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Abstract
Many natural and man-made signals can be described as having a few degrees of freedom relative to their
size due to natural parameterizations or constraints; examples include bandlimited signals, collections of
signals observed from multiple viewpoints in a network-of-sensors, and per-flow traffic measurements of
the Internet. Low-dimensional models (LDMs) mathematically capture the inherent structure of such
signals via combinatorial and geometric data models, such as sparsity, unions-of-subspaces, low-rankness,
manifolds, and mixtures of factor analyzers, and are emerging to revolutionize the way we treat inverse
problems (e.g., signal recovery, parameter estimation, or structure learning) from dimensionality-reduced
or incomplete data.

Assuming our problem resides in a LDM space, in this thesis we investigate how to integrate such models
in convex and non-convex optimization algorithms for significant gains in computational complexity. We
mostly focus on two LDMs: (i) sparsity and (ii) low-rankness. We study trade-offs and their implications
to develop efficient and provable optimization algorithms, and–more importantly–to exploit convex and
combinatorial optimization that can enable cross-pollination of decades of research in both.

Beaucoup de signaux naturels et artificiels peuvent être décrits comme ayant peu de degrés de liberté par
rapport à leur taille en raison de paramétrages naturels ou des contraintes; des exemples comprennent
les signaux à bande limitée, les collections de signaux observés à partir de plusieurs points de vue dans
un réseau de capteurs, et les mesures de trafic d’Internet par flux. Les modèles de basse dimensionnalité
(MBD) capturent mathématiquement la structure inhérente de ces signaux via des modèles de données
combinatoires et géométriques, comme la parcimonie, les unions de sous-espaces, la faiblesse de rang, la
variété, et les mélanges d’analyseurs factorielles, et ils émergent pour révolutionner la façon dont nous
traitons les problèmes inverses (par exemple, la récupération de signal, l’estimation de paramètres, ou
l’apprentissage de structure) à partir de données de dimensionnalité réduite ou incomplètes.

En supposant que notre problème réside dans un espace de MBD, dans cette thèse, nous étudions
comment intégrer ces modèles dans les algorithmes d’optimisation convexes et non convexes pour des
gains importants dans la complexité de calcul. Nous nous concentrons principalement sur deux MBDs:
(i) la parcimonie et (ii) la faiblesse de rang. Nous étudions les compromis et leurs implications pour
développer des algorithmes d’optimisation efficaces et prouvables, et – plus important encore – pour
exploiter l’optimisation convexe et combinatoire qui peut permettre la pollinisation croisée de décennies
de recherche à la fois.

Key words: Sparse Euclidean projections, sparse linear regression, compressed sensing, affine rank
minimization, matrix completion, structured sparsity, convex composite minimization, self-concordance.
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Introduction
Living in the “information age”, we have witnessed an ever increasing interest in designing computing
systems that can analyze large amount of information in reasonable time: organizations ranging from
all-around data analytics companies to banks and from petroleum enterprises to bio-informatics research
labs move towards this direction. In order to accomplish the desiderata, one has to take into consideration
every aspect of data to conceive a viable and efficient system design: its volume, its variety and the need
for quick analysis tools (velocity); see Figure 1.

Figure 1: The “3 V.’s” description of data.To quantify the importance of each attribute in such descrip-
tion, we highlight next some interesting statistics on the vol-
ume and the variety of data nowadays. Google processes
more than 24 Petabytes of data per day and collects data
originating from both social networks and multimedia por-
tals (images, video, social network data, etc.). The main
reason behind this huge data creation is the Web and its vol-
unteered users: the crowd has become an important data
provider. Subsumed under the term Volunteered Informa-
tion (VI), non-expert users have been providing a wealth
of data online. However, in order to exploit this data in its
entirety, efficient compression algorithms are needed so that,
e.g., search queries can be efficiently completed, even in the compressed domain [VFK]. Moreover, data
mining methods should be able to operate with high accuracy in such compressed spaces via efficient
feature selection or dimensionality reduction schemes.

Within the same context, companies such as Microsoft, Facebook and Twitter further collect data that can
lead to social network inference (e.g., graph inference). As a representative example, Twitter collects more
than 50 million “tweets” per day, a huge amount of information that can be exploited to infer inter-user
dependencies and correlations.

From a different perspective, there are many problems where data is represented in the most usual
form (tables/matrices in databases); e.g., bank companies collect transaction data in database tables
where querying, monitoring or even prediction tasks are performed (e.g., portfolio suggestion in finance
optimization).

In addition to the above, recent studies have shown that more than 1.3 Exabytes of data are sampled,
stored and transfered over the (wireless) communication network, due to the bloom of smart-phones
in the phone industry. This underlines the need for more efficient sampling techniques—consider for
example the compressive sensing paradigm [CDS98, CT06, CRT06], described in the next chapters—in
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order to reduce the amount of data transmitted over the network, while pertaining the overall quality of
service.

To this end, there is an ever increasing need for computer hardware designs that can accommodate such
data “deluge”. However, the rate of data growth is far higher than the dictated growth in platform

Figure 2: Growth rate comparison.
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computational capabilities—see Figure 2 for a relative com-
parison. Thus, by just using traditional statistical tools to
compress, analyze and process data, one might not fully ex-
ploit the available data in its entirety, no matter how she/he
designs and optimizes the computer hardware. Therefore,
we need accurate, robust and scalable algorithms that can
handle larger amount of data simultaneously.

Within this context, this thesis focuses on and evolves around
novel, fast and provable algorithms for data analysis in large-
scale problems. From our point of view, a brief description
of data analysis in layers is given in Figure 3. While data
querying and monitoring are two of the most used tasks in

data analysis (e.g., most database systems rely heavily on such tasks), here we study the two out-most
layers: data preprocessing and prediction. In particular, we concentrate on understanding and tackling
challenges in large scale inference problems and we do so in view of diverse machine learning and signal
processing applications.

Prediction Data analysis, optimization

PreprocessingDimensionality
reduction, data mining

Monitoring
Scorecards, 
dashboards

Query
Reporting

Com
plex

ity

Busin
es

s v
al

ue

Wednesday, June 11, 14Figure 3: Layers of data analysis tasks. The further we move away from the center of the circles, the
higher the complexity/business value of the task.

Our perspective can be summarized as follows: While the ambient dimension is vast in modern data anal-
ysis problems, the relevant information therein typically resides in a much lower dimensional space. To
this end, given a data set to analyze, one is usually interested in the simplest model that well-characterizes
the observations. This conclusion has lead to several new theoretical and algorithmic developments in
different communities, including theoretical computer science [BGI+08], applied mathematics [RZMC11],
and digital signal processing [Don06, CW08]. In practice, it turns out that it is sufficient to identify a low
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dimensional model (LDM) that is inherent in the acquired data, formulate proper optimization criteria that
disclose such LDMs from the observations and, develop fast and accurate algorithms to accomplish this
task.

In the first two parts of this thesis (Chapters 1-4), we mainly focus on two mathematical problems from a
non-convex perspective, with a wide range of real-world applications: (i) sparse linear regression and (ii)

low rank matrix approximation from incomplete data. To motivate our discussion, we first present some
sparsity primitives that evolve around special Euclidean projection operations and provide intuition for
our developments later in the text. Besides the theory developed for this task, we describe a class of fast
and accurate algorithms with low computational and space complexity (as compared to other convex
and non-convex state-of-the-art approaches), aiming for their direct application in real-world engineering
problems.

In the third part of this thesis (Chapter 5), we focus on convex optimization and propose an novel
algorithmic framework that solves a wide range of problems with provable guarantees. The highlight
of this attempt is the use of unconventional theoretical convex tools that lead to provably better and
robust algorithms with attractive convergence guarantees. As we show, this scheme finds application in
a wide range of problems, ranging from graphical modeling to low-light neuron image processing under
Poisson noise and from sparse signal reconstruction in MRI images to sparse covariance estimation for
portfolio optimization.

Next, we only “scratch the surface” of the topics covered in this thesis to stimulate the reader’s interest in
the chapters that follow.

Making inferences with low dimensional models

Greedy approaches in sparse signal approximation (Chapters 1-2): One outstanding application of
LDMs is found in compressive sensing (CS), which exploits sparse representations in one-way signal arrays

Original State-of-the-art #1 State-of-the-art #2 Our approach

25.72dB 25.92dB 26.78dB

27.36dB 27.16dB 28.19dB

Figure 4: Image reconstruction results for three prob-
lem cases: real image data (Top row), MRI brain image
data (Middle row) and spectral imaging real data (Bot-
tom row).

(i.e., vectors). It is well-known that signals such as
images can be well-approximated and compressed
as the sparse superposition of atoms/functions from
an appropriate basis. Using this prior information,
CS showcases that such signals can be reliably recon-
structed from only a limited set of measurements, far
fewer than what conventional wisdom dictates. How-
ever, while most CS recovery algorithms are based
on convex optimization to seek sparse solutions, they-
staggeringly-never take advantage of the crucial non-
convex low-dimensional scaffold, upon which the CS
problem resides. In [KPC12, KC12a, KC11], we investi-
gate how to integrate combinatorial, sparse projections
in convex optimization algorithms for better signal re-
construction and lower computational complexity. As
a result, we introduce the ALPS, CLASH and NORM-
PURSUITS classes of algorithms that enhance the per-
formance of state-of-the-art algorithms by carefully
selecting parameters and incorporating convex and non-convex constraints on the regression vector.

3
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In the context of image processing, Figure 4 shows some preliminary results of this attempt, highlighting
the merits of our approach. For this case, we use the NORMED PURSUIT approach, where both sparsity
and convex Total variation-norm (TV-norm) constraints are present in the optimization criterion. To
study the performance of NORMED PURSUITS in the compressed domain, we conduct experiments on
natural images, brain1 images and Coded Aperture Snapshot Spectral Imager (CASSI) data2. Using
measurements that correspond to the 25% of the full data, we obtain superior image reconstruction, as
compared to state-of-the-art schemes —see Chapter 2 for more information.

Key ingredients for this type of optimization are the sparse Euclidean projections, probably accompanied
with additional constraints. This observation has led us to study the behavior of such operations in
Chapter 1. As an extension to this line of research, in [KBCK13], we consider the problem of sparse
projections onto simplex-type of constraints and propose efficient sparse projections in solving high-
dimensional learning problems such as sparse density estimation and portfolio selection.

Greedy approaches in affine rank minimization (Chapter 4): Within the context of affine rank mini-
mization problems, where low-rankness constitutes a LDM for this case, we present and analyze a new
set of low-rank non-convex recovery algorithms for linear inverse problems with applications in image de-
noising, background image subtraction (see Figure 5), and quantum state tomography [KC14, KC12b]. In

Original Low rank Sparse

Figure 5: Background subtraction in video sequence.

Chapter 4, we provide strategies in order to achieve
complexity vs. accuracy trade-offs in practice and
propose acceleration schemes (via memory-based
techniques and randomized, ε-approximate projec-
tions) to decrease the computational costs in the re-
covery process.

In the context of quantum state tomography, in
[BCK13] we further improve the low-rank recovery
scheme to operate on space proportional to the de-
grees of freedom in the problem. This added twist
decreases the per iteration requirements in terms of

storage and computational complexity leading to an efficient solver working in extreme large scale
problems. To test scaling to very large data, we exploit parallel computing capabilities of workstations
provided in EPFL and demonstrate the performance of our algorithm under realistic scenarios of a 16

q-bit state quantum system (i.e., a 65536× 65536 matrix), using a known quantum state as input with
realistic quantum mechanical perturbations.

A glimpse in sparse LDMs: beyond simple sparsity

Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality
reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine
learning and statistics applications. However, many solutions proposed nowadays do not leverage the
true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated
structured sparsity models, which describe the interdependency between the nonzero components of
a signal, increasing the interpretability of the results and leading to better recovery performance. In
order to better understand the impact of structured sparsity, in Chapter 3 we analyze the connections

1BRAINIX database: http://pubimage.hcuge.ch:8080/.
2http://www.disp.duke.edu/projects/CASSI
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between the discrete models and their convex relaxations, highlighting their relative advantages. We start
with the general group sparse model and then elaborate on two important special cases: the dispersive
and the hierarchical models. For each, we present the models in their discrete nature, discuss how to
solve the ensuing discrete problems and then describe convex relaxations. Further, we discuss efficient
optimization solutions for structured sparsity problems and illustrate structured sparsity in action via
two applications.

Convex optimization thrust

While non-convex approaches (such as the ones aforementioned) perform quite impressively in practice,
they seldom come with rigorous global guarantees (or, in the best case, they rely on strong global
assumptions), while they are more susceptible to model errors due to their “rigid” definition. Moreover,
their applicability is usually restricted to the specific problem at hand.

In contrast, the literature on the formulation, analysis, and applications of composite convex minimization is
ever expanding due to its broad applications in machine learning, signal processing, and statistics. By
composite minimization, we refer to the following optimization problem:

F ∗ := min
x∈Rn

{F (x) | F (x) := f(x) + g(x)} , (1)

where f and g are convex functions, characterizing our problem at hand. Here, f function represents the
data fidelity term (e.g., least-squares objective function, logistic loss, etc.) and g “forces” the solutions in
(1) to favor a low-dimensional model, depending on the nature of g.
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Stock Abbr. Company name Stock Abbr. Company name

RBS Scotland Bank ARC Arc Document
AMEC AMEC Group UTX United Tech.
BAC Bank of America RCI Rogers Comm.
PKX Posco EMX EMX Industries

FXPO Ferrexpo ARM ARM Holdings
EOG EOG Resources AZEM Azem Chemicals
PTR PetroChina NCR NCR Electronics
BP BP PFE Pfizer Inc.
DB Deutsche Bank RVG Retro Virology

USB U.S. Bank Corp. SNY Sanofi health
AURR Aurora Russia IPO Intellectual Property
GLE Glencore VCT Victrex Chemicals
IBM IBM PEBI Port Erin BioFarma

Figure 6: We focus on four sectors: (i) bank industry (light purple), (ii) petroleum industry (dark purple),
(iii) Computer science/microelectronics industry (light yellow), (iv) Pharmaceuticals/Chemistry industry
(green). Using the proposed scheme, one is able to identify accurately strong correlations among stock
assets from incomplete data: Positive and negative correlations are denoted with blue and black arcs,
respectively. The width of the arcs denotes the strength of the correlation.

Within this context, in Chapter 5, we work in the convex domain to solve problems that are more-involved
than the classical linear model, like the ones presented in Chapters 2 and 4. We propose a variable metric
framework that solves instances of (1) and theoretically establish the convergence of our framework
without relying on the usual Lipschitz gradient assumption on the objective. To support these theoretical
developments, we describe concrete algorithmic instances of our framework for several interesting
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large-scale applications and apply them on real data. As an example, in the portfolio optimization
context, Figure 6 depicts some representative correlation estimates among stock assets by solving the
sparse covariance estimation problem with the proposed algorithms. A non-exhaustive list of applications
includes graphical modeling, low-light neuron image processing under Poisson noise and, sparse signal
reconstruction in MRI images.

Notation and prerequisites

Throughout the thesis, plain and boldface lowercase letters represent scalars and vectors, respectively.
Matrices are denoted with boldface uppercase letters. Since there are overlaps in the way we define
notions for vector and matrix cases, we split the discussion in parts. Moreover, any nomenclature specific
for a distinct topic is provided in the introduction of the corresponding chapter.

Vector notation: The i-th entry of a vector w is denoted as wi, and [wi]+ = max(wi, 0). We use superscripts
or subscripts such as wi or wi to denote the estimate at the i-th iteration of an algorithm; the distinction
is apparent from the context. Given a set S ⊆ N = {1, . . . , n}, the complement Sc is defined with respect
to N , and the cardinality is |S|. The support set of w is supp(w) = {i : wi 6= 0}. Given a vector w ∈ Rn,
wS is the projection (in Rn) of w onto S, i.e. (wS)Sc = 0, whereas w|S ∈ R|S| is w limited to S entries.
The all-ones column vector is 1, with dimensions apparent from the context. We define Σk as the set of
all k-sparse subsets of N , and we sometimes write x ∈ Σk to mean supp(x) ∈ Σk. With a slight abuse
of notation, we also use the notation Σk := {x : ‖x‖0 ≤ k, x ∈ Rn}; the distinction is apparent from the
context.

Matrix notation: The rank of X ∈ Rp×n is denoted as rank(X) ≤ min{p, n}. The inner product between
matricesA, B ∈ Rp×n is denoted as 〈A,B〉 = trace(BTA), where T represents the transpose operation.
I represents an identity matrix with dimensions apparent from the context.

Prerequisites: To maintain a good “reading flow” in this thesis, we moved to Appendix A at the end of the
thesis the necessary background to support the developments presented in the rest of the thesis. This
includes norm definitions, convexity definitions and tools, an abstract definition of LDMs, projection and
proximity operations and some optimization basics used in the main text. Our intension is to provide a
complete set of preliminary tools that makes reading this dissertation easy. In case we believe that the
reader should consult the Appendix A, we mention it explicitly in the main text.
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1 Sparse Euclidean projections onto sets

Introduction

Sparse signal approximation lies at the heart of exciting developments in the areas of signal processing,
machine learning, theoretical computer science and optimization. It roughly states that a sparse signal,
i.e., the number of its nonzero entries is small as compared to its ambient dimension, can be perfectly
reconstructed from far fewer samples than dictated by the well-known Nyquist-Shannon theorem, i.e.,
uniformly taking samples with frequency at least twice its highest frequency in the Fourier domain.

However, since Nyquist-Shannon theorem guarantees perfect reconstruction, why has sparse signal ap-
proximation gained such attention? It is well-known that sampling at Nyquist rate might be prohibitive
for computationally demanding applications and creates vast amount of data which must be stored or
transmitted [TLD+10]. Sparse approximation theory proposes an alternative sampling scheme (when
the signal of interest can be sparsely represented using an appropriate basis [Don06, CW08]) where (i)

sampling might not be periodic, (ii) samples are usually acquired through linear “sketches” of the signal
of interest with an appropriate measurement matrix and, (iii) the number of measurements needed
for accurate signal recovery is much less compared to traditional sampling techniques. To accomplish
the above, sparsity-based optimization algorithms are required, accompanied with strong theoretical
convergence and approximation guarantees.

From a different perspective, sparsity is also used as a means of solution parsimony in machine learning
/ applied mathematics applications [Ng04, Tib96, Nat95]. While classical criteria result in good model-
fitting solutions, i.e., solutions that minimize a selected data fidelity term (e.g, the square loss, the logistic
loss, etc.), in many cases they hardly provide any interpretability of the data-generating model. In fact,
this inefficiency has been the center of attention over the past decade: a broad range of applications,
from medical imaging [LDP07, LSDP06] and communications [CR02, HS09] to graph learning [DVR08,
BEGd08, TDKC13c] and portfolio optimization [BDDM+09, KBCK13], attempt to exploit sparsity in order
to reduce the solution’s degrees of freedom and improve its utility and interpretability, as compared to
classical approaches.

However, sparsity is generally difficult to handle in its pure form: it inherently introduces non-convexity
into learning problems, which is undesirable according to the conventional wisdom. To formulate our
discussion, a n-dimensional vector x ∈ Rn is k-sparse with k ≤ n if it contains at most k non-zero entries,

7



Chapter 1. Sparse Euclidean projections onto sets

i.e.,

‖x‖0 := |{i : xi 6= 0}| = |supp(x)| ≤ k.

Here, ‖x‖0 is known as the `0 “norm”; as its name indicates, it is not a proper norm and has combinatorial
nature. Furthermore, many optimization instances that include the `0 “norm” are known to be in general
combinatorially hard to solve [Nat95, GJY11, BAd10].

While this observation jeopardizes the use of sparsity in optimization procedures, fortunately the success
of sparse approximation theory lies also in the computational tractability of such task through relaxations.
Tibshirani [Tib96], Donoho [Don06] and Candes et al. [CRT06] utilize convex relaxations of the `0
“norm” to compute a sparse solution in the underdetermined linear regression setting, with attractive
approximation guarantees in polynomial time. Specifically, the `0 “norm” is replaced by its convex
surrogate1 `1-norm, since:

‖x‖1 ≤ max
i
|xi| · ‖x‖0, for ‖x‖1 :=

n∑

i=1

|xi|, (1.1)

where efficient convex solvers can be utilized.

Using sparsity in applications

Based on the above notions, a prevalent approach for prediction / decision-making problems with sparse
solutions is to model such tasks with a convex `1-norm constrained optimization criterion; see [Tib96]. In
particular, we are provided with a (usually) convex data fidelity / risk function f : Rn → R and we are
interested in finding the minimizer x? such that:

x? ∈ arg min
x: ‖x‖1≤λ

f(x), (1.2)

where λ > 0 is a user-defined parameter that controls the sparsity of the solution. According to (1.1),
smaller values of λ lead to sparser solutions.2

A popular scheme for solving (1.2), known for its simplicity and ease of implementation, is the projected
(sub)gradient descent algorithm [Gol64, LP66, Ber82]:3 Per iteration, the main computational complexity is
due to the calculation of the (sub)gradient of f and the projection operation onto the set IC1

λ, according
to the next definition.

Definition 1 (Inequality-norm sets). We use ICαλ to denote an inequality-constrained `α-norm set with
parameter λ such that ICαλ := {w : ‖w‖α ≤ λ}.

The above lead to the following projected (sub)gradient descent recursion for solving (1.2):

xi+1 := PIC1
λ

(
xi −

µ

2
vi

)
, vi ∈ ∂f(xi), (1.3)

1For signals with bounded energy, `1-norm is the closest convex surrogate to `0 “norm”. We highlight that, while `0 “norm” does
not depend on the scaling of the individual entries of x, `1-norm inserts the notion of scaling in the optimization procedure.

2However, one can easily observe that such reasoning is misleading (it is not a necessary condition). E.g., a solution with many
small entries such that ‖x‖1 is small does not imply sparsity in x for arbitrary n.

3Please, also refer to the Appendix A for further information.
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1.1. Preliminaries

where xi denotes the current estimate, µ > 0 is a properly selected step size, vi represents a (sub)gradient
of f around xi and, PIC1

λ
(·) is defined as:

PIC1
λ
(y) = arg min

x: x∈IC1
λ

‖x− y‖22; (1.4)

in (1.3), the input signal y is y := xi − µ
2 vi at the i-th iteration. In the IC1

λ setting, [DSSSC08] shows
that the projection (1.4) can be efficiently computed in at most O (n log n) time-complexity. [LY09] casts
(1.4) as a root finding bisection method that achieves an ε-close solution vector in linear time complexity,
where ε > 0 is a user-defined parameter.

While such sparsity-inducing norm approaches are impressive in practice, the solution returned by (1.2)
might not have the desired sparsity for data interpretation. Fine-tuning of the parameter λ usually leads
to solutions with sparsity level close to the desired one, but successive application of (1.2) is required
to achieve the desiderata. Moreover, there are problem cases where any additional constraints might
conflict with IC1

λ, thus leading to invalid or non-sparse solutions, as we show next.

Chapter roadmap

Our intention in this chapter is to leverage both combinatorial (such as the `0 “norm”) and norm constraints
to guide such variate selection processes under different settings. A key actor for this task is an efficient
sparse projection operation over norm and linear constraints that goes beyond simple selection heuristics, with
provable solution quality as well as attractive runtime/memory performance. In the next sections, we
first provide some non-trivial and useful key lemmas, regarding sparse Euclidean projections onto `2-
and `∞-norm constraints (Section 1.3). We continue our discussions with sparse Euclidean projections
onto simplex-type of constraints in Section 1.4. Finally, this chapter concludes with real application
examples where some of the aforementioned projections are used and compared with state of the art
algorithms; see Section 1.5.

This chapter is based on the joint work with Volkan Cevher, Stephen Becker and Christoph Koch
[KBCK13].

1.1 Preliminaries

We first define the pure sparse projection operator, PΣk(·), where k denotes the desired sparsity level:

PΣk(y) = arg min
x: x∈Σk

‖x− y‖22. (1.5)

This projection is generally known as the hard-thresholding operation. Here, PΣk(y) represents the best
k-sparse approximation of y ∈ Rn over all vectors in Σk, the non-convex set of k-sparse vectors with
appropriate dimensions. While PΣk(·) is a combinatorial operation, there is an obvious and intuitive
solution to it: one only requires to determine the k largest in magnitude elements of y in O(n log n)

time-cost.

In stark contrast to (1.2), in the discussions below we deal with the more demanding and non-convex
case:

x? ∈ arg min
x: Σk∩#

f(x), (1.6)

9



Chapter 1. Sparse Euclidean projections onto sets

where # represents additional structure constraints on the variate solution vector; here, Σk forces sparsity
in the solution such that ‖x?‖0 ≤ k. The key ingredient in solving (1.6) is the following non-convex
projection operation:

PΣk∩#(y) = arg min
x: x∈Σk∩#

‖x− y‖22. (1.7)

Equality-constrained vs. inequality-constrained norm sets

In the case where # represents norm constraints, inequality-constrained norm sets ICαλ are most com-
monly used in practice4. However, in this chapter, we also present more demanding problem cases where
the norm constraints are only satisfied with equality and, thus, are non-convex sets.

Definition 2 (Equality-norm sets). We use Cαλ to denote an equality-constrained `α-norm set with
parameter λ such that Cαλ := {w : ‖w‖α = λ}.

In the next sections, we either use equality or inequality norm constraints, depending on the problem at
hand.

Convergence of projected (sub)gradient descent methods

The optimization criterion studied and used in the applications part of this section is:

x? ∈ arg min
x: x∈Ω

f(x), (1.8)

where Ω ⊆ Rn and f is a convex function, bounded below on Ω and with non-empty domain, intersected
with Ω. In our examples, we further often assume that f is a continuously differentiable function.5

Under this setting, (1.8) becomes:

xi+1 := PΩ

(
xi −

µ

2
∇f(xi)

)
, (1.9)

where ∇f(xi) denotes the gradient of f at the putative point xi. For the case where Ω is convex,
e.g., Ω ≡ ICαλ for α > 1, [CM87] shows that, if {xi}i≥0 is a sequence generated by (1.9), then any
limit point {xi}i≥0 (as i → ∞) is a stationary point of (1.8), i.e., the sequence of projected gradients
{‖∇f(xi)‖2}i≥0 → 0.6

Unfortunately, for the case where Ω is a non-convex set, similar convergence guarantees for the projected
gradient descent framework are not generally known. However, our proposed solutions to non-convex
projection operations can be also used in an alternating projection algorithm [ARS07], where, surprisingly,
it is possible to obtain stationary points of general loss functions under very mild conditions [ABRS10].

4Due to their convexity, as long as ICαλ is convex.
5Please, refer to the Appendix A for a rigorous definition of these notions.
6We underline that a stationary point or critical point xi is an estimate where the gradient of f at xi is zero.
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1.2. Related work

1.2 Related work

To the best of our knowledge, there are only a few published works on sparse Euclidean projections
onto general constraints. The work of Luss and Teboulle [LT13] on sparse Principal Component Analysis
(sparse PCA) provides some preliminary results on sparse projections of the form:

PΣk∩C2
1
(y) = arg min

x: x∈Σk∩C2
1

‖x− y‖22,

Recently, we became aware of a recent work of Beck and Hallak [BH14] that concentrate on the minimiza-
tion over sparse symmetric sets, a notion that generalizes the ideas presented in this chapter.

1.3 Sparse Euclidean projections onto norm constraints

A general description of the Euclidean projection we focus on is given next:

PROBLEM 1.1. Given an anchor vector y ∈ Rn, a desired sparsity level k and a norm constraint Cαλ / ICαλ ,
we are interested in the optimization problems:

PΣk∩Cαλ (y) ∈ arg min
x: x∈Σk∩Cαλ

‖x− y‖22 or PΣk∩ICαλ (y) ∈ arg min
x: x∈Σk∩ICαλ

‖x− y‖22. (1.10)

Here, we consider two well-known norm cases: for Cαλ , we consider α = 2, and for ICαλ , we consider
α = ∞. The selection of these norms is due to their presence in important real problem instances. To
motivate our discussion, we describe next two applications:

1. Sparse Principal Component Analysis (PCA): Finding the principal component of a given data
matrix A is an important task in data analysis: such component explains most of the variance
in data, naturally leading to a compression / dimensionality reduction scheme. In particular, let
A ∈ Rn×n be a matrix such that A � 0.7 To find the principal component, we solve [Jol05]:

x? ∈ arg max
x: x∈C2

λ

xTAx,

with optimal solution the eigenvector corresponding to the maximum eigenvalue of the matrix A.
However, such an x? makes hardly any space for data interpretation: x? is usually dense and thus
all features contribute in defining the direction that explains most of the data.

In sparse PCA [dEGJL04], we place a sparse prior on the support pattern of x?. Sparse PCA looks for
k-sparse linear combinations of variables (i.e., principal components) that correspond to directions
of maximal variance in the data, according to:

x? ∈ arg max
x: x∈Σk∩C2

λ

xTAx.

Here, using the projection onto Σk ∩ C2
λ, we try to predispose the learning mechanism to return

more interpretable sparse solutions. Other application examples of C2
λ include 1-bit compressive

sensing (see eq. (15) in [BB08] where a straightforward reformulation of the problem leads to (1.6)

7In most cases, A represents a covariance matrix.
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Chapter 1. Sparse Euclidean projections onto sets

where # := C2
λ), Independent Component Analysis (ICA) (see eqs. (1)-(2) in [DAK00]), etc.

2. Sparse feature selection in clustering: Let A ∈ Rm×n be a data matrix of m measurements and
n features. In classical clustering methods, one desires to cluster the observations, based on
the features. Currently, the dominating techniques for data clustering are based on hierarchical
clustering [WJ63] and on flat/centroid-based clustering (e.g., K-Means based) [Ste56, Mac67].
However, due to noise or possible presence of outliers, one suspects that the true underlying
clusters can be identified using only some of the features available.

[WT10] propose a framework for sparse clustering where clusters are obtained using a sparse subset
of the features. Abstractly, this leads to the following optimization criterion:

maximize
x,Θ

n∑

i=1

xifi(Ai,Θ) subject to Θ ∈ D, x ∈ C2
λ ∩ IC1

λ, xi ≥ 0.

Here, Θ is a parameter restricted to lie in a problem-dependent set D and fi(·) is a function that
involves the i-th feature of A; e.g., fi(·) can be the sum of squares distances between clusters
for feature i. For more detailed description of the problem, we refer the reader to [WT10]. Re-
cently, [CWLX14] identify that many “noise” features are still present in the final clustering results,
jeopardizing the utility of IC1

λ sparsity constraint. As an alternative, they propose the following
criterion:

maximize
x,Θ

n∑

i=1

xifi(Ai,Θ) subject to Θ ∈ D, x ∈ Σk ∩ IC∞λ , xi ≥ 0,

which forces the solution to be k-sparse. In our context and for fixed Θ, it turns out that the problem
at hand is [CWLX14]:

minimize
x

‖x− a‖22
subject to x ∈ Σk ∩ IC∞λ , xi ≥ 0.

where a is a given vector, depending on the nature of fi(·) and the current value Θ.8

Maintaining the constrained optimization criterion, as described in the problems above, the projection
operations in (1.10) are indispensable tools towards solution for these tasks.

