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1 Preconditioning

The convergence speed of the primal-dual algorithm depends on the steps σ andτ .
These steps must satisfy the constraint τσ‖K‖22 < 1, i.e the operator norm of K
influences on the convergence speed of primal-dual. Given the current form of
K, the operator norm of k depends on the operator norm of the patch dictionary
Q. The patch dictionary is a dense block diagonal matrix therefore its operator
norm, therefore the possible values of σ and τ are unfavorable. To improve the
convergence rate we employ customized per-row and per-column steps τd and σc
and, as suggested in [1], set them according to

τd =
1∑M̃ÑW 2(2+3D)−(M̃+Ñ)DW 2

c=1 |Kcd|

σc =
1∑M̃Ñ((nm−1)D+W 2)

d=1 |Kcd|
(1)

where σc is divided into different parts for Fis. For F1, is defined as ωx,y =∑
k

1
‖Qk

x,y‖
and for F3 is equal to ξx,y = 2 if (x, y) belongs to the domain Ω

except for the bottom row and the right column, and ξx,y = 1 if (x, y) belongs
to the bottom row and the right column except the bottom-right corner. We
employ Moreau’s identity as explained in the paper to calculated the proximity
operators for the functions.

2 Implementation Details

2.1 Convex labeling

Given C, the disparity ρ̂ is determined at each pixel (x, y) independently by
solving

ρ̂x,y = arg max
ρ∈{ρ1,...,ρD}

‖Cρx,y‖. (2)
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However, one can introduce a convex labeling by fitting a convex function per
patch to the estimated Cx,y and impose a smooth prior such as TV constraint
on the recovered disparity to solve an inpainting problem.

ρ̃ = arg min
ρ
λ‖∇ρ‖2 − fC(ρ), (3)

where λ > 0 is a constant and fC is the convex function fitted to Cx,y. This
formulation can help to remove the disparity noise however it can smooth some
details.

(a) Input (b) Independent
Labeling Eq.(2)

(c) Convex La-
beling Eq.(3)

Fig. 1. Comparison of smooth disparity estimation with independent disparity estima-
tion per pixel. We observe that smooth labeling can remove some noise as the result
of improper initial candidate selection (specially in smooth area), however it smooths
out some details with respect to independent disparity labeling.

2.2 Improving initial disparity candidate selection

One shortcoming of our method is that it is very computationally intensive.
Because of that we had to limit the number of possible depth levels. To do
so we use the plane sweep method and at each pixel we compute a matching
error for each depth hypothesis (see sec. 6.4). While this strategy allows us to
reduce the number of possible depth levels and thus make our algorithm run
much faster, when none of the depth candidates is close to the correct solution
the final estimate will be noisy. We can see this effect in several recovered depth
maps. One way to improve the final estimate is clearly to improve the candidates
by using larger patches, or more views, or by using smarter heuristics to choose
candidates. Another strategy that we will explore in the future is simply to avoid
the depth reconstruction at pixels where we do not have good candidates. Hence,
we can estimate C on a subset Ψ of the set of all image pixels. One can then
recover depth at every pixel later on given the estimated C. If C is not defined
at all pixels, one can then solve the inpainting problem

ρ̃ = arg max
ρ

∑
x,y∈Ψ

(ρx,y − ρ̂x,y)2 + ε‖∇ρ‖2 (4)
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where ε > 0 is a constant. Finally, we will explore the Block Coordinate Descent
(BCD) [2] in detail on our algorithm, where we simply iterate on subsets of coef-
ficients at each time. This way we can work on the full depth candidates at each
time to avoid uncertain disparity map. Fig. 2 demonstrates disparity estimation
using BCD on 100 disparity candidates without pre-selection of the most proper
candidates. The disparity labeling from the estimated C is performed both by
the convex and the independent method. We observe that the convex model
leads to a smoother result however the independent labeling using Eq. (2) has
more details.

(a) Input (b) Independent
Labeling Eq.(2)

(c) Convex La-
beling Eq.(3)

Fig. 2. Estimating disparity map with 100 disparity candidate using block coordinate
descent method.

3 Multiview Depth Estimation

We test our light field depth estimation technique on the Middlebury dataset3

with stereo methods [3], two light field depth estimation schemes [4, 5], and
convex formulations [1,6]. Our parameters are: µ = 0.6 and γ = 1 for all datasets,
then λ = 0.5 for Venus, λ = 0.15 for Cone.
One aspect we would like to point out is that the number of views used in
the depth estimation problem improves the depth estimate considerably, this is
clearly noticeable in Fig. 3. Our algorithm is also demonstrated in the limit case
where there are only two views (Fig. 4). The group sparsity constraint can still
work quite successfully.

References

1. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational
models with convex regularization. SIAM Journal on Imaging Sciences 3(4) (2010)
1122–1145

3 http://vision.middlebury.edu/stereo/data/



4 Mahdad Hosseini Kamal et al.

(a) Input (b) Ground
truth

(c) [3] (stereo) (d) [4] (8 views)

(e) Initial stereo (f) stereo (g) 4 views (h) 8 views

Fig. 3. Venus dataset. On the top row we show (left to right): one input image, the
ground truth depth map, the estimate of [3] for the stereo case and that of [4] for 8
views. On the bottom row we show (left to right): our initial depth estimate (plane
sweep depth search), our final result with 2, 4 and 8 views.

(a) Input (b) Ground
truth

(c) [6]
(Stereo)

(d) Sweep (e) stereo

Fig. 4. Cone dataset. Top image is one of the input images. Bottom row (left to right):
the ground truth depth map, the estimate of [6] for the stereo case, our initial depth
estimate (plane sweep depth search), and our final result with 2 views.
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