticity

have typically been made using constitutive models that are phenomenological

in nature. One notable model in this class is that of Genin and Hutchinson

(1997), investigated in Chapter 4. As discussed therein, the original GH model

suffers from numerical instability problems. For reasons elaborated upon in

Section 6.3, however, even the remediated GH model (developed in Chapter 4)

is somewhat deficient. Specifically, the model presupposes a particular form

of the yield/cracking surface for the laminate: a condition which is approx-

imately satisfied by certain material systems (notably, CMCs with relatively

stiff matrices), but not others.

The principal objective of the present chapter is to develop and validate a

new plane-stress, phenomenological elastic-plastic model for CMC laminates
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that overcomes the deficiencies of the previously discussed models. It should

satisfy the following criteria:

1. It can be calibrated using experimental data from standard mechanical

tests (e.g. tension, shear).

2. It is applicable to common CMC fiber architectures, notably cross-ply

([0◦/90◦]s) and quasi-isotropic ([0◦/±45◦/90◦]s) laminates.

3. It can capture the behavior of a range of CMCs, including those with stiff

or compliant matrices.

The outline of the chapter is as follows. First, the results of mechanical tests

(uniaxial tension at 0◦, tension at 45◦, and Iosipescu shear) for a commer-

cial SiC/SiCN woven CMC are presented. Second, these data are combined

with previously reported results for other material systems and used to assess

two existing phenomenological models for CMC laminates: notably, that of

Genin and Hutchinson (1997) and an adaptation of the model of Hahn (1973).

The two models are distinguished by their respective predictions of the rela-

tionship between the mechanical responses in shear and in 45◦ tension. No-

tably, the shear/tensile cracking stress ratios from the GH model and the Hahn

model are 1 and 1/2, respectively. The actual behavior, from both the experi-

mental data and from theoretical considerations, is roughly bounded by these
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two extremes. Third, a new phenomenological elastic/plastic model is pro-

posed. It is based on the deformation theory of plasticity and it combines

features of both the GH and Hahn-type models. Importantly, it allows for ar-

bitrary values of the shear/tensile cracking stress ratio. The predictive capabil-

ities of the model are assessed in two ways: (i) by comparisons with measured

inelastic responses in 45◦ tensile stress-strain curves, and (ii) comparisons of

computed and measured displacement and strain fields in open-hole tension

tests. The errors in the predicted open-hole tensile results are computed and

rationalized in terms of the degree of non-proportional stressing that occurs

during inelastic straining in the test geometry of interest.

6.2 Materials and experiments

6.2.1 Material

The material investigated in the present study comprises 8 plies of Hi-

Nicalon (SiC) fibers in an 8-harness satin weave, a BN interface coating, and

a SiCN matrix made through a combination of slurry infiltration and precur-

sor impregnation and pyrolysis (S-200H, COI Ceramics, Inc., San Diego, CA).

The finished composite panel was 2.25 mm thick. Optical micrographs (Fig-

ure 6.1) reveal some remnant porosity and extensive microcracking in the ma-
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trix. These defects play a significant role in the average matrix modulus and

strength, as manifested in the mechanical test results presented below.

6.2.2 Experimental procedures

Three sets of mechanical tests were performed: uniaxial tension at 0◦ and

at 45◦, and shear parallel to the two fiber directions. Either two or three spec-

imens were used for each set. The test specimens were designed to accommo-

date the limited quantity of available material.

For both sets of uniaxial tension tests, a dog-bone geometry was employed.

For the test at 0◦, the gauge width was 12.4 mm and the gauge length was

25.4 mm; for the test at 45◦, the gauge width was 7 mm and the gauge length

was 14 mm. Fiberglass tabs were adhered using a commercial epoxy to the

ends of the tensile specimens to promote even load transfer. The specimens

were loaded using hydraulic wedge grips.

Shear properties were measured using the Iosipescu test. Specimen design

was broadly in accordance with the pertinent ASTM standard (ASTM D5379),

with one notable exception: the V-notch angle was selected to be 105◦, instead

of 90◦ (Figure 6.2). A notch angle larger than 90◦ is desirable for testing or-

thotropic materials, since it produces somewhat smaller transverse stresses in

the central ligament (Adams and Walrath, 1987). The specimen was loaded
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using a standard Iosipescu test fixture (Wyoming Test Fixtures, Inc.).

All specimens were instrumented using strain gauges on one surface and

3-D DIC (VIC-3D, Correlated Solutions, Inc.) on the other. For the Iosipescu

shear test, a [0◦/90◦] stacked strain gauge rosette (Vishay Micro Measure-

ments, CEA-13-062WT-120), oriented at ±45◦ to the specimen axes, was used;

a single (axial) strain gauge was used for the tension tests. To enable use of dig-

ital image correlation, an artificial speckle pattern was created on the sample

surface. This was accomplished by first painting the specimen surface uni-

formly white and then spraying fine black speckles onto the surface using an

airbrush. The speckle size, measured using an autocorrelation technique, was

approximately 50 µm. Two digital cameras (Point Grey Research Grasshop-

per), each with a CCD resolution of 2448 pixels× 2048 pixels and a 70–180 mm

lens (Nikon ED AF Micro Nikkor), were used to acquire images for DIC. The

focal length of the lenses was 70 mm, the aperture setting was F-11, and the

angle between cameras ranged between 19◦ and 35◦. Images were taken with

a scale factor of 8–12 µm/pixel. To maximize the spatial resolution of the dis-

placement measurement, the smallest possible subset size that ensured full

correlation was chosen. This subset size (hsub) was 30–45 pixels, or 270–370 µm.

With this choice, the spatial resolution of displacements is well below the in-

plane tow dimension (roughly 1 mm). The step size was selected to be hsub/10,

179



rounded to the nearest pixel.

6.2.3 Calculation of strains

Some subtleties are involved in the calculation of strains from the full-field

displacement data generated by DIC, particularly for the Iosipescu test. For

the tensile tests, the desired quantities are the axial and transverse strains; for

the shear test, the desired quantity is the shear strain. These strains must be

computed by averaging over a suitably-chosen area, A. The straightforward

approach is to compute the area-averaged strain, ϵ, by differentiating displace-

ments to find local strains and subsequently averaging these quantities over

A. The average is equivalent to an integral, which is evaluated numerically as

follows:

ϵij =
1
A

∫
A

ϵij(x, y)dA ≈ 1
N ∑

k∈A
ϵij(xk, yk)∆Ak (6.1)

where (xk, yk) are the coordinates of the kth node within A, ∆Ak is its associated

area, and N is the number of nodes within A. An alternative approach is to

utilize the insight of Grédiac et al. (1994): notably, that the integral in Equation

6.1 can be transformed using Green’s theorem. For instance, for shear strains,

γ =
1
A

∫
A

γ(x, y)dA =
1
A

∮
∂A

v(x, y)dy − u(x, y)dx (6.2)
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where the path integral is taken counterclockwise over the boundary of A,

denoted ∂A. Once again, the integral is evaluated by discretizing over ∂A;

specifically, the nodal displacement data obtained from DIC is interpolated

in 2D and the integral of interest is evaluated by sampling the interpolation

function over ∂A. The advantages of the latter approach are two-fold. First,

it does not require the extra step of computing strains from displacements.

Second, it avoids using local strains, which tend to be somewhat ‘noisy’ (since

numerical differentiation is an inherently noisy process (Grédiac et al., 1994)).