1.3.1 Sparse projection onto `2-norm constraints

In the case of α = 2, one can easily observe the following for C2
λ in (1.10):

min
x: x∈Σk∩C2

λ

‖x− y‖22 = min
x: x∈Σk∩C2

λ

{
‖x‖22 + ‖y‖22 − 2〈x,y〉

}

= min
x: x∈Σk∩C2

λ

{
λ2 + ‖y‖22 − 2〈x,y〉

}
(By forcing the norm constraint)

∝ max
x: x∈Σk∩C2

λ

〈x,y〉

The solution to PROBLEM 1.1 is given by the following useful lemma:

8Here, the positive constraints can easily be incorporated in the proposed solutions and, for simplicity, they are omitted in the
next sections.
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1.3. Sparse Euclidean projections onto norm constraints

Lemma 1. Let y ∈ Rn be a given vector. Then:

x̂ ∈ PΣk∩C2
λ
(y) = arg max

x: x∈Σk∩C2
λ

〈x,y〉,

such that, for Ŝ = supp (PΣk (y)) with |Ŝ| ≤ k, x̂Ŝc = 0 and x̂Ŝ = λ · PΣk
(y)

‖PΣk
(y)‖2 .

Proof. By the Cauchy-Schwartz inequality and for fixed y, we have: 〈x,y〉 ≤ ‖x‖2‖y‖2 where the equality

Figure 1.1: Schematic representation of
joint projection onto Σ1 ∩ C2

λ.
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is satisfied if and only if x = αy, α ∈ R. Furthermore, by
forcing the norm constraint x ∈ C2

λ, we observe that this
inequality is satisfied if and only if x = λ · y

‖y‖2 . By these
observations and using a water-filling argument, the optimal
point x̂ in Lemma 1 contains the k largest in magnitude
elements of y, normalized by the their total Euclidean norm
and weighted with λ to satisfy C2

λ constraint. �

See Figure 1.1 for a schematic representation.

1.3.2 Sparse projection onto `∞-norm con-
straints

For this case, we first require the Euclidean projection onto
convex `∞-norm sets:

PIC∞λ (y) = arg min
x: x∈IC∞λ

‖x− y‖22. (1.11)

One can easily observe that the optimal Euclidean projection onto `∞-norm balls with radius λ is given
by the clipping operation where:

(
PIC∞λ (y)

)
i

=

{
yi if |yi| ≤ λ,
λ · sign(yi) if |yi| > λ

= sign(yi) ·min {λ, |yi|} . (1.12)

Based on this, the solution to PROBLEM 1.1 for IC∞λ is given by the following useful lemma:

Lemma 2. Let y ∈ Rn be a given non-zero vector. Then:

x̂ ∈ PΣk∩IC∞λ (y) = arg min
x: x∈Σk∩IC∞λ

‖x− y‖22,

such that, for Ŝ := supp (PΣk (y)) with |Ŝ| ≤ k, x̂Ŝc = 0 and x̂Ŝ =
(
PIC∞λ (y)

)
Ŝ .

Proof. An important observation is given next:

Remark 1. The problem in (1.10) for IC∞λ can be equivalently transformed into the following nested minimization:

{
Ŝ, x̂Ŝ

}
← arg min
S: |S|≤k

{
min

xS : xS∈IC∞λ
‖(x− y)S‖22 + ‖ySc‖22

}
. (1.13)
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Chapter 1. Sparse Euclidean projections onto sets

Assume that the best support set Ŝ is known a priori; the inner minimization in (1.13) computes a solution
vector, with support restricted in Ŝ, that minimizes the distance to the input vector y. In particular:

x̂Ŝ = arg min
xŜ : xŜ∈IC∞λ

‖(x− y)Ŝ‖22 + ‖yŜc‖22 = arg min
xŜ : xŜ∈IC∞λ

‖(x− y)Ŝ‖22.

According to (1.12), x̂Ŝ =
(
PIC∞λ (y)

)
Ŝ . Substituting in (1.13), Ŝ is computed as:

Ŝ = arg min
S:|S|≤k

[
‖
(
PIC∞λ (y)− y

)
S ‖

2
2 + ‖ySc‖22

]
= arg max
S:|S|≤k

[
‖y‖22 − ‖

(
PIC∞λ (y)− y

)
Sc ‖

2
2 − ‖yS‖22

]

= arg max
S:|S|≤k

[
‖yS‖22 − ‖

(
PIC∞λ (y)− y

)
S ‖

2
2

]
= arg max
S:|S|≤k

∑

i∈S

(
2
(
PIC∞λ (y)

)
i
· yi −

(
PIC∞λ (y)

)2
i

)
(1.14)

Figure 1.2: Schematic representation of
joint projection onto Σ1 ∩ C∞λ .
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We observe that ∀i ∈ S:

1. If |yi| > λ, then 2
(
PIC∞λ (y)

)
i
· yi −

(
PIC∞λ (y)

)2
i

=

2λ|yi| − λ2 = λ(2|yi| − λ) > 0.

2. If |yi| ≤ λ, then 2
(
PIC∞λ (y)

)
i
· yi −

(
PIC∞λ (y)

)2
i

=

2|yi|2 − |yi|2 = |yi|2 > 0.

Let v2
i := 2

(
PIC∞λ (y)

)
i
· yi −

(
PIC∞λ (y)

)2
i
> 0, ∀i ∈ S. We

observe that (1.14) is a modular maximization problem:

Ŝ = arg max
S:|S|≤k

‖vS‖22 (1.15)

Moreover, for any i, j ∈ N with |yi| ≥ |yj |, we observe:

1. If |yi| > λ and |yj | > λ, then v2
i = 2λ|yi| − λ2 ≥ 2λ|yj | − λ2 = v2

j .

2. If |yi| > λ and |yj | ≤ λ, then v2
i = 2λ|yi| − λ2 ≥ λ2 ≥ |yj |2 = 2|yj |2 − |yj |2 = v2

j .

3. If |yj | ≤ |yi| < λ, then v2
i = 2|yi|2 − |yi|2 ≥ 2|yj |2 − |yj |2 = v2

j .

Thus, there is equivalence between the index set Ŝ that maximizes ‖vS‖22 and the index set that maximizes
‖yS‖22, i.e., ‖yS1

‖22 ≥ ‖yS2
‖22 ⇒ ‖vS1

‖22 ≥ ‖vS2
‖22 for S1,S2 ∈ N with |S1| = |S2|. Therefore, we may

conclude:

S∗ = arg max
S:|S|≤k

‖vS‖22 = arg max
S:|S|≤k

‖yS‖22 (1.16)

As in the equality `2-norm case, Ŝ can be determined by sorting and keeping the k largest (in absolute
value) elements of y. �

1.4 Sparse Euclidean projections onto the simplex

While many learning methods with sparsity constraints can accommodate convex relaxations for solution
in practice, i.e., one can still promote sparsity in (1.10) by relaxing the sparse set Σk into the `1-norm set:

PIC1
ρ∩Cαλ (y) ∈ arg min

x: x∈C1
ρ∩ICαλ

‖x− y‖22 or PIC1
ρ∩ICαλ (y) ∈ arg min

x: x∈IC1
ρ∩ICαλ

‖x− y‖22,
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1.4. Sparse Euclidean projections onto the simplex

there are important learning applications that cannot benefit from this approach. As a stylized example,
consider the sparse portfolio optimization setting [Mar52]:

minimize
w

wT Σ̂w − τ µ̂Tw

subject to
n∑

i=1

wi = 1, wi ≥ 0, i = 1, . . . , n,
(1.17)

where Σ̂ ∈ Rn×n and µ̂ ∈ Rn are the sample covariance matrix and the expected return, respectively, of
n assets over a predefined period of time, and τ > 0 is a regularizer parameter that trades-off risk and
return. The solution w? in (1.17) is the no-short-positions distribution of investments over the n available
assets due to the simplex constraints: In this case, we only propose asset allocations for the next stock
market. Within the same framework, one can solve the short-positions case by dropping the non-negativity
constraints, where both stock buys/sells can be predicted. In both cases though, it is clear that direct
applications of the `1-norm (regularization, constraint, or otherwise) cannot achieve further sparsification,
beyond what the simplex constraint obtains: the constraints in (1.17) are identical to C1

1 .

But, why we require sparsity in such cases? In the context of sparse portfolio optimization, we typically
need sparse solutions due to two reasons. The first reason is robustness: since empirical covariance and
return estimates are rather noisy, sparse portfolios generalize better [DGNU09, BDDM+09]. The second
reason is transaction cost: a sparse portfolio with a few active assets is usually desired where cardinality
constraints best model the total transaction costs. Other examples of learning problems with sparsity
regularization and simplex constraints include sparse mixture/kernel density estimation [BTWB10],
boosting/leveraging weak classifiers [RSS+00].

Thus, a key step in these type of problems is the sparse projection onto the simplex (type of) constraints:

PROBLEM 1.2: Given y ∈ Rn, find a Euclidean projection of y onto the intersection of k-sparse
vectors Σk and the simplex ∆+

λ =
{
x ∈ Rn : xi ≥ 0,

∑
i xi = λ

}
:

PΣk∩∆+
λ

(y) ∈ arg min
x: x∈Σk∩∆+

λ

‖x− y‖22. (1.18)

PROBLEM 1.3: Replace ∆+
λ in (1.18) with the hyperplane constraint ∆λ =

{
x ∈ Rn :

∑
i xi = λ

}
.

Figure 1.3 provides a visual description of the above notions. We prove that it is possible to compute such
projections in quasilinear time via simple greedy algorithms.

To the best of our knowledge, sparse Euclidean projections onto the simplex and hyperplane constraints
have not been considered before, until very recently in [BH14]; there, the authors propose a general
framework for sparse projections onto symmetric sets, inspired by this work. From a different perspective,
[PEGC12] considers cardinality regularized loss function minimization subject to simplex constraints.
Their convexified approach relies on solving a lower-bound to the objective function and has O(n4)

complexity, which is not scalable and practical. However, the proposed framework can also accommodate
additional linear constraints, which partially justifies the increased computational time cost. Though, we
also note that regularizing with the cardinality constraints is generally easier: e.g., our projectors become
simpler.
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Chapter 1. Sparse Euclidean projections onto sets

Figure 1.3: (Left panel): Toy example illustration of ∆+
λ in 3-dimensions. (Right panel): Visual represen-

tation of the set intersection Σk ∩∆λ. Our algorithmic solutions give exact solutions in O(n log n), as
shown next.

1.4.1 Convex simplex projections and other definitions

Without loss of generality, assume y ∈ Rn is sorted in descending order; so, y1 is the largest element. We
use P∆+

λ
to denote the (convex) Euclidean projector onto ∆+

λ , and P∆λ
for its extension to ∆λ.

Lemma 3 (Euclidean projection P∆+
λ

[DSSSC08]). The projector onto the simplex is given by

(P∆+
λ

(y))i = [yi − τ ]+, where τ :=
1

ρ

(
ρ∑

i=1

yi − λ
)

for ρ := max{j : yj >
1

j
(

j∑

i=1

yi − λ)}.

Lemma 4 (Euclidean projection P∆λ
). The projector onto the extended simplex is given by

(P∆λ
(y))i = yi − τ, where τ =

1

n

(
n∑

i=1

yi − λ
)
.

For our analysis, we also define the following operator:

Definition 3 (Operator PLk ). We define PLk(y) as the operator that keeps the k-largest entries of y (not in
magnitude) and sets the rest to zero. This operation can be computed in O(n ·min(k, log n))-time.

1.4.2 Greedy selectors for sparse simplex-type projections

Let x̂ := PΣk∩∆+
λ

(y) or x̂ := PΣk∩∆λ
(y) be the projection of y onto Σk ∩ ∆+

λ or Σk ∩ ∆λ, respectively,

with supp(x̂) = Ŝ. Similar to Remark 1, we make the following elementary observation:

Remark 2. PROBLEM 1.2 and PROBLEM 1.3 can be equivalently transformed into:

{Ŝ, x̂} ← arg min
S:S∈Σk





min
x:xS∈∆+

λ or ∆λ,
xSc=0

‖(x− y)|S‖22 + ‖(y)|Sc‖22




.

Therefore, given Ŝ = supp(x̂), we can find x̂ by projecting yŜ onto ∆+
λ or ∆λ within the k-dimensional
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1.4. Sparse Euclidean projections onto the simplex

Algorithm 1 GSSP

1: Input: y, k, λ
2: Ŝ = supp(PLk(y)) (Select support)
3: x̂|Ŝ = P∆+

λ
(y|Ŝ ), x̂|Ŝc = 0 (Final projection)

space. Thus, the difficulty is in finding Ŝ . Hence, we split the problem into the task of finding the support
and then finding the values on the support.

Focusing on PROBLEM 1.2 and given support Ŝ, x̂ satisfies x̂Ŝc = 0 and x̂|Ŝ = P∆+
λ

(y|Ŝ ). Then, Ŝ is
given by:

Ŝ ∈ arg min
S:S∈Σk

{
‖P∆+

λ
(y|S )− y|S‖22 + ‖y|Sc ‖22

}
= arg max
S:S∈Σk

F+(S), (1.19)

where F+(S) :=
∑
i∈S

(
y2
i − ((P∆+

λ
(y|S ))i − yi)2

)
.

This function can be simplified to
F+(S) =

∑

i∈S
(y2
i − τ2), (1.20)

where τ := 1
|S|
(∑

i∈S yi − λ
)

(i.e., depends on S) is due to Lemma 5.

Lemma 5. Let q = P∆+
λ

(y) where qi = [yi − τ ]+, according to Definition 3. Then, yi ≥ τ for all
i ∈ S = supp(q). Furthermore, τ = 1

|S|
(∑

i∈S yi − λ
)
.

Sketch of proof. For the first part of the lemma, the intuition is simple: the “threshold” τ should be smaller
than the smallest entry in the selected support, or we unnecessarily shrink the coefficients that are larger
without introducing any new support to the solution. Same arguments apply to inflating the coefficients
to meet the simplex budget. Given this, the selection of τ comes directly from the definition of τ in
Definition 3. �

Similarly for PROBLEM 1.3, we conclude that x̂ satisfies x̂|Ŝ = P∆λ
(y|Ŝ ) and x̂|Ŝc = 0, where

Ŝ ∈ arg max
S:S∈Σk

F (S), (1.21)

for F (S) :=
(∑

i∈S y
2
i

)
− 1
|S| (
∑
i∈S yi − λ)2, using similar reasoning.

Sparse projections onto ∆+
λ and ∆λ

Based on the above, we propose two algorithms for sparse projections onto simplex constraints. Algo-
rithm 1 suggests a greedy approach for the projection onto Σk ∩∆+

λ : In this case, we select the set Ŝ by
projecting y using the PLk(y) operator. Remarkably, this gives the correct support set for PROBLEM 1.2,
as we prove next. We call this algorithm the greedy selector and simplex projector (GSSP). The overall
complexity of GSSP is dominated by the sort operation in n-dimensions.

Unfortunately, the GSSP fails for PROBLEM 1.3. As a result, we propose Algorithm 2 for the Σk ∩∆λ

17



Chapter 1. Sparse Euclidean projections onto sets

Algorithm 2 GSHP

1: Input: y, k, λ
2: ` = 1 , S = j, j ∈ arg maxi [λyi] (Initialize)
3: Repeat: `← `+ 1, S ← S ∪ j, where

j ∈ arg maxi∈N\S
∣∣∣yi −

∑
j∈S yj−λ
`−1

∣∣∣ (Grow)

4: Until ` = k, set Ŝ ← S (Terminate)
5: x̂|Ŝ = P∆λ

(y|Ŝ ), x̂|Ŝc = 0 (Final projection)

case which is non-obvious. The algorithm first selects the index of the largest element that has the same
sign as λ. It then grows the index set one at a time by finding the farthest element from the current mean,
as adjusted by lambda. Surprisingly, the algorithm finds the correct support set, as we prove next. We
call this algorithm the greedy selector and hyperplane projector (GSHP), whose overall complexity is
similar to GSSP.

Correctness of GSSP/GSHP

Remark 3. When the symbol S is used as S = supp(x̄) where x̄ = PLk(ȳ) for any ȳ, then if |S| < k, we enlarge
S until it has k elements by taking the first k − |S| elements that are not already in S , and setting x̄ = 0 on these
elements. The lexicographic approach is used to break ties when there are multiple solutions.

Theorem 1. Algorithm 1 exactly solves PROBLEM 1.2.

Proof. Intuitively, the k-most positive coordinates should be in the solution. To see this, suppose that
u is the projection of y. Let yi be one of the k-most-positive coordinates of y and ui = 0. Also, let
yj < yi, i 6= j such that uj > 0. We can then construct a new vector u′ where u′j = ui = 0 and u′i = uj .
Therefore, u′ satisfies the constraints, and it is closer to y, i.e., ‖y − u‖22 − ‖y − u′‖22 = 2uj(yi − yj) > 0.
Hence, u cannot be the optimal projection point.

To be complete in the proof, we also need to show that the cardinality k solutions are as good as any other
solution with cardinality less than k. Suppose there exists a solution u with support |S| < k. Now add
any elements to S to form S̃ with size k. Then consider y restricted to S̃, and let û be its projection onto
the simplex. Because this is a projection, ‖û|S̃ − y|S̃‖ ≤ ‖u|S̃ − y|S̃‖, hence ‖û− y‖ ≤ ‖u− y‖.

The proof of the next statement is given in the appendix of this chapter.

Theorem 2. Algorithm 2 exactly solves PROBLEM 1.3.

1.5 Applications

In this section, we address important learning problems where both standard sparsity and norm/simplex
constraints are present. The application list includes problems such as kernel density learning and
Markowitz portfolio design. In all cases, we compute solutions by minimizing a convex and differentiable
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loss function f(x), subject to sparse and norm/simplex constraints. Our minimization approach is based
on the projected gradient descent algorithm:

xi+1 = PΣk∩#

(
xi −

µ

2
∇f(xi)

)
. (1.22)

1.5.1 Sparse portfolio optimization

No-short position portfolios

Given a sample covariance matrix Σ̂ ∈ Rn×n and expected mean µ̂ ∈ Rn, the return-adjusted Markowitz
mean-variance (MV) framework [Mar52] selects a portfolio x̂ ∈ Rn such that

x̂ ∈ arg min
x∈∆+

1

{
xT Σ̂x− τ µ̂Tx

}
, (1.23)

where ∆+
1 encodes the normalized capital constraint, and τ trades-off risk and return [DGNU09, BDDM+09].

The solution x̂ ∈ ∆+
1 is the distribution of investments over the n available assets.

In practice, the preferences of the investor may lead to further constraints in the optimization problem.
Additional fees for asset trading (transaction costs) and costs of monitoring and portfolio re-weighting
naturally lead to cardinality constraints in the optimization procedure [BS09]. Here, we are interested in
the MV optimization with the added twist that the solution satisfies x̂ ∈ Σk:

x̂ ∈ arg min
x∈∆+

1 ∩Σk

{
xT Σ̂x− τ µ̂Tx

}
, for a given level of sparsity k. (1.24)

This additional flavor leads to mixed integer quadratic programming formulation which is difficult
to solve by standard optimization techniques [ADF11]. Numerous approaches have been proposed
in the literature to solve this problem: most of the works focus on finding solutions using greedy
techniques, simulated annealing, evolution methods, genetic algorithms, and branch-and-bound ideas
[CMBS00, BS09, GFO06, CST11].

Efficient frontier with cardinality constraints: For this numerical example, we require the following
“informal” definition:

Definition 4 (Pareto-optimal MV portfolios [Mar52]). Let x̂ be the solution of (1.23) for given Σ̂, µ̂ and
τ > 0. Then, x̂ is called Pareto-optimal portfolio if there is no other portfolio that achieves greater gain (for
fixed risk) and lesser risk (for fixed gain) than x̂, i.e., x̂ is the dominating portfolio.

The set of Pareto-optimal portfolios is called the Pareto efficient frontier for the MV selection problem.

To show the empirical performance of using sparsity constraints in portfolio optimization, we study the
Pareto efficient frontier for a synthetic case. We generate random expected returns µ̂ and covariance
quantities Σ̂ for n = 100 assets. We compare the following approaches: (i) the quadratic optimization
as described in (1.23) using quadprog in MATLAB, (ii) the cardinality-constrained projected gradient
descent algorithm that solves (1.24) using GSSP for various sparsity levels s ≡ k and, (iii) the `1-norm
regularized solver, described in eqs. (2)-(4) of [BDDM+09].
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Figure 1.4: Pareto efficient frontier for n = 100 assets
over a range of τ values. We perform 500 Monte-Carlo
iterations and depict the median values. Red solid curve
denotes the quadratic programming solution as obtained
by (1.23) and blue squares represent a variation of `1-norm
regularized solver in [BDDM+09]. We present the solu-
tions of our approach in (1.24) for s ≡ k = 15, 20, 30, 40.

In Figure 1.4, we depict the resulting port-
folios by solving the optimization problems
(1.23), (1.24) and eqs. (2)-(4) of [BDDM+09].
The red curve denotes the quadprog solu-
tion of (1.23) with simplex constraints; num-
bers within brackets also show the sparsity of
the resulting portfolio x̂. As expected, since
the simplex constraint ∆+

1 is a subset and spe-
cial case of `1-norm constraint, we can still
obtain sparse portfolios on the Pareto curve,
but with higher risk and with no control on
the sparsity level.

Blue square markers represent the `1-norm
regularized solution, obtained by solving an
instance of eqs. (2)-(4) of [BDDM+09]. In-
terestingly enough, it is easy to see that the
proposed portfolios “live” on the quadprog
Pareto curve, i.e., for our problem setting, the
`1-norm regularizer has a fixed value since
we force x̂ ∈ ∆+

1 . Thus, further sparsity can-
not be achieved using this method.

We propose sparser portfolio strategies using
a projected gradient descent solver for (1.24)
where we use GSSP. The corresponding frontiers are depicted in Figure 1.4 for various s ≡ k. While our
selections are not always “Pareto-efficient”, we can guarantee the sparsity of the portfolio a priori, leading
to predictable total transaction costs. Overall, without any cardinality constraints, the MV framework
suggests dense portfolio solutions for low risk investments (additional selections lower the risk) while
sparser solutions can be obtained for riskier investments. In practice, dense portfolios are difficult to
administrate and have higher transactions costs.

Out-of-sample performance: We use a publicly available dataset compiled by Farma and French9. In
this dataset, we monitor 49 diverse industry assets and consider only monthly recordings.

Procedure: We evaluate the out-of-sample performances of the estimated portfolios over various time
periods. For instance, during each year from 1971 to 2011, we estimate expected monthly returns µ̂ of the
stocks and their covariance values Σ̂ using the available data from the preceding 5 years. Finally, we
evaluate the estimated portfolio x̂ by computing the monthly returns and risks for each upcoming year,
keeping x̂ fixed.

We compare the following approaches: (i) the constrained quadratic optimization as described in (1.23)
using quadprog in MATLAB, (ii) the cardinality-constrained projected gradient descent algorithm that
solves (1.24) using GSSP for k = {4, 10} and, (iii) the naive 1/n-strategy where we use the same weight
over the portfolio, i.e., xi = 1/n for all i. In our experimental setting, the solver in [BDDM+09] returns
the same result as quadprog and thus is omitted.

9 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Period Quad. Prog. GSSP, k = 4 GSSP, k = 10 1/n-strategy

µ̂ (%) σ̂ µ̂/σ̂ µ̂ (%) σ̂ µ̂/σ̂ µ̂ (%) σ̂ µ̂/σ̂ µ (%) σ̂ µ̂/σ̂

’71 - ’11 11.82 0.423 0.28 13.19 0.489 0.27 11.78 0.418 0.28 10.1 0.49 0.21

’71 - ’76 15.14 0.445 0.34 15.58 0.468 0.33 15.07 0.447 0.34 1.61 0.552 0.03

’76 - ’81 7.61 0.473 0.16 8.05 0.543 0.15 7.83 0.467 0.17 2.49 0.608 0.04

’81 - ’86 7.64 0.377 0.20 8.80 0.421 0.21 7.68 0.369 0.21 11.48 0.513 0.22

’86 - ’91 21.25 0.449 0.43 26.67 0.538 0.49 25.13 0.475 0.53 20.93 0.477 0.44

’91 - ’96 11.15 0.440 0.25 10.71 0.513 0.21 10.7 0.453 0.24 8.41 0.562 0.15

’96 - ’01 19.42 0.329 0.59 20.22 0.402 0.50 17.85 0.321 0.56 14.22 0.274 0.52

’01 - ’06 5.53 0.430 0.13 6.71 0.518 0.13 3.50 0.443 0.08 6.46 0.470 0.14

’06 - ’11 6.42 0.329 0.20 8.83 0.329 0.27 6.36 0.315 0.2 11.65 0.356 0.33

Table 1.1: Portfolio performance evaluation with no-short positions for τ = 1. In the table, µ̂ denotes
the average monthly returns over all assets, σ̂ is the standard deviation of these returns and, µ̂/σ̂ is the
Sharpe ratio. Numbers in magenta are the best for that row among all methods.

Results: We provide some return evaluations with τ = 1 in Table 1.1.10 Our approach with GSSP performs
quite well, especially for smaller active portfolio sizes as constrained by k. We observe that as k decreases,
the expected return µ̂ as well as the standard deviation σ̂ of the returns increase. Surprisingly, the GSSP
solutions exhibit competitive Sharpe ratios µ̂/σ̂, which measures the risk adjusted return, as compared to
the MV portfolio, and with much lower transactions costs. Overall, the quadratic programming approach
has a median sparsity level of 14 and a mean sparsity level of 14.78. The 1/n baseline strategy has the
worst returns and worst Sharpe ratios for most years.

Interestingly, the naive 1/n-strategy does well in recession years like ’81 to ’86 and ’06 to ’11. In these
years, presumably the model is less accurate, and hence the quadratic programming solution does
much worse than the naive strategy. The sparsity-constrained solution does better than the quadratic
programming solution, suggesting that sparsity helps against inaccurate models.

Short position portfolios

While the above proposed solutions construct portfolios from scratch, another scenario is to incrementally
adjust an existing portfolio as the market changes. Due to costs per transaction, we can still naturally
introduce cardinality constraints.

In mathematical terms, let x̂ ∈ Rn be the current portfolio selection. Given x̂, we seek to adjust the current
selection x = x̂ + ∆x such that ‖∆x‖0 ≤ k. According to (1.24), this leads to the following optimization
problem:

δ?x ∈ arg min
δx∈Σk∩∆λ

(x̂ + δx)T Σ̂(x̂ + δx)− τ µ̂T (x̂ + δx),

where λ is the level of update such that
∑
i (δx)i = λ, and k controls the transactions costs. E.g., during

an update, λ = 0 would keep the portfolio value constant while λ > 0 would increase it.

To clearly highlight the impact of the non-convex projector, we create a synthetic portfolio update problem,
where we know the solution. As in [BDDM+09], we can cast this problem as a regression problem and
synthetically generate 1T ρ = Ax̂ where A ∈ Rm×n is an appropriately selected matrix such that the
linear system is satisfied with n = 1000, x̂ ∈ ∆λ (λ is chosen randomly) with ‖x̂‖0 = 100 and, ρ is the

10Note that, as τ varies, the results qualitatively remain the same in comparison.
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desired return of the selected portfolio to be satisfied, i.e., x̂T µ̂ = ρ. Here, m represents the time window
over which we observe and take snapshots of the assets.
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Figure 1.5: Relative error ‖x̌ − x̂‖2/‖x̂‖2 com-
parison as a function of m: Approach 1 is the
non-convex approach (1.22), and approach 2 is
(1.25). Each point corresponds to the median
value of 30 Monte-Carlo realizations.

Our goal here is to refine the sparse solution of a state-
of-the-art convex solver [GB11] via (1.22) in order to
accommodate the strict sparsity and budget constraints.
Hence, we first consider the basis pursuit criterion
[CDS98] and solve it using SPGL1 [VDBF08]:

x̌ ∈ arg min ‖x‖1 subject to
[

A

1
T /
√
n

]
x =

[
y

λ/
√
n

]
.

(1.25)
The normalization by 1/

√
n in the last equality gives

the constraint matrix a better condition number, since
otherwise it is too ill-conditioned for a first-order solver.

Almost none of the solutions to (1.25) return a k-sparse
solution. Hence, we initialize (1.22) with the SPGL1
solution to meet the constraints and using the GSHP
algorithm.

Figure 1.5 shows the resulting relative errors ‖x̌ −
x̂‖2/‖x̂‖2. We see that not only does (1.22) return a
k-sparse solution, but that this solution is also closer to x̂, particularly when the sample size (i.e., the
time window) is small. As the time window size increases, the knowledge that x̂ is k-sparse makes up a
smaller percentage of what we know about the signal, so the gap between (1.25) and (1.22) diminishes.

1.5.2 Sparse kernel density estimation

Here, we study the kernel density learning problem: Let w(1),w(2), . . . ,w(N) ∈ Rn be anN -size corpus of
n-dimensional samples, drawn from an unknown probability density function (pdf) f(w). Our purpose
is to estimate f(w) by forming an kernel-based estimator f̂(w) :=

∑n
i=1 xiκσ(w,w(i)), where we choose

κσ(w, z) to be a Gaussian kernel with parameter σ. In f̂(w), xi denotes the weight on the corresponding
kernel and thus, the contribution of κσ(w,w(i)) in the final pdf estimate.

Given the sample corpus, classical non-parametric methods such as the Parzen window method [Par62]
rely on the weighted interpolation of all kernels with mean point the corresponding sample from the set{
w(1),w(2), . . . ,w(N)

}
; see Figure 1.6. However, in many cases and especially when N is large, Parzen

window method can be a quiet expensive routine, with hardly any information about the statistics of the
underlying true f(·).

In this example, we follow a different path: Let us choose f̂(w) that minimizes the integrated squared
error criterion: ISE = E‖f̂(w) − f(w)‖22. Within this context and using the same strategy of kernel
superposition, we desire to identify only a subset of data points such that their weighted sum of kernels
f̂(·) result into a good approximation of f(·). As a result, we can introduce a density learning problem as
estimating a weight vector x̂ ∈ ∆+

1 . Following the work of [Kim95, BTWB10], the objective in this case
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Figure 1.6: Toy example using the Parzen method. Here, the black curve shows the true f(·), blue markers represent
the 1-dimensional corpus w(i) for i = 1, · · · , 100 and, red curves show some Gaussian kernels κσ(w,w(i)).

can be written as follows

x̂ ∈ arg min
x∈∆+

1

{
xTΣx− cTx

}
, (1.26)

where Σ ∈ Rn×n with Σij = κ√2σ(x(i),x(j)), and

ci =
1

N − 1

∑

j 6=i
κσ(x(i),x(j)), ∀i, j.

To avoid overfitting or obtain interpretable results, one might control the level of solution sparsity
[BTWB10]. In this context, we extend (1.26) to include cardinality constraints, i.e. x̂ ∈ ∆+

1 ∩ Σk.

We consider the following Gaussian mixture: f(w) = 1
5

∑5
i=1 κσi(wi, w), where σi = (7/9)i and wi =

14(σi − 1). A sample of 1000 points is drawn from f(w). We compare the density estimation performance
of: (i) the Parzen method [Par62], (ii) the quadratic programming formulation in (1.26), and (iii) our
cardinality-constrained version of (1.26) using GSSP. While f(w) is constructed by kernels with various
widths, we assume a constant width during the kernel estimation. In practice, the width is not known
a priori but can be found using cross-validation techniques [Rud82, Bow84]; for simplicity, we assume
kernels with width σ = 1.

Figure 1.7(left) depicts the true pdf and the estimated densities using the Parzen method and the
quadratic programming approach. Moreover, the figure also includes a scaled plot of 1/σi, indicating
the height of the individual Gaussian mixtures. By default, the Parzen window method estimation
interpolates 1000 Gaussian kernels with centers around the sampled points to compute the estimate f̂(w);
unfortunately, neither the quadratic programming approach (as Figure 1.7 (middle-top) illustrates) nor
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Figure 1.7: Density estimation results using the Parzen method (left), the quadratic program (1.26) (left and
middle-top), and our approach (middle-bottom and right).
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Figure 1.8: Estimation results for different k ≡ s: Red spikes depict the estimated kernel means as well as the their
relative contribution to the Gaussian mixture. As k increases, the additional nonzero coefficients in x̂ tend to have
small weights.

the Parzen window estimator results are easily interpretable, even though both approaches provide a good
approximation of the true pdf.

Using our cardinality-constrained approach, we can significantly enhance the interpretability. This
is because, in the sparsity-constrained approach, we can control the number of estimated Gaussian
components. Hence, if the model order is known a priori, the non-convex approach can be extremely
useful.

To see this, we first show the coefficient profile of the sparsity based approach for s ≡ k = 5 in Figure 1.7
(middle-bottom). Figure 1.7 (right) shows the estimated pdf for 5-sparsity along with the positions of
weight coefficients obtained by our sparsity enforcing approach. Note that most of the weights obtained
concentrate around the true means, fully exploiting our prior information about the ingredients of f(x)—
this happens with rather high frequency in the experiments we conducted. Figure 1.8 illustrates further
estimated pdf’s using our approach for various sparsity levels. Surprisingly, the resulting solutions are
still approximately 5-sparse even if set the number of active compoentns > 5, as the over-estimated
coefficients are extremely small, and hence the sparse estimator is reasonably robust to inaccurate
estimates of the sparsity level.

1.6 Discussion

While non-convexity in learning algorithms is undesirable according to conventional wisdom, avoiding
it might be “harmful” in many problems. In this chapter, we show how to efficiently obtain exact sparse
projections onto norms and simplex type of constraints. We empirically demonstrate that our projectors
provide substantial accuracy benefits in various problems such as kernel density estimation and portfolio
optimization.
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1.6. Discussion

Using our projections in the kernel density estimation problem, one can approximate the true mean
points of the true underlying probability mixture by sparsely selecting the dominant kernel data points.
In the sparse portfolio optimization problem, our projections enable to update portfolios by enforcing
non-convex constraints in the optimization procedure, while projections onto the standard simplex result
in sparse portfolio designs and thus, lower transaction costs in practice.

The discussion in this chapter naturally leads to the following open problem:

Open question 1. Let y ∈ Rn be a given anchor vector, k ≤ n a sparsity level, w ∈ Rn a weight vector and
λ ∈ R a problem parameter. We are interested in finding the solution to the problem:

x? ∈ arg min
x

‖x− y‖22,

subject to ‖x‖0 ≤ k,
wTx = λ.

For the special case w ≡ 1n, we showed that this problem can be computed exactly inO(n log n) computational
cost. What can we say about the general case on w?

Appendix

Proof of Theorem 2

To motivate the support selection of GSHP, we now identify a key relation that holds for any b ∈ Rk:

k∑

i=1

b2i −

(∑k
i=1 bi − λ

)2

k
= λ(2b1 − λ) +

k∑

j=2

j − 1

j

(
bj −

∑j−1
i=1 bi − λ
j − 1

)2

. (1.27)

By its left-hand side, this relation is invariant under permutation of b. Moreover, the summands in the
sum over k are certainly non-negative for k ≥ 2, so without loss of generality the solution sparsity of
the original problem is ||x̂||0 = k. For k = 1, F is maximized by picking an index I that maximizes λyi,
which is what the algorithm does.

For the sake of clarity (and space), we first describe the proof of the case k ≥ 2 for λ = 0 and then explain
how it generalizes for λ 6= 0. In the sequel, let us use the shortcut avg(S) = 1

|S|
∑
j∈S yj .

Let S be an optimal solution index set and let I be the result computed by the algorithm. For a proof (of
the case k ≥ 2, λ = 0) by contradiction, assume that I and S differ. Let e be the first element of I\S in the
order of insertion into I by the algorithm. Let e′ be the element of S\I0 that lies closest to e. Without loss
of generality, we may assume that ye 6= ye′ , otherwise we could have chosen S\{e′} ∪ {e} rather than S
as solution in the first place. Let I0 ⊆ I ∩ S be the indices added to I by the algorithm before e. Assume
that I0 is nonempty. We will later see how to ensure this.

Let a := avg(I0) and a′ := avg(S\{e′}). There are three ways in which ye, ye′ and a′ can be ordered
relative to each other:

1. e′ lies between e and a′, thus |ye′ − a′| < |ye − a′| since ye 6= ye′ .
2. a′ lies between e and e′. But then, since there are no elements of S between e and e′, S\I0 moves the
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Chapter 1. Sparse Euclidean projections onto sets

average a′ beyond a away from e towards e′, so |ye′ − a′| < |ye′ − a| and |ye − a| < |ye − a′|. But we
know that |ye′ − a| < |ye − a| since e = argmaxi∈I0

|yi − a| by the choice of the greedy algorithm and
ye 6= ye′ . Thus |ye′ − a′| < |ye − a′|.

3. |ye−a′| < |ye′ −a′|, i.e., e lies between a′ and e′. But this case is impossible: compared to a, a′ averages
over additional values that are closer to a than e, and e′ is one of them. So a′ must be on the same side
as e′ relative to e, not the opposite side.

So |ye′−a′| < |ye−a′| is assured in all cases. Note in particular that if |S| ≥ 1, |yi−avg(S)| θ |yj−avg(S)|,
then

F (S ∪ {i}) = F (S) +
k − 1

k

(
yi − avg(S)

)2 =
or
<

F (S) +
k − 1

k

(
yj − avg(S)

)2

= F (S ∪ {j}). (1.28)

By inequality (1.28), F (S) < F ((S\{e′}) ∪ {e}). But this means that S is not a solution: contradiction.

We have assumed that I0 is nonempty; this is ensured because any solution S must contain at least an
index i ∈ arg maxj yj . Otherwise, we could replace a maximal index w.r.t. y in S by this I and get, by
(1.28), a larger F value. This would be a contradiction with our assumption that S is a solution. Note that
this maximal index is also picked (first) by the algorithm. This completes the proof for the case λ = 0. Let
us now consider the general case where λ is unrestricted.

We reduce the general problem to the case that λ = 0. Let us write Fy,λ to make the parameters y and λ
explicit when talking of F . Let y′i∗ := yi∗ − λ for one i∗ for which λyi∗ is maximal, and let y′i := yi for all
other I. We use the fact that, by the definition of F ,

Fy,λ(S) = 2λy′i∗ + λ2 + Fy′,0(S)

when S contains such an element i∗ ∈ argmaxj(λyj). Clearly, i∗ is an extremal element w.r.t. y and yi∗
has maximum distance from −λ, so

i∗ ∈ arg max
j

∣∣∣∣yj −
∑
i 6=j yi − λ
j − 1

∣∣∣∣ .

By (1.27), i∗ must be in the optimal solution for Fy,λ. Also, Fy′,0(S) and 2λy′i∗ + λ2 + Fy′,0(S) are
maximized by the same index sets S when i∗ ∈ S is required. Thus,

arg max
S

Fy,λ(S) = arg max
S:j∈S

Fy′,0(S).

Now observe that our previous proof for the case λ = 0 also works if one adds a constraint that one or
more indices be part of the solution: If the algorithm computes these elements as part of its result I, they
are in I0 = I ∩ S. But this is what the algorithm does on input (y, λ); it chooses i∗ in its first step and
then proceeds as if maximizing Fy′,0. Thus we have established the algorithm’s correctness. �
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2 Greedy methods for sparse linear
regression

Introduction

Sampling, streaming, and storing any type of information usually creates a torrent of data that stretches
to the limits the traditional analog-to-digital conversion, digital communication bandwidth and storage
resources. Unfortunately, the traditional paradigm of capturing information uncompressed in order to
compress it for subsequent processing becomes infeasible in many applications.

However, while the ambient data dimension is large in many problem cases, it turns out that the intrinsic
information typically resides in a lower dimensional space. This observation has led to novel theoretical
and algorithmic developments on data compression/decompression schemes, under different scientific
communities. Resuming the discussion in the previous chapter, here we focus on linear “compression”
strategies under the sparsity assumption; such development is known as compressed sensing.

The Compressed Sensing paradigm

Compressed Sensing (CS) is a data acquisition and recovery technique for finding sparse solutions to
linear inverse problems from sub-Nyquist rate measurements. To describe the main idea, assume x ∈ Rn

is a dense vector of interest. According to the Shannon-Nyquist sampling theorem [Sha49], we can
“perfectly” reconstruct x by uniformly taking Fourier transformed samples with frequency at least twice
the highest frequency contained in x. Unfortunately, as already mentioned, sampling in Shannon-Nyquist
rate might not be possible without high-end specialized equipment [FH11]. Moreover, storing all this
information creates storage bottlenecks [ME11]. To confront this problem, one has to either use high-end
technology infrastructure, increasing the operational cost (higher cost per sample), or reduce the Quality
of Service by subsampling.

The Fourier Transform (FT) is one of the many linear signal representations available: FT re-represents
signals as a weighed sum of complex exponentials in various frequencies. By keeping only the nonzero
coefficients, we can recover the signal by using the inverse FT procedure in an efficient manner.

Based on this premise, CS theory relies on the sparse transform coding technique [CDS98]: instead of
processing x in its dense representation, the literature today offers signal basis transforms (other than FT)
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Chapter 2. Greedy methods for sparse linear regression

that promote data compression and sparsity. Thus, using the appropriate basis matrix1 Ψ ∈ Rn×n, x can
be described as a k-sparse (k � n) linear combination of atoms {ψi}ni=1 that correspond to columns of Ψ.
This representation can be either exact, x = Ψα, or approximate, x ≈ Ψα, where α ∈ Rn denotes the
set of coefficients with only k out of n entries being nonzero.Typical examples of sparse-inducing bases
are wavelet transform for piecewise smooth signals [Huo99], Fourier transform for smooth and periodic
signals [CDS98], curvelets for images with edges [CD00], etc. For clarity reasons, we assume for the rest
of the chapter that x is k-sparse by nature, unless otherwise stated.

However, as long as the sensing mechanism remains the same, one cannot exploit such sparse signal
representations; a more sophisticated sensing mechanism is required. CS proposes a new sampling
scheme that compressively measures an n-dimensional k-sparse vector x through dimensionality reduc-
ing sensing matrices Φ ∈ Rm×n where c · k ≤ m� n, for some c > 0. Here, Φx is called a “sketch” of x.
As we practically show in this chapter, the fascinating fact about Φx is that, under mild conditions on the
number of samples m, the sparsity level k and the nature of Φ, it retains the essential properties of x for
robust and efficient reconstruction from a limited set of samples.

Why use linear compression?

There are several reasons why linear sketching Φx is of great interest. From a computational perspective,
linear transformations are the simplest mathematical models and are easier to maintain and update. That
is, given Φx, we can easily update a coordinate of x directly in the measurement domain. E.g., assume
that we would like to update the i-th coordinate in x by the amount λ: in this case, we can simply update
the sketch as Φ (x + λ · ei) = Φx + λΦei, where only λ ·Φei is computed and added. Similarly, when we
deal with superpositions of sparse signals, one can also easily obtain the sketch of their sum by measuring
each signal individually and then combining the sketches, i.e., Φ (x1 + x2) = Φx1 + Φx2. Both properties
are useful in several computational areas, notably computing over data streams [AMS96, Mut05, Ind07],
network measurement [EV03], etc.

Furthermore, there are many practical settings where linear models appear naturally. In such cases,
x models a physical event one wishes to sense and recover (e.g., neuronal data stream, image, etc.)
through a natural physical measurement process. For example, a classic application of such linear
compression schemes is where a digital camera captures images via their "projections" using pre-specified
measurement vectors. The potential of such process is that an image can be almost perfectly reconstructed
from the compressed samples via the physical process [DDT+08].

Problem statement

PROBLEM 2.1. Let x? be a k-sparse n-dimensional vector of interest. We desire to reconstruct x? through a
low-dimensional observation vector y ∈ Rm (m < n) where:

y = Φx? + ε; (2.1)

here Φ ∈ Rm×n is a fixed and known sensing matrix and ε is an additive noise term.

1Most of CS research papers assume the least common case where signals are sparse in an orthonormal basis. In practice, many
signals of interest can only be expressed as a linear combination of a few atoms from an overcomplete dictionary D ∈ Rd×n (d < n)
where the columns are correlated [RSV08]. Here, we focus on the orthonormal basis case.
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To recover x? given y and Φ, unconstrained least-squares method is a classic approach to the solution
of linear systems by minimizing the data error function f(x) := ‖y − Φx‖22; here, ‖ · ‖q denotes the
`q-norm. Nevertheless, the reconstruction of x? from y is an ill-posed problem since m < n and there is
no hope in finding the true vector without ambiguity; there is an infinite number of possible solutions
that satisfy the linear system of equations. Therefore, additional prior knowledge should be exploited by
the optimization solver. Using the fact that x? is k-sparse, we concentrate on the following constrained
minimization problem to recover x?:

minimize
x∈Rn

f(x) subject to ‖x‖0 ≤ k, (2.2)

where ‖x‖0 is the “norm” that counts the non-zero entries in x.

CS theory plays an important role in solving (2.2): assuming signal sparsity, the true solution x? can be
found using m� n measurements, as long as the geometry of sparse signals is preserved after projection
on the column subspace defined by Φ.2 To achieve this, CS also concentrates on developing polynomial-
time algorithms for sparse signal recovery from a limited number of non-adaptive samples. Although the
collection of works in this direction grows fast, the problem of constructing efficient methods both in
execution time and signal recovery performance under various settings remains widely open.

Two main camps of compressed sensing algorithms

We briefly highlight two major classes of compressed sensing algorithms: (i) the convex optimization
approach and (ii) the class of combinatorial-based greedy algorithms.

Convex optimization approach is one of the first algorithmic efforts for signal approximation in linear
inverse problems. In [CDS98], Donoho et. al. demonstrate that, under basic incoherence properties of
the sensing matrix Φ and given x? is sufficiently sparse, we can substitute the combinatorial “norm”
‖ · ‖0 by its sparsity-inducing convex envelope ‖ · ‖1 with provable guarantees for unique signal recovery.
Using this property, the authors proposed two reformulations of (2.2): the equality-constrained `1-norm
minimization problem (Basis Pursuit (BP)):

minimize
x∈Rn

‖x‖1 subject to y = Φx, (2.3)

for the noiseless case ε = 0 and the `1-norm regularized least squares problem in the presence of noise
(Basis Pursuit DeNoising (BPDN)):

minimize
x∈Rn

1

2
‖y −Φx‖22 + τ‖x‖1, (2.4)

where τ > 0 balances the error norm and the sparsity of the solution. From a different perspective,
Tibshirani [Tib96] proposes the Least Absolute Shrinkage Selection Operator algorithm, dubbed as
LASSO:

minimize
x∈Rn

1

2
‖y −Φx‖22 subject to ‖x‖1 ≤ λ, (2.5)

where λ > 0 is a regularization parameter that governs the sparsity of the solution.

2This idea boils down to the so called restricted isometry property (RIP) that we explain next.
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Chapter 2. Greedy methods for sparse linear regression

Once (2.2) is relaxed to a convex problem, decades of knowledge on convex analysis and optimization can
be leveraged. To solve (2.3)-(2.5), interior point methods find a solution with fixed precision in polynomial
time but their complexity might be prohibitive even for moderate-sized problems. More suitable for
large-scale data analysis, fast first-order gradient algorithms constitute low-complexity alternatives to
these methods; a non-exhaustive list of examples includes the optimal gradient methods proposed by
Nesterov [Nes13, Nes83] and the iterative soft thresholding method (IST) [BT09b, WNF09].

In contrast to the conventional convex relaxation approaches, iterative greedy algorithms maintain
the combinatorial nature of (2.2). Unfortunately, solving (2.2) with optimality is in general hard and
exhaustive search over

(
n
k

)
possible support configurations of the k-sparse solution is mandatory. Due

to this computational intractability, the algorithms of this class greedily refine a k-sparse solution using
only “local” information (i.e., gradient information) available at the current iteration. Representative
examples of this class are hard thresholding methods [BD09a, BD10, NT09a, DM09, Fou11] and Matching
Pursuit-based algorithms [MZ93, TG07].

The Restricted Isometry Property (RIP)

But how can we guarantee uniqueness in such ill-conditioned linear inverse problems? As it is obvious, signal
sparsity does not guarantee successful recovery of the true vector for any sensing matrix; e.g., the all-zero
sensing matrix Φ does not “transfer” any knowledge of x? to y. Many conditions on Φ have been
proposed in the literature to establish solution uniqueness and reconstruction stability such as the null
space property [SXH08] and spark [DE03]. In this chapter, we focus on the so-called restricted isometry
property (RIP).3

Definition 5 (RIP [CT06]). A matrix Φ ∈ Rm×n satisfies the k-RIP with isometry constant δk ∈ (0, 1) if

(1− δk)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δk)‖x‖22, ∀x ∈ Σk. (2.6)

In the above definition, ‖A‖2→2 = maxx
‖Ax‖2
‖x‖2 , where A is a given matrix. If Φ fulfils (2.6) for some

0 < δk � 1, then every set of k columns from Φ is nearly orthogonal (i.e., well-conditioned). Roughly
speaking, the Euclidean distance between k-sparse vectors is relatively preserved under linear projection
using Φ.

While the majority of CS results assume (2.6) is satisfied with symmetry, we further consider the non-
symmetric analog of the RIP:

αk‖x‖22 ≤ ‖Φx‖22 ≤ βk‖x‖22,∀x ∈ Σk, (2.7)

for positive constants αk, βk [BCT11].

In [CRT06], Candes et. al. prove the existence of random matrix ensembles that satisfy the RIP with
overwhelming probability, provided that m = O (k log(n/k));4 i.e., we can recover the unknown k-sparse
signal x? using only m � n linear non-adaptive samples using Φ. Representative examples include

3All the aforementioned conditions are unverifiable in polynomial time for deterministic matrices but hold with high probability
for many random matrix ensembles, as explained next.

4The authors in [BCDH10] address the same problem using sparse vector approximation subject to a special structure, e.g.
rooted connected tree sparsity model or non-overlapping group sparse model. They prove that under special structures, the number
of measurements can be further reduced to m = O(k), independent of the ambient signal dimension, n. We elaborate more on
these models in the next chapter.
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random Gaussian matrices and random sparse binary (Bernoulli) matrices [Dir14].

A rule of thumb: In [Fou11], Foucart highlights the connection between the number of measurements m
necessitated for exact signal recovery and the restricted isometry conditions of the form δck ≤ δ where c
is an integer and δ ∈ (0, 1). According to this remark, the following relation holds:

m ≤ C ck
δ2

log(n/ck),

for some C > 0. Thus, fewer number of samples m implies smaller ratio ck/δ2 and vice versa; a rule of
thumb to be used in comparing the performance of sparse approximation algorithms.

Chapter roadmap

In this chapter, we study the compressed sensing problem, as described in PROBLEM 2.1, from a non-
convex perspective. Our contributions are based on and inspired by the Iterative Hard Thresholding (IHT)
framework [BD09a], characterized by the following two-step recursion:

x̄i = xi −
µ

2
∇f(xi), xi+1 = PΣk (x̄i) . (2.8)

Here, i is the iteration number, µ is the gradient descent step size,∇f(x) := −2ΦT (y −Φx) denotes the
gradient of the objective function f(x), and PΣk(·) is the hard-thresholding combinatorial projection onto
the subspace defined by Σk according to:

PΣk(y) = arg min
x:x∈Σk

‖x− y‖2.

In Section 2.3, we analyze the behavior and performance of such hard thresholding methods from a
global perspective. Three basic building blocks (“ingredients”) are studied: i) step size selection µ, ii)
memory exploitation, and iii) gradient or least-squares updates over restricted support sets. We highlight
the impact of these blocks on the convergence rate and signal reconstruction performance of iterative
hard thresholding methods. We provide optimal and/or efficient strategies on how to set up these
“ingredients” under different problem assumptions. As a by-product of this attempt, we propose the
Algebraic Pursuit (ALPS) framework, an efficient solver for sparse linear regression problems.

In Section 2.4, we move a step further from simple sparsity and introduce our combinatorial selection and
least absolute shrinkage (CLASH ) operator. CLASH enhances the model-based compressive sensing (model-
CS) framework [BCDH10] by additionally incorporating `1-norm constraints on the regression vector.
This added twist significantly outperforms the model-CS approach, LASSO, or continuous structured
sparsity approaches. Furthermore, CLASH characterizes the underlying tractability of approximation in
combinatorial selection directly in the algorithm’s estimation and convergence guarantees.

Inspired by CLASH , we propose an optimization paradigm, dubbed as NORMED PURSUITS, where both
combinatorial and generic norm constraints are active in recovery: norm constraints restrict the candidate
set of concise solutions to have a given norm, which leads to signal recovery improvements in practice.

This chapter is based on the joint work with Volkan Cevher and Gilles Puy [KC11, KC12a, KPC12].
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Chapter 2. Greedy methods for sparse linear regression

2.1 Preliminaries

Notation: We use (x)j to denote the j-th element of x, and let xi represent the i-th iterate of the hard
thresholding method. The index set of N dimensions is denoted as N = {1, 2, . . . , N}. Given S ⊆ N , we
define the complement set Sc = N \ S. Moreover, given a set S ⊆ N and a vector x ∈ RN , xS ∈ RN

denotes a vector with the following properties: (xS)S = (x)S and (xS)Sc = 0. The notation ∇Sf(x) is
shorthand for (∇f(x))S . ΦT represents the restriction of the matrix Φ to a column submatrix whose
columns are listed in the set T . The support set of x is defined as supp(x) = {i : (x)i 6= 0}. We use
|S| to denote the cardinality of the set S. The inner product between two vectors x,y ∈ RN is denoted
as 〈x,y〉 = xTy =

∑N
i=1(x)i(y)i where T is the transpose operation. ‖ · ‖2 denotes the l2-norm where

‖x‖2 =
√
〈x,x〉. I represents an identity matrix with dimensions apparent from the context.

Performance evaluation: To characterize the performance of iterative recovery processes such as the one
in (2.8), both in terms of convergence rate and noise resilience, we use the following recursive expression:

‖xi+1 − x?‖2
‖x?‖2

≤ ρ‖xi − x?‖2
‖x?‖2

+ γ
1

SNR
, (2.9)

where SNR , ‖x?‖2
‖ε‖2 represents the signal-to-noise ratio metric; for our discussions we assume 1

SNR
is bounded. In (2.9), γ denotes the approximation guarantee and provides insights of algorithm’s
reconstruction capabilities when noise is present; |ρ| < 1 expresses the contraction factor towards the true
vector x?.

Remark 4. While the presented algorithms in this chapter guarantee convergence to x? in the noiseless case
(ρ < 1), one can easily observe that, in the presence of heavy noise, the performance (with respect to finding x?)
degrades heavily. In this case, one can only guarantee that the computed solution “lives” within an error Euclidean
ball around x?.

Remark 5. In this chapter, we provide no convergence guarantees of the iterates {‖xi+1 − xi‖2}i≥0; such analysis
can be conducted for our proposed schemes, following the results in [GK09a], but we retain it for future work.

2.2 Related work

The compressed sensing problem has received intensive investigations from both theoretical and algo-
rithmic aspects, since the publication of the seminal works [CT06, CDS98].5 As already mentioned, there
are both convex and non-convex algorithmic attempts.

In the convex case, `1-MAGIC [CRT06] is considered one of the first attempts to implement the convex
formulations of the CS problem in practice. The proposed implementations are based on second-order
methods, which makes them inappropriate for many large-scale applications. Figueiredo et al. [FNW07]
reformulate the BPDN problem in (2.4) as a bounded-constrained quadratic program where gradient
descent schemes are applied. [VDBF08] proposes SPG`1, a gradient-projection method that approximately
minimizes the least-squares objective subject to an explicit one-norm constraint. [HYZ08] proposes the
Fixed-Point Continuation (FPC) algorithm for the BPDN problem (2.4) where fixed-point iterations
are augmented with a continuation approach for better performance; it is a first-order gradient scheme
followed by a soft-thresholding operation per iteration. Bioucas-Dias et al. [BDF07], Wright et al.
[WNF09] and Teboulle et al. [BT09a] extend the ideas of basic first-order Iterative Soft-Thresholding (IST)

5The DSP online (http://dsp.rice.edu/cs) library on Compressed Sensing of Rice University counts more than 6000+ papers
within the past decade.
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2.3. Algebraic Pursuits (ALPS)

method [DDDM04] using a two-step iterative scheme for acceleration; both works depend on the ideas
of Nesterov’s optimal methods [Nes83] and the Heavy Ball method [GR02]. The SALSA algorithm in
[ABDF10] solves the BPDN formulation using augmented Lagrangian ideas where the acceleration in the
convergence rate is due to the usage of quasi-Newton ideas in gradient descent direction definition.

In the non-convex case, the classes of hard thresholding methods [BD09a, BD10, NT09a, DM09, Fou11,
BTW14] and Matching Pursuit-based algorithms [MZ93, TG07] are the most well-known and used
schemes in practice.

Most of the aforementioned schemes are iterative in nature where the per iteration time-complexity is
lower bounded by the computation of first-order (gradient) or second-order (Hessian) information.

2.3 Algebraic Pursuits (ALPS)

In this section, we present and analyze a class of sparse recovery algorithms, known as hard thresholding
methods. The simplest form of such schemes satisfies (2.8). Thus, per iteration, resource requirements
mainly depend on the total number of matrix-vector multiplication operations. To reduce the total
computational complexity of IHT, we provide optimal strategies via basic “ingredients” for different
configurations to achieve complexity vs. accuracy trade-offs. We describe several modular building
blocks to derive IHT variants with faster convergence, reduced computational complexity and better
reconstruction performance. Finally, we provide a general template that unifies the above ingredients
into an algorithmic framework.

2.3.1 IHT: the ALPS backbone

For completeness, let us re-state the main iteration of hard thresholding gradient descent methods:

x̄i = xi −
µi
2
∇f(xi), xi+1 = PΣk (x̄i) , (2.10)

where we assume that µi > 0 is an iteration dependent step size selection. According to PROBLEM 2.1,
x? is the unknown signal to be estimated.

One can easily observe that (2.10) is the sparsity-constrained version of the projected gradient descent
scheme in (6.5): per iteration, we compute a putative solution x̄i using gradient descent and then project
x̄i onto the sparse scaffold Σk to satisfy the constraint ‖x‖0 ≤ k. While the performance analysis of such
schemes is easier when we project onto a convex set, here we focus on the more demanding non-convex
case. However, as we show next, in the context of CS, one can still obtain global convergence and strong
recovery guarantees, as long as the sensing matrix Φ and the signal of interest x? satisfy some conditions.

Before we provide these guarantees, let us gradually present our results. By the definition of the hard
thresholding operation PΣk(·), at the i-th iteration, xi+1 is a better k-sparse approximation to x̄i than x?.
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This translates into:

‖xi+1 − x̄i‖22 ≤ ‖x? − x̄i‖22 ⇒
‖ (xi+1 − x?) + (x? − x̄i) ‖22 ≤ ‖x? − x̄i‖22 ⇒

‖xi+1 − x?‖22 + ‖x? − x̄i‖22 + 2〈xi+1 − x?, x? − x̄i〉 ≤ ‖x? − x̄i‖22 ⇒
‖xi+1 − x?‖22 ≤ 2〈xi+1 − x?, x̄i − x?〉 (2.11)

However, we observe that:

x̄i := xi −
µi
2
∇f(xi) = xi + µiΦ

T (y −Φxi) (By definition of∇f(xi))

= xi + µiΦ
T (Φx? + ε−Φxi) (by y = Φx? + ε)

= xi + µiΦ
TΦ (x? − xi) + µiΦ

Tε (2.12)

Combining (2.11) and (2.12), we obtain:

‖xi+1 − x?‖22 ≤ 2〈xi+1 − x?, xi + µiΦ
TΦ (x? − xi) + µiΦ

Tε− x?〉 (2.13)

“Massaging” the right hand side of (2.13) further, observe that the following two applications of the linear
map are present in the inequality above:

〈Φ (xi+1 − x?) , µiΦ (xi − x?)〉+ µi〈Φ (xi+1 − x?) , ε〉 (2.14)

Let S? := supp(x?), Si+1 := supp(xi+1) and Si := supp(xi); in all cases, |S?| ≤ k, |Si+1| ≤ k and,
|Si| ≤ k. Thus, the above can be equivalently written as:

〈ΦSi+1∪S? (xi+1 − x?) , µiΦSi∪S? (xi − x?)〉+ µi〈ΦSi+1∪S? (xi+1 − x?) , ε〉

where ΦS is the submatrix in Φ, restricted in the columns indexed in S. Let A := S? ∪ Si+1 ∪ Si which
satisfies |A| ≤ 3k. Then, one can easily observe that in the inequality above, we can restrict the “active”
columns in Φ to those indexed by A, such that (2.14) is equal to:

〈ΦA (xi+1 − x?) , µiΦA (xi − x?)〉+ µi〈ΦA (xi+1 − x?) , ε〉

Combining the above with (2.13) and applying the Cauchy-Schwarz inequality iteratively, we obtain:

‖xi+1 − x?‖22 ≤ 2〈xi+1 − x?,
(
I− µiΦT

AΦA
)

(xi − x?)〉+ 2µi〈ΦA (xi+1 − x?) , ε〉
≤ 2‖xi+1 − x?‖2 · ‖

(
I− µiΦT

AΦA
)

(xi − x?) ‖2 + 2µi‖ΦA (xi+1 − x?) ‖2‖ε‖2
≤ 2‖xi+1 − x?‖2 · ‖I− µiΦT

AΦA‖2→2‖xi − x?‖2 + 2µi‖ΦA (xi+1 − x?) ‖2‖ε‖2 (2.15)

Using the non-symmetric RIP definition in (2.7), we observe:

‖ΦA (xi+1 − x?) ‖2 ≤
√
β2k · ‖xi+1 − x?‖2

and, thus, (2.15) becomes:

‖xi+1 − x?‖2 ≤ 2‖I− µiΦT
AΦA‖2→2‖xi − x?‖2 + 2µi

√
β2k‖ε‖2.
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By dividing with ‖x?‖2, we obtain the recursion described in (2.9):

‖xi+1 − x?‖2
‖x?‖2

≤ 2‖I− µiΦT
AΦA‖2→2︸ ︷︷ ︸

:=ρ

‖xi − x?‖2
‖x?‖2

+ 2µi
√
β2k︸ ︷︷ ︸

:=γ

1

SNR
, (2.16)

where

‖I− µiΦT
AΦA‖2→2 ≤ max

{
µiλmax(ΦT

AΦA)− 1, 1− µiλmin(ΦT
AΦA)

}
. (2.17)

2.3.2 Step size selection strategies

Recent works on the performance of IHT algorithm provide strong convergence rate guarantees in
terms of RIP constants; c.f., [BD09a] and [Fou11] to name a few. However, as a prerequisite to achieve
these strong isometry constant bounds, the step size is set µi = 1,∀i, under the strong assumption
that ‖Φ‖22 < 1. Unfortunately, such assumptions are not naturally met; the authors in [BD10] provide
an intuitive example where IHT algorithm diverges under various scalings of the sensing matrix Φ.
Therefore, more sophisticated step size selection procedures should be devised to tackle these issues
during actual recovery. Existing approaches broadly fall into two categories: constant and adaptive step
size selection. In the following subsections, we describe different step size selection strategies for various
problem assumptions.

Constant step size selection

[GK09a] proposes a constant step size6 µi = 1/β2k, ∀i, as a by-product of a simple convergence analysis
of the gradient descent method. Based on this idea, we propose optimal constant step size selections, both
for symmetric and asymmetric RIP conditions, where µi is a function of the RIP constants.