Therefore, the present work utilizes the path integral method for computing

area-averaged strains.1

A second issue involves the selection of A. In uniaxial tension tests, the

strain is nominally uniform and therefore A is chosen to be the entire area of

the sample that lies within the field of view. For the Iosipescu shear test, how-

ever, there are competing considerations. Ideally, the experimental data would

yield a function that relates the average shear stress to the average shear strain.

The average stress is taken over the ligament, which is a rectangle lying within

the yz-plane. However, the average strain is taken over A, which lies within

the xy-plane. The width Lx (in the x-direction) of A must be large enough to

ensure that a sufficient number of data points is used to compute the average,

1In practice, however, the two methods are found to give very similar results (differences
of less than roughly 2 %) provided that full correlation is maintained.
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but small enough to ensure that the strain distribution within the averaging

area is uniform. Computations (not shown) indicate that a reasonable com-

promise is afforded by selecting Lx to be 0.8 mm, which is roughly equal to the

notch radius, r.

A further issue that arises in the Iosipescu test is a discrepancy (on the order

of tens of percent) between front-face and back-face strains. These differences

arise for two reasons (Morton et al., 1992; Pierron, 1998). First, the specimen

may undergo twisting (torsion) about the x-axis (Morton et al., 1992). (In the

present experiments, DIC measurements of the out-of-plane displacement do

indeed reveal some amount of twisting.) Second, Saint-Venant effects arise

from the loading because the distance between the central ligament and the

inner loading points is small. Either effect is sufficient to create a non-uniform

distribution of shear strain in the through-thickness direction, z. Moreover,

while the former effect can be suppressed by appropriately modifying the

Iosipescu test fixture, the latter cannot (Pierron, 1998). However, both effects

can be eliminated simply by averaging the front and back-face strains (Pierron,

1998). As a check on the fidelity of the resulting shear strain measurements,

the measured shear modulus was compared with that predicted from elastic-

ity using the elastic properties measured in the tension tests: the two agreed to

within 5 %.
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6.2.4 Results of mechanical testing

Axial and transverse strain measurements (from DIC) for the tension tests

at 0◦ and 45◦ are shown in Figure 6.3(a) and (b). Shear stress-strain curves

from the Iosipescu test are shown in Figure 6.3(c).2 The latter strains were

computed by averaging the DIC and strain gauge data on the two surfaces.

The stress-strain curves exhibit little variation between specimens. For the

purpose of calibrating the constitutive models (Sections 6.3 and 6.4), average

stress-strain curves were calculated using a smoothing spline through the ex-

perimental data. The averages were computed only in the hardening regime

(i.e. post-peak strain-softening was neglected). These curves are also depicted

in Figure 6.3.

Five elastic constants can be calculated from the five stress-strain curves:

the Young’s moduli E0 and E45 in the 0◦ and 45◦ directions, the corresponding

Poisson’s ratios ν0 and ν45, and the shear modulus G. Their average values

are summarized in Table 6.1. From the theory of elasticity, only three of the

constants are independent. Treating E0, ν0, and G as independent, the values

of the other two quantities, E45 and ν45, can be expressed as:

E45 =
4E0G

E0 + 2G(1 − ν0)

ν45 =
2E0

E0 + 2G(1 − ν0)
− 1

(6.3)

2All shear strains referred to herein are engineering shear strains.
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The predicted values of E45 and ν45 are also shown in Table 6.1. The error

between the elasticity prediction and the measurement for E45 is 3 %; the cor-

responding error for ν45 is 12 %, indicating that the experimental data is rea-

sonably self-consistent.

The 0◦ tensile curve exhibits a nearly-bilinear response, with the change

in tangent modulus occurring over the range of 100–200 MPa. The change in

tangent modulus is relatively small: only about a factor of two. This behav-

ior is reminiscent of that observed in both C/C and oxide-oxide composites

with porous and/or microcracked matrices. In contrast, the curves in 45◦ ten-

sion and in shear exhibit nearly elastic-perfectly plastic behavior. In the lat-

ter cases, the tangent moduli in the post-cracking regimes are about an order

of magnitude smaller than the corresponding elastic moduli. Additionally,

the magnitude of the inelastic transverse strains for 45◦ loading are compara-

ble to the inelastic axial strains, which is characteristic of a fiber ‘scissoring’

mechanism (Genin and Hutchinson, 1997). Similar macroscopic stress-strain

behavior for off-axis loading has been observed in glass- and carbon-matrix

composites (Cady et al., 1995a; Turner et al., 1995).

The effective elastic modulus of the (porous, microcracked) matrix can be

extracted by employing an elastic analysis based on laminate theory (see Ap-

pendix B for pertinent formulae). Each woven cloth, comprising 0◦ and 90◦
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fibers, is partitioned into two unidirectional plies: one at 0◦ and the other at

90◦. The volume fraction of fibers within each ply is taken to be equal to that

of the overall composite, which is calculated from the manufacturer’s reported

weave properties (fiber areal weight and fiber density) and the number of plies

and thickness of the composite panel. The resulting estimate is Vf = 0.52. The

elastic properties of each ply are calculated using a well-accepted microme-

chanical model: the generalized self-consistent scheme (GSCS) (Christensen

and Lo, 1979; Christensen, 1990). The GSCS model requires the constituent

properties. The Young’s modulus of the (isotropic) fiber (E f ) is taken from

manufacturer data. The porous, cracked matrix is homogenized and repre-

sented by an isotropic effective medium with properties (Em and νm) that are

unknown a priori. Using the elastic constants of the plies, the elastic constants

of the laminate are readily computed using standard relations from laminate

theory. The remaining constituent properties (Em, νm, and ν f ) are subsequently

solved for by minimizing the error between the predicted and experimentally

measured elastic constants of the laminate. The resulting property values are:

Em = 43 GPa, νm = 0.15, and ν f = 0.18. Using these values, the agreement

between the predicted and measured elastic constants is excellent: the errors

being less than 1 %.

Taken together, these results imply that, although the matrix in fully-dense
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form would be very stiff, its effective modulus is significantly less than that

of the fibers (Em/E f ≈ 0.16). The composite behavior is therefore expected

to most closely resemble that of ‘Class III’ composites. For instance, shear

banding should be the primary near-notch damage mechanism. (That this is

indeed the case is demonstrated in Section 6.5.)

6.3 Assessment of existing constitutive models

6.3.1 Preliminaries

Based on the phenomenological constitutive models described in the in-

troduction, the five stress-strain curves presented above are not all indepen-

dent. For instance, the 45◦ tensile response is predicted to be dependent on the

0◦ tensile and shear responses. Here the internal consistency of the in-plane

stress-strain curves stemming from both the remediated GH model (Chapter

4) and a model adapted from the work of Hahn (1973) on PMC laminates is

assessed. The assessment is made using the test data for SiC/SiCN described

above as well as comparable data previously reported for two other CMCs:

(i) a cross-ply SiC/CAS laminate (Cady et al., 1995a), and (ii) a 2-D woven

SiC/SiC composite (Camus, 2000; Aubard, 1992). The results presented be-

low demonstrate that neither model is able to accurately predict the 45◦ tensile
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stress-strain curve from the 0◦ tensile and shear stress-strain curves for all ma-

terial systems. But, the measured 45◦ tensile stress-strain curves are roughly

bounded by the predictions of the two models.

In the following analysis, the axial and transverse strains for 0◦ tensile

loading are represented by the functions ϵ0 = f0(σ) and ϵ0T = f0T(σ), re-

spectively. Similarly, the axial and transverse strains for 45◦ tensile loading are

ϵ45 = f45(σ) and ϵ45T = f45T(σ), respectively. Finally, the shear stress-strain

curve is γ = fs(σ).

6.3.2 GH model

The GH model is couched in terms of a tangent compliance matrix relating

principal strains to principal stresses. In the inelastic regime, for principal

strains oriented at 45◦ to the fibers, the constitutive equation takes the form: ϵI

ϵI I

 =

 f ′45(σI) f ′45T(σI)D45 + f ′45T(σI I)(1 − D45)

f ′45T(σI) f ′45(σI)D45 + f ′45(σI I)(1 − D45)


 σI

σI I

 (6.4)

where the primes denote differentiation with respect to stress; the subscripts

I, I I denote the first and second principal strains/stresses, respectively; and

the parameter D45 characterizes the tendency of the laminate to ‘scissor’ when

loaded in tension in the 45◦ direction. As discussed in Chapter 4, for cross-ply

laminates, a reasonable estimate for D45 is unity. In Section 4.5.5, Equation 6.4
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was used to relate the 45◦ tensile response to the shear response of the CMC.

The result, reproduced here, is:

f ′s(σ) ≈ (1 + D45)( f ′45(σ)− f ′45T(σ)) (6.5)

Equation 6.5 implies that if the stress, σ, is sufficient to cause significant in-

elasticity for 45◦ loading (i.e. to cause f ′45(σ) and f ′45T(σ) to become large in

magnitude), it is sufficient to cause significant inelasticity in shear loading, and

vice versa. In other words, the stress-strain curves for 45◦ tension and shear

loading are expected to exhibit significant nonlinearity at the same stress level.

6.3.3 Hahn model

The Hahn model was originally developed for PMC laminates. It uses the

contracted notation for stresses and strains: e.g. σ1 = σ11, σ6 = σ12, ϵ6 =

2ϵ12, etc., where the 1- and 2-directions are aligned with the fiber axes. The

governing equations for cross-ply laminates in the original formulation of the

model are (Hahn, 1973):
ϵ1

ϵ2

ϵ6

 =


a11 a12 0

a12 a22 0

0 0 a66 + S6666σ2
6




σ1

σ2

σ6

 (6.6)

Here nonlinearity is incorporated only in the shear response (through the

quadratic term) and not in the 0◦ tensile response (Hahn, 1973). However, the
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model can be generalized to include nonlinearity in tension by using a tangent

compliance formulation:
dϵ2

dϵ2

dϵ6

 =


f ′0(σ1) f ′0T(σ2) 0

f ′0T(σ1) f ′0(σ2) 0

0 0 f ′s(σ6)




dσ1

dσ2

dσ6

 (6.7)

(If f ′0(σ) = a11 = a22, f ′0T(σ) = a12, and f ′s(σ) = a66 + 3S6666σ2, Equation 6.7

reduces to Equation 6.6.)

Here, again, the constitutive model can be used to relate the shear and 45◦

tensile responses. Doing so yields the relationships:

f ′45(σ) + f ′45T(σ) = f ′0(
σ

2
) + f ′0T(

σ

2
)

f ′45(σ)− f ′45T(σ) =
1
2

f ′s(
σ

2
)

(6.8)

The latter is similar in form to Equation 6.5 in the GH model. However, in

contrast to the GH model, the Hahn model predicts that if the 45◦ response

exhibits nonlinearity at σ, then the shear response should exhibit nonlinearity

at σ/2. That is, the predicted cracking stresses for 45◦ tension from the GH

and the Hahn models differ by a factor of two.

6.3.4 Interpretation of experimental data

The predicted 45◦ tensile stress-strain curves from the two models are

shown in Figure 6.4 for the three CMCs of interest: SiC/SiCN (present work),
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SiC/CAS (Cady et al., 1995a), and SiC/SiC (Camus, 2000).

For the composites with relatively stiff matrices (Figure 6.4(b) and (c)), the

GH model yields reasonably accurate predictions of the cracking stresses and

the inelastic hardening rates in 45◦ tension. The Hahn model, unsurprisingly,

performs poorly in these cases, since its prediction of the plateau stress is ap-

proximately twice that of the GH model. In contrast, for the composite with

a relatively compliant matrix (SiC/SiCN, Figure 6.4(a)), the Hahn model per-

forms better than the GH model, though it overestimates the measured stresses

by about 25 %. Closer examination of the functional forms of the two models

reveals the origin of these differences: the GH model tacitly assumes that in-

elasticity is governed by the largest principal stress (as noted in Section 4.5.4)

whereas the Hahn model assumes that it is governed by the larger of the ten-

sile and shear stresses oriented with respect to fiber axes.

Experimental data compiled by Cady et al. (1995a) for several CMCs are

broadly consistent with the trends reported here. That is, the ratio of the

cracking stress in 45◦ tension and shear loading ranges from about 0.6 for stiff

matrices (characterized by Em/E f & 1) to roughly 2 for compliant matrices

(Em/E f ≪ 1). Furthermore, the theoretical model presented in Chapter 3 for

steady-state matrix cracking in unidirectional CMCs under off-axis loading

yields similar results. Specifically, in the absence of residual stress, the pre-
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dicted ratio of cracking stresses for 45◦ tension and shear loading ranges from

1 for a rigid matrix to 2 for an infinitely compliant matrix. The key conclusion

is that an alternative (more generalized) formulation is required to accurately

capture the in-plane ‘yield’ surfaces of CMCs.

6.4 Formulation of new model

6.4.1 Preliminaries

The proposed model is based on the deformation theory of plasticity. Here

strains are related to stresses via an effective compliance matrix that is a func-

tion of an ‘effective stress,’ σ. The effective stress, in turn, is a function of the

components of the stress tensor. (In the deformation theory of plasticity for

isotropic metals, this would be the von Mises stress.) The effective stress func-

tion characterizes the yield/cracking surface of the material. By constructing

this function appropriately, the ratio of the cracking stresses for different di-

rections of loading is no longer a constant, as in the GH and Hahn models. In-

stead, it becomes a fitting parameter that can be calibrated with experimental

data. Being a deformation theory, the model is expected to apply for (roughly)

proportional stressing. The constitutive relationship is:

ϵi = Sij(σ)σj (6.9)
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where i, j = 1, 2, 6 (using, again, the contracted notation for stresses and

strains). It is assumed that σ is scale-invariant (a homogeneous function of

degree 1), which means that:

σ(Cσ1, Cσ2, Cσ6) = Cσ(σ1, σ2, σ6) (6.10)

The cubic in-plane symmetry of the material implies that the 1- and 2-axes are

equivalent. Imposing this condition yields the relations:

S11(σ) = S22(σ)

S12(σ) = S21(σ)

S16(σ) = S26(σ)

S61(σ) = S62(σ)

σ(σ1, σ2, σ6) = σ(σ2, σ1, σ6)

(6.11)

The functions Sij(σ) are calibrated using the results of only two mechanical

tests: notably, 0◦ tension and shear aligned with the two fiber axes (the 1- and

2-axes).