As a first scenario, assume Φ satisfies the non-symmetric RIP with known αck, βck, (c ∈ {2, 3}) constants.
In this case, the eigenvalues of ΦT

AΦA, restricted in the set A, satisfy:

λi(Φ
T
AΦA) ∈ [α3k, β3k], ∀i.

Given this observation and in order to optimize the convergence rate ρ in (2.16), we can pick µi as the
minimizer of the expression in (2.17):

min
µi
‖I− µiΦ∗AΦA‖2→2 ≤ min

µi
max {µiβ3k − 1, 1− µiα3k} , (2.18)

which leads to the following result, inspired by convex optimization constant step size strategies [Nes04].

Lemma 6 (Non-symmetric RIP constant step size strategy). Assume Φ satisfies the non-symmetric RIP
with known upper/lower bounds αcK , βcK , (c ∈ {2, 3}). The step size µ?i that implies optimal convergence
rate in (2.16) is µ?i = 2

α3k+β3k
,∀i = {1, 2, . . . , }, where, for β3k < 3α3k, we have ρ = 2(β3k−α3k)

α3k+β3k
< 1 and

γ = 4
√
β2k

α3k+β3k
.

6In the case of symmetric RIP conditions, this step size becomes µi = 1/(1 + δ2k).

35



Chapter 2. Greedy methods for sparse linear regression

Figure 2.1: Schematic representation of
optimal constant step size selection µ?i .
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Proof. It is obvious that the step size µi that minimizes
(2.18) lies at the intersection of the linear functions ψ1(µi) :=

µiβ3k − 1, ψ2(µi) := 1− µiα3k. Hence, the minimum occurs
when

ψ1(µ?i ) = ψ2(µ?i )⇒ µ?i =
2

α3k + β3k
; (2.19)

see Figure 2.1. By substituting µ?i in (2.18), we obtain
2‖I− µiΦ∗AΦA‖2→2 ≤ 2 max

{
2β3k

α3k+β3k
− 1, 1− 2α3k

α3k+β3k

}
=

2(β3k−α3k)
α3k+β3k

which is less than 1 for β3k < 3α3k. Using similar

tools, we can easily prove that γ = 4
√
β2k

α3k+β3k
in (2.16). �

In the special case where Φ satisfies the symmetric RIP con-
dition in (2.6) for some constant δ3k, we can conclude to the
same convergence rate achieved in [Fou11]; the proof is trivially implied by the above lemma.

Corollary 1 (RIP constant step size strategy). Given Φ satisfies the RIP for some δ3k, the step size µ?i
that implies the fastest convergence rate in (2.16) amounts to µ?i = 1,∀i = {1, 2, . . . , }, with ρ = 2δ3k and
γ = 2

√
1 + δ2k. Moreover, the iterations are contractive iff δ3k < 1/2⇒ |ρ| < 1.

Adaptive step size selection

Our discussion so far revolves around defining step size strategies when RIP constants are known a priori.
However, since the computation of the exact RIP bounds is NP-hard, these strategies are impractical even
for moderate-sized random matrices; an adaptive RIP-less scheme is mandatory.

There is limited work on the adaptive step size selection for hard thresholding methods. To the best of
our knowledge, [BD10]-[Blu12] are the only studies that attempt this via line searching: given current
estimate xi and its support Si, the optimality of the proposed step size µi in these works is not guaranteed
and a binary search over the range of µi is required to guarantee stability; c.f., Section III in [BD10].

Proposed step size selection strategy: According to (2.10), let xi ∈ Σk be the k-sparse signal estimate
with known support Si := supp(xi) at the i-th iteration. It then holds that the non-zero elements
(x̄i)j , ∀j ∈ S̄i := supp(x̄i) satisfy:

(x̄i)j =

{
−µi2 (∇f(xi))j if (xi)j = 0,

(xi)j − µi
2 (∇f(xi))j otherwise.

for any step size µi. Since supp (xi+1) := |Si+1| ≤ k, we easily deduce the following key observation:

Remark 6. Let Ti be a 2k-sparse support set defined as:

Ti = Si ∪ supp
(
PΣk

(
∇Sci f(xi)

))
.

Given Si+1 is unknown at the i-th iteration, Ti is the smallest index set that contains it such that

PΣk

(
xi −

µi
2
∇f(xi)

)
= PΣk

(
xi −

µi
2
∇Tif(xi)

)
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Algorithm 3 ALPS algorithm with zero memory (0-ALPS(0))

1: Input: y, Φ, k, Tolerance η, MaxIterations
2: Initialize: x0 ← 0, S0 ← {∅}, i← 0
3: repeat
4: Ti ← supp(PΣk(∇Sci f(xi))) ∪ Si (Active support expansion)

5: µi =
‖∇Tif(xi)‖22
‖Φ∇Tif(xi)‖22

(Step size selection)
6: x̄i = xi − µi

2 ∇Tif(xi) (Gradient descent step)
7: xi+1 = PΣk (x̄i) (Hard-thresholding projection)
8: Si+1 ← supp(xi+1)
9: i← i+ 1.

10: until ‖xi − xi−1‖2 ≤ η‖xi‖2 or MaxIterations.

necessarily holds.

Using Remark 1, IHT can be equivalently written as

x̄i = xi −
µi
2
∇Tif(xi), xi+1 = PΣk (x̄i) .

where x̄i ∈ Σ2k with supp(x̄i) ⊆ Ti. To compute the step size µi, we propose:

µi = arg min
µ

‖y −Φ
(
xi −

µ

2
∇Tif(xi)

)
‖22 =

‖∇Tif(xi)‖22
‖Φ∇Tif(xi)‖22

, (2.20)

i.e., µi is such that minimizes the objective function f , evaluated at the current putative point x̄i. Note
that ∇Tif(xi) is a 2k-sparse vector and thus, by RIP assumptions on Φ, we have: α2k‖∇Tif(xi)‖22 ≤
‖Φ∇Tif(xi)‖22 ≤ β2k‖∇Tif(xi)‖22 and (1− δ2k)‖∇Tif(xi)‖22 ≤ ‖Φ∇Tif(xi)‖22 ≤ (1 + δ2k)‖∇Tif(xi)‖22 for
non-symmetric and symmetric RIP, respectively.

Using the definition of RIP, this implies

1

1 + δ2k
≤ µi ≤

1

1− δ2k
and

1

β2k
≤ µi ≤

1

α2k
.

The discussion above leads to the Algebraic Pursuits (ALPS) algorithm, with zero memory; see Algo-
rithm 3. The added twist to the regular IHT algorithm is the iteration-dependent, adaptive step step
size selection µi, which is given in closed-form: µi “complies” with the sparse scaffold Σck and thus,
guarantees global convergence in estimates, as shown next.

Theorem 3 (Iteration Invariant). Assume Φ ∈ Rm×n satisfies (2.7) with αck, βck, (c ∈ {2, 3}) unknown.
In the worst case scenario, 0-ALPS(0) with adaptive step size selection (2.20) satisfies the following recursion:

‖xi+1 − x?‖2
‖x?‖2

≤ ρ‖xi − x?‖2
‖x?‖2

+ γ
1

SNR
, where ρ = 2 max

{
β3k

α2k
− 1, 1− α3k

β2k

}
and γ =

2
√
β2k

α2k
.

Proof. 0-ALPS(0) satisfies the recursion described in (2.16). By construction, µi satisfies 1
β2k
≤ µi ≤ 1

α2k
.
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Thus, in (2.17) we have:

‖I− µiΦT
AΦA‖2→2 ≤ max

{
β3k

α2k
− 1, 1− α3k

β2k

}
.

Moreover, γ := 2µi
√
β3k ≤ 2

√
β3k

α2k
, which completes the proof.

Corollary 2. Assuming symmetric RIP (2.6) with constants δck, (c ∈ {2, 3}), 0-ALPS(0) satisfies:

‖xi+1 − x?‖2
‖x?‖2

≤ 2
δ3k + δ2k
1− δ2k

‖xi − x?‖2
‖x?‖2

+
2
√

1 + δ2k
1− δ2k

1

SNR
, where δ3k < 1/5⇒ 2

δ3k + δ2k
1− δ2k

< 1.

Proof. The proof easily follows by Theorem 3, where we substitute αck = (1− δck) and βck = (1 + δck).
Furthermore, since δc1k ≤ δc2k for c1 < c2 [NT09a], we observe:

2
δ3k + δ2k
1− δ2k

≤ 4δ3k
1− δ3k

.

By forcing it to be less that 1, we require δ3k < 1/5.

As a generic comment, we observe that adaptive µi scheme results in more restrictive “worst-case”
isometry constants compared to [Fou12, BD09a], but faster convergence and better stability are empirically
observed, as shown in the experiments at the end of the chapter.

2.3.3 Updates over restricted support sets in ALPS

Per iteration in 0-ALPS(0), the new estimate xi+1 can be further refined by applying a single or multiple
gradient descent updates, restricted on Si+1 [Fou11], as described in Algorithm 4. In particular, let
x̂i+1 = PΣk(x̄i) be the new k-sparse estimate with Si+1 := supp(x̂i+1). Then, we can further update the
estimate over the set Si+1 by performing the following motions:

xi+1 = x̂i+1 −
µ̄i
2
∇Si+1

f(x̂i+1), where µ̄i =
‖∇Si+1

f(x̂i+1)‖22
‖Φ∇Si+1

f(x̂i+1)‖22
,

or solving the minimization problem over Si+1 [DM09]-[Fou11]:

xi+1 = arg min
x:supp(x)⊆Si+1

‖y −Φx‖22. (2.21)

For k small compared to n, solving (2.21) can be efficient using off-the-self conjugate gradient implemen-
tations [HS52]. Based on the above, we propose a variation of 0-ALPS(0), called 0-ALPS(2), as described
in Algorithm 4, with the following guarantees; the proof is provided in the Appendix.
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Algorithm 4 ALPS algorithm with zero memory and updates on restricted sets (0-ALPS(2))

1: Input: y, Φ, k, Tolerance η, MaxIterations
2: Initialize: x0 ← 0, S0 ← {∅}, i← 0
3: repeat
4: Ti ← supp(PΣk(∇Sci f(xi))) ∪ Si (Active support expansion)

5: µi =
‖∇Tif(xi)‖22
‖Φ∇Tif(xi)‖22

(Step size selection)
6: x̄i = xi − µi

2 ∇Tif(xi) (Gradient descent step)
7: x̂i+1 = PΣk (x̄i) (Hard-thresholding projection)
8: Si+1 ← supp(x̂i+1)
9: xi+1 = arg minx:supp(x)∈Si+1

‖y −Φx‖22 (Least-squares update over Si+1)
10: i← i+ 1.
11: until ‖xi − xi−1‖2 ≤ η‖xi‖2 or MaxIterations.

Theorem 4. Assuming symmetric RIP (2.6) with constants δck, (c ∈ {2, 3}), 0-ALPS(2) satisfies:

‖xi+1 − x?‖2
‖x?‖2

≤ ρ‖xi − x?‖2
‖x?‖2

+ γ
1

SNR
, where γ :=

√
2(1 + δ2k)

(1− δ2k)
√

1− 4δ2
2k

(1−δ2k)2

+

2δ2k
√

1+δk
(1−δ2k)2

+

√
1+δk

1−δ2k

1− 4δ2
2k

(1−δ2k)2

,

and ρ :=
√

2δ3k√
1− 4δ2

2k
(1−δ2k)2

. Moreover, the iterations are contractive, i.e., ρ < 1, if and only if δ3k < 0.31.

To compare Corollary 2 and Theorem 4, one can use the rule-of-thumb, described earlier in the chapter:
according to this rule and assuming δ3k < δ where δ ∈ (0, 1), the number of samples m for exact recovery
are proportional to C 3k

δ2 log(n/3k) for C > 0. Thus, the larger δ, the lesser number of measurements
required.

Connection to CoSaMP [NT09a]/Subspace Pursuit [DM09] algorithms

Instead of performing a gradient descent step with adaptive µi selection per iteration, a more accurate but
computationally intensive alternative is the objective minimization problem restricted on the extended
support set Ti, similar to (2.21). The ALPS variant for this case is given in Algorithm 5, with obvious simi-
larities with the well-known CoSaMP/Subspace Pursuit algorithms [DM09, NT09a]. The only difference
lies on the fact that we perform a 2k-sparse support detection in the first step, while CoSaMP/Subspace
Pursuit algorithms construct a bigger 3k-sparse set Ti. The convergence proof for this case can be found
in [Fou12].

2.3.4 Memory in ALPS

Iterative algorithms can use memory to provide momentum in convergence. The success of the memory-
based approaches depends on the iteration dependent momentum step size term that combines the
previous estimates; see [BDF07] for a convex approach in image restoration. In particular, based on
Nesterov’s optimal gradient method [Nes04], we propose the following hard thresholding variant of the
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Algorithm 5 ALPS algorithm with zero memory and least-squares on restricted sets (0-ALPS(4))

1: Input: y, Φ, k, Tolerance η, MaxIterations
2: Initialize: x0 ← 0, S0 ← {∅}, i← 0
3: repeat
4: Ti ← supp(PΣk(∇Sci f(xi))) ∪ Si (Active support expansion)
5: x̂i+1 = arg minx:supp(x)∈Ti ‖y −Φx‖22 (Least-squares update over Ti)
6: Si+1 ← supp(x̂i+1) (Hard-thresholding projection)
7: xi+1 = arg minx:supp(x)∈Si+1

‖y −Φx‖22 (Least-squares update over Si+1)
8: i← i+ 1.
9: until ‖xi − xi−1‖2 ≤ η‖xi‖2 or MaxIterations.

basic IHT algorithm:

xi = PΣk

(
ui −

µi
2
∇Sif(ui)

)
, ui+1 = xi + τi(xi − xi−1), (2.22)

where Ui = supp(ui), Si = Ui ∪ supp(PΣk(∇Uci f(ui))) with |Si| ≤ 3k and τi represents the momentum
step size. For the determination of µi, either constant or adaptive step size selection strategy can be
applied, depending on the problem assumptions.

Similarly to µi strategies, τi can be preset as constant or adaptively computed at each iteration. Constant
momentum step size selection has no additional computational cost per iteration, but convergence
rate acceleration is not guaranteed for a wide range of problem settings. On the other hand, empirical
evidence has shown that adaptive τi selection strategies result to faster convergence with (almost)
equivalent complexity to zero-memory methods.

For the case of strongly convex objective functions f , Nesterov [Nes04] proposed the following constant
momentum step size selection scheme for (2.22):

τi =
αi(1− αi)
α2
i + αi+1

,

where α0 ∈ (0, 1) and αi+1 ∈ (0, 1) is computed as the root of α2
i+1 = (1 − αi+1)α2

i + qαi+1, for q :=
λmin(Φ∗Φ)
λmax(Φ∗Φ) := µ

L . Here, µ is the strong convexity parameter and L is the Lipschitz constant of f . In this
scheme, exact calculation of q parameter is computationally expensive for large-scale data problems and
approximation schemes are leveraged to compensate this complexity bottleneck.

Based upon the same ideas as µi selection, we propose to select τi as the minimizer of the objective
function7:

τi = arg min
τ

‖y −Φui+1‖22 =
〈y −Φxi,Φxi −Φxi−1〉
‖Φxi −Φxi−1‖22

, (2.23)

where Φxi,Φxi−1 are previously computed and stored. According to (2.23), τi requires only vector-vector
inner product operations, a computationally cheaper operation than q calculation. Convergence rate
performance of the above schemes is depicted in Figure 2.2.

Memory schemes can naturally be applied in the ALPS framework. Algorithm 6 describes the memory-
based version of 0-ALPS(2), called 1-ALPS(2). Similarly, one can define 1-ALPS(0) and 1-ALPS(4).

7Similar ideas were simultaneously proposed in [Blu12].
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Figure 2.2: Hard thresholding scheme convergence rate example using memory. Here, n = 2000,m =

600, k = 120. Blue and black lines represent Nesterov’s τi selection scheme with q = λmin(Φ∗Φ)
λmax(Φ∗Φ) and

approximate q, respectively; green line represents the proposed momentum step size selection.

Algorithm 6 ALPS algorithm with memory and updates on restricted sets (1-ALPS(2))

1: Input: y, Φ, k, Tolerance η, MaxIterations
2: Initialize: x0 ← 0,u0 ← 0, U0 ← {∅}, i← 0
3: repeat
4: Ti ← supp(PΣk(∇Uci f(ui))) ∪ Ui (Active support expansion)

5: ūi = ui − µi
2 ∇Tif(ui) where µi =

‖∇Uif(ui)‖22
‖Φ∇Uif(ui)‖22

(Gradient descent step)
6: x̂i+1 = PΣk (ūi) where Si+1 ← supp(x̂i+1) (Hard-thresholding projection)
7: xi+1 = arg minx:supp(x)∈Si+1

‖y −Φx‖22 (Least-squares update over Si+1)

8: τi+1 = 〈y−Φxi+1,Φxi+1−Φxi〉
‖Φxi+1−Φxi‖22

(Memory step size selection)
9: ui+1 = xi+1 + τi+1 (xi+1 − xi) where Ui+1 ← supp(ui+1) (Memory momentum update)

10: i← i+ 1.
11: until ‖xi − xi−1‖2 ≤ η‖xi‖2 or MaxIterations.

2.4 Combinatorial selection and least absolute shrinkage via the CLASH
algorithm

As already mentioned, classic hard thresholding algorithms for the compressed sensing setting [BD09a,
Fou11, KC11] solve the following `0-constrained optimization problem:

argmin
x∈Rn

‖y −Φx‖22

subject to ‖x‖0 ≤ k,
(2.24)

where a putative k-sparse solution is iteratively refined using locally greedy decision rules. From a
convex perspective, the least absolute shrinkage and selection operator (LASSO) [Tib96] can be recognized as
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a relaxation of (2.24):
argmin

x∈Rn
‖y −Φx‖22

subject to ‖x‖1 ≤ λ,
(2.25)

where λ > 0 is a parameter that governs the sparsity of the solution.

While both `0 and `1 sparse recovery formulations above have similar theoretical guarantees, it is incorrect
to view the convex `1-norm as a convex relaxation of the Σk set, which extends to infinity. For instance,
`1-norm in (2.25) not only acts as a geometrical proxy to k-sparse signals, but also provides a scale that
the hard thresholding methods in (2.24) cannot exploit. Moreover, along with many efficient algorithms
for its solution, it is now backed with a rather mature theory for the generalization of its solutions as well
as its variable selection consistency [DSSSC08, BRT09, Wai09, ZY06].

However, while this geometric interplay of the `2-data error objective and the `1-norm constraint inher-
ently promotes sparsity, in many cases it leads to arbitrariness in subset selection via shrinkage that best
explains the responses. In fact, this uninformed selection process not only prevents interpretability of
results in many problems, but also fails to exploit key prior information that could radically improve
learning performance.

Along this line, the majority of modern convex approaches try to encapsulate any discrete constraints,
known a priori, into their inherent continuous selection process. For instance, a prevalent approach is to
tailor a sparsity inducing norm to the constraints on the support set (c.f., [JAB11, BJMO11, Bac10]). That
is, we create a structured convex norm by mixing basic norms with weights over pre-defined groups
[YLY11, JOV09, KX10] or using the Lovász extension of non-decreasing submodular set functions of the
support [Bac10].

While such structure inducing, convex norm-based approaches on the LASSO are impressive, our
contention is that, in order to truly make an impact in structured sparsity problems, one could also
leverage explicitly combinatorial approaches to guide LASSO’s subset selection process. To this end, we
introduce our combinatorial selection and least absolute shrinkage (CLASH ) operator and theoretically
characterize its estimation guarantees. CLASH enhances the model-based compressive sensing (model-
CS) framework [BCDH10] by additionally incorporating `1-norm constraints on the regression vector:
CLASH uses a combination of shrinkage and hard thresholding operations to outperform the model-CS
approach, LASSO, or continuous structured sparsity approaches in learning performance of sparse
linear models. As a by-product, CLASH establishes a regression framework where the underlying
tractability of approximation in combinatorial selection is directly reflected in the algorithm’s estimation
and convergence guarantees.

2.4.1 Intuition behind CLASH

Let us consider the following toy example in two dimensions: Assume y = Φx? be the set of measure-
ments, according to PROBLEM 2.1 for ε = 0. Since ker(Φ) is non-trivial, there are infinite solutions x that
satisfy y = Φx; we depict this affine subspace of solutions with a green line in Figure 2.3.

In this toy example, we assume x? is 1-sparse, i.e., ‖x?‖0 = 1; two points satisfy this condition, annotated
as points (A) and (B) in Figure 2.3. By construction, greedy methods for (2.24) look for “high-energy”
solutions via hard-thresholding operations and, thus, we might safely assume that (2.24) returns solution
(A), as shown in Figure 2.3(Left). In stark contrast and for completeness, the Basis Pursuit solution in
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Figure 2.3: Geometric interpretation of the selection process of convex- and combinatorial-based methods, as well
as the proposed framework for a simple test case y = Φx? where ‖x∗‖0 = 1. The admissible set of greedy solutions
with the norm constraint lie on the segments inside the boxes.

(2.3) (i.e., the solution with the minimum `1-norm) would choose (B) in Figure 2.3(Left), as it has smaller
`1-norm than (A).

In the LASSO case (2.25), the performance of the solver depends on the selection of λ. If λ = 1, then the
only 1-sparse solution satisfying the observations, i.e., minimizing the objective ‖y −Φx‖22 in (2.25), is
vector (B). On the other hand and as shown in Figure 2.3(Right), as λ increases, LASSO might return as
solution any point on the ker(Φ), i.e., on the green line, that “lives” in the `1-norm ball with radius λ. For
example, in order to include solution (A) in the feasible set of (2.25), one sets λ = 2; however, LASSO
might return any of the solutions on the green line, as shown in Figure 2.3(Right).

Interestingly, we can exploit further combinatorial prior information on the support of the sparse signals.
Using both `1-norm and `0 “norm” constraints and depending on the selection of λ, the admissible set
of solutions lie on scaled segments on the canonical axes. For example, for constraints ‖x‖1 ≤ 1 and
‖x‖0 ≤ 1, we operate over the set inside the red boxes, along the canonical axes, in Figure 2.3(Right);
similarly, for ‖x‖1 ≤ 2 and ‖x‖0 ≤ 1 the admissible set lies in the blue boxes. Thus, we can capture both
1-sparse solutions (A) and (B) with less ambiguity than the rest of the methods in our toy example of
Figure 2.3 via, say, an `1-norm constraint (i.e., (B) with any constraint ‖x‖1 ≤ λ, λ ∈ [1, 2))—in case of
solution ambiguity, combinatorial selection rules dictate the sparse solution.

2.4.2 From simple sparsity to structured sparsity

As described above, by using combinatorial constraints in convex solvers, one can further restrict the
cardinality of the solution set. In this subsection, we introduce the notion of structured sparsity, that goes
beyond simple sparsity, and helps towards this direction. Section 3 elaborates more on this subject; the
purpose of this subsection is to highlight the universality of the proposed method when more complicated
structured models are assumed in practice.

Definition 6 (Combinatorial sparsity models (CSMs)). We define a combinatorial sparsity modelMk =

{Sq : ∀q, Sq ⊆ N , |Sq| ≤ k} with the sparsity parameter k as a collection of distinct index subsets Sq .
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The workhorse in using CSMs in regression is the following non-convex projection problem, as defined
byMk:

PMk
(x) = arg min

w∈Rn

{
‖w − x‖22 : supp(w) ∈Mk

}
, (2.26)

where PMk
(x) is the projection operator. In particular, [BCDH10] shows that, as long as PMk

(·) is exact
for a CSM, their proposed sparse recovery algorithms inherit strong approximation guarantees for that
CSM. Moreover, [BCDH10] shows that, under specific signal structures, the number of measurements
for successful recovery can be as few as m = O(k), independent of the ambient signal dimension n.
Unfortunately, only a special set of discrete constraints can be incorporated to their framework, such as
tree structures and block sparsity, as long as the projection can be obtained exactly. Here, we extend this
list based on matroids, totally unimodular systems, and knapsack constraints.

For many CSMs, the computation of the exact k-sparse projection is NP-hard. Moreover, in many cases,
there is no analytical model but an algorithm that explains the structure in the sparse coefficients. To
handle both cases, we identify tractable sparsity models as follows:

Definition 7 (Polynomial time modular ε-approximation property (PMAPε)). A CSM has the PMAPε
with constant ε ∈ (0, 1), if the following variance reduction problem admits an ε-approximation scheme with
polynomial or pseudo-polynomial time complexity as a function of n for all x ∈ Rn:

max
S∈Mk

F (S; x), where F (S; x) := ‖x‖22 − ‖xS − x‖22 =
∑

i∈S
|(x)i|2 . (2.27)

Denoting the ε-approximate solution of (2.27) as Ŝε, this implies F (Ŝε; x) ≥ (1− ε) maxS∈Mk
F (S; x).

To connect the above, we state the following key observation.

Lemma 7 (Euclidean projections onto CSMs). The support of the Euclidean projection ontoMk in (2.26)
can be obtained as a solution to the following discrete optimization problem:

supp (PMk
(x)) = arg max

S:S∈Mk

F (S; x) (2.28)

Moreover, let Ŝ ∈ Mk be the minimizer of the discrete problem. Then, it holds that PMk
(x) = xŜ , which

corresponds to hard thresholding.

Proof. It is clear that the best Euclidean projection ontoMk in (2.26) is an index selection problem:

supp
(

arg min
w:supp(w)∈Mk

‖w − x‖22
)

= arg min
S:S∈Mk

‖xS − x‖22 = arg max
S:S∈Mk

‖x‖22 − ‖xS − x‖22 = arg max
S:S∈Mk

‖xS‖22.

�

Lemma 8 (CSM projections via ILP’s). The problem (2.28) is equivalent to the following integer linear
program (ILP):

supp arg min
z:[z]i∈{0,1},
supp(z)∈Mk

{
wT z : (w)i = −|(x)i|2

}
, (2.29)

where (z)i, (i = 1, . . . , n), are support indicator variables.
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The proof of Lemma 8 is straightforward and is omitted.

Example CSMs with PMAP0

Matroids: WhenMk forms a matroid, the greedy basis algorithm can efficiently obtain the exact projec-
tion (2.26) by solving (2.28) [NW88]. By matroid, we mean thatMk is a finite collection of subsets of N
that satisfies three conditions: (i)Mk includes the empty set, (ii) if S is inMk, then any subset of S is
also inMk, and (iii) for S1,S2 ∈Mk and |S1| > |S2|, there is an element s ∈ S1 \ S2 such that S2 ∪ {s} is
inMk. As a simple example, the unstructured sparsity model (i.e., x is k-sparse) forms a uniform matroid
as it is defined as the union of all subsets of N with cardinality k or less.

In turns out that this particular perspective provides a principled and tractable approach to encode an
interesting class of matroid-structured sparsity models. The recipe is quite simple: we seek the intersection
of a structure provider matroid (e.g., partition, cographic/graphic, disjoint path, or matching matroid)
with the sparsity provider uniform matroid. While the intersection of two matroids is not a matroid in
general, one can prove that the intersection of the uniform matroid with any other matroid satisfies the
three conditions above.

Linear support constraints: Many interesting CSMs can be encoded using linear support constraints of the
form:

Mk =
⋃

z∈Z
supp (z) , Z := {z ∈ {0, 1}n : Az ≤ b} ,

where [A,b] is an integral matrix, and the first row of A is all 1’s and (b)1 = k. As a basic example, the
neuronal spike model of [HDC09] is based on linear support constraints where each spike respects a
minimum refractory distance to each other.

A key observation is that if each of the nonempty faces of Z contains an integral point (i.e., forming an
integral polyhedra), then convex optimization algorithms can exactly obtain the correct integer solutions
in polynomial time. In general, checking the integrality of Z is NP-Hard. However, if Z is integral and
non-empty for all integral b, then a necessary condition is that A be a totally unimodular (TU) matrix
[NW88]. A matrix is totally unimodular if the determinant of each square submatrix is equal to 0,1, or -1.
Example TU matrices include interval, perfect, and network matrices [NW88].

How about PMAPε?

For completeness, we only mention PMAPε, which extends the breath of the model-CS approach. As
a representative example for this type of approximation, we identify the multi-knapsack CSMs as a
concrete examples. Moreover, for many of the PMAP0 examples above, we can employ ε-approximate—
randomized—algorithms to reduce computational complexity. However, using PMAPε in practice creates
open questions for future work, as we declare at the end of this chapter.

2.4.3 The CLASH algorithm

We propose the combinatorial selection and least absolute shrinkage algorithm (CLASH ) that obtains approxi-
mate solutions to the LASSO problem in (2.25) with the added twist that the solution must live within

45



Chapter 2. Greedy methods for sparse linear regression

Algorithm 7 CLASH Algorithm

1: Input: y, Φ, λ, PMk
, Tolerance η, MaxIterations

2: Initialize: x0 ← 0, X0 ← {∅}, i← 0
3: repeat
4: Si ← supp(PMk

(∇X ci f(xi))) ∪ Xi (Active set expansion)
5: vi ← arg minv:‖v‖1≤λ, supp(v)∈Si ‖y −Φv‖22 (Greedy descent with least absolute shrinkage)
6: γi ← PMk

(vi) with Γi ← supp(γi) (Combinatorial selection)
7: xi+1 ← arg minx:‖x‖1≤λ, supp(x)∈Γi ‖y −Φx‖22 (De-bias)
8: Xi+1 ← supp(xi+1)
9: i← i+ 1.

10: until ‖xi − xi−1‖2 ≤ η‖xi‖2 or MaxIterations.

the CSM, as defined byMk:

x̂CLASH = arg min
{
f(x) : ‖x‖1 ≤ λ, supp(x) ∈Mk

}
. (2.30)

Using the CSM constraintMk in addition to the `1-norm constraint enhances learning in two important
ways. First, the combinatorial constraints restrict the LASSO solution to exhibit interpretable and model-
based supports. Second, it empirically requires much fewer number of samples to obtain the true solution
than both the LASSO and the model-CS approaches.8

We provide a pseudo-code of an example implementation of CLASH in Algorithm 7. Steps 5 and 7 can be
solved using a convex projected gradient descent approach. Of courase, one can think of alternative ways
of implementing CLASH , such as single gradient updates in Step 5, or removing Step 7 altogether—for
variations of Algorithm 7, one can use the ingredients described in the previous section of this chapter.
While such changes may lead to different—possibly better—approximation guarantees for the solution
of (2.30), we observe degradation in the empirical performance of the algorithm as compared to this
implementation, whose guarantees are as follows:

Theorem 5 (Iteration invariant). Let x? ∈ Rn be the true vector that satisfies the constraints of (2.30).
Then, the i-th iterate xi of CLASH satisfies the following recursion:

‖xi+1 − x?‖2
‖x?‖2

≤ ρ‖xi − x?‖2
‖x?‖2

+ γ · 1

SNR

where ρ := δ3k+δ2k√
1−δ2

2k

√
1+3δ2

3k

1−δ2
3k

and γ is a constant. The iterations contract when δ3k < 0.3658.

Theorem 5 shows that the isometry requirements of CLASH are competitive with the mainstream hard
thresholding methods, such as CoSaMP [NT09a] and Subspace Pursuit [DM09], even though it incor-
porates the `1-norm constraints, which, as Section 2.6 illustrates, improves learning performance. In
the absence of information on k and λ, we automate the parameter selection by using the Donoho-
Tanner phase transition [DT05, BT14] to choose the maximum k allowed for a given (m,n)-pair, and then
cross-validate to pick λ [War09].