6.4.2 Mechanical tests for calibration

Uniaxial tension at 0◦

For 0◦ tension, the effective stress becomes

σ = σ(σ1, 0, 0) = C0σ1 (6.12)
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using the scale-invariance of σ (where C0 = σ(1, 0, 0)). Equation 6.9 then re-

duces to:

ϵ1 = S11(C0σ1)σ1

ϵ2 = S21(C0σ1)σ1

ϵ6 = S61(C0σ1)σ1 = 0

(6.13)

The normal strains are given simply by the functions f0 and f0T, which char-

acterize the 0◦ tensile stress-strain curves. After some algebra:

S11(σ) = S22(σ) =
f0(σ/C0)

σ/C0

S21(σ) = S12(σ) =
f0T(σ/C0)

σ/C0

S61(σ) = S62(σ) = 0

(6.14)

Shear

In pure shear, the effective stress becomes

σ = σ(0, 0, σ) = Csσ (6.15)

where Cs = σ(0, 0, 1). Using a procedure analogous to that utilized above, the

following result is obtained:

S66(σ) =
fs(σ/Cs)

σ/Cs

S16(σ) = S26(σ) =
fns(σ/Cs)

σ/Cs

(6.16)

where fns(σ) characterizes the normal strain induced by shear stressing. This

function is difficult to measure in practice, largely because the strains are ex-
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ceedingly small in CMCs. Here it is assumed that fns = 0, implying that the

shear-extension coupling is negligible.

6.4.3 Tangent compliance

As demonstrated in Section 6.4.2, the tension and shear tests enable cal-

ibration of all of the unknown functions Sij(σ) in the constitutive equation.

The final result is:
ϵ1

ϵ2

ϵ6

 =


f0(σ/C0)

σ/C0

f0T(σ/C0)
σ/C0

0

f0T(σ/C0)
σ/C0

f0(σ/C0)
σ/C0

0

0 0 fs(σ/Cs)
σ/Cs




σ1

σ2

σ6

 (6.17)

For ease of numerical implementation, the preceding results are re-expressed

in terms of the tangent compliance tensor, ∂ϵi/∂σj. Assuming that the stresses

are imposed proportionally, i.e. σi = Λiσ, and differentiating Equation 6.17,

yields: 
dϵ1

dϵ2

dϵ6

 =


f ′0(σ/C0) f ′0T(σ/C0) 0

f ′0T(σ/C0) f ′0(σ/C0) 0

0 0 f ′s(σ/Cs)




dσ1

dσ2

dσ6

 (6.18)

where the prime denotes differentiation with respect to stress. Equations 6.17

and 6.18 are mathematically equivalent for proportional stressing; the mag-

nitude of the differences that arise when the stressing is non-proportional is

presently unknown.
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Equation 6.18 provides a basis for assessing the stability of the material

model. The CMC undergoes softening if the eigenvalues of the tangent com-

pliance matrix, given by Equation 6.18, are negative. From inspection, the con-

ditions for softening are seen to be f ′s(σ/Cs) < 0 or f ′0(σ/C0) + f ′0T(σ/C0) < 0.

These quantities on the left-hand-sides of these inequalities are physically

equivalent to the shear and biaxial compliances, respectively.

6.4.4 Predicted response for 45◦ tension

For 45◦ tension, the effective stress becomes

σ = σ(
σ45

2
,

σ45

2
,

σ45

2
) = C45σ45 (6.19)

where C45 = σ(1/2, 1/2, 1/2). Employing the constitutive equation (Equation

6.18):

dϵ1 = dϵ2 =
1
2

[
f ′0(

C45

C0
σ45) + f ′0T(

C45

C0
σ45)

]
dσ45

dϵ6 =
1
2

f ′s(
C45

Cs
σ45)dσ45

(6.20)

Rewriting these equations in terms of f45 and f45T yields:

f ′45(σ45) + f ′45T(σ45) = f ′0(
C45

C0
σ45) + f ′0T(

C45

C0
σ45) (6.21)

and

f ′45(σ45)− f ′45T(σ45) =
1
2

f ′s(
C45

Cs
σ45) (6.22)
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Equations 6.21 and 6.22 imply that the difference between axial and transverse

strains at 45◦ is related to the shear response, whereas their sum is related to

the 0◦ tensile response. It is instructive to compare Equation 6.22 with the

corresponding equations for the GH and Hahn models (Equations 6.5 and 6.8,

respectively). When Cs = C45, the GH model result is recovered (with D45 =

1). When Cs = 2C45, the Hahn model result is recovered. In general, the model

can capture an arbitrary ratio of cracking stresses in 45◦ tension and shear.

6.4.5 Effective stress

Heretofore general results have been derived using an arbitrary function

σ = σ(σ1, σ2, σ6). For numerical implementation of the constitutive model, a

specific function for the effective stress is required. To this end, a Hill-type

effective stress (which straightforwardly extends the von Mises effective stress

to anisotropic materials) is used:

σ =
√

Aijσiσj (6.23)

After using material symmetry, this reduces to

σ =
√

A11(σ
2
1 + σ2

2 ) + 2A12σ1σ2 + A66σ2
6 (6.24)

One limitation of the effective stress in its current form is that it yield equiv-

alent results in compression and in tension. To prevent spurious inelasticity
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in compression, σ1 and σ2 are replaced with R(σ1) and R(σ2), where R is the

ramp function (R(x) = (|x|+ x)/2).

Finally, the constitutive model requires the constants C0, C45, and Cs. Using

the definition of the effective stress, it is found that:

C0 =
√

A11

Cs =
√

A66

C45 =
1
2

√
2A11 + 2A12 + A66

(6.25)

Since the Hill-type effective stress essentially defines a yield surface, the con-

stants A (or, equivalently, the constants C) must be related to the stresses at

which the various stress-strain curves exhibit significant non-linearity. Taking

these stresses to be σ0, τ0, and σ45, for the three respective tests, the following

result is obtained

C0σ0 = Csτ0 = C45σ45 (6.26)

Using this equation, the constants A in the effective stress function can be eval-

uated (up to an arbitrary scale factor).

6.4.6 Comparison to experimental results

The present model predicts the 45◦ tensile response from the 0◦ tension

and shear responses. (The prediction is not completely independent, since σ45

must be specified in order to solve for the unknown constants in the effective
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stress function.) Results are shown in Figure 6.5 for the three material systems

examined in Figure 6.4. The stresses at which the stress-strain curves start to

exhibit significant non-linearity are found by inspection. For the SiC/SiCN

composite, σ0 = 170 MPa, τ0 = 82.5 MPa, and σ45 = 135 MPa; for the SiC/CAS

composite (Cady et al., 1995a), σ0 = 60 MPa, τ0 = 75 MPa, and σ45 = 70 MPa;

and for the SiC/SiC composite (Camus, 2000), σ0 = σ45 = 145 MPa and τ0 =

170 MPa.

The comparisons show that the agreement between measured and pre-

dicted stress-strain curves is excellent. The agreement supports the relation-

ships presented in Equation 6.22: notably, that the strain-hardening rates in

the shear and 45◦ tensile stress-strain curves are related by the scaling factor

Cs/C45. The GH model assumes this factor to be 1, while the Hahn-type model

assumes it to be 2. The experimental data indicates that this ratio varies across

materials: increasing with decreasing matrix stiffness. The present constitutive

model appears to have enough generality to adequately capture this behavior.

6.5 Case study: open hole tension

The constitutive model developed in Section 6.4 is assessed through com-

parisons of predicted and measured displacements and strains in open-hole
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tension tests. Since all calibration data for the model were obtained entirely

from (unnotched) tension and shear tests, the comparisons provide a true as-

sessment of the predictive capability of the model.

6.5.1 Experiments

Rectangular specimens of length 114.3 mm and width 25.4 mm were used.

Holes of 9.525 mm diameter (37.5 % of the total width) were machined using a

diamond core drill. Two specimens were tested: one to failure, and the other to

roughly 90 % of the failure stress. As in the unnotched tension tests, fiberglass

tabs were adhered to the specimen ends and the specimens were loaded using

hydraulic wedge grips.

Digital image correlation was again used to track specimen deformation.