Remark 7. [Model mismatch and selection] Let us assume a generative model y = Φx + ε̃. Let x? be the
best approximation of x inMk within `1-ball of radius λ. Then, we can show that Theorem 5 still holds with

8Unfortunately, the RIP sampling bound characterization does not change even if we have a norm-constraint—we believe that
there is room for some new analysis.
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SNR = ‖x?‖2
‖ε‖2 , where ‖ε‖2 ≤ ‖ε̃‖2 + ‖Φ(x − x?)‖2, where the latter quantity (the impact of mismatch) can

be analyzed using the restricted amplification property of Φ [BCDH10]. For instance, whenMk is the uniform
sparsity model, then ‖Φ(x− x?)‖2 ≤

√
1 + δk

(
‖x− x?‖2 + ‖x−x?‖1√

k

)
, which should presumably be small if the

model is selected correctly.

Sketch of proof of Theorem 5

We sketch the proof of Theorem 5 a lá [NT09a] and [Fou12], assuming the general case of PMAPε. For
simplicity, we assume symmetric RIP as in (2.6). The details of the proof can be found in the Appendix.

Lemma 9 (Active set expansion). The support set Si, where |Si| ≤ 2k, identifies a subspace inM2k such
that:

‖(xi − x?)Sci ‖2 ≤ (δ3k + δ2k +
√
ε(1 + δ2k))‖xi − x?‖2 +

(√
2(1 + δ3k) +

√
ε(1 + δ2k)

)
‖ε‖2

Lemma 9 states that, at each iteration, this step identifies a 2k support set such that the unrecovered
energy of x? is bounded. For ε = 0, CLASH exactly identifies the support where the projected gradient
ontoMk can make most impact on the loading vector in the support complement of its current solution,
which are subsequently merged together.

Lemma 10 (Greedy descent with least absolute shrinkage). Let Si be a 2k-sparse support set. Then, the
least squares solution vi Algorithm 1 satisfies

‖vi − x?‖2 ≤
1√

1− δ2
3k

‖(xi − x?)Sci ‖2 +

√
1 + δ2k

1− δ3k
‖ε‖2.

This step improves the objective function f(x) as much as possible on the active set in order to arbitrate
the active set. The solution simultaneously satisfies the `1-norm constraint.

Next, we project the solution ontoMk, whose action is characterized by the following lemma. Here, we
show the ε-approximate projection explicitly:

Lemma 11 (Combinatorial selection). Let vi be a 2k-sparse proxy vector with indices in support set Si,
Mk be a CSM and γi the projection of vi underMk. Then:

‖γi − vi‖22 ≤ (1− ε)‖(vi − x?)Si‖22 + ε‖vi‖22.

Finally, we require the following Corollary, which proof is similar to the proof of Lemma 10:

Corollary 3 (De-bias). Let Γi be the support set of a proxy vector γi where |Γi| ≤ k. Then, the least squares
solution xi+1 in Step 4 satisfies

‖xi+1 − x?‖2 ≤
1√

1− δ2
2k

‖γi − x?‖2 +

√
1 + δk

1− δ2k
‖ε‖2.

This step de-biases the current result on the putative solution support. The next lemma connects Lemmas
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10 and 11:

Lemma 12. Let vi be the least squares solution of the greedy descent step and γi be a proxy vector to vi after
applying Combinatorial selection step. Then, ‖γi − x?‖2 can be expressed in terms of the distance from vi to
x? as follows:

‖γi − x?‖2 ≤
√

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε · ‖vi − x?‖2

+D1‖ε‖2 +D2‖x?‖2 +D3

√
‖x?‖2‖ε‖2,

where D1, D2, D3 are constants depending on ε, δ2k, δ3k.

Finally, the proof of Theorem 5 follows by concatenating Corollary 3 with Lemmas 9, 10, and 12.

2.5 Beyond `1-norm: NORMED-PURSUITS

Inspired by CLASH , we propose an alternative optimization paradigm, dubbed as NORMED PURSUITS,
where both combinatorial (hard-thesholding) and generic norm constraints are active in sparse recovery:
apart from the `1-norm constraint, a non-exhaustive list of norm candidates include `2, `∞ and total
variation (TV) constraints.

NORMED PURSUITS is based on the CLASH algorithm, where `1-norm is replaced by other convex norms.
NORMED PURSUITS has identical theoretical approximation guarantees with CLASH ; see Theorem 5.

A key strength of NORMED PURSUITS is the ability to explicitly enforce sparsity using efficient combi-
natorial projections, while using the norm constraints to regularize the sparse coefficient values. The
current sparse recovery literature offers a variety of convex optimization formulations that attempt to
capture the strength of combinatorial models via exclusively norm information [ZH05, TSR+05, YL06]. In
Table 2.1, we present the corresponding NORMED PURSUITS formulations of the corresponding convex
formulations [ZH05, TSR+05, YL06].

Method NORMED PURSUITS Formulation

Elastic net [ZH05] x̂ = arg min {f(x) : ‖x‖0 ≤ k, ‖x‖2 ≤ λ}
Fused LASSO [TSR+05] x̂ = arg min {f(x) : ‖x‖0 ≤ k, ‖x‖TV ≤ λ}
Group LASSO [YL06] x̂ = arg min {f(x) : x ∈Mk, ‖x‖1,2 ≤ λ}

Table 2.1: NORMED PURSUITS problem formulation of [ZH05, TSR+05, YL06]. Here, ‖x‖1,2 ≤ λ represents
the group `1,2-norm constraint over groups such that ‖x‖1,2 :=

∑
G ‖xG‖2.

2.6 Experiments

2.6.1 Performance evaluation of ALPS

In this section we conduct a series of experiments to demonstrate the efficiency of the ALPS frame-
work with respect to the convergence rate, the computational complexity (execution time) and the
reconstruction performance.
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Figure 2.4: Median error per iteration; in brackets we show the [median # of iterations]. The list of
algorithms includes: #-ALPS(0): adaptive µi with # memory, NIHT: Normalized IHT [BD10], AIHT:
NIHT with Double Relaxation [Blu12], 1-ALPS(2): adaptive µi and additional gradient update.

Experiment 1: Computational complexity and convergence rate

We generate 100 random Monte-Carlo realizations according to PROBLEM 2.1 where n = 5000,m = 2000

and k = 700. Φ is a dense random matrix with independent entries, sampled from zero-mean Gaussian
distribution with variance 1/m. The sparse signal x? follows the simple sparsity model with k nonzero
elements, acquired according to standard normal distribution with ‖x?‖2 = 1. In Figure 2.4, we compare
five state-of-the-art hard thresholding methods in terms of convergence rate.

We also provide in Table 2.2 the matrix-vector multiplication complexity per iteration (in Big-Oh notation),
along with the total number of projections PΣk(·). While for the simple sparsity case PΣk(·) is “cheap”
to compute, when structured sparsityMk is known a priori, each hard thresholding operation over the
model can be the most expensive task per iteration.

Table 2.2: (Left) Comparison of complexity per iteration. (Right) Number of hard thresholding operations
per iteration.

Algorithm Complexity

0-ALPS(0) O(MN) + 3O(MK)
NIHT [BD10] 8 O(MN) + 2O(MK)
AIHT [Blu12] 8 O(MN) + 3O(MK)

1-ALPS(0) O(MN) + 3O(MK)
1-ALPS(2) 2O(MN) + 5O(MK)

Algorithm Number of projections

0-ALPS(0) 2
NIHT [BD10] 8 2
AIHT [Blu12] 8 3

1-ALPS(0) 2
1-ALPS(2) 2

8Best case scenario where no additional binary line search over µi is needed.
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Experiment 2: Memory does not hurt

Figure 2.5 illustrates the phase transition diagrams of 0-ALPS(0) and 1-ALPS(0) algorithms over a range
of problem dimensions. To visualize the phase transition diagram, we perform 100 Monte Carlo random
realizations and take the expected number of successful recovery. A signal recovery with solution x̂

is considered successful provided that ‖x̂− x?‖2 < 10−6. The ambient dimension of the true signal is
n = 1000. We observe that memory acceleration does not degrade the signal reconstruction performance
compared to equivalent zero-memory schemes. As a side remark, we note that 1-ALPS(0) behaves better
than AIHT [Blu12] and NIHT [BD10] algorithms in terms of phase transition performance.

Figure 2.5: Empirical phase transition performance of 0-ALPS(0) (left column) and 1-ALPS(0) (right
column) algorithms. A signal recovery with solution x̂ is considered successful provided that ‖x̂−x?‖2 <
10−6. Solid black line denotes the theoretical `1-norm minimization phase transition curve. Red to blue
color denotes successful to unsuccessful signal recovery probability.

Experiment 3: Phase transition performance

In this experiment, we compare the signal recovery behaviour of 0-ALPS(4) algorithm using our adaptive
step size selection and HTP algorithm [Fou11] with NIHT adaptive µi selection [BD10]. Here, we assume
n = 1000. The empirical phase transition results are depicted in Figure 2.6.

2.6.2 Sparsity and `1-norm

In the following experiments, we compare algorithms from the following list: (i) the LASSO algorithm
[Tib96], (ii) the Basis Pursuit DeNoising (BPDN) [CDS98], (iii) the sparse-CLASH algorithm, where
Mk ≡ Σk, (iv) the model-CLASH algorithm, which explicitly carries a modelMk, defined later in the text,
and (v) Subspace Pursuit (SP) algorithm [DM09], as a state-of-the-art hard thresholding method (also
integrated withMk if present). We emphasize here that when λ→∞ in (2.26), CLASH must converge to
the SP solution.

Implementation details: The LASSO algorithm finds a solution to the problem defined in (2.25), where
we use a Nesterov accelerated projected gradient algorithm. The BPDN algorithm in turn solves the
following optimization problem:
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Figure 2.6: Empirical phase transition performance of 0-ALPS(4) with the proposed step size selection
(left column) and HTP with NIHT step size selection (right column). A signal recovery with solution x̂ is
considered successful provided that ‖x̂− x?‖2 < 10−6. Solid black line denotes the theoretical `1-norm
minimization phase transition curve. Red to blue color denotes successful to unsuccessful signal recovery
probability.

x̂BPDN = arg min {‖x‖1 : ‖Φx− y‖2 ≤ σ} , (2.31)

where σ represents prior knowledge on the energy of the additive noise term. To solve (2.31), we use the
spectral projected gradient method SPGL1 algorithm [VDBF08].

Settings: In the experiments below, the nonzero coefficients of x? are generated iid according to the
standard normal distribution with ‖x?‖2 = 1. The BPDN algorithm is provided with the true σ value.
While CLASH is given the true value of k for the experiments below, we empirically observe that our
phase transition heuristics is quite good and the mismatch is graceful as indicated in Remark 1. All the
algorithms use a high precision stopping tolerance η = 10−5.

Experiment 1: Improving simple sparse recovery: In this experiment, we generate random realizations
of the model y = Φx? + ε for n = 800. Here, Φ is a dense random matrix whose entries are iid Gaussian
with zero mean and variance 1/m. We consider two distinct (and extreme) generative model settings: (i)

with additive Gaussian white noise with ‖ε‖2 = 0.05, m = 240 and k = 89, and (ii) the noiseless model
(‖ε‖2 = 0), m = 250 and sparsity parameter k = 93. For this experiment, we perform 500 Monte Carlo
model realizations.

We sweep λ and illustrate the recovery performance of CLASH . The top row of Figure 2.7 illustrates that
the combination of hard thresholding with norm constraints can improve the signal recovery performance
over convex-only and hard thresholding-only methods—both in noisy and noiseless problem settings.
For ‖ε‖ = 0, CLASH perfectly recovers the signal when λ is close to the true value. When λ� ‖x?‖1, the
performance degrades due to the large norm mismatch.

Experiment 2: Improving structured sparse recovery: We consider two signal CSMs: in the first model,
we assume k-sparse signals that admit clustered sparsity with coefficients in C-contiguous blocks on an
undirected, acyclic chain graph [CIHB09]. Without loss of generality, we use C = 5 (Figure 2.7, bottom
row, left). The second model corresponds to a TU system [HDC09] where we partition the k-sparse
signals into uniform blocks and force sparsity constraints on individual blocks; in this case, we solve the
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Figure 2.7: Median values of signal error ‖x̂ − x?‖2. Top row: simple sparsity model under noisy
‖ε‖2 = 0.05 (left column) and noiseless ‖ε‖2 = 0 (right column) settings. Bottom row: the (k,C)-clustered
sparsity model (left column) and the TU model (right column).

set optimization problem optimally via linear programming relaxation (Figure 2.7, bottom row, right).
Here, the noise energy level satisfies ‖ε‖2 = 0.05, and n = 500, m = 125, and k = 50. In both cases, we
conduct 100 Monte Carlo iterations and perform sparse estimation for a range of λ values.

In Figure 2.7, bottom row, left panel, we observe that clustered sparsity structure provides a distinct
advantage in reconstruction compared to LASSO formulation and the sparse-CLASH algorithm. Further-
more, note that when λ is large, norm constraints have no effect and the model-CLASH provides essentially
the same results as the model-CS approach [BCDH10]. On the other hand, the sparse-CLASH improves
beyond the LASSO solution, thanks to the `1-norm constraint.

In Figure 2.7, bottom row, right panel, we show a case where model-CLASH and `1-norm can be suc-
cessfully combined: while sparse-CLASH by itself improves over SP, BPDN and LASSO, model-CLASH

further leads to better reconstruction performance for a wide range of λ values. Moreover, one can easily
observe the impact of `1-norm in the recovery process since the modelMk itself does not “hit” the error
lower bound, as in Figure 2.7, bottom row, left panel.

2.6.3 Sparsity and other norms

±1-signal recovery with NORMED PURSUITS: We instantiate y = Φx? + ε where ε satisfies ‖ε‖2 = 0.1,
and n = 125, m = 65, k = 25. Here, the coefficients of x? are randomly assigned to ±1 values. To
reconstruct x? from y, we test NORMED PURSUITS with (i) `1-norm, (ii) `2-norm and, (iii) `∞-norm.

We illustrate the signal recovery results in Figure 2.9(Left). We notice that the reconstruction performance
varies by using different norm constraints; in the case of signed signals, we deduce that `∞ norm provides
the best results as compared to `1 and `2-norm constraints.

‖ · ‖TV provides a strong norm constraint: Here, x? follows the (k,C)-clustered sparsity model where

52



2.6. Experiments

0.8 1 1.2 1.4 1.6
0

0.5

1
SP

‖ε‖2 = 0.1

‖
x̂

-
x
∗
‖
2

λ

 

 

Lasso
Clash

‖x‖0 ≤ k, ‖x‖2 ≤ λ

‖x‖0 ≤ k, ‖x‖∞ ≤ λ

0.5 1 1.5
0

0.5

1

BP

Fused Lasso

‖
x̂

-
x
∗
‖
2

λ

 

 

Lasso
‖x‖TV ≤ λ

‖x‖0 ≤ k, ‖x‖TV ≤ λ

Figure 2.8: For each λ, we run 100 Monte-Carlo iterations and pick the median value of signal data error
‖x̂− x?‖2.

the clustered nonzero elements have approximately flat values. We consider the noiseless case y = Φx?

for n = 500, m = 100 and k = 50.

We now compare NORMED PURSUITS with ‖x‖TV ≤ λ, ‖x‖0 ≤ k with: i) the LASSO method, ii)
Basis Pursuit using the SPGL1 implementation [VDBF08], iii) the TV-constrained version of LASSO
where ‖x‖1 ≤ λ is replaced with ‖x‖TV ≤ λ and, iv) Fused LASSO [TSR+05] with TV and `1-norm
constraints, where the true regularization parameters are assumed known. Figure 2.9(Right) provides empirical
evidence that hard thresholding with the TV-norm constraint outperforms the other algorithms in terms of
signal reconstruction, where sparsity constraints assist norm-constrained optimization in the estimation
performance.

2.6.4 Image processing

In this subsection, we evaluate the following optimization formulations:

x̂TVDN = arg min {‖Ψx‖TV : ‖y −Φx‖2 ≤ σ} , (2.32)

x̂TV-LASSO = arg min
{
‖y −Φx‖22 : ‖Ψx‖TV ≤ λ

}
, (2.33)

x̂TV-PURSUIT = arg min
{
‖y −Φx‖22 : ‖x‖TV ≤ λ, ‖Ψx‖0 ≤ k

}
, (2.34)

where Ψ represents an orthonormal wavelet transform.

Compressive sensing with TV-NORMED PURSUIT: To study the compressive sensing recovery perfor-
mance of NORMED PURSUITS, we use the classical cameraman and brain9 images of n = 256× 256 pixels.
We compressively measure both images with the spread spectrum technique [PMG+12]. That is, the sens-
ing matrix Φ consists of a random pre-modulation followed by a random selection of m = 0.25n complex
Fourier coefficients. The performance of NORMED PURSUIT (2.34) is compared with: (i) the TV version
of Basis Pursuit where the TV norm is substituted for the `1-norm as in (2.32), (ii) the TV-constrained
version of LASSO as in (2.33). We choose the Daubechies-4 wavelet for Ψ and k = m. The parameter
λ in (2.34) and (2.33) was chosen to obtain the best reconstruction for each method. Figure 2.9 shows
the reconstruction obtained with the three methods. NORMED PURSUIT (2.34) outperforms all the other
methods with an improvement of at least 0.8 dB on the signal-to-noise ratio.

9BRAINIX database: http://pubimage.hcuge.ch:8080/.
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Original TVDN ‖x‖TV ≤ λ NORMED PURSUIT

25.72dB 25.92dB 26.78dB

27.36dB 27.16dB 28.19dB

Figure 2.9: Results from real data.

CASSI recovery with TV-NORMED PURSUIT: We test the performance of our approach using the Coded
Aperture Snapshot Spectral Imager (CASSI) data [WPSB08].10 We reconstruct three-dimensional spatio-
spectral data cube from measurements. While we obtain the full set of images, we only provide the result
at the wavelength 549 nm in Figure 2.9(Bottom); the full spectrum of results is provided in the Appendix
of this chapter. In general, the contours are better resolved with NORMED PURSUIT compared to the other
methods studied. Moreover, in our subjective evaluation, the contrast is improved overall across all the
wavelengths.

2.7 Discussion

We presented variants of hard thresholding methods along with optimal/efficient strategies for their
usage. While convergence derivations of the proposed schemes might be characterized by weaker
bounds as compared to state-of-the-art approaches, the performance gained by such choices, both in
terms of convergence rate and data recovery, is quite significant. A highlight of our discussion is that
memory-based methods lead to convergence speed with (almost) no extra cost on the complexity of

10http://www.disp.duke.edu/projects/CASSI

54

http://www.disp.duke.edu/projects/CASSI


2.7. Discussion

baseline hard thresholding methods but more theoretical justification is needed.

Along this line of work, we proposed CLASH and NORMED PURSUIT schemes which establish a regression
framework where efficient algorithms from combinatorial and convex optimization can interface for
interpretable sparse solutions. Overall, our experiments demonstrate that, while the model-based
combinatorial selection by itself can greatly improve sparse recovery over the approaches based on
uniform sparsity alone (see next Chapter for more information), the shrinkage operations due to the norm
constraints has an undeniable, positive impact on the learning performance. Understanding the tradeoffs
between the complexity of approximation and the recovery guarantees is a promising theoretical as well
as practical direction.

The discussion in this chapter naturally leads to the following open problems:

Open question 2. Within the CS framework, memory-based methods show impressive empirical performance,
both in terms of their convergence rate guarantees and their signal recovery performance. However, assuming
RIP, there are no known results with stronger recovery conditions and/or provably faster convergence rate as
compared to memoryless approaches.

Open question 3. By using norm constraints with discrete sparsity models in regression, we show efficient
algorithms with strong recovery guarantees. An important empirical observation is the ability of such schemes
to recover the unknown sparse signal x? from fewer number of measurements m than dictated by state-of-the-
art schemes. Unfortunately though, the RIP sampling bound characterization in our analysis does not change,
even if we have a norm-constraint. We believe that along this research direction, there is room for some new
theoretical developments.

Open question 4. Inspired by recent theoretical computer science developments [AGM12], there are many
discrete structures naturally emerging in practice that come with (1 − ε)-approximation guarantees when
projections are needed, similar to the PMAPε definition. As a stylized example, consider the case of graph
sketching where one is interested in finding minimum spanning trees and sparsifiers from a limited number
of linear measurements, assuming that x? follows an underlying graph structure. We believe that the above
constitutes a good research direction for the future.

Appendix

This section contains all the proofs not reported in the main text.

Proof of Corollary 2

In what follows, assume S? := supp(x?). Starting with the orthogonality principle for the operation:

xi+1 = arg min
x:supp(x)∈Si+1

‖y −Φx‖22

55



Chapter 2. Greedy methods for sparse linear regression

the following holds true: 〈Φxi+1 − y,Φw〉 = 0 for any w with supp(w) ⊆ Si+1. Given that y = Φx? + ε

and supp
(
(xi+1 − x?)Si+1

)
⊆ Si+1, by the orthogonality principle we have:

〈
Φxi+1 − y,Φ(xi+1 − x?)Si+1

〉
= 0⇒

〈
Φxi+1 −Φx? − ε,Φ(xi+1 − x?)Si+1

〉
= 0⇒

〈
xi+1 − x?,Φ∗Φ(xi+1 − x?)Si+1

〉
−
〈
Φ∗ε, (xi+1 − x?)Si+1

〉
= 0⇒

µi
〈
xi+1 − x?,Φ∗Φ(xi+1 − x?)Si+1

〉
− µi

〈
Φ∗ε, (xi+1 − x?)Si+1

〉
= 0⇒

〈
xi+1 − x?, µiΦ

∗Φ(xi+1 − x?)Si+1

〉
− µi

〈
ε,Φ(xi+1 − x?)Si+1

〉
= 0

One can easily observe the following equation:

‖xi+1 − x?‖22 = ‖(xi+1 − x?)Si+1‖22 + ‖(xi+1 − x?)Sci+1
‖22 (2.35)

Beginning with the ‖(xi+1 − x?)Si+1
‖22 term, we observe that:

‖(xi+1 − x?)Si+1
‖22 =

〈
xi+1 − x?, (xi+1 − x?)Si+1

〉

=
〈
xi+1 − x?, (xi+1 − x?)Si+1

〉
−
〈
xi+1 − x?, µiΦ

∗Φ(xi+1 − x?)Si+1

〉
+ µi

〈
ε,Φ(xi+1 − x?)Si+1

〉

=
〈
xi+1 − x?, (I− µiΦ∗Φ)(xi+1 − x?)Si+1

〉
+ µi

〈
ε,Φ(xi+1 − x?)Si+1

〉

=
〈
xi+1 − x?, (I− µiΦ∗TΦT )(xi+1 − x?)Si+1

〉
+ µi

〈
ε,Φ(xi+1 − x?)Si+1

〉

(i)

≤ ‖I− µiΦ∗TΦT ‖2→2‖xi+1 − x?‖2‖(xi+1 − x?)Si+1
‖2 + µi‖Φ(xi+1 − x?)Si+1

‖2‖ε‖2
(ii)

≤ ‖I− µiΦ∗TΦT ‖2→2‖xi+1 − x?‖2‖(xi+1 − x?)Si+1‖2 + µi
√

1 + δk‖(xi+1 − x?)Si+1
‖2‖ε‖2

where T = supp(xi+1)∪ supp(x?) with |T | ≤ 2k, (i) is due to Cauchy-Schwarz inequality and (ii) comes
from RIP property. Eliminating ‖(xi+1 − x?)Si+1‖2 from each side, we get the following inequality:

‖(xi+1 − x?)Si+1‖2 ≤ ‖I− µiΦ∗TΦT ‖2→2‖xi+1 − x?‖2 + µi
√

1 + δk‖ε‖2

Given that 1
1+δ2k

≤ µi ≤ 1
1−δ2k and ‖I− µiΦ∗TΦT ‖2→2 ≤ 2δ2k

1−δ2k , we obtain:

‖(xi+1 − x?)Si+1
‖2 ≤

2δ2k
1− δ2k

‖xi+1 − x?‖2 +

√
1 + δk

1− δ2k
‖e‖2

Substituting in (2.35), we get the following quadratic polynomial:

‖xi+1 − x?‖22 ≤
( 2δ2k
1− δ2k

‖xi+1 − x?‖2 +
√
1 + δk

1− δ2k
‖ε‖2

)2
+ ‖(xi+1 − x?)Sci+1

‖22 ⇒(
1− 4δ22k

(1− δ2k)2
)
‖xi+1 − x?‖22 −

4δ2k
√
1 + δk

(1− δ2k)2
‖ε‖2‖xi+1 − x?‖2 −

( 1 + δk
(1− δ2k)2

‖ε‖22 + ‖(xi+1 − x?)Sci+1
‖22
)
≤ 0

Considering ‖xi+1−x?‖2 as variable in the above polynomial, we compute the root solutions and obtain
the following bound:

‖xi+1 − x?‖2 ≤
1√

1− 4δ2
2k

(1−δ2k)2

‖(xi+1 − x?)Sci+1
‖2 + c1‖ε‖2, where c1 :=

2δ2k
√

1+δk
(1−δ2k)2 +

√
1+δk

1−δ2k

1− 4δ2
2k

(1−δ2k)2

.
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It is obvious that:

‖(xi+1 − x?)Sci+1
‖22 = ‖(xi+1 − x?)S∗\Si+1

‖22 = ‖(x̂i+1 − x?)S∗\Si+1
‖22

We focus on the hard-thresholding projection x̂i+1 = PΣk (x̄i) where x̄i = xi − µi
2 ∇Sif(xi). Let X̂i+1 :=

supp(x̂i+1). Given support set Si, we know that supp(x̄i) ⊆ Si and, futhermore, X̂i+1 ⊆ Si. Since x̂i+1

contains the k largest elements of x̄i, we deduce that:

‖(xi −
µi
2
∇Sif(xi))S∗‖22 ≤ ‖(xi −

µi
2
∇Sif(xi))X̂i+1

‖22

Eliminating the common contribution ‖(xi − µi
2 ∇Sif(xi))S∗∩X̂i+1

‖22 on both sides, we get:

‖(xi −
µi
2
∇Sif(xi))S∗\X̂i+1

‖2 ≤ ‖(xi −
µi
2
∇Sif(xi))X̂i+1\S∗‖2 ⇒

‖(xi + µiΦ
∗(y −Φxi))S∗\X̂i+1

‖2 ≤ ‖(xi + µiΦ
∗(y −Φxi))X̂i+1\S∗‖2

The right hand side of the above inequality satisfies:

‖(xi + µiΦ
∗(y −Φxi))X̂i+1\S∗‖2 = ‖(xi + µiΦ

∗(Φx? + ε−Φxi))X̂i+1\S∗‖2
= ‖(xi − x? + µiΦ

∗Φ(x? − xi) + µiΦ
∗ε)X̂i+1\S∗‖2

(i)

≤ ‖
(
(I− µiΦ∗Φ)(xi − x?)

)
X̂i+1\S∗‖2 + ‖(µiΦ∗ε)X̂i+1\S∗‖2

where (i) is due to triangle inequality. On the other hand, the left hand side can be rewritten as:

‖(xi + µiΦ
∗(y −Φxi))S∗\X̂i+1

‖2 = ‖(xi + µiΦ
∗(Φx? + ε−Φxi))S∗\X̂i+1

‖2
= ‖(xi + µiΦ

∗Φ(x? − xi) + µiΦ
∗ε)S∗\X̂i+1

‖2
= ‖(xi − x? + x? + µiΦ

∗Φ(x? − xi) + µiΦ
∗ε)S∗\X̂i+1

‖2
= ‖((I− µiΦ∗Φ)(x? − xi) + x? + µiΦ

∗ε)S∗\X̂i+1
‖2

= ‖((I− µiΦ∗Φ)(x? − xi) + (x? − xi+1) + µiΦ
∗ε)S∗\X̂i+1

‖2

≥ ‖(x? − xi+1)S∗\X̂i+1
‖2 − ‖((I− µiΦ∗Φ)(x? − xi))S∗\X̂i+1

‖2 − ‖(µiΦ∗ε)S∗\X̂i+1
‖2

Combining the above two expressions of ‖(xi + µiΦ
∗(y −Φxi))S∗\X̂i+1

‖2, we obtain:

‖(x? − xi+1)S∗\X̂i+1
‖2 ≤ ‖((I− µiΦ∗Φ)(x? − xi))S∗\X̂i+1

‖2 + ‖(µiΦ∗ε)S∗\X̂i+1
‖2

+ ‖
(
(I− µiΦ∗Φ)(xi − x?)

)
X̂i+1\S∗‖2 + ‖(µiΦ∗ε)X̂i+1\S∗‖2

≤
√

2‖
(
(I− µiΦ∗Φ)(xi − x?)

)
(X̂i+1∪S∗)\(X̂i+1∩S∗)‖2 +

√
2µi‖(Φ∗ε)(X̂i+1∪S∗)\(X̂i+1∩S∗)‖2

≤
√

2δ3k‖xi − x?‖2 +

√
2(1 + δ2k)

1− δ2k
‖ε‖2
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In conclusion, we combine the above results to get:

‖xi+1 − x?‖2 ≤
1√

1− 4δ2
2k

(1−δ2k)2

(√
2δ3k‖xi − x?‖2 +

√
2(1 + δ2k)

1− δ2k
‖ε‖2

)
+ c1‖ε‖2 ≤ ρ‖xi − x?‖2 + c2‖ε‖2

(2.36)

where ρ :=
√

2δ3k√
1− 4δ2

2k
(1−δ2k)2

and c2 :=

√
2(1+δ2k)

1−δ2k
1√

1− 4δ2
2k

(1−δ2k)2

+ c1.

Moreover, the iterations are constractive iff ρ < 1. This happens for δ3k such that

2δ4
3k − 4δ3

3k + 5δ2
3k + 2δ3k − 1 < 0, i.e. δ3k < 0.31. (2.37)

�

Proof of Theorem 5

A well-known lemma used in the convergence guarantee proof of CLASH is defined next.

Lemma 13 (Optimality condition). Let Θ ⊆ Rn be a convex set and f : Θ → R be a smooth objective
function defined over Θ. Let ψ? ∈ Θ be a local minimum of the objective function f over the set Θ. Then

〈∇f(ψ∗),ψ −ψ?〉 ≥ 0, ∀ψ ∈ Θ. (2.38)

For clarity reasons, we present the proof of Theorem 1 as a collection of lemmas to help readability.

Lemma 14 (Active set expansion). The support set Si, where |Si| ≤ 2k, identifies a subspace inM2k such
that:

‖(xi − x?)Sci ‖2 ≤ (δ3k + δ2k +
√
ε(1 + δ2k))‖xi − x?‖2 +

(√
2(1 + δ3k) +

√
ε(1 + δ2k)

)
‖ε‖2. (2.39)

Proof. Let Xi∪X ∗ denote the union of the support sets of the current estimate xi and the signal of interest
x?. Then, the following sequence of inequalities hold true:

F (Xi ∪ X ∗;∇f(xi)) ≤ F (Xi ∪ supp(PMk
(∇X ci f(xi)));∇f(xi))⇒

(1− ε)F (Xi ∪ X ∗;∇f(xi)) ≤ (1− ε)F (Xi ∪ supp(PMk
(∇X ci f(xi)));∇f(xi))

Given Si is an ε-approximate support set, from the definition of PMAP, we further havea:

(1− ε)F (Xi ∪ X ∗;∇f(xi)) ≤ F (Si;∇f(xi)).

Substituting the variance reduction modular function F (S; x) , ‖x‖22 − ‖(x)S − x‖22 = ‖(x)S‖22, we get:

(1− ε)
∥∥∇Xi∪X∗f(xi)

∥∥2

2
≤
∥∥∇Sif(xi)

∥∥2

2
⇒ (1− ε)

∥∥
(
Φ∗(y −Φxi)

)
Xi∪X∗

∥∥2

2
≤
∥∥
(
Φ∗(y −Φxi)

)
Si

∥∥2

2
⇒

∥∥
(
Φ∗(y −Φxi)

)
Xi∪X∗

∥∥2

2
≤
∥∥
(
Φ∗(y −Φxi)

)
Si

∥∥2

2
+ ε
∥∥
(
Φ∗(y −Φxi)

)
Xi∪X∗

∥∥2

2
.
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Using the subadditivity property of the square root function and excluding the common distribution(
Φ∗(y −Φxi)

)
(Xi∪X∗)∩Si , we have:

‖
(
Φ∗(y −Φxi)

)
(Xi∪X∗)\Si

‖2 ≤
∥∥(Φ∗(y −Φxi)

)
Si\(Xi∪X∗)

∥∥
2
+
√
ε
∥∥(Φ∗(y −Φxi)

)
Xi∪X∗

∥∥
2

(i)

≤
∥∥(Φ∗Φ(x? − xi)

)
Si\(Xi∪X∗)

∥∥
2
+
∥∥(Φ∗ε)Si\(Xi∪X∗)∥∥2 +√ε∥∥(Φ∗Φ(x? − xi)

)
Xi∪X∗

∥∥
2
+
√
ε
∥∥(Φ∗ε)Xi∪X∗∥∥2

(ii)
=
∥∥((Φ∗Φ− I)(x? − xi)

)
Si\(Xi∪X∗)

∥∥
2
+
∥∥(Φ∗ε)Si\(Xi∪X∗)∥∥2 +√ε∥∥(Φ∗Φ(x? − xi)

)
Xi∪X∗

∥∥
2
+
√
ε
∥∥(Φ∗ε)Xi∪X∗∥∥2

(iii)

≤ (δ3k +
√
ε(1 + δ2k))‖xi − x?‖2 +

∥∥(Φ∗ε)Si\(Xi∪X∗)∥∥2 +√ε∥∥(Φ∗ε)Xi∪X∗∥∥2. (2.40)

where (i) is obtained by applying the triangle inequality, (ii) holds since (x? − xi)Si\(Xi∪X∗) = 0 and
(iii) is due to Cauchy-Swartz inequality and isometry constant definition.

In addition, we can obtain a lower bound for ‖
(
Φ∗(y −Φxi)

)
(Xi∪X∗)\Si‖2:

‖
(
Φ∗(y −Φxi)

)
(Xi∪X∗)\Si

‖2 =
∥∥
(
Φ∗Φ(x? − xi)

)
(Xi∪X∗)\Si

+ (Φ∗ε)(Xi∪X∗)\Si
∥∥

2

=
∥∥
(
Φ∗Φ(x? − xi)

)
(Xi∪X∗)\Si

+ (x? − xi)(Xi∪X∗)\Si − (x? − xi)(Xi∪X∗)\Si + (Φ∗ε)(Xi∪X∗)\Si
∥∥

2

≥ ‖(x? − xi)(Xi∪X∗)\Si‖2 −
∥∥
(

(Φ∗Φ− I)(x? − xi)
)

(Xi∪X∗)\Si

∥∥
2
− ‖(Φ∗ε)(Xi∪X∗)\Si‖2

(i)

≥ ‖(x? − xi)(Xi∪X∗)\Si‖2 − δ2k‖x? − xi‖2 − ‖(Φ∗ε)(Xi∪X∗)\Si‖2. (2.41)

where (i) is obtained by using Cauchy-Swartz inequality and isometry constant definition.

Since ‖(xi − x?)(Xi∪X∗)\Si‖2 = ‖(xi − x?)Sci ‖2, combining (2.40) and (2.41), we get:

‖(xi − x?)Sci ‖2 ≤ (δ3k + δ2k +
√
ε(1 + δ2k))‖xi − x?‖2 +

(√
2(1 + δ3k) +

√
ε(1 + δ2k)

)
‖ε‖2.

as a consequence of the RIP inequality.

Lemma 15 (Greedy descent with least absolute shrinkage). Let Si be a 2k-sparse support set. Then, the
least squares solution vi in step 2 of Algorithm 1 satisfies

‖vi − x?‖2 ≤
1√

1− δ2
3k

‖(xi − x?)Sci ‖2 +

√
1 + δ2k

1− δ3k
‖ε‖2.

Proof. We know that supp(vi) ∈ Si. Starting from ‖vi − x?‖22, the following holds true:

‖vi − x?‖22 = ‖(vi − x?)Si‖22 + ‖(vi − x?)Sci ‖
2
2.

Using the optimality condition, vi is the minimizer of ‖y −Φv‖22 over the convex set Θ = {v : ‖v‖1 ≤
λ, supp(v) ∈ Si} and therefore:

〈∇f(vi), (x
? − vi)Si〉 ≥ 0⇒ 〈Φvi − y,Φ(vi − x?)Si〉 ≤ 0.
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We calculate the following:

‖(vi − x?)Si‖22 = 〈vi − x?, (vi − x?)Si〉
≤ 〈vi − x?, (vi − x?)Si〉 − 〈Φvi − y,Φ(vi − x?)Si〉
= 〈vi − x?, (vi − x?)Si〉 − 〈Φvi −Φx? − ε,Φ(vi − x?)Si〉
= 〈vi − x?, (vi − x?)Si〉 − 〈vi − x?,Φ∗Φ(vi − x?)Si〉+ 〈ε,Φ(vi − x?)Si〉
= 〈vi − x?, (I−Φ∗Φ)(vi − x?)Si〉+ 〈ε,Φ(vi − x?)Si〉
≤ |〈vi − x?, (I−Φ∗Φ)(vi − x?)Si〉|+ 〈ε,Φ(vi − x?)Si〉
(i)

≤ δ3k‖(vi − x?)Si‖2‖vi − x?‖2 +
√

1 + δ2k‖(vi − x?)Si‖2‖ε‖2, (2.42)

where (i) comes from Cauchy-Swartz inequality and isometry constant definition. Simplifying the above
quadratic expression, we obtain:

‖(vi − x?)Si‖2 ≤ δ3k‖vi − x?‖2 +
√

1 + δ2k‖ε‖2. (2.43)

As a consequence, (2.42) can be upper bounded by:

‖vi − x?‖22 ≤ (δ3k‖vi − x?‖2 +
√

1 + δ2k‖ε‖2)2 + ‖(vi − x?)Sci ‖
2
2.

We form the quadratic polynomial for this inequality assuming as unknown variable the quantity
‖vi − x?‖2. Bounding by the largest root of the resulting polynomial, we get:

‖vi − x?‖2 ≤
1√

1− δ2
3k

‖(vi − x?)Sci ‖2 +

√
1 + δ2k

1− δ3k
‖ε‖2.

Lemma 16 (Combinatorial selection). Let vi be a 2k-sparse proxy vector with indices in support set Si,
Mk be a CSM and γi the projection of vi underMk. Then:

‖γi − vi‖22 ≤ (1− ε)‖(vi − x?)Si‖22 + ε‖vi‖22.

Proof. Let γopt
i denote the optimal combinatorial projection of vi underMk, i.e.

γ
opt
i = PMk

(vi) = arg max
(vi)S :S∈N ,S∈Mk

F (S; vi).

By the definition of the non-convex projection onto CSMs, it is apparent that:

‖γopt
i − vi‖2 ≤ ‖(vi − x?)Si‖2, (2.44)

overMk since γopt
i is the best approximation to vi for that particular CSM. In the general case, this step

is performed approximately and we get γi as γi = PεMk
(vi), an ε-approximate projection of vi with
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corresponding variance reduction F (Ŝε; vi). According to the definition of PMAPε, we calculate:

F (Ŝε; vi) ≥ (1− ε) max
S∈Mk

F (S; vi)⇒ ‖vi‖22 − ‖γi − vi‖22 ≥ (1− ε)
[
‖vi‖22 − ‖γ

opt
i − vi‖22

]

⇒ ‖γi − vi‖22 ≤ (1− ε)‖γopt
i − vi‖22 + ε‖vi‖22

⇒ ‖γi − vi‖22
eq:ch2s405

≤ (1− ε)‖(vi − x?)Si‖22 + ε‖vi‖22.

Lemma 17. Let vi be the least squares solution of the greedy descent step and γi be a proxy vector to vi after
applying Combinatorial selection step. Then, ‖γi − x?‖2 can be expressed in terms of the distance from vi to
x? as follows:

‖γi − x?‖2 ≤
√

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε · ‖vi − x?‖2

+D1‖ε‖2 +D2‖x?‖2 +D3

√
‖x?‖2‖ε‖2, (2.45)

where D1, D2, D3 are constants depending on ε, δ2k, δ3k.

Proof. We observe the following

‖γi − x?‖22 = ‖γi − vi + vi − x?‖22 = ‖(vi − x?)− (vi − γi)‖22 (2.46)

= ‖vi − x?‖22 + ‖vi − γi‖22 − 2〈vi − x?,vi − γi〉. (2.47)

Focusing on the right hand side of expression (4.71), 〈vi − x?,vi − γi〉 = 〈vi − x?, (vi − γi)Si〉 can be
similarly analysed as (2.42) where we obtain the following expression:

|〈vi − x?, (vi − γi)Si〉| ≤ δ3k‖vi − x?‖2‖vi − γi‖2 +
√

1 + δ2k‖vi − γi‖2‖ε‖2. (2.48)

Now, expression (4.71) can be further transformed as:

‖γi − x?‖22 = ‖vi − x?‖22 + ‖vi − γi‖22 − 2〈vi − x?,vi − γi〉
≤ ‖vi − x?‖22 + ‖vi − γi‖22 + 2|〈vi − x?,vi − γi〉|
(i)

≤ ‖vi − x?‖22 + ‖vi − γi‖22 + 2(δ3k‖vi − x?‖2‖vi − γi‖2 +
√

1 + δ2k‖vi − γi‖2‖ε‖2)

(ii)

≤ ‖vi − x?‖22 + (1− ε)‖γopt
i − vi‖22 + ε‖vi‖22 + 2

(
δ3k‖vi − x?‖2

√
(1− ε)‖γopt

i − vi‖22 + ε‖vi‖22

+
√

1 + δ2k

√
(1− ε)‖γopt

i − vi‖22 + ε‖vi‖22‖ε‖2
)
, (2.49)

where (i) is due to (4.72) and (ii) is due to Lemma 11. Given that
√
a2 + b2 ≤ a+ b for a, b ≥ 0, we further
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have:

‖γi − x?‖22 ≤ ‖vi − x?‖22 + (1− ε)‖γopt
i − vi‖22 + ε‖vi‖22 + 2δ3k‖vi − x?‖2

(√
1− ε‖γopt

i − vi‖2 +
√
ε‖vi‖2

)

+ 2
√

1 + δ2k
(√

1− ε‖γopt
i − vi‖2 +

√
ε‖vi‖2

)
‖ε‖2

(i)

≤ ‖vi − x?‖22 + (1− ε)‖(vi − x?)Si‖22 + ε‖vi‖22 + 2δ3k‖vi − x?‖2
(√

1− ε‖(vi − x?)Si‖2 +
√
ε‖vi‖2

)

+ 2
√

1 + δ2k
(√

1− ε‖(vi − x?)Si‖2 +
√
ε‖vi‖2

)
‖ε‖2

(ii)

≤ ‖vi − x?‖22 + (1− ε)(δ3k‖vi − x?‖2 +
√

1 + δ2k‖ε‖2)2 + ε‖vi‖22
+ 2δ3k‖vi − x?‖2

(√
1− ε(δ3k‖vi − x?‖2 +

√
1 + δ2k‖ε‖2) +

√
ε‖vi‖2

)

+ 2
√

1 + δ2k
(√

1− ε(δ3k‖vi − x?‖2 +
√

1 + δ2k‖ε‖2) +
√
ε‖vi‖2

)
‖ε‖2, (2.50)

where (i) is due to (2.44) and (ii) is due to (2.43). Applying basic algebra on the right hand side of (2.50),
we get:

‖γi − x?‖22 =
(
1 + (1− ε)δ2

3k + 2δ2
3k

√
1− ε

)
‖vi − x?‖22

+
(
2(1− ε)δ3k

√
1 + δ2k + 4δ3k

√
1− ε

√
1 + δ2k

)
‖vi − x?‖2‖ε‖2

+
(
(1− ε)(1 + δ2k) + 2(1 + δ2k)

√
1− ε

)
‖ε‖22

+ 2δ3k
√
ε‖vi − x?‖2‖vi‖2 + 2

√
ε(1 + δ2k)‖vi‖2‖ε‖2 + ε‖vi‖22 (2.51)

(i)

≤
(

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k

)(
‖vi − x?‖2 +

√(
(1− ε) + 2

√
1− ε

)
(1 + δ2k)

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k

‖ε‖
)2

+ 2δ3k
√
ε‖vi − x?‖2‖vi‖2 + 2

√
ε(1 + δ2k)‖vi‖2‖ε‖2 + ε‖vi‖22. (2.52)

where (i) is obtained by completing the squares and eliminating negative terms in (2.51).

Using triangle inequality, we know that:

‖vi‖2 ≤ ‖vi − x?‖2 + ‖x?‖2, (2.53)

and, thus, (4.70) can be further analyzed as:

‖γi − x?‖22 ≤
(

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k

)(
‖vi − x?‖2 +

√(
(1− ε) + 2

√
1− ε

)
(1 + δ2k)

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k

‖ε‖
)2

+ (2δ3k
√
ε+ ε)‖vi − x?‖22 + (2δ3k

√
ε‖x?‖2 + 2

√
ε(1 + δ2k)‖ε‖2 + 2ε‖x?‖2)‖vi − x?‖2

+ 2
√
ε(1 + δ2k)‖x?‖2‖ε‖2 + ε‖x?‖22.

After tedious computations, we end up with the following inequality:

‖γi − x?‖2 ≤
√

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε · ‖vi − x?‖2

+D1‖ε‖2 +D2‖x?‖2 +D3

√
‖x?‖2‖ε‖2,
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where

D1 ,

√
1 +

(
(1− ε) + 2

√
1− ε

)
δ2
3k

√(
(1− ε) + 2

√
1− ε

)
(1 + δ2k) +

√
ε(1 + δ2k)

√
1 +

(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε

,

D2 ,
δ3k
√
ε+ ε√

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε

+

√
ε− (ε+ δ3k

√
ε)2

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε

,

D3 ,
√

2
√
ε(1 + δ2k).

Using the above lemmas, we now complete the proof of Theorem 1.

Proof. Combining Lemma 10 with Lemma 12, we get:

‖γi − x?‖2 ≤
√

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε

1− δ2
3k

· ‖(vi − x?)Sci ‖2

+D4‖ε‖2 +D2‖x?‖2 +D3

√
‖x?‖2‖ε‖2,

where

D4 , D1 +

√
1 + δ2k

1− δ3k

√
1 +

(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε.

We know that Xi ⊆ Si. Thus, (vi)Sci = 0 iff (xi)Sci = 0. Therefore,

‖(vi − x?)Sci ‖2 = ‖(vi)Sci − (x?)Sci ‖2 = ‖(xi)Sci − (x?)Sci ‖2 = ‖(xi − x?)Sci ‖2.

Now, using Lemma 9, we form the following recursion:

‖γi − x?‖2 ≤
√

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε

1− δ2
3k

(δ3k + δ2k +
√
ε(1 + δ2k))‖xi − x?‖2

+D5‖ε‖2 +D2‖x?‖2 +D3

√
‖x?‖2‖ε‖2, (2.54)

where

D5 ,

√
1 +

(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε

1− δ2
3k

(√
2(1 + δ3k) +

√
ε(1 + δ2k)

)
+D4.

Finally, substituting (2.54) in Corollary 3, we compute the desired recursive formula:

‖xi+1 − x?‖2
‖x?‖2

≤ ρ‖xi − x?‖2
‖x?‖2

+
c1(δ2k, δ3k, ε)

SNR
+ c2(δ2k, δ3k, ε) + c3(δ2k, δ3k, ε)

√
1

SNR
,
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where SNR = ‖x?‖2
‖ε‖2 = ‖x?‖2√

f(x?)
and

ρ ,
δ3k + δ2k +

√
ε(1 + δ2k)√

1− δ2
2k

√
1 +

(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε

1− δ2
3k

,

c1(δ2k, δ3k, ε) ,
D5√

1− δ2
2k

+

√
1 + δk

1− δ2k
,

c2(δ2k, δ3k, ε) ,
1√

1− δ2
2k

(
δ3k
√
ε+ ε√

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε

+

√
ε− (ε+ δ3k

√
ε)2

1 +
(
(1− ε) + 2

√
1− ε

)
δ2
3k + 2δ3k

√
ε+ ε

)
,

c3(δ2k, δ3k, ε) ,
D3√

1− δ2
2k

.

CASSI Results

454 nm 458 nm 462 nm 465 nm 468 nm 472 nm

475 nm 479 nm 483 nm 487 nm 491 nm 496 nm

500 nm 505 nm 509 nm 514 nm 520 nm 525 nm

531 nm 537 nm 543 nm 549 nm 556 nm 564 nm

571 nm 579 nm 587 nm 596 nm 605 nm 615 nm

626 nm 637 nm 650 nm

Figure 2.10: Full wavelength CASSI results for the TV version of Basis Pursuit where the TV norm is
substituted for the `1-norm as in (2.32)
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454 nm 458 nm 462 nm 465 nm 468 nm 472 nm
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Figure 2.11: Full wavelength CASSI results for the TV-constrained version of LASSO as in (2.33)
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626 nm 637 nm 650 nm

Figure 2.12: Full wavelength CASSI results for the NORMED PURSUIT
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3 Beyond simple sparsity

Introduction

While many of the optimization solutions proposed so far result in sparse model selections, in many cases
they do not capture the true underlying structure to best explain the observations [BCDH10]. Recent
results in CS consider more sophisticated structured sparsity models, which describe the interdependency
between the nonzero coefficients, increase the interpretability of the results and lead to better recovery per-
formance [EM09, BD09b, BCDH10, RRN12]. Nowadays, we have witnessed aplenty elaborate approaches
that guide the selection process: (overlapping) group LASSO, fused LASSO, greedy approaches for signal
approximation under tree-structure assumptions just to name a few; see [YL06, FHT10, TSR+05, JAB11].
To show the merits of such approaches, consider the problem of image recovery from a limited set of
measurements using the tree-structured group sparse model [Bar99]. Figure 3.1 shows the performance
of structured sparsity models, compared to simple ones.

Moreover, such a priori model-based assumptions result into more robust solutions and allow recovery
with far fewer samples, e.g. O(k) instead of O (k log(n/k)) samples for k sparse signals whose non-
zero coefficients are arranged into few blocks or form a rooted connected subtree over the coefficients
[BCDH10]. To highlight the importance of this property, in the case of Magnetic Resonance Imaging
(MRI), reducing the total number of measurements is highly desirable for both capturing functional
activities within small time periods and rendering the whole procedure less “painful” for the patient
[LDP07].

In order to use such structures in practice, one needs efficient optimization solutions for structured
sparsity problems that scale up in high-dimensional settings. From our discussions below, it will be
apparent that the key actors for this purpose are projection and proximity operations over structured sets that
go beyond simple selection heuristics and towards provable quality as well as runtime/space bounds.

Overall, projection operations faithfully follow the underlying combinatorial model but, in most cases,
result in hard-to-solve or even combinatorial optimization problems. Furthermore, model misspecification
often results in wildly inaccurate solutions. Proximity operators of convex sparsity-inducing norms often
can only partially describe the underlying discrete model and might lead to “rules-of-thumb” in problem
solving (e.g., how to set up the regularization parameter). However, such approaches work quite well in
practice and are more robust to deviations from the model, leading to satisfactory solutions.

To this end, in this chapter we study two problem cases within the structured sparsity realm:
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Original Simple sparsity Structured sparsity

PSNR: 20.43 dB PSNR: 23.56 dB

PSNR: 28.43 dB PSNR: 33.24 dB

Figure 3.1: Empirical performance of simple and structured sparsity recovery on natural images. In all
cases, the number of linear measurements are 5% (top row) and 10% (bottom row) of the actual image
dimensions. Left panel: Original images of dimension: (Top row) 2048× 2048, (Bottom row) 512× 512.
Middle panel: Conventional recovery using simple sparsity model. Right panel: Tree-structured sparse
recovery.

PROBLEM 3.1. Let y ∈ Rn be a given anchor point. For an a priori known discrete modelMk with sparsity
level k, we are interested in finding the best Euclidean projection onMk, i.e.,

PMk
(y) ∈ arg min

x: x∈Mk

‖x− y‖22. (3.1)

PROBLEM 3.2. Let y ∈ Rn be a given anchor point. For an a priori known discrete modelMk with sparsity
level k, let g : Rn → R be a (usually convex) function that well-approximates the behavior ofMk. Under this
setting, we are interested in finding the proximity operator

proxgλ(y) := arg min
x∈Rn

{
1

2
‖x− y‖22 + λ · g(x)

}
, (3.2)

where λ > 0.
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Chapter roadmap

In order to better understand the impact of structured sparsity, in this chapter we analyze the connections
between the discrete models and their convex relaxations, highlighting their relative advantages. We
start with the general group sparse model (Section 3.2) and then elaborate on two important special cases:
the dispersive (Section 3.3) and the hierarchical models (Section 3.4). For each, we present the models
in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex
relaxations. Further, we discuss efficient optimization solutions for structured sparsity problems and
illustrate structured sparsity in action via two applications (Section 3.5).

This chapter is based on joint work with Volkan Cevher, Luca Baldassarre, Nirav Bhan, Quoc Tran-Dinh
and Marwa El-Halabi [BBCK13, KC12a].

3.1 Preliminaries

We use Bn to represent the space of n-dimensional binary vectors and define ι : Rn → Bn to be the
indicator function of the nonzero components of a vector in Rn, i.e., ι(x)i = 1 if xi 6= 0 and ι(x)i = 0,
otherwise. We let 1n to be the n-dimensional vector of all ones, 1n,S the n-dimensional vector of all
ones projected onto S and In the n× n identity matrix; we often use I when dimension is clear from the
context. We also refer the reader to Section 6.2.

3.2 Sparse group models

We start our discussion with the group sparse models, i.e., models where groups of variables are either se-
lected or discarded together [BCW10, JAB11, OJV11, RRN12, RNWK11, HZ10]. These structures naturally
arise in applications such as neuroimaging [GK09b, JGM+11], gene expression data [STM+05, OJV11],
bioinformatics [RBV08, ZSSL10] and computer vision [CHDB09, BCDH10]. For example, in cancer re-
search, the groups might represent genetic pathways that constitute cellular processes. Identifying which
processes lead to the development of a tumor can allow biologists to directly target certain groups of
genes instead of others [STM+05]. Incorrect identification of the active/inactive groups can thus have a
rather dramatic effect on the speed at which cancer therapies are developed. Figures 3.2-3.3 illustrate
some more applications of group sparse models used in practice.

Such group sparsity models—denoted as G—feature collections of groups of variables that could overlap
arbitrarily; that is G = {G1, . . . ,GM} is a collection of M groups where each Gj is a subset of the index set
N := {1, . . . , n}. Arbitrary overlaps means that we do not restrict the intersection between any two sets
Gj and G` from G, j 6= `.

The group-support of x̂ allows us to “interpret” the original signal and discover its properties so that we
can, for example, target specific groups of genes instead of others [STM+05] or focus more precise imaging
techniques on certain brain regions only [MGV+11]. As a result, we study under which circumstances
we can correctly and tractably identify the group-support of a given signal.

We can represent a group structure G as a bipartite graph, where on one side we have the n variables
nodes and on the other the M group nodes. An edge connects a variable node i to a group node j if
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Figure 3.2: Image segmentation applica-
tion: the signal of interest includes human
activity, expressed in groups.

Figure 3.3: Example of a mouse brain where brain re-
gions are represented as groups of voxels [LHA+07]
( c©2014 Allen Institute for Brain Science).

i ∈ Gj . The bi-adjacency matrix A ∈ Bn×M of the bipartite graph encodes the group structure,

Aij =

{
1, if i ∈ Gj ;
0, otherwise.

Given the above and for a user-defined group budget G ∈ Z+, we define the group model MG as
MG := {⋃G`∈I G`, I ⊆ G, |I| ≤ G}, that is all sets of indexes that are the union of at most G groups from
the collection G. Then, the corresponding projection operation becomes:

x̂ =: PMG
(x) ∈ arg min

z∈Rn

{
‖x− z‖22

∣∣ supp(z) ∈MG

}
. (3.3)

Moreover, one might be only interested in identifying the group-support of the approximation x̂, that is
the G groups that constitute its support. We call this the group-sparse model selection problem.

3.2.1 The discrete model

According to (3.3), we search for x̂ ∈ Rn such that ‖x̂−x‖22 is minimized, while x̂ does not exceed a given
group budget G. A useful notion in the group sparse model is that of the group `0-“norm":

‖w‖G,0 := min
ω∈BM





M∑

j=1

ωj
∣∣Aω ≥ ι(w)



 ; (3.4)

here, A denotes the adjacency matrix as defined in the previous subsection, the binary vector ω indicates
which groups are active and the constraint Aω ≥ ι(w) makes sure that, for every non-zero component of
w, there is at least one active group that covers it. Given the above definitions, the group-based signal
approximation problem (3.3) can be reformulated as

x̂ ∈ arg min
w∈Rn

{
‖w − x‖22

∣∣ ‖w‖G,0 ≤ G
}
. (3.5)
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3.2. Sparse group models

One can easily observe that, in the case where we already know the group cover of the approximation x̂,
we can obtain x̂ as x̂I = xI and x̂Ic = 0, where I =

⋃
G∈SG(x̂) G, with SG(x̂) denoting the group support

of x̂ and Ic = N \ I. I.e., if we know the group support of the solution, the entries’ values are naturally
given by the anchor point x.

To show this, we observe that [KC12a]

min
z∈Rn

{
‖x− z‖22 : supp(z) = I, I =

⋃

G∈S
G,S ⊆ G, |S| ≤ G

}
,

which can be rewritten as
min
S ⊆ G

|S| ≤ G
I =

⋃
G∈S G

min
z ∈ Rn

supp(z) = I

‖x− z‖22 .

The optimal solution is not changed if we introduce a constant, change sign of the objective and consider
maximization instead of minimization

max
S ⊆ G

|S| ≤ G
I =

⋃
G∈S G

max
z ∈ Rn

supp(z) = I

{
‖x‖22 − ‖x− z‖22

}
.

As mentioned above, the internal maximization is achieved for x̂ as x̂I = xI and x̂Ic = 0, so that we
have, as desired,

SG(x̂) ∈ arg max
S ⊆ G

|S| ≤ G
I =

⋃
G∈S G

‖xI‖22 .

The following Lemma connects the group support selection as a binary problem and allows us to
characterize its tractability; the proof can be found in [BBCK13]:

Lemma 18. [BBCK13] Given x ∈ Rn and a group structure G, the group support of the solution x̂—denoted
as SG(x̂) = {Gj ∈ G : ωGj = 1}—is given by the solution (ωG,yG) of the following binary maximization
problem:

max
ω∈BM , y∈Bn





n∑

i=1

yix
2
i : Aω ≥ y,

M∑

j=1

ωj ≤ G



 . (3.6)

Moreover, the above problem is NP-hard. However, can be approximated using the greedy WMC algorithm
[NWF78].

3.2.2 Convex approaches

Recent works in compressive sensing and machine learning with group sparsity have mainly focused
on leveraging the group structures for lowering the number of samples required for recovering signals
[SPH09, EM09, BD09b, BCDH10, RRN12, HZM11, JOV09, OJV11].

For the special case of non-overlapping groups, dubbed as the block-sparsity model, the problem of model
selection does not present computational difficulties and features a well-understood theory [SPH09]. The
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Chapter 3. Beyond simple sparsity

first convex relaxations for group-sparse approximation [YL06] considered only non-overlapping groups:
the authors proposed the Group LARS (Least Angle RegreSsion) algorithm to solve this problem, a
natural extension of simple sparsity LARS algorithm [EHJT04]. Using the same algorithmic principles,
its extension to overlapping groups [ZRY09] has the drawback of selecting supports defined as the
complement of a union of groups, even though it is possible to engineer the groups in order to favor
certain sparsity patterns over others [JAB11]. Eldar et al. [EM09] consider the union of subspaces
framework and cast the model selection problem as a block-sparse model selection one by duplicating
the variables that belong to overlaps between the groups, which is the optimization approach proposed
also in [JOV09]. Moreover, [EM09] considers a model-based pursuit approach [CDS98] as potential solver
for this problem, based on a predefined modelMk. For these cases, one uses the group LASSO norm

∑

G∈G
‖x|G‖p . (3.7)

In addition, convex proxies to the group `0-norm (3.4) have been proposed (e.g., [JOV09]) for finding
group-sparse approximations of signals. Given a group structure G, an example generalization is defined
as the latent group LASSO

‖x‖G,{1,p} := inf
v1, . . . ,vM ∈ Rn
∀i, supp(vi) = Gi

{
M∑

i=1

di‖vi‖p
∣∣
M∑

i=1

vi = x

}
, (3.8)

where ‖x‖p = (
∑n
i=1 x

p
i )

1/p is the `p-norm, and dj are positive weights that can be designed to favor
certain groups over others [OJV11]. This norm can be seen as a weighted instance of the atomic norm
described in [CRPW12, RRN12]; see Chapter 6.

Lemma 19. [CRPW12, RRN12] If in (3.8) the weights are all equal to 1 (di = 1,∀ i), we have

‖x‖A = ‖x‖G,{1,p} .

The group-norm (3.8) can also be viewed as the tightest convex relaxation of a particular set func-
tion related to the weighted set-cover (see [OB12]). One can in general use (3.8) to find a group-sparse
approximation under the chosen group norm

x̂ ∈ arg min
w∈Rn

{
‖w − x‖22 : ‖w‖G,{1,p} ≤ λ

}
, (3.9)

where λ > 0 controls the trade-off between approximation accuracy and group-sparsity. However,
solving (3.9) does not necessarily yield a group-support for x̂: even though we can recover one through
the decomposition {vj} used to compute ‖x̂‖G,{1,p}, it may not be unique and when it is unique it may
not capture the minimal group-cover of x [OJV11]. Therefore, the equivalence of `0 and `1 minimization
[Don06, Can06] does not generally hold in the overlapping group-based setting.

The regularized version of problem (3.9) is equivalent to the proximity operator of ‖x‖G,{1,p}. Recently,
[MVVR10, VRMV12] proposed an efficient algorithm for this proximity operator in large scale settings
with extended overlap among groups. In this case, the proximity operator involves: (i) an active set
preprocessing step [WN99] that restricts the proximity operations on a subset of the model—i.e., “active”
groups and, (ii) a dual optimization step based on Bertsekas’ projected Newton method [Ber82]; however,
its convergence requires the strong regularity of the Hessian of the objective near the optimal solution.
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Figure 3.4: Neuronal spike train example.

3.3 Sparse dispersive models

To describe the dispersive structure, we motivate our discussion with an application from neurobiology.
Living beings behave and function via transmission of electrical signals between electrically excitable
neuronal brain cells. Such chemical “information” causes a swift change in the electrical potential of a
possibly discharged neuron cell, which results in its electrical excitation. Such activity has not been fully
decoded by biologists and neuroscientists, rendering the full understanding of neuronal systems as one
of the important problems of our current century. However, neuronal system measurements that extract
information about neuron states and how they behave under different circumstances are being performed
now. As a result, in the quest for understanding the human brain, we require extensive experimental
studies on animal or human brains, through signal acquisition and further signal processing. Currently,
we are far from understanding the grid of neurons in its entirety: large-scale brain models are difficult
to handle while complex neuronal signal models lead to non-interpretable results. To this end, “...we
must find compromises between two seemingly mutually exclusive requirements: The model for a single
neuron must be (i) computationally simple and, (ii) capable of producing rich interpretable patterns,
exhibited by real biological neurons...” [Izh03].