To maximize spatial resolution, only about one half of the full specimen width

in the vicinity of the hole was imaged. Parameters for DIC were similar to

the tension and shear tests, with the exception of the scale factor, which was

slightly smaller (5.5–6 µm/pixel).
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6.5.2 Finite element simulations

The constitutive model (Equation 6.18) was implemented in a user-material

subroutine (UMAT) for use in ABAQUS. The equations were integrated ex-

plicitly using the modified Euler scheme described by Sloan et al. (2001). The

scheme utilizes automatic sub-stepping to limit the error arising from the inte-

gration procedure to within a prescribed error tolerance for each time step.

The subroutine utilizes the measured functions f0, f0T, and fs and the con-

stants C. The smoothed, averaged stress-strain functions depicted in Figure 6.3

are used for this purpose. (Note that these curves neglect material softening.)

The constants C are identical to those used previously (found by substituting

σ0 = 170 MPa, τ0 = 82.5 MPa, and σ45 = 135 MPa into Equation 6.26).

The finite element (FE) simulation was performed in ABAQUS Standard

(Version 6.12-1, Dassault Systèmes). A quarter-symmetry FE model was em-

ployed, with four-noded, quadrilateral, plane-stress elements. The hole diam-

eter was 0.375 of the plate width, as in the experiments. Displacement was

monotonically applied at the top boundary in the y-direction. A study was

performed to ensure that the quantities of interest (nodal displacements) con-

verged with respect to mesh density. For comparison with the experimental

data, the displacements (u, v) of every node within the model were extracted

at 100 evenly spaced time increments, where the final time increment corre-
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sponds to an applied stress which exceeds the failure stress in the experiments.

6.5.3 Metrics for comparison

Several metrics were employed for comparison of experimental results

with the FE simulations. To assess the agreement in global response, the nodal

displacement data from experiments and simulation were used to compute

macroscopic stress-strain curves. In this case, the net-section stress was plot-

ted against the ‘hole strain,’ measured using a virtual longitudinal extensome-

ter that spans the hole and is offset from the hole edge (see inset of Figure

6.6). To assess the correlations in the local fields, contour plots of the displace-

ment in the direction of loading (v) and of the axial and shear strains (ϵyy and

γxy, respectively) were constructed. The (scattered) data from DIC and from

FEA was interpolated in x, y using Delaunay triangulation and subsequently

evaluated on a common grid in x-y space. Strains were computed from dis-

placements using an identical procedure for both sets of data. Specifically, the

gridded data were differentiated with respect to the spatial coordinate using

forward differences. The resulting strains were averaged using a Gaussian fil-

ter. The filter length, h f , is physically equivalent to the gauge length for strain

computation. It was selected to be equal to the tow width (1 mm), since the

strains used to calibrate the constitutive model are macroscopic, tow-averaged
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strains. The standard deviation of the filter was 0.25h f .

6.5.4 Results

Macroscopic stress-strain curves from the FE simulation and from the two

test specimens are shown in Figure 6.6. Two values of the offset, 1 mm and

3 mm, were selected. (The latter corresponds to the largest offset that lies

within the field of view of the cameras.) At low stresses (< 50 MPa), the macro-

scopic stress-strain behavior is linear and the moduli from the simulation and

the measurements are in excellent agreement. At higher stresses (50–300 MPa),

the specimens exhibit significant macroscopic nonlinearity. The discrepan-

cies between predicted and measured strains remain small, and less than the

sample-to-sample variation. At yet higher stress levels (> 300 MPa), the agree-

ment deteriorates somewhat: the simulated strains being slightly larger than

the measured values (by roughly 10–30 %). (The fracture stress cannot be pre-

dicted since the constitutive law lacks an appropriate failure criterion.)

The shear strain distributions are depicted in Figure 6.7. With increasing

stress, bands of large shear strain (in excess of 1 %) develop near the edge of

the hole and expand parallel to loading direction. The shear bands are a conse-

quence of the low shear cracking stress. The FE simulations appear to predict

the size and shape of these bands with good accuracy. At yet higher stress
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levels (400 MPa), discrepancies between experiment and simulation become

progressively more pronounced. However, as discussed later, these stresses

fall outside the regime of proportional stressing. Some differences are also ob-

tained between test specimens and between the two shear bands within an

individual specimen. (The FE simulation assumes these bands to be identi-

cal, since the deformation is symmetric.) It is surmised that these effects are

related to variations in fiber placement, matrix porosity, and other microstruc-

tural characteristics.

Predicted and experimental tensile strain fields are shown in Figure 6.8;

corresponding line scans of tensile strain along the net-section are plotted in

Figure 6.9(a). Here the measured strains do not vary smoothly in space. There

appear to be multiple effects at play. First, there is measurement error associ-

ated with digital image correlation. For typical values of displacement noise

and the filter length employed in the strain calculation (h f = 1 mm), the strain

error in regions of relatively uniform strain should be on the order of a few

hundred microstrain (Rajan et al., 2012). This value is evidently insufficient to

explain all of the strain inhomogeneity. Second, there are stochastic variations

in microstructural characteristics, as mentioned previously. Finally, there are

also non-stochastic effects associated with the woven fiber architecture. Rajan

et al. (2012) observed that, in 2-D woven composites, local strain enhancement
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occurs at tow ‘crossovers’: locations where undulating warp tows dive be-

neath flat weft tows. Similar effects may be responsible for the strain ‘hotspots’

observed in Figure 6.8. Despite some noisiness of the measured strain fields,

however, the magnitude of the peak strains and their spatial decay away from

the hole are similar to those seen in the simulated strain fields. The differ-

ences become more pronounced at stresses exceeding about 350 MPa. In this

domain, the tensile strains exceed the (unnotched) tensile failure strain over a

length scale comparable to the tow width (1 mm). Therefore, it is expected that

significant fiber failure has occurred at this point in the experiment. At even

higher stresses, a crack initiates at the hole edge and propagates across the lig-

ament, leading to ultimate failure. Tensile softening due to fiber fracture and

concomitant localization of deformation into a crack cannot be captured with

the current modeling approach. Approaches based on cohesive zone concepts

would be more suitable for this task (see, for instance, He et al. (1994) and Suo

et al. (1993)).

The agreement between the measured and simulated axial displacements,

shown in Figure 6.10, is similarly good, particularly for smaller values of ap-

plied stress. (The correlation is unsurprising, since both γxy and ϵyy are related

to the axial displacement.) The accuracy of these predictions is assessed on

the basis of the difference between predicted and experimental displacements,
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each normalized by the ‘hole displacement’—the displacement (from the FE

simulation) of a longitudinal extensometer that spans the hole diameter. The

results are also plotted in Figure 6.10 for one of the test specimens. At stresses

below about 200 MPa, the errors are very low (< 5 % everywhere). The errors

increase at higher stresses, especially within the shear bands and (to a lesser

extent) in the hole ‘wake’ (the regions above and below the hole, to the right

of the shear bands).

Finally, the simulation results are utilized to investigate near-notch stresses.

(These quantities cannot be measured experimentally.) Figure 6.9(b) depicts lo-

cal tensile stresses along the net-section, normalized by the applied net-section

stress. In contrast to the local strain fields, no gauge averaging is performed to

compute the stresses. As seen, inelasticity does not reduce the stress concentra-

tion factor directly at the hole edge, but it does reduce stresses over distances

of 1–2 mm from the hole edge. Interestingly, these results are broadly con-

sistent with the ‘point stress’ fracture criterion (Whitney and Nuismer, 1974),

which is based on the attainment of a critical stress over a characteristic length.

It has previously been used to rationalize the notch sensitivity of PMCs (Awer-

buch and Madhukar, 1985) and CMCs (McNulty et al., 1999). In those studies,

it had been found that, regardless of the matrix material, the characteristic

length is on the order of 1 mm. The data presented herein is broadly consistent
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with these results; indeed, taking the critical stress to be the unnotched tensile

strength, the inferred characteristic length is 1.3 mm.

6.5.5 Discussion

The agreement between predicted and experimental local displacement

and strain fields mirrors the agreement between predicted and experimental

global extensometer strains. Specifically, the agreement is excellent for smaller

values of net-section stress (less than roughly 300 MPa), and noticeable dis-

crepancies arise only at higher stresses. These discrepancies likely arise be-

cause, at higher stresses, the stress state within some material elements follows

a non-proportional trajectory. The constitutive model, on the other hand, be-

ing based on deformation theory, assumes proportional stressing within every

material element.

Deviations from proportional stressing can be assessed by computing ra-

tios using the effective stress:

λxx =
σ(σxx, 0, 0)

σ(σxx, σyy, σxy)
=

σxx
√

A11

σ

λyy =
σ(0, σyy, 0)

σ(σxx, σyy, σxy)
=

σyy
√

A11

σ

λxy =
σ(0, 0, σxy)

σ(σxx, σyy, σxy)
=

σxy
√

A66

σ

(6.27)

These ratios are of order unity. For instance, if the state of stress within the
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element is pure tension in the y-direction, then λyy = 1. If, instead, it is pure

shear, λyy = 0. Therefore, changes in λ on the order of a few tenths over the

loading history indicate significant non-proportional stressing. (Note, how-

ever, that only two of the ratios are independent.) Changes in λ are of conse-

quence only if they are in regions of significant plastic strains. (In the elastic

regime, non-proportional stressing does not induce errors.)

The absolute values of changes in λxy and λyy (with respect to their values

in the regime of macroscopic elasticity) are depicted In Figure 6.11 for two val-

ues of net-section stress. There are two locations where significant changes in

λ occur: 1) in the hole wake and 2) at the shear bands. In the former loca-

tions, the stresses are small and the plastic strains are negligible. However, in

the latter location, plastic strains are obviously substantial. Non-proportional

stressing within the shear bands appears to be related to the errors in displace-

ment fields observed in Figure 6.10. If this hypothesis is correct, then tracking

the ratios λ over the course of a simulation would provide some insight (al-

beit qualitative) into the regimes in which the constitutive model is expected

to yield accurate results.

It should also be noted that the stress-strain curves used to calibrate the

constitutive model omit any description of material softening. Errors arise

from this assumption when the tensile and shear strains exceed the values cor-
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responding to the peak tensile and shear stresses (roughly 0.63 % and 1.0 %,

respectively). In the simulation, the condition for shear softening (γ > γpeak)

is first met at a net-section stress of approximately 220 MPa. Softening is ex-

pected to occur over a significant length scale (the tow width, 1 mm) at approx-

imately 270 MPa. The corresponding values for tensile softening are 260 MPa

and 290 MPa, respectively. These results imply that the effects of softening

may become relevant when net-section stresses exceed roughly 250–300 MPa.

Note, however, that material softening does not explain the discrepancies be-

tween measured and simulated displacement/strain fields: incorporation of

softening would increase the compliance of the simulated specimen, causing

the correlation between prediction and experiment to worsen. Further work

is required to ascertain the effect of material softening on simulated displace-

ment and strain fields and on the stress required for localization and fracture.
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Table 6.1: Measured elastic constants. Predicted values of E45 and ν45 (from
elasticity theory) are also shown.

E0 ν0 G E45 ν45
(GPa) (GPa) (GPa)

Measured 125 0.12 38 102 0.27
Predicted – – – 99 0.30

500 µm

Figure 6.1: Optical micrograph of a polished cross-section through the com-
posite.
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Figure 6.2: Schematic of Iosipescu test specimen (dimensions are in millime-
ters).
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data whereas the shear strains in (c) were obtained by averaging the DIC and
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smoothed averages.
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Figure 6.4: Comparisons of the GH and Hahn model predictions of the 45◦ ax-
ial stress-strain curve with experimental measurements on (a) SiC/SiCN com-
posite (from the present work); (b) SiC/SiC composite (Camus, 2000) and (c)
SiC/CAS composite (Cady et al., 1995a)).
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Figure 6.8: Comparisons of measured and predicted tensile strain fields for the
open-hole tension test.
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Chapter 7

Conclusions and future work

7.1 Summary and conclusions

An important distinction in CMC mechanics has been drawn between rel-

atively simple 1-D loadings and more complex multiaxial 2-D loadings. For

the former class of problems, the fundamental mechanics and physics under-

lying matrix cracking and fiber fragmentation are well-understood. As a con-

sequence, the deformation of CMCs in 1-D loadings can be predicted with high

fidelity. Prediction of fracture, however, remains to be fully resolved. Obvi-

ously, the constitutive description must be supplemented by a fracture crite-

rion. As demonstrated in Chapter 2, criteria based on attainment of a critical

local strain (as in Hild et al. (1994)) are inadequate for failure prediction when
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non-uniform strains are present. This deficiency was remedied through the

development of a fracture criterion based on a global load maximum. The frac-

ture criterion was combined with a constitutive law based on the mechanics of

a fragmenting fiber bundle (Hui et al., 1995). The criterion implies that the first

localization to initiate within the structure does not necessarily cause struc-

tural failure. Instead, because of structural (geometric) hardening (as mani-

fested in a rising load-displacement curve), other localizations, remote from

the first, are able to develop. Ultimate failure occurs once global (structural)

softening commences. The corresponding failure predictions for four-point

bending of CMC laminates were found to be in reasonably good agreement

with available experimental data, as shown in Chapter 2.

The state of modeling for 2-D loadings is comparatively less mature. The

key problems are two-fold. One lies in understanding the stress and strain

fields, at the scale of the constituents, that arise in general in-plane loading of

multidirectionally reinforced composites. As discussed in Chapter 3, the forms

of these fields, couched in terms of the stresses on the constituent plies, can,

in some instances, be obtained from analytical models. Their accuracy can

be readily assessed using a finite element analysis of a representative volume

element. In that chapter, the fields were subsequently used to estimate the

steady-state matrix cracking stress, first for pure shear loading, and then for
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general in-plane loading. This was accomplished through an adaptation of the

fracture mechanics analysis of Budiansky et al. (1986). In principle, the stress

fields could also enable prediction of the evolution of damage, characterized,

for instance, by the matrix crack density as a function of applied stress.

The second broad area of interest in the realm of multidirectional loadings

is prediction of laminate behavior at coarser length scales: those relevant to en-

gineering design (i.e. mm or cm). Unit cell models, such as those presented

in Chapter 3, while useful for interrogating stress and strain distributions at

the scale of µm, are difficult to ‘scale up’ to these larger length scales. As a

consequence, prediction of laminate behavior is currently restricted to phe-

nomenological models, based on either continuum damage mechanics (e.g.

Talreja (1991); Camus (2000); Chaboche and Maire (2001)) or on elastic-plastic

formulations (e.g. Genin and Hutchinson (1997)).