Inspired by the statistical analysis in [GK02], the authors in [HDC09] consider a simple one-dimensional
model, where the neuronal signal behaves as a train of spike signals with some refractoriness period ∆ > 0:
there is a minimum nonzero time period ∆ where a neuron remains inactive between two consecutive
electrical excitations. In statistical terms, neuronal signals are defined by a inter-spike interval distribution
that characterizes the probability a new spike to be generated as a function of the inter-arrival time. Figure
3.4 illustrates how a collection of noisy neuronal spike signals with ∆ > 0 might appear in practice.

3.3.1 The discrete model

Definition 8 (Dispersive model). We define the dispersive model Dk in n-dimensions with sparsity level k
and refractory parameter ∆ ∈ Z+ as:

Dk =
{
Sq
∣∣ ∀q, Sq ⊆ N , |Sq| ≤ k and |i− j| > ∆,∀i 6= j ∈ Sq

}
, (3.10)

i.e., Dk is a collection of k-sparse index subsets inN with distance between the indices greater than the interval
∆.
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Chapter 3. Beyond simple sparsity

We note that if there are no constraints on the interval of consecutive spikes, the dispersive model
naturally boils down to the simple sparsity model Σk.

Given the definition above, the projection operation is:

PDk(x) ∈ arg min
w∈Rn

{
‖w − x‖22

∣∣ supp(w) ∈ Dk
}
. (3.11)

Let ω ∈ Bn be a support indicator binary vector, i.e., ω represents the support set of a sparse vector x such
that supp(ω) = supp(x). Moreover, let D ∈ B(n−∆+1)×n such that:

D =




1 1 · · · 1 1 0 0 · · · 0

0 1 1 · · · 1 1 0 · · · 0

. . .

0 · · · 0 0 1 1 · · · 1 1




(n−∆+1)×n

(3.12)

Here, per row, there are ∆ consecutive ones that denote the time interval between two potential consecu-
tive spikes. Finally, let b ∈ Rn−∆+2 such that b :=

[
k 1 1 · · · 1 1

]T
.

According to [HDC09], the following linear support constraints encodes the definition of the dispersive
model Dk:

A :=

[
1

D

]
ω ≤ b. (3.13)

One can observe that Dk ≡
⋃
∀ω∈Z supp (ω), where Z := {ω ∈ Bn : Aω ≤ b} . Consequently, (3.11)

becomes:

PDk(x) ∈ arg min
w∈Rn

{
‖w − x‖22

∣∣A · supp(w) ≤ b
}
. (3.14)

A key observation is given in the next lemma.

Lemma 20. [HDC09] Given the problem setting above, it is easy to observe that (3.14) has solution PDk(x)

such that S := supp (PDk(x)) and (PDk(x))S = xS where:

S ∈ supp
(

arg max
ω∈Bn: Aω≤b

{
cTω

})
, where c :=

[
x2

1 x2
2 · · · x2

n

]T
, (3.15)

i.e., we target to capture most of the signal’s x energy, given structure Dk. To solve (3.15), the authors in
[HDC09] identify that the binary integer program (3.15) is identical to the solution of the linear program,
obtained by relaxing the integer constraints into continuous constraints.

Lemma 20 indicates that (3.14) can be efficiently performed using linear programming tools [BV04]. Once
(3.14) is relaxed to a convex problem, decades of knowledge on convex analysis and optimization can
be leveraged. Interior point methods find a solution with fixed precision in polynomial time but their
complexity might be prohibitive even for moderate-sized problems.
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3.3. Sparse dispersive models

3.3.2 Convex approaches

The constraint matrix D describes a collection of groups, where each group is assumed to have at most
one non-zero entry to model the refractoriness property.1 Moreover, these groups are overlapping which
aggrandizes the “clash” between neighboring groups: a non-zero entry in a group discourages every
other overlapping group to have a distinct non-zero entry.

In mathematical terms, each row i of D defines a group Gi such that Gi = supp(di) ⊆ N where di denotes
the i-th row of D, ∀i ∈ {1, . . . ,M := n−∆ + 1}:

Given such group structure, the dispersive model is characterized both by inter-group and intra-group
properties:

• Intra-group sparity: we desire ‖Dω‖∞ ≤ 1, i.e., per refractoriness period of length ∆, we require
only one “active” spike.
• Inter-group exclusion: due to the refractoriness property, the activation of a group implies the

deactivation of its closely neighboring groups.

While the sparsity level within a group can be easily “convexified” using standard `1-norm regularization,
the dispersive model further introduces the notion of inter-group exclusion, which is highly combinatorial.
However, one can relax it by introducing competitions among variables in overlapping groups: variables
that have a “large” neighbor should be penalized more than variables with “smaller” neighbors.

In this premise and based on [ZJH10], we identify the following family of norms2:

Ωexclusive(x) =
∑

Gi


∑

j∈Gi
|xj |



p

, p = 2, 3, . . . , (3.17)

as convex regularizers that imitate the dispersive model. In (3.17),
(∑

j∈Gi |xj |
)

:= ‖xGi‖1 promotes
sparsity within each group Gi, while the outer sum over groups

∑
Gi ‖xGi‖

p
1 imposes sparsity over the

number of groups that are activated. Observe that for p = 1, (3.17) becomes the standard `1-norm over
N . Notice that the definition of the overlapping groups (instead of non-overlapping) is a key property
for capturing the discrete structure: variables belonging to overlapping groups are weighted differently

1Other convex structured models that can be described as the composition of a simple function over a linear transformation D
can be found in [AMP+11].

2The proposed norm originates from the composite absolute penalties (CAP) convex norm, proposed in [ZRY09], according to
which:

g(x) =
∑
Gi

∑
j∈Gi

|xj |γ
p , (3.16)

for various values of γ and p. Observe that this model also includes the famous group sparse model where g(x) =
∑
Gi ‖xGi‖2,

described in Section 3.2, for p = 1/2 and γ = 2.

75



Chapter 3. Beyond simple sparsity

 

 

Figure 3.5: Wavelet coefficients naturally cluster along a rooted connected subtree and tend to decay
towards the leaves. (Left) Example of wavelet tree for a 32 x 32 image. The root of the tree is the top-left
corner and there are three regular subtrees related to horizontal, vertical and diagonal details. Each node
is connected to four children representing detail at a finer scale. (Centre) Grayscale 512 x 512 image.
(Right) Wavelet coefficients for the image at center. Best viewed in color, dark blue represents values
closer to zero.

when considered parts of different groups. This leads to variable “suppression” (i.e., thresholding) of
elements, depending on the “weight” of their neighborhood within the groups they belong to.

3.4 Hierarchical sparse models

Hierarchical structures are found in many signals and applications. For example, the wavelet coefficients
of images are naturally organized on regular quad-trees to reflect their multi-scale structure; see Figure
3.5 and [Sha93, CNB98, Mal99, Bar99, BDKY02, HC09, ZRY09, BCDH10, HZM11]; gene networks are
described by a hierarchical structure that can be leveraged for multi-task regression [KX10]; hierarchies
of latent variables are typically used for deep learning [Ben09].

In essence, a hierarchical structure defines an ordering of importance among the elements (either individ-
ual variables or groups of them) of a signal with the rule that an element can be selected only after its
ancestors. Such structured models result into more robust solutions and allow recovery with far fewer
samples. In compressive sensing, assuming that the signal possesses a hierarchical structure with sparsity
k leads to improved sample complexity bounds of the order of O(k) for dense measurement matrices
[BCDH10], compared to the bound of O(k log(n/k)) for standard sparsity. Also in the case of sparse
measurement matrices, e.g. expanders, hierarchical structures yield improved sample complexity bounds
[IR13, BBC14].

3.4.1 The discrete model

Definition 9 (Hierarchical model). Let T denote an arbitrary tree or forest representation over the variables
in a set N . We define a k rooted connected (RC) subtree S with respect to T as a collection of k variables in
N such that v ∈ S implies A(v) ∈ S, where A(v) is the set that contains all the ancestors of the node v. The
hierarchical model of budget k, Tk is the set of all k rooted-connected subtrees of T .
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3.4. Hierarchical sparse models

Given a tree T , the rooted connected approximation is the solution of the following discrete problem

PTk(x) ∈ arg min
z∈Rn

{
‖x− z‖22

∣∣ supp(z) ∈ Tk
}
. (3.18)

which can be reformulated as follows

ŷ ∈ arg max
y∈Bn

{
N∑

i=1

yix
2
i : y ∈ Tk

}
, (3.19)

where y is a binary vector with k non-zero components that indicates which components of x are selected.
Given a solution ŷ of the above problem, a solution ẑ of (3.18) is then obtained as ẑ|S = x|S and ẑ|Sc = 0,
where S = supp(ŷ).

This type of constraint can be represented by a group structure with an overall sparsity constraint k,
where for each node in the tree we define a group consisting of that node and all its ancestors. When a
group is selected, we require that all its elements are selected as well. Problem (3.19) can then be cast
as a special case of the Weighted Maximum Coverage problem (3.6). Fortunately, this particular group
structure leads to tractable solutions.

Indeed (3.19) can be solved exactly via a dynamic program that runs in polynomial time [CT13, BBCK13].
For d-regular trees, that is trees for which each node has d children, the algorithm in [BBCK13] has
complexity O(nkd).

3.4.2 Convex approaches

The hierarchical structure can also be enforced by convex penalties, based on groups of variables. Given
a tree structure T , define groups consisting of a node and all its descendants and let GT represent the
set of all these groups. Based on this construction, the hierarchical group LASSO penalty [ZRY09, KX10,
JMOB11] imitates the hierarchical sparse model and is defined as follows

Ω(x)HGL =
∑

G∈GT
wG‖x|G‖p (3.20)

where p ≥ 1, wG are positive weights and x|G is the restriction of x to the elements contained in G. Since
the nodes lower down in the tree appear in more groups than their ancestors, they will contribute more
to Ω(x)HGL and therefore will be more easily encouraged to be zero. The proximity operator of ΩHGL can
be computed exactly for p = 2 and p =∞ via an active set algorithm [JMOB11].

Other convex penalties have been recently proposed in order to favor hierarchical structures, but also
allowing for a certain degree of flexibility in deviations from the discrete model. One approach considers
groups consisting of all parent-child pairs and uses the latent group LASSO penalty (see Section 3.2.2) in
order to obtain solutions whose support is the union of few such pairs [RNWK11], see Figure 3.6 (left).

An interesting extension is given by the family model [BBC13, ZSY13], where the groups consist of a node
and all its children, see Figure 3.6 (right). Again the latent groups LASSO penalty is used. This model is
better suited for wavelet decomposition of images because it better reflects the fact that a large coefficient
value implies large coefficients values for all its children at a finer scale.

For both these cases, one can use the duplication strategy to transform the overlapping proximity problem
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Figure 3.6: Examples of parent-child and family models. Active groups are indicated by dotted ellipses.
The support (black nodes) is given by the union of the active groups. (Left) Parent-child model. (Right)
Family model.

into a block one, which can be efficiently solved in closed-form [JOV09].

3.5 Applications

Here, our intention is to present an overview of the dominant approaches is structured sparse recovery
followed in practice. We consider the following three general optimization formulations:3

• Discrete projection formulation: Given a signal modelMk, let f : Rn → R be a closed convex data
fidelity/loss function. Here, we focus on the projected non-convex minimization problem:

minimize
x∈Rn

f(x) subject to x ∈Mk. (3.21)

• Convex proximity formulation: Given a signal modelMk, let f : Rn → R be a closed convex data
fidelity/loss function, g : Rn → R a closed convex regularization term, possibly non-smooth, that
faithfully modelsMk and λ > 0. In this chapter, we focus on the convex composite minimization
problem: minimize

x∈Rn
f(x) + λ · g(x). (3.22)

• Convex structured-norm minimization: Given a signal modelMk, let g : Rn → R be a closed convex
regularization term, possibly non-smooth, that faithfully modelsMk. Moreover, let f : Rn → R
be a closed convex data fidelity/loss function and σ > 0. We consider the following minimization
problem: minimize

x∈Rn
g(x) subject to f(x) ≤ σ. (3.23)

3We acknowledge that there are other criteria that can be considered in practice; for completeness, in the simple sparsity case, we
refer the reader to the `1-norm constrained linear regression (a.k.a. LASSO [Tib96])—similarly, there are alternative optimization
approaches for the discrete case [WNF09]. However, our intention in this chapter is to use the most prevalent structured-sparsity
formulations used in practice.
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3.5.1 Compressive Imaging

Natural images are usually sparse in wavelet basis. In this experiment, we study the image reconstruction
problem from compressive measurements, where structured sparsity ideas are applied in practice.

For this purpose and given a p × p natural grayscale image x ∈ Rp2

, we use the Discrete Wavelet
Transform (DWT) with log2(p) levels, based on the Daubechies 4 wavelet, to represent x; see the Wavelet
representation of two images in Figures 3.7-3.8. In math terms, the DWT can be represented by an
operator matrix W>, so that x can be sparsely represented (or well-approximated) as x = Wc, where
c ∈ Rn, n := p2 are the wavelet coefficients for x.

To exploit this fact in practice, we consider the problem of recovering x ∈ Rn from m compressive
measurements y ∈ Rm. The measurements are obtained by applying a sparse matrix A ∈ Rm×n to the
vectorized image such that:

y = Ax.

Here, A is the adjacency matrix of an expander graph of degree d = 8, so that ‖A‖0 = dn; c.f., [BGI+08].
Thus, the overall measurement operator on the wavelet coefficients is then given by the concatenation of
the expander matrix with the DWT: y = AWc, with c ≈ ĉ with ‖ĉ‖0 � n, i.e., x can be well-approximated
by using only a limited number of wavelet coefficients.

We use the following methods for recovering c from the measurements y:

minimize
c∈Rn

‖y −AWc‖22
subject to supp(c) ∈ Tk.

(Rooted Connected Tree model (RC))

minimize
c∈Rn

‖c‖1

subject to y = AWc.
(Basis Pursuit (BP))

minimize
c∈Rn

‖c‖HGL

subject to y = AWc.
(Hierarchical Group LASSO (HGL) pursuit)

minimize
c∈Rn

‖c‖PC

subject to y = AWc.
(Parent-Child Latent Group LASSO (PC) pursuit)

minimize
c∈Rn

‖c‖FAM

subject to y = AWc.
(Family Latent Group LASSO (FAM) pursuit)

The RC model is solved via the improved projected gradient descent given in [KC11] with the projections
computed via the dynamic program proposed in [BBCK13]. All the remaining methods are solved using
the primal-dual method described in [TDC14] which relies on the proximity operator of the associated
structure-sparsity inducing penalties. For BP the proximity operator is given by the standard soft-
thresholding function. For HGL, we use the algorithm and code given by [JMOB11]. For the latent group
LASSO approaches, PC and FAM, we adopt the duplication strategy proposed in [JOV09, OJV11], for
which the proximity operator reduces to the standard block-wise soft-thresholding on the duplicated
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BP

PSNR 22.711

BP

Error 0.135
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PSNR 17.636
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PC

PSNR 25.543

PC
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Figure 3.7: Woman image recovery performance from compressive measurements. Here, p = 256. The
top two rows show the reconstruction performance in the original domain, along with the PSNR levels
achieved. The bottom two rows show the corresponding representations into the wavelet domain.
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PSNR 25.945
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TV

PSNR 28.324
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Figure 3.8: Mountains image recovery performance from compressive measurements. Here, p = 2048.
The top two rows show the reconstruction performance in the original domain, along with the PSNR
levels achieved. The bottom two rows show the corresponding representations into the wavelet domain.
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variables. All algorithms are written in Matlab, except for the HGL proximity operator and the RC
projection that are in C.

The duplication approach consists in creating a latent vector that contains copies of the original variables.
The number of copies is determined by the number of groups that a given variable belongs to. For the
Parent-Child model, each node belongs to the four groups that contain each of its children and the group
that contains its father. The root has only three children, corresponding to the roots of the horizontal,
vertical and diagonal wavelet trees. The leaves belong only to the group that contains their fathers. A
simple calculation shows that the latent vector for the PC model contains 2(n− 1) variables.

For the Family model, instead, each node belongs to only two groups: the group containing its children
and the group containing its siblings and its father. Each leaf belongs to only the group that contains its
siblings and its father. Overall, the number of variables in the latent vector for the Family models is equal
to 5n

4 − 1.

The duplication approach does not significantly increase the problem size, while it allows an efficient
implementation of the proximity operator. Indeed, given that the proximity operator can be computed in
closed form over the duplicated variables, this approach is as fast as the hierarchical group LASSO one,
where the proximity operator is computed via C code.

In order to obtain a good performance, both the parent-child and the family model require a proper
weighting scheme to penalize groups lower down in the tree, where smaller wavelet coefficients are
expected, compared to nodes closer to the root, which normally carry most of the energy of the signals
and should be penalized less. We have observed that setting the group weights proportional to the level
L of the node of the group closest to the root gives good results. In particular, we set the weights equal to
L2, with 0 being the root level.

Results: We performed the compressive imaging experiments on both a 256×256 portrait of a woman and
a 2048× 2048 mountain landscape. Apart from conversion to grayscale and resizing through the Matlab
function imresize, no preprocessing has been carried out. The primal-dual algorithm of [TDC14] has
been run up to precision 10−5. We measure the recovery performance in terms of Power Signal to Noise
Ratio (PSNR) and relative recovery error `2 norm as ‖x̂−x‖2

‖x‖ , where x̂ is the estimated image and x is the
true image.

Figures 3.7-3.8 report the recovery results, using m = n
8 , that is using only 12.5% samples compared to

the ambient dimension. The estimated images are on the top two rows, while the third and fourth rows
show the estimated wavelet coefficients.

The effect of imposing structured sparsity can be clearly seen for the HGL, PC and FAM models, where
the high values of the coefficients tend to cluster around the root of the wavelet tree (i.e., top-left corner
of the image) and their intensity decreases descending the tree. The family model shows the grouping
among the siblings, where four leaves are either all zero or all non-zero. For the 256× 256 image, despite
being coded in C, the discrete model is approximately 160 times slower than the other methods, which
are computationally equivalent: e.g., in our tests, the family model took around 60 seconds, while the RC
one required almost 2 hours. We therefore did not use the RC model on the larger 2048× 2048 mountain
image, but we compared also against Total Variation (TV) pursuit, which obtains the best performance on
this image.
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3.5.2 Neuronal spike detection from compressed data

In the experiments that follow, we compare the performance of the following three optimization criteria,
assuming the dispersive model Dk.

minimize
x∈Rn

f(x) subject to x ∈ Dk. (Discrete dispersive)

minimize
x∈Rn

f(x) + λ · Ωexclusive(x). (Exclusive norm regularization)

minimize
x∈Rn

Ωexclusive(x) subject to f(x) ≤ σ2. (Exclusive norm pursuit)

Empirical performance on synthetic data: Figures 3.9-3.10 illustrate the utility of each approach in the
compressed sensing setting where f(x) := 1

2‖y −Φx‖22. That is, we observe x? ∈ Rn through a limited
set of linear sketches y = Φx? + ε ∈ Rm where Φ ∈ Rm×n is a known linear sketch matrix. Here, we
assume n = 500 and m = 70 for ‖x?‖0 = 25. Without loss of generality, we assume (x?)i ≥ 0, ∀i and
∆? = 20.

In the discrete case, we relax the refractory period ∆ to model signal structure deviations; here, we
assume ∆ = 15. The discrete exclusive model [BCDH10, NT09a] clearly outperforms the rest of the
approaches under comparison; such behavior is also observed on average over the set of experiments
conducted (Figure 3.9). This also implies that the discrete model usually requires fewer measurements
for accurate recovery compared to conventional sparse approximation, as long as the underlying signal
approximately follows Dk.
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Figure 3.9: Performance of the discrete dispersive ap-
proach for the problem spike train recovery from a limited
set of linear measurements.

On the other hand, due to convex relaxations,
convex approaches introduce unnecessary
nonzero coefficients that do not comply with
the underlying model. However, both ap-
proaches show good performance in recover-
ing x? from limited measurements; see Fig-
ure 3.10.

Real neuronal spike data: In order to under-
stand the functioning of the human brain, it
is necessary to identify and study the behav-
ior of neuronal cell membranes under rapid
change in the electric potential. However, to
observe such phenomena, electrical activities
on neurons need to be recorded using spe-
cialized equipment. In this experiment, we
perform somatic spike detection of a tufted
L5 pyramidal cell responding to in-vivo-like
current injected in the apical dendrites and
the soma simultaneously (see [Fac09] for the
experimental details).
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Chapter 3. Beyond simple sparsity

A snapshot of the neuronal spikes waveforms is shown in Figure 3.11. In order to accurately detect the
neuronal spikes, a high-frequency sample acquisition equipment is required. Within this context, we
apply CS ideas to decrease the number of samples needed to approximately detect the positions of the
spike train. Let x? ∈ Rn with n = 832 represent the signal in Figure 3.11a; furthermore, let Φ ∈ Rm×n be
the sensing matrix where m = 0.25 ·n, i.e., we perform a 75% compression. We use the proposed schemes to
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(a) Exclusive norm regularization
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(b) Exclusive norm pursuit

Figure 3.10: Performance of dispersive convex relaxations for the problem of spike train recovery from a
limited set of linear measurements. (Left panel:) Exclusive norm regularization approach. (Right panel:)
Exclusive norm pursuit approach.

recover the locations of the neuronal spikes under the assumption of the dispersive model with refractory
period ∆. Here, ∆ is set equal to the average period between two consecutive spikes.

Figure 3.11b represents the recovered k-sparse approximation using the discrete dispersive model Dk.
Here, k is set to the number of spikes expected to appear for a given time period—such number can be
easily deduced by observing the behavior of a specific neuron type. From Figure 3.11b, we observe that
the discrete model approximates the locations of the spikes quite accurately: most of the spike locations
are exactly recovered. However, due to the “strictness” of the discrete model, we observe that small
deviations from Dk lead to imprecise estimations; e.g., between the 12th and 13th spike of the sequence, a
larger (than usual) refractory period is observed that leads to mis-location of the next spike estimation.

Figures 3.11c-3.11d depict the performance of convex solvers using the exclusive norm as (i) regularizer
and (ii) objective function. Tweaking the λ parameter in the (i) case, one can achieve sparse solutions that
approximate the underlying model (Figure 3.11c); however, one can observe multiple detected spikes
with separation less than ∆, violating the assumed model. In the model-based Basis pursuit case, the
solver tries to fit the solution to the data, which usually leads to less sparse solutions (Figure 3.11d). One
can further sparsify the convex solutions to obtain a k-sparse answer as in Figures 3.11e-3.11f: however,
in most cases, further processing of the returned signal is required to maintain a Dk-modeled solution.
E.g., in this case, due to the fact that convex norms force the solution to fully explain the observations, the
sparsified solution includes more than one spike per true spike location.
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(a) Original neuronal spike train signal.
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(b) Spike detection using the discrete model.
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(c) Spike detection using the exclusive norm-
regularized convex approach.
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(d) Spike detection using the Model-based Basis
pursuit.
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(e) k-sparse approximation of the exclusive norm-
regularized convex solution.
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(f) k-sparse approximation of the model-based Basis
pursuit solution.

Figure 3.11: Spike detection in real neuronal data using the dispersive model. Figure 3.11a depicts the
original signal x?. We observe y = Φx? using only 25% measurements through a linear sketch Φ. Figures
3.11b-3.11d illustrate the performance of the three approaches under comparison. Figures 3.11e-3.11f
show the convex solutions, sparsified to be k-sparse.

85



Chapter 3. Beyond simple sparsity

3.6 Discussion

To summarize, recent results in CS extend the simple sparsity idea to more sophisticated structured
sparsity models, which describe the interdependency between the nonzero components of a signal,
allowing to increase the interpretability of the results and lead to better recovery performance. In order to
better understand the impact of structured sparsity, in this chapter we analyze the connections between
the discrete models and their convex relaxations, highlighting their relative advantages. We start with
the general group sparse model and then elaborate on two important special cases: the dispersive and
the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve
the ensuing discrete problems and then describe convex relaxations.

For most of our discussions in the CS context, we make no assumption about the sensing matrix and what
are the consequences of such selection in the recovery performance under structured signal assumptions.
An important class of matrices that have both strong theoretical guarantees and practical importance
is the class of expander matrices, i.e., binary matrices of specific construction; for more information, see
[BGI+08]. However, most structured sparsity approaches proposed for signal recovery using expander
matrices are non-convex; c.f., [Pri11, IR13, BBC14]. Moreover, the majority of these approaches come
with recovery guarantees quantified using either the `2-norm or the `1-norm, i.e., for arbitrary x? ∈ Rn

‖x̂− x?‖# ≤ ρ‖xk − x?‖# + γ‖ε‖2, # = 1 or 2,

where x̂ is the approximation for x? and xk represents the best k-sparse approximation of x?.

Normally though, in the convex case, the most natural norm to express the error in is the corresponding
structured norm ‖ · ‖A that well-approximates the underlying signal model; here, e.g., Amay represent
the atomic or generic structured norm. In the case of Group `1-norm, we have ‖ · ‖A ≡ ‖ · ‖2,1.

The discussion in this chapter leads to the following open problem:

Open question 5. Using expander matrices in the structured sparsity CS framework, an open question is to
provide approximation guarantees of the form:

‖x̂− x?‖A ≤ ρ‖xk − x?‖A + γ‖ε‖2,

where A represents the structured atomic norm used in the convex criterion:

minimize
x

‖x‖A
subject to y = Φx.

Can we obtain such recovery conditions using specialized sensing matrices, such as expanders?
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4 Greedy methods for affine rank mini-
mization

Introduction

In (2.2), we easily observe that the minimization problem can be equivalently rewritten as:

minimize
X

‖y −A(X)‖22
subject to rank(X) ≤ k,

X ∈ Dn,

(4.1)

where A : Rn×n → Rm is a generic linear map such that, given Φ ∈ Rm×n, A(X) = Φx for X ∈ Dn a
diagonal matrix with x ∈ Rn on the main diagonal. Here, the solution X? is forced to be rank-k, due
to the implicit sparsity constraints on its diagonal. In other words, the solution of (4.1) contains on its
diagonal the vector solution of (2.2). However, (4.1) constitutes only a special case of the affine rank
minimization (ARM) problem as described below, appearing in many applications; low-dimensional
Euclidean embedding [BCW10], matrix completion [CR09], image compression [JMD10] just to name a
few.

PROBLEM 4.1: Let X? be a rank-r, p× n matrix of interest, where r � min {p, n}. We desire to reconstruct
X? through a low-dimensional observation vector y ∈ Rm (m < pn) where:

y = A (X?) + ε; (4.2)

here A : Rp×n → Rm is a fixed and known linear map and ε is an additive noise term.

The challenge in PROBLEM 4.1 is to recover the true low-rank matrix in subsampled settings where
m� p · n. In such cases, we typically exploit the prior information that X? is low-rank and thus, we are
interested in finding a matrix X of rank at most r that minimizes the data error f(X) := ‖y −AX‖22 as
follows:

minimize
X

‖y −A(X)‖22
subject to rank(X) ≤ k,

(4.3)

We present below important ARM problem cases, as characterized by the nature of the linear operator A.
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Chapter 4. Greedy methods for affine rank minimization

(i) General linear maps: In many ARM problem cases, A or A∗ has a dense range, satisfying specific
incoherence or restricted isometry properties (discussed later in this chapter); here, A∗ is the adjoint
operator of A. In Quantum Tomography, [Liu11] studies the Pauli operator, a compressive linear
map A that consists of the Kronecker product of 2 × 2 matrices and obeys restricted isometry
properties, defined next. Furthermore, recent developments indicate connections of ridge function
learning [TC12b, TC12a] and phase retrieval [CL12] with the ARM problem where A is a Bernoulli
and a Fourier operator, respectively.

(ii) Matrix Completion (MC): Let Ω be the set of ordered pairs that represent the coordinates of the
observable entries in X?. Then, the set of observations satisfy y = AΩX? + ε where AΩ defines
a linear mask over the observable entries Ω. To solve the MC problem, a potential criterion is
given by (4.3) [CR09]. As a motivating example, consider the famous Netflix problem [BL07], a
recommender system problem where users’ movie preferences are inferred by a limited subset of
entries in a database.

(iii) Principal Component Analysis: In Principal Component Analysis (PCA), we are interested in iden-
tifying a low rank subspace that best explains the data in the Euclidean sense from the observations
y = AX? where A : Rp×n → Rm is an identity linear map that stacks the columns of the matrix
X? into a single column vector with m = p · n. We observe that the PCA problem falls under the
ARM criterion in (4.3). While (4.3) is generally NP-hard to solve optimally, PCA can be solved in
polynomial time using the truncated Singular Value Decomposition (SVD) of A∗y. As an extension
to the PCA setting, [CLMW11] considers the Robust PCA problem where y is further corrupted by
gross sparse noise. We extend the framework proposed for low rank recovery to the RPCA case
and its generalizations in [KC12b].

As running test cases to support our claims, we consider the MC setting as well as the general ARM
setting where A is constituted by permuted subsampled noiselets [WSB11].

Restricted Isometry Property for low-rank matrices

Similarly to the vector case, one cannot guarantee exact and unique matrix recovery in PROBLEM 4.1 for
any linear map A. Many conditions have been proposed in the literature to establish solution uniqueness
and recovery stability for the matrix case. [FRP10] proposed the restricted isometry property (RIP) for the
ARM problem.

Definition 10. [Rank Restricted Isometry Property (R-RIP) for matrix linear operators [FRP10]] A linear
operator A : Rp×n → Rm satisfies the R-RIP with constant δr(A) ∈ (0, 1) if and only if:

(1− δr(A))
∥∥X
∥∥2

F
≤
∥∥AX

∥∥2

2
≤ (1 + δr(A))

∥∥X
∥∥2

F
, (4.4)

∀X ∈ Rp×n such that rank(X) ≤ r. We write δr to mean δr(A), unless otherwise stated.

[Liu11] shows that Pauli operators satisfy the rank-RIP in compressive settings while, in function learning,
the linear map A is designed specifically to satisfy the rank-RIP [TC12a].
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4.1. Preliminaries

Chapter roadmap

Based on the greedy hard thresholding methods presented in the previous chapters, we present and
analyze a new set of low-rank recovery algorithms for linear inverse problems. In Section 4.3, we
provide strategies on how to set up these algorithms via basic ingredients for different configurations to
achieve complexity vs. accuracy trade-offs. Moreover, we study acceleration schemes via memory-based
techniques and randomized, ε-approximate matrix projections to decrease the computational costs in
the recovery process. For most of the configurations, we present theoretical analysis that guarantees
convergence under mild problem conditions. The above lead to the definition of the MATRIX ALPS
framework.

We further improve the performance of the proposed schemes using randomized linear algebra and
parallelization in practice. Affine rank minimization algorithms typically rely on calculating the gradient
of a data error followed by a singular value decomposition at every iteration. Because these two steps
are expensive, heuristic approximations are often used to reduce computational burden. In Section
4.4, we propose a recovery scheme that merges the two steps with randomized approximations, and
as a result, operates on space proportional to the degrees of freedom in the problem. We theoretically
establish the estimation guarantees of the algorithm as a function of approximation tolerance. While
the theoretical approximation requirements are overly pessimistic, we demonstrate that in practice the
algorithm performs well on the quantum tomography recovery problem.