One of the latter type of models—the Genin-Hutchinson model—was ex-

amined in detail in Chapter 4. It was found to suffer from numerical conver-

gence problems when used as a constitutive model in finite element calcula-

tions. Two distinct sources of instability were identified: one associated with

incremental shearing of elastically-anisotropic laminates and the other with in-

cremental transverse straining of inelastically-anisotropic laminates. Both in-

stabilities are manifested only in the post-matrix cracking regime. The in-
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stabilities were remedied by two proposed modifications. In the first, shear-

extension coupling after matrix cracking is assumed to be negligible (even if

it exists in the elastic domain). In the second, a modified tangential compli-

ance matrix is developed in order to account for fiber scissoring, assuming

simultaneous operation of two modes of deformation: axial fiber stretching

and fragmentation (which was described in the original GH model) and fiber

rotation (which was not).

Using the remediated GH model, stress fields ahead of blunt notches in

plates of CMC laminates were investigated in Chapter 5 using finite element

analysis. A complementary analytical methodology, based on Neuber’s law,

was also developed. The methodology is based on a series of transforma-

tions of the corresponding elastic distribution. Within the inelastic zone, both

the (original) elastic stress and the position coordinate are scaled using results

from Neuber’s law; within the elastic zone, the position coordinate of the orig-

inal elastic stress is simply shifted. The predictions of the analytical model

were found to be in excellent agreement with the simulation results.

In Chapter 6, the modified GH model, as well as a related model based

on the work of Hahn (1973), was critically assessed using experimental data

for three different materials: SiC/SiC (Camus, 2000), SiC/CAS (Cady et al.,

1995a), and SiC/SiCN (present work). It was found that both constitutive
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models are overly restrictive and cannot accommodate the full range of be-

haviors of all composite types (i.e. ‘Class II’ and ‘Class III’ materials). To ame-

liorate this deficiency, a more generalized elastic-plastic model, based on the

deformation theory of plasticity, was developed. Correlations between its pre-

dictions of strain fields and corresponding experimental measurements (from

DIC) for open-hole tension tests are remarkably good. The principal utility of

the model is in capturing CMC deformation in the intermediate stress regime,

after elasticity ceases to apply but before effects of material softening and non-

proportional stressing become important. Finally, where they existed, the dis-

crepancies between the model predictions and the experimental data appeared

to be correlated to the onset of non-proportional stressing. Some support for

this hypothesis was provided through comparisons of changes in stress ratios

with errors in predicted displacements. Indeed, the regions of largest error

correspond to regions that experience a non-proportional loading history.
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7.2 Future work

7.2.1 High-fidelity virtual tests

Background

Although, as discussed, analytical models and simulations have been de-

veloped for particular damage mechanisms present in CMCs—for instance,

for matrix cracking and for fiber fragmentation—no model or simulation exists

that can capture all such mechanisms simultaneously. Developing such a tool,

particularly one that relaxes the assumptions commonly made in analytical

models (on-axis loading, large slip lengths, global load sharing, steady-state

cracking, etc.), would greatly advance the field of CMC mechanics. Indeed,

it would represent a high-fidelity virtual test for structural composites (Cox

and Yang, 2006). Virtual tests offer the possibility of 1) reducing the number

of (expensive) experiments required to characterize the mechanical behavior

of a single material system and 2) investigating material property space us-

ing simulations instead of trial-and-error-based testing. Several factors have

converged to enable construction of this kind of tool today.

First, there is the crucial physical insight: notably, that all of the mechan-

ical nonlinearity in CMCs can be attributed to interfaces within the material.
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The term ‘interface’ is broadly construed: it refers not only to the fiber-matrix

interface, but also to interfaces within the fiber and matrix along which cracks

can form (see Figure 7.1).

Second, numerical capabilities for modeling interface inelasticity (sliding,

damage, fracture, etc.) using cohesive elements have matured rapidly over

the last 15 years. As discussed by Ortiz and coworkers (Camacho and Ortiz,

1996; Ruiz et al., 2001), cohesive models of fracture greatly expand the space of

tractable problems relative to conventional fracture mechanics. They can han-

dle arbitrarily interacting cracks/cohesive zones, material inhomogeneities,

non-proportional loading, crack nucleation, etc., all of which are very difficult

to analyze using classical methods. For instance, the He-Hutchinson prob-

lem of crack deflection/penetration at an interface (He and Hutchinson, 1989)

was originally tackled by assuming a kink at the crack tip and comparing the

energy release rate for the deflected kink with that for the penetrated kink.

They developed a criterion for crack deflection based on the ratio of tough-

nesses between the substrate and the interface. A more modern and elegant

treatment of the problem was carried out by Parmigiani and Thouless (2006),

who assumed no such preexisting flaw. Instead, they used cohesive elements

along the interface and in the substrate and assigned these elements different

cohesive strengths/toughnesses. In doing so, they discovered that a general
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criterion for crack deflection must incorporate not only the substrate/interface

toughness ratio, but also the strength ratio. The cohesive approach, therefore,

unifies strength- and toughness-based failure criteria.

Furthermore, new techniques have been developed for tackling the more

general problem in which the spatial pattern of damage is an output, not an

input, to the simulation. (In other words, the crack paths are no longer prede-

fined.) The most well-known of these methods are the extended finite element

method (X-FEM) (Moës and Belytschko, 2002; Mariani and Perego, 2003) and

the cohesive surface approach (Xu and Needleman, 1994).

Finally, increases in computational power have enabled much more ambi-

tious models: i.e. larger geometries, 3-D simulations, finer meshes, etc. GPU

parallelization is also an important development that has yet to be fully ex-

ploited.

Length scales of interest

The cohesive interface approach can be used to investigate CMCs at two

scales. The first is that of the constituents (note preliminary efforts in this area

by Walter et al. (1997) and Tang et al. (2010)). Particularly powerful is the use

of cohesive simulations in conjunction with analytical models. For instance, a

seminal contribution would be to simulate a unit cell, in which the interfaces
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have non-zero debond toughness and undergo frictional sliding after debond-

ing, to analyze the mechanics of debonding and slip in CMCs under off-axis

loading. The results, which would be analogous to those of Hutchinson and

Jensen (1990) for on-axis loading, could be readily inserted into a steady-state

matrix cracking analysis (such as that of Chapter 3) to predict cracking for gen-

eral in-plane loading of CMCs with initially bonded interfaces. They could also

be used to tailor constituent properties (residual stresses, fiber/matrix mod-

uli, interfacial toughness and sliding stress) to maximize composite tough-

ness/strength for off-axis loading.

The second scale of interest is the continuum-scale (mm or cm). The appro-

priate model in this case would be a representative volume element of a ply or

a laminate, containing hundreds of fibers and associated matrix. For a single

ply, the entire tensile stress-strain behavior could, in principle, be simulated.

One could capture the stress at the onset of matrix cracking, the stress required

to propagate a long matrix crack, the evolution of matrix crack density with

applied stress, the onset of fiber fragmentation, global softening due to fiber

fragmentation, the plateau stress after fiber fragmentation ceases, etc. In other

words, such a simulation would represent a virtual tension test of a unidirec-

tional ply. For a laminate, yet other problems could be tackled. For instance,

virtual tests could be conducted for general in-plane loading (pure shear, 45◦
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tension, etc.) of CMC laminates. The resulting stress-strain curves could be

used as inputs to a coarse-scale constitutive model (such as that of Chapter

6), thus rendering the modeling approach fully multi-scale. The shape of the

‘yield/cracking surface’ for the laminate, and its dependence on constituent

properties, could also be predicted (and compared against the predictions of

Chapter 3). Additionally, the simulation results could be used to improve ex-

isting constitutive models. For instance, non-proportional loading of CMC

laminates could be studied, thereby enabling construction of a more sophisti-

cated constitutive model that extends rudimentary elastic-plastic constitutive

models of the type described in Chapter 6. Continuum damage mechanics

models, such as that of Talreja (1991), could also be assessed. These models

are typically based upon ad hoc damage evolution laws for internal variables

such as crack density or crack area. In a cohesive fracture simulation, these

variables would be outputs, not inputs.

7.2.2 Prediction of CMC fracture in non-uniform stress fields

As discussed in Chapters 2 and 6, fracture criteria for CMCs in non-

uniform stress fields are often ad hoc and without any sound mechanistic basis.

For instance, for prediction of notched fracture, a ‘point stress’ criterion, based

on attainment of a critical stress at a critical distance (typically on the order of

228



1 mm), is often used. Such a criterion is obviously purely empirical.

Although experiments are useful for providing insight into the failure pro-

cess, they often fail to produce measurements that are sufficiently detailed to

discriminate between various (proposed) failure criteria. High-fidelity virtual

tests, however, can overcome this deficiency. Parametric studies (varying spec-

imen geometry, applied load, material system, etc.) can be performed rapidly,

information from such tests can be extracted at a very small length scale, with

no associated measurement noise, and, most importantly, information about

the local stress state is available (as opposed to experiments, where typically

only the strain state can be monitored). Virtual tests, therefore, are expected

to be highly useful not only for assessing existing failure criteria but also for

developing novel criteria that are more fundamentally sound Ibnabdeljalil and

Curtin (1997b).

Two avenues seem particularly fruitful for investigating the newly-

developed fracture criterion for 1-D loadings (Chapter 2). The first deals

with direct observation of localizations. The global load criterion implies that

an array of roughly periodically spaced localizations should form within the

composite where the local strain is largest (e.g. on the tensile face in four-

point bending). The displacement jumps associated with these localizations

and their spatial distribution should be evident either in experiments (using
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DIC) or in virtual tests. A second promising area is design of new mechanical

tests designed to induce true tensile failure of CMCs under conditions of non-

uniform strain. One possibility, worth further investigation, is to design a test

that subjects a constrained specimen to an in-plane thermal gradient (Figure

7.2), thus avoiding the mechanical contact that results in premature shear or

compressive failure in four-point bending.

For investigating fracture criteria for 2-D loadings (such as notched ten-

sion), a combination of virtual tests and experiments is again expected to be

highly useful. For virtual tests, the major potential limitation is computa-

tional cost. For instance, explicit modeling of fibers and associated matrix in a

notched CMC panel would be prohibitive. In this situation, an explicit multi-

scale modeling approach (Curtin and Miller, 2003), wherein micro-scale mod-

eling is used in regions of high damage and is coupled to continuum models

remote from such regions, is potentially powerful. If feasible, the near-notch

cohesive elements would capture material damage and fracture in a physi-

cally realistic way, and remote continuum elements would provide the proper

coupling between the boundary conditions (applied loads) and the near-notch

damage. Such virtual tests could be readily utilized to assess the accuracy of

existing failure criteria for notched CMC laminates (McNulty et al., 1999), and

to develop new criteria for notched fracture that are more accurate and physi-
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cally sound.

To summarize, there exists a massive opportunity to apply the mathemat-

ical and computational machinery that has been developed for modeling ma-

terial damage and fracture to relevant problems in CMC mechanics. One out-

come would be the development of high-fidelity virtual tests with unprece-

dented realism and predictive power. Such tests could significantly accelerate

the engineering design process as well as inform future materials development

activities.
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Appendix A

Exact fragmentation model

Here the exact analytical descriptions of the fragmentation model devel-

oped by Hui et al. (1995) are presented. The average stress is partitioned into

three terms:

S(∆) =
∆/2∫
0

ℓ2

2
p1(∆, ℓ)dℓ+

∆∫
∆/2

ℓ2

2
p2(∆, ℓ)dℓ+

∆∫
∆/2

[
(ℓ− ∆)∆ +

∆2

2

]
p3(∆, ℓ)dℓ

(A.1)

The three integrals on the right side correspond to contributions from frag-

ments of length ℓ < ∆/2, ∆/2 < ℓ < ∆, and ℓ > ∆, respectively. The fragment

lengths are normalized by the characteristic length, δc. The functions pi(∆, ℓ)

represent fiber fragment densities, given by
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p1(∆, ℓ) = p(ℓ) + 2ρ

2ℓ∫
ℓ

A0(t)
t

exp
[
−tρ

(
ℓ+

t
2

)]
dt (A.2)

p2(∆, ℓ) = p(ℓ) + 2ρ

∆∫
ℓ

A0(t)
t

exp
[
−tρ

(
ℓ+

t
2

)]
dt (A.3)

p3(∆, ℓ) = A0(∆) exp(−∆ρℓ) (A.4)

where

p(ℓ) = ℓ2ρ exp
[
−ℓρ+1

ρ + 1

]
ψ

(
ℓρ+1

2

)
(A.5)

A0(ℓ) = ℓ2ρ exp
[

ρℓρ+1

ρ + 1

]
ψ

(
ℓρ+1

2

)
(A.6)

and

ψ(x) = exp

 −2ρ

ρ + 1

x∫
0

1 − exp(−t)
t

dt

 (A.7)
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Appendix B

Elastic constants of cross-ply

composite

The compliance matrix of a unidirectional ply (assumed to be in a state of

plane stress) can be written in terms of the engineering constants as:

S0 =


1/Ea −νt/Et 0

−νa/Ea 1/Et 0

0 0 1/Ga

 (B.1)

The engineering constants, in turn, are found using the generalized self-

consistent scheme (GSCS) (Christensen and Lo, 1979; Christensen, 1990). It is

a micromechanical model that allows the macroscopic elastic constants of the

fiber composite to be estimated using the elastic constants of the constituents.
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The GSCS model yields the same result as the cylindrical composites assem-

blage (CCA) model (Hashin and Rosen, 1964; Hashin, 1983, 1979) for four of

the composite elastic constants:

Ea = EmVm + E f Vf +
4(ν f − νm)2VmVf

Vm/k f + Vf /km + 1/Gm

νa = νmVm + ν f Vf +
(ν f − νm)(1/km − 1/k f )VmVf

Vm/k f + Vf /km + 1/Gm

Ga =
Gm(GmVm + G f (1 + Vf ))

Gm(1 + Vf ) + G f Vm

k =
km(k f + Gm)Vm + k f (km + Gm)Vf

(k f + Gm)Vm + (km + Gm)Vf

(B.2)

where the subscripts f and m denote the fiber and effective medium, respec-

tively. The shear modulus, G, and the transverse bulk modulus, k, are given

by the expressions (for isotropic materials):

G =
E

2(1 + ν)

k =
G

1 − 2ν

(B.3)

A unidirectional ply is a transversely isotropic material, which possesses five

independent elastic constants. The remaining constant, the transverse shear

modulus, Gt, is only bounded by the CCA model. An exact solution, how-

ever, can be found by using the GSCS formula given in Christensen and Lo

(1979) (the expression is quite lengthy and is thus not reproduced here). With

these five constants, the transverse Young’s modulus, Et, and the transverse
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Poisson’s ratio, νt can be computed using the formulae (Hashin, 1979):

νt =
k − mGt

k + mGt

Et = 2(1 + νt)Gt

(B.4)

where

m = 1 +
4kν2

a
Ea

(B.5)

The compliance matrix for the 90◦ ply is obviously

S90 =


1/Et −νa/Ea 0

−νt/Et 1/Ea 0

0 0 1/Ga

 (B.6)

Then, using elasticity theory, the compliance matrix for the overall (cross-ply)

composite is:

Sc = 2([S0]
−1 + [S90]

−1)−1 (B.7)
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