As an extension, in Section 4.5 we propose MATRIX ALPS for recovering a sparse plus low-rank de-
composition of a matrix given its corrupted and incomplete linear measurements. Our approach is a
first-order projected gradient method over non-convex sets, and it exploits a well-known memory-based
acceleration technique. We theoretically characterize the convergence properties of MATRIX ALPS using
the stable embedding properties of the linear measurement operator A.

Simulation results in Section 4.6 demonstrate notable performance improvements as compared to state-
of-the-art algorithms both in terms of reconstruction accuracy and computational complexity.

This chapter is based on the joint work with Volkan Cevher and Stephen Becker [KC14, KC12b, BCK13].

4.1 Preliminaries

Let S be a set of orthonormal, rank-1 matrices that span an arbitrary subspace in Rp×n. We reserve
span(S) to denote the subspace spanned by S. With slight abuse of notation, we use:

rank(span(S)) ≡ max
X
{rank(X) : X ∈ span(S)} , (4.5)

to denote the maximum rank a matrix X ∈ Rp×n can have such that X lies in the subspace spanned by the
set S. For any matrix X, we use R(X) to denote its range.

We define a minimum cardinality set of orthonormal, rank-1 matrices that span the subspace induced by a
set of rank-1 (and possibly non-orthogonal) matrices S as:

ortho(S) ∈ arg min
T
{|T | : T ⊆ U s.t. span(T ) = span(S)},

where U denotes the superset that includes all the sets of orthonormal, rank-1 matrices in Rp×n such that
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Chapter 4. Greedy methods for affine rank minimization

〈Ti,Tj〉 = 0, i 6= j, ∀Ti,Tj ∈ T and,
∥∥Ti
∥∥
F

= 1, ∀i. In general, ortho(S) is not unique.

Singular Value Decomposition (SVD) and its properties

Definition 11. [SVD] Let X ∈ Rp×n be a rank-l (l < min {p, n}) matrix. Then, the SVD of X is given by:

X = UΣVT =
[
Uα Uβ

]
[
Σ̃ 0

0 0

] [
VT
α

VT
β

]
, (4.6)

where Uα ∈ Rp×l,Uβ ∈ Rp×(p−l),Vα ∈ Rn×l,Vβ ∈ Rn×(n−l) and Σ̃ = diag(σ1, . . . , σl) ∈ Rl×l for
σ1, . . . , σl ∈ R+. Here, the columns of U,V represent the set of left and right singular vectors, respectively,
and σ1, . . . , σl denote the singular values.

For any matrix X ∈ Rp×n with arbitrary rank(X) ≤ min{p, n}, its best orthogonal projection Pr(X) onto
the set of rank-r (r < rank(X)) matrices Cr := {A ∈ Rp×n : rank(A) ≤ r} defines the optimization
problem:

Pr(X) ∈ arg min
Y∈Cr

∥∥Y −X
∥∥
F
. (4.7)

According to [HJ90], the best rank-r approximation of a matrix X corresponds to its truncated SVD: if
X = UΣVT , then Pr(X) := UrΣrV

T
r where Σr ∈ Rr×r is a diagonal matrix that contains the first r

diagonal entries of Σ and Ur, Vr contain the corresponding left and right singular vectors, respectively.
Moreover, this projection is not always unique. In the case of multiple identical singular values, the
lexicographic approach is used to break ties. In any case,

∥∥Pr(X)−X
∥∥
F
≤
∥∥W −X

∥∥
F

for any rank-r
W ∈ Rp×n.

Subspace projections

Given a set of orthonormal, rank-1 matrices S, we denote the orthogonal projection operator onto the
subspace induced by S as PS1 which is an idempotent linear transformation; furthermore, we denote the
orthogonal projection operator onto the orthogonal subspace of S as PS⊥ . We can always decompose a
matrix X ∈ Rp×n into two matrix components, as follows:

X := PSX + PS⊥X, such that 〈PSX,PS⊥X〉 = 0.

If X ∈ span(S), the best projection of X onto the subspace induced by S is the matrix X itself. Moreover,∥∥PSX
∥∥
F
≤
∥∥X
∥∥
F

for any S and X.

1The distinction between PS and Pr for r positive integer is apparent from context.
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Definition 12. [Orthogonal projections using SVD] Let X ∈ Rp×n be a matrix with arbitrary rank and
SVD decomposition given by (4.6). Then, S := {uivTi : i = 1, . . . , r} (r ≤ rank(X)) constitutes a set of
orthonormal, rank-1 matrices that spans the best k-rank subspace in R(X) and R(XT ); here, ui and vi denote
the i-th left and right singular vectors, respectively. The orthogonal projection onto this subspace is given by
[CR09]:

PSX = PUX + XPV − PUXPV (4.8)

where PU = U:,1:rU
T
:,1:r and PV = V:,1:rV

T
:,1:r in MATLAB notation.

Moreover, the orthogonal projection onto the S⊥ is given by:

PS⊥X = X− PSX. (4.9)

We use S ← Pr (X) to denote the set of rank-1, orthonormal matrices as outer products of the r left ui
and right vi principal singular vectors of X that span the best rank-r subspace of X; e.g. S = {uivTi , i =

1, . . . , r}. Moreover, X̂ ← Pr (X) denotes a/the best rank-r projection matrix of X. In some cases, we
use {S, X̂} ← Pr (X) when we compute both. The distinction between these cases is apparent from the
context.

4.2 Related work

The problem of recovering a low rank matrix from a limited set of measurements—as well as its general-
ization to the case of low rank and sparse signal recovery (see Section 4.5)—is found in a wide variety of
practical context. Such problems have received intensive investigations recently, both from theoretical
and algorithmic aspects.

From the convex perspective, the rank constraint in (4.3) is substituted by its convex envelope nuclear
norm—i.e., given a matrix X of rank r, its nuclear norm is is defined as:

‖X‖? =

r∑

i=1

σi,

where σi represents the i-th singular value of X.2 Within this context, one can use both first- and
second-order gradient methods [CCS10, BCG11], as well as ideas originating from Lagrange duality
and the method of Alternating Direction Method of Multipliers (ADMM) (e.g. [LCM10])—the latter is
also believed to be one of the best performing convex approaches in practice. The main drawback of
convex approaches is the requirement of a partial singular value decomposition (SVD) per iteration: this
is usually problematic at least for the first few iterations of convex recovery algorithms, where they may
have to perform full SVD’s.

From the non-convex aspect, the Singular Value Projection (SVP) algorithm [MJD10] is the closest to the
IHT algorithm for the vector case, a non-convex first-order projected gradient descent algorithm with
constant step size selection. The CoSaMP/SP analog for the matrix case is developed by Lee et al. in

2One can easily observe that the nuclear norm represents the `1-norm on the singular values of a matrix, in accordance with the
`1-norm in the vector case.
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[LB10] with the acronym ADMiRA. Finally, there are algorithms that avoid explicit SVD calculations,
such as [WYZ12, RR13, LRS+10], and are typically based on the Burer-Monteiro splitting [BM03]. The
main idea in Burer-Monteiro splitting is to remove the non-convex rank constraint by directly embedding
into the objective: as opposed to optimizing over a rank-r matrix X, splitting algorithms directly work
with its fixed factors UVT = X in an alternating fashion, where U ∈ Rm×r̂ and V ∈ Rn×r̂ for some r̂ ≥ r.
Unfortunately, rigorous guarantees are difficult.

Finally, a different approach to follow is that of manifold methods that better “sense” the geometrical
representation of low rank matrices in space. In such case, there is also a long list of available algorithms
for the ARM problem such as: (i) the OptSpace algorithm [KMO10], a gradient descent algorithm on
the Grassmann manifold, (ii) the Grassmannian Rank-One Update Subspace Estimation (GROUSE)
and the Grassmannian Robust Adaptive Subspace Tracking methods (GRASTA) [BNR10, HBL11], two
stochastic gradient descent algorithms that operate on the Grassmannian—moreover, to allay the impact
of outliers in the subspace selection step, GRASTA incorporates the augmented Lagrangian of `1-norm
loss function into the Grassmannian optimization framework and, (iii) the Riemannian Trust Region
Matrix Completion algorithm (RTRMC) [BA11], a matrix completion method using first- and second-order
Riemannian trust-region approaches,

4.3 Matrix Algebraic Pursuits

Here, we study a special class of iterative greedy algorithms known as hard thresholding methods.
Similar results have been derived for the vector case in Chapter 2 [KC11]. Note that the transition from
sparse vector approximation to ARM is non-trivial; while k-sparse signals “live” in the union of finite
number of subspaces, the set of rank-r matrices expands to infinitely many subspaces. Thus, the selection
rules do not generalize in a straightforward way.

Ingredients of hard thresholding methods: Similarly to Chapter 2, we analyze the behaviour and
performance of hard thresholding methods from a global perspective. Five building blocks are studied:
i) step size selection µi, ii) gradient or least-squares updates over restricted low-rank subspaces (e.g.,
adaptive block coordinate descent), iii) memory exploitation, iv) active low-rank subspace tracking and,
v) low-rank matrix approximations (described next). We highlight the impact of these key pieces on the
convergence rate and signal reconstruction performance and provide optimal and/or efficient strategies
on how to set up these ingredients under different problem conditions.

Low-rank matrix approximations in hard thresholding methods: In [KC12a], we show that the solution
efficiency can be significantly improved by ε-approximation algorithms. Based on similar ideas, we
analyze the impact of ε-approximate low rank-revealing schemes in the proposed algorithms with well-
characterized time and space complexities. Moreover, we provide extensive analysis to prove convergence
using ε-approximate low-rank projections.

MATRIX ALPS in a nutshell

Explicit descriptions of the proposed algorithms are provided in Algorithms 8 and 9. Algorithm 8 follows
from the ALgrebraic PursuitS (ALPS) scheme for the vector case [KC11]. MATRIX ALPS I provides
efficient strategies for adaptive step size selection and additional signal estimate updates at each iteration
(these motions are explained in detail in the next subsection). Algorithm 9 (ADMiRA) [LB10] further
improves the performance of Algorithm 8 by introducing least squares optimization steps on restricted
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Algorithm 8 MATRIX ALPS I

1: Input: y, A, r, Tolerance η, MaxIterations
2: Initialize: X(0)← 0, X0 ← {∅}, i← 0
3: repeat
4: Di ← Pr

(
PX⊥i ∇f(X(i))

)
(Best rank-r subspace orthogonal to Xi)

5: Si ← Di ∪ Xi (Active subspace expansion)

6: µi ← arg minµ
∥∥y −A

(
X(i)− µ

2PSi∇f(X(i))
)∥∥2

2
=
‖PSi∇f(X(i))‖2F
‖APSi∇f(X(i))‖22

(Step size selection)
7: V(i)← X(i)− µi

2 PSi∇f(X(i)) (Error norm reduction via gradient descent)
8: {Wi, W(i)} ← Pr(V(i)) (Best rank-r subspace selection)

9: ξi ← arg minξ
∥∥y −A

(
W(i)− ξ

2PWi∇f(W(i))
)∥∥2

2
=
‖PWi∇f(W(i))‖2F
‖APWi∇f(W(i))‖22

(Step size selection)

10: X(i+ 1)←W(i)− ξi
2 PWi

∇f(W(i)) with Xi+1 ← Pk(X(i+ 1)) (De-bias using gradient descent)
11: i← i+ 1
12: until ‖X(i)−X(i− 1)‖2 ≤ η‖X(i)‖2 or MaxIterations.

Algorithm 9 ADMiRA Instance

1: Input: y, A, r, Tolerance η, MaxIterations
2: Initialize: X(0)← 0, X0 ← {∅}, i← 0
3: repeat
4: Di ← Pr

(
PX⊥i ∇f(X(i))

)
(Best rank-r subspace orthogonal to Xi)

5: Si ← Di ∪ Xi (Active subspace expansion)
6: V(i)← arg minV:V∈span(Si)

∥∥y −AV
∥∥2

2
(Error norm reduction via least-squares optimization)

7: {Xi+1, X(i+ 1)} ← Pr(V(i)) (Best rank-r subspace selection)
8: i← i+ 1
9: until ‖X(i)−X(i− 1)‖2 ≤ η‖X(i)‖2 or MaxIterations.

subspaces—this technique borrows from a series of vector reconstruction algorithms such as CoSaMP
[NT09a], Subspace Pursuit (SP) [DM09] and Hard Thresholding Pursuit (HTP) [Fou11].

In a nutshell, both algorithms simply seek to improve the subspace selection by iteratively collecting
an extended subspace Si with rank(span(Si)) ≤ 2r and then finding the rank-r matrix that fits the
measurements in this restricted subspace using least squares or gradient descent motions.

At each iteration, the Algorithms 8 and 9 perform motions from the following list:

1) Best rank-r subspace orthogonal to Xi and active subspace expansion: We identify the best rank-r
subspace of the current gradient∇f(X(i)), orthogonal to Xi and then merge this low-rank subspace
with Xi. This motion guarantees that, at each iteration, we expand the current rank-r subspace
estimate with r new, rank-1 orthogonal subspaces to explore.

2a) Error norm reduction via greedy descent with adaptive step size selection (Algorithm 8): We decrease
the data error by performing a single gradient descent step. This scheme is based on a one-shot step
size selection procedure (Step size selection step)—detailed description of this approach is given in
Section 4.3.1.

2b) Error norm reduction via least squares optimization (Algorithm 9): We decrease the data error f(X)

on the active O(r)-low rank subspace. Assuming A is well-conditioned over low-rank subspaces,
the main complexity of this operation is dominated by the solution of a symmetric linear system of
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Chapter 4. Greedy methods for affine rank minimization

Figure 4.1: Median error per iteration for various step size policies and 20 Monte-Carlo repetitions. In brackets, we
present the median time consumed for convergene in seconds. (a) p = n = 2048, m = 0.4n2, and rank r = 70—A is
formed by permuted and subsampled noiselets [CGM01]. (b) n = 2048 , p = 512, m = 0.4n2, and rank r = 50—we
use underdetermined linear map A according to the MC problem (c) n = 2048, p = 512, m = 0.4n2, and rank
r = 40—we use underdetermined linear map A according to the MC problem.

equations.

3) Best rank-r subspace selection: We project the constrained solution onto the set of rank-r matrices
Cr := {A ∈ Rp×n : rank(A) ≤ r} to arbitrate the active support set. This step is calculated
in polynomial time complexity as a function of p × n using SVD or other matrix rank-revealing
decomposition algorithms—further discussions about this step and its approximations can be found
in Sections 4.3.5 and 4.3.6.

4) De-bias using gradient descent (Algorithm 8): We de-bias the current estimate W(i) by performing an
additional gradient descent step, decreasing the data error. The step size selection procedure follows
the same motions as in 2a).

4.3.1 Hard thresholding ingredients in the matrix case

Step size selection

There is limited work on the adaptive step size selection for matrix hard thresholding methods. To the
best of our knowledge, only the work of [TW13] implements ideas presented in [BD10] for the matrix
case.

According to Algorithm 8, let X(i) be the current rank-r matrix estimate spanned by the set of orthonor-
mal, rank-1 matrices in Xi. Using regular gradient descent motions, the new rank-r estimate W(i) can be
calculated through:

Vi = X(i)− µ

2
∇f(X(i)), {Wi, W(i)} ← Pr(V(i)).

We highlight that the rank-r approximate matrix may not be unique. It then holds that the subspace
spanned byWi originates: i) either from the subspace of Xi, ii) or from the best subspace (in terms of the
Frobenius norm metric) of the current gradient∇f(X(i)), orthogonal to Xi, iii) or from the combination of
orthonormal, rank-1 matrices lying on the union of the above two subspaces. The statements above can
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4.3. Matrix Algebraic Pursuits

be summarized in the following expression:

span(Wi) ∈ span (Di ∪ Xi) (4.10)

for any step size µi andDi ← Pr
(
PX⊥i ∇f(X(i))

)
. Since rank(span(Wi)) ≤ r, we easily deduce the follow-

ing key observation: let Si ← Di∪Xi be a set of rank-1, orthonormal matrices where rank(span(Si)) ≤ 2r.
GivenWi is unknown before the i-th iteration, Si spans the smallest subspace that containsWi such that
the following equality

Pr
(
X(i)− µi

2
∇f(X(i))

)
= Pr

(
X(i)− µi

2
PSi∇f(X(i))

)
(4.11)

necessarily holds.3

To compute step-size µi, we use:

µi = arg min
µ

∥∥y −A
(
X(i)− µ

2
PSi∇f(X(i))

)∥∥2

2
=
‖PSi∇f(X(i))‖2F
‖APSi∇f(X(i))‖22

, (4.12)

i.e., µi is the minimizer of the objective function, given the current gradient∇f(X(i)). Note that:

1− δ2r(A) ≤ 1

µi
≤ 1 + δ2r(A), (4.13)

due to R-RIP—i.e., we select 2r subspaces such that µi satisfies (4.13). We can derive similar arguments
for the additional step size selection ξi in Step 6 of Algorithm 8.

Adaptive µi scheme results in more restrictive worst-case isometry constants compared to [JMD10], but
faster convergence and better stability are empirically observed in general. In [JMD10], the authors
present the Singular Value Projection (SVP) algorithm, an iterative hard thresholding algorithm for the
ARM problem. According to [JMD10], both constant and iteration dependent (but user-defined) step sizes
are considered. Adaptive strategies presented in [JMD10] require the computation of R-RIP constants
which has exponential time complexity. Figures 4.1(a)-(b) illustrate some characteristic examples. The
performance varies for different problem configurations. For µ > 1, SVP diverges for various test cases.
We note that, for large fixed matrix dimensions p, n, adaptive step size selection becomes computationally
expensive compared to constant step size selection strategies, as the rank of X? increases.

Updates on restricted subspaces

In Algorithm 8, at each iteration, the new estimate W(i)← Pr (V(i)) can be further refined by applying a
single or multiple gradient descent updates with line search restricted onWi [Fou11] (Step 7 in Algorithm
8):

X(i+ 1)←W(i)− ξi
2
PWi∇f(W(i)),

where ξi =
‖PWi∇f(W(i))‖2F
‖APWi∇f(W(i))‖22

. In spirit, the gradient step above is the same as block coordinate descent
in convex optimization where we find the subspaces adaptively. Figure 4.1(c) depicts the acceleration
achieved by using additional gradient updates over restricted low-rank subspaces for a test case.

3In the case of multiple identical singular values, any ties are lexicographically dissolved.
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Figure 4.2: Median error per iteration for MATRIX ALPS I and MATRIX ALPS II variants over 10 Monte-Carlo
repetitions. In brackets, we present the median time consumed for convergene in seconds. (a) n = 2048, p = 512,
m = 0.25n2, and rank r = 40. (b) n = 2000, p = 1000, m = 0.25n2, and rank r = 50. (c) n = p = 1000, m = 0.25n2,
and rank r = 50.

Acceleration via memory-based schemes and low-rank matrix approximations

Memory-based techniques can be used to improve convergence speed. Furthermore, low-rank matrix
approximation tools overcome the computational overhead of computing the best low-rank projection
by inexactly solving (4.7). We keep the discussion on memory utilization for Section 4.3.4 and low-rank
matrix approximations for Sections 4.3.5 and 4.3.6 where we present new algorithmic frameworks for
low-rank matrix recovery.

Active low-rank subspace tracking

Per iteration of Algorithms 8 and 9, we perform projection operations PSX and PS⊥X where X ∈ Rp×n,
as described by (4.8) and (4.9), respectively. Since S is constituted by outer products of left and right
singular vectors as in Definition 12, PSX (resp. PS⊥X) projects onto the (resp. complement of the) best
low-rank subspace in R(X) and R(XT ). These operations are highly connected with the adaptive step
size selection and the updates on restricted subspaces. Unfortunately, the time-complexity to compute
PSX is dominated by three matrix-matrix multiplications which decelerates the convergence of the
proposed schemes in high-dimensional settings. To accelerate the convergence in many test cases, it turns
out that we do not have to use the best projection PS in practice.4 Rather, employing inexact projections is
sufficient to converge to the optimal solution: either i) PUX onto the best low-rank subspace in R(X)

only (if p � n) or ii) XPV onto the best low-rank subspace in R(XT ) only (if p � n)5; PU and PV are
defined in Definition 12 and require only one matrix-matrix multiplication.

Figure 4.2 shows the time overhead due to the exact projection application PS compared to PU for p ≤ n.
In Figure 4.2(a), we use subsampled and permuted noiselets for linear map A and in Figures 4.2(b)-(c),
we test the MC problem. While in the case p = n the use of (4.8)-(4.9) has a clear advantage (in terms of
required number of iterations for convergence) over inexact projections using only PU , the latter case
converges faster to the desired accuracy 5 · 10−4 when p � n as shown in Figures 4.2(a)-(b). In our
derivations, we assume PS and PS⊥ as defined in (4.8) and (4.9).

4From a different perspective and for a different problem case, similar ideas have been used in [LCM10].
5We can move between these two cases by a simple transpose of the problem.
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4.3.2 Convergence guarantees for matrix ALPS

In this section, we present the theoretical convergence guarantees of Algorithms 8 and 9 as functions of
R-RIP constants.

MATRIX ALPS I

An important lemma for our derivations below is given next:

Lemma 21. [Active subspace expansion] Let X(i) be the matrix estimate at the i-th iteration and let Xi be a
set of orthonormal, rank-1 matrices such that Xi ← Pr(X(i)). Then, at each iteration, the Active Subspace
Expansion step in Algorithms 8 and 9 identifies information in X?, such that:

∥∥PX∗PS⊥i X?
∥∥
F
≤ (2δ2r + 2δ3r)

∥∥X(i)−X?
∥∥
F

+
√

2(1 + δ2r)
∥∥ε
∥∥

2
, (4.14)

where Si ← Xi ∪ Di and X ∗ ← Pr(X?).

Lemma 21 states that, at each iteration, the active subspace expansion step identifies a 2r rank subspace
such that the amount of unrecovered energy of X?—i.e., the projection of X? onto the orthogonal subspace
of span(Si)—is bounded by (4.14).

Then, Theorem 6 characterizes the iteration invariant of Algorithm 8 for the matrix case:

Theorem 6. [Iteration invariant for MATRIX ALPS I] The (i+ 1)-th matrix estimate X(i+ 1) of MATRIX

ALPS I satisfies the following recursion:

∥∥X(i+ 1)−X?
∥∥
F
≤ ρ
∥∥X(i)−X?

∥∥
F

+ γ
∥∥ε
∥∥

2
, (4.15)

where ρ :=
(

1+2δ2r
1−δ2r

)(
4δ2r

1−δ2r + (2δ2r + 2δ3r)
2δ3r

1−δ2r

)
and γ :=

(
1+2δ2r
1−δ2r

)(
2
√

1+δ2r
1−δ2r + 2δ3r

1−δ2r
√

2(1 + δ2r)
)

+
√

1+δr
1−δr . Moreover, when δ3r < 0.1235, the iterations are contractive.

To provide some intuition behind this result, assume that X? is a rank-r matrix. Then, according to
Theorem 6, for ρ < 1, the approximation parameter γ in (4.15) satisfies:

γ < 5.7624, for δ3r < 0.1235.

Moreover, we derive the following:

ρ <
1 + 2δ3r

(1− δ3r)2

(
4δ3r + 8δ2

3r

)
<

1

2
⇒ δ3r < 0.079,

which is a stronger R-RIP condition assumption compared to state-of-the-art approaches [LB10]. In the
next section, we further improve this guarantee using Algorithm 9.

Unfolding the recursive formula (4.15), we obtain the following upper bound for
∥∥X(i)−X?

∥∥
F

at the
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i-th iteration:

∥∥X(i)−X?
∥∥
F
≤ ρi

∥∥X(0)−X?
∥∥
F

+
γ

1− ρ
∥∥ε
∥∥

2
. (4.16)

Then, given X(0) = 0, MATRIX ALPS I finds a rank-r solution X̂ ∈ Rp×n such that
∥∥X̂ − X?

∥∥
F
≤

γ+1−ρ
1−ρ

∥∥ε
∥∥

2
after i :=

⌈
log(‖X?‖F /‖ε‖2)

log(1/ρ)

⌉
iterations.

If we ignore steps 5 and 6 in Algorithm 8, we obtain another projected gradient descent variant for the
affine rank minimization problem, for which we obtain the following performance guarantees—the proof
follows from the proof of Theorem 6.

Corollary 4. [MATRIX ALPS I Instance] In Algorithm 8, we ignore steps 5 and 6 and let {Xi+1, X(i+1)} ←
Pr(Vi). Then, by the same analysis, we observe that the following recursion is satisfied:

∥∥X(i+ 1)−X?
∥∥
F
≤ ρ
∥∥X(i)−X?

∥∥
F

+ γ
∥∥ε
∥∥

2
, (4.17)

for ρ :=
(

4δ2r
1−δ2r + (2δ2r + 2δ3r)

2δ3r
1−δ2r

)
and γ :=

(
2
√

1+δ2r
1−δ2r + 2δ3r

1−δ2r
√

2(1 + δ2r)
)

. Moreover, ρ < 1 when
δ3r < 0.1594.

We observe that the absence of the additional estimate update over restricted support sets results in less
restrictive isometry constants compared to Theorem 6. In practice, additional updates result in faster
convergence, as shown in Figure 4.1(c).

ADMiRA Instance

In MATRIX ALPS I, the gradient descent steps constitute a first-order approximation to least-squares
minimization problems. Replacing Step 4 in Algorithm 8 with the following optimization problem:

V(i)← arg min
V:V∈span(Si)

∥∥y −AV
∥∥2

2
, (4.18)

we obtain ADMiRA (furthermore, we remove the de-bias step in Algorithm 8). Assuming that the linear
operator A, restricted on sufficiently low-rank subspaces, is well conditioned in terms of the R-RIP
assumption, the optimization problem (4.18) has a unique optimal minimizer. ADMiRA instance in
Algorithm 9 features the following guarantee:

Theorem 7. [Iteration invariant for ADMiRA instance] The (i+ 1)-th matrix estimate X(i+ 1) of ADMiRA
answers the following recursive expression:

∥∥X(i+ 1)−X?
∥∥
F
≤ ρ
∥∥X(i)−X?

∥∥
F

+ γ
∥∥ε
∥∥
F
,

ρ :=
(
2δ2r +2δ3r

)√ 1+3δ2
3r

1−δ2
3r
, and γ :=

√
1+3δ2

3r

1−δ2
3r

√
2(1 + δ3r) +

(√
1+3δ2

3r

1−δ3r +
√

3
)√

1 + δ2r. Moreover, when
δ3r < 0.2267, the iterations are contractive.

Similarly to MATRIX ALPS I analysis, the parameter γ in Theorem 7 satisfies:

γ < 5.1848, for δ3r < 0.2267.
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Furthermore, to compare the approximation guarantees of Theorem 7 with [LB10], we further observe:

δ3r < 0.1214, for ρ < 1/2.

We remind that [LB10] provides convergence guarantees for ADMiRA with δ4r < 0.04 for ρ = 1/2.

4.3.3 Complexity Analysis

A non-exhaustive list of linear map examples includes the identity operator (Principal component analysis
(PCA) problem), Fourier/Wavelets/Noiselets tranformations and the famous Matrix Completion problem
where A is a mask operator such that only a fraction of elements in X is observed. Assuming the most
demanding case where A and A∗ are dense linear maps with no structure, the computation of the
gradient∇f(X(i)) at each iteration requires O(mrpn) arithmetic operations.

Given a set S of orthonormal, rank-1 matrices, the projection PSX for any matrix X ∈ Rp×n requires time
complexity O(max{p2n, pn2}) as a sequence of matrix-matrix multiplication operations.6 In MATRIX

ALPS I, the adaptive step size selection steps require O(max{mrpn, p2n}) time complexity for the
calculation of µi and ξi quantities. In ADMiRA solving a least-squares system restricted on rank-2r and
rank-r subspaces requires O(mr2) complexity; according to [NT09a], [LB10], the complexity of this step
can be further reduced using iterative techniques such as the Richardson method or conjugate gradients
algorithm.

Using the Lanczos method, we require O(rpn) arithmetic operations to compute a rank-r matrix approxi-
mation for a given constant accuracy; a prohibitive time-complexity that does not scale well for many
practical applications. Sections 4.3.5 and 4.3.6 describe approximate low rank matrix projections and how
they affect the convergence guarantees of the proposed algorithms.

Overall, the operation that dominates per iteration requires O(max{mrpn, p2n, pn2}) time complexity.

4.3.4 Memory-based Acceleration

Algorithm 10 MATRIX ALPS II

1: Input: y, A, r, Tolerance η, MaxIterations
2: Initialize: X(0)← 0, X0 ← {∅}, Q(0)← 0, Q0 ← {∅}, τi ∀i, i← 0
3: repeat
4: Di ← Pr

(
PQ⊥i ∇f(Q(i))

)
(Best rank-r subspace orthogonal to Qi)

5: Si ← Di ∪Qi (Active subspace expansion)

6: µi ← arg minµ
∥∥y −A

(
Q(i)− µ

2PSi∇f(Q(i))
)∥∥2

2
=
‖PSi∇f(Q(i))‖2F
‖APSi∇f(Q(i))‖22

(Step size selection)
7: V(i)← Q(i)− µi

2 PSi∇f(Q(i)) (Error norm reduction via gradient descent)
8: {Xi+1, X(i+ 1)} ← Pr(V(i)) (Best rank-r subspace selection)
9: Q(i+ 1)← X(i+ 1) + τi(X(i+ 1)−X(i)) (Momentum update)

10: Qi+1 ← ortho(Xi ∪ Xi+1)
11: i← i+ 1
12: until ‖X(i)−X(i− 1)‖2 ≤ η‖X(i)‖2 or MaxIterations.

6While such operation hasO(max{p2n, pn2}) complexity, each application ofPSX requires three matrix-matrix multiplications.
To reduce such computational cost, we relax this operation in Section 4.6 where in practice we use only PU that needs one matrix-
matrix multiplication.
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Similar to the vector case, we propose to select τi as the minimizer of the objective function:

τi = arg min
τ

‖y −AQ(i+ 1)‖22 =
〈y −AX(i),AX(i)−AX(i− 1)〉

‖AX(i)−AX(i− 1)‖22
, (4.19)

where AX(i),AX(i− 1) are already pre-computed at each iteration. According to (4.19), τi is dominated
by the calculation of a vector inner product, a computationally cheaper process than q calculation.

Theorem 8 characterizes Algorithm 10 for constant momentum step size selection. To keep the main ideas
simple, we ignore the additional gradient updates in Algorithm 10. In addition, we only consider the
noiseless case for clarity. The convergence rate proof for these cases is provided in the appendix.

Theorem 8. [Iteration invariant for MATRIX ALPS II] Let y = AX? be a noiseless set of observations. To
recover X? from y and A, the (i+ 1)-th matrix estimate X(i+ 1) of MATRIX ALPS II satisfies the following
recursion:

∥∥X(i+ 1)−X?
∥∥
F
≤ α(1 + τi)

∥∥X(i)−X?
∥∥
F

+ ατi
∥∥X(i− 1)−X?

∥∥
F
, (4.20)

where α := 4δ3r
1−δ3r + (2δ3r + 2δ4r)

2δ3r
1−δ3r . Moreover, the following inequality holds true:

∥∥X(i+ 1)−X?
∥∥
F
≤ ρi+1

∥∥X(0)−X?
∥∥
F
, for ρ :=

α(1 + τi) +
√
α2(1 + τi)2 + 4ατi

2
. (4.21)

Figure 4.3: Median error per iteration for
various momentum step size policies and 10
Monte-Carlo repetitions. Here, n = 1024,
p = 256, m = 0.25n2, and rank r = 40. We
use permuted and subsampled noiselets for
the linear map A. In brackets, we present the
median time for convergence in seconds.
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Matrix ALPS I I - τi = opt. [48.15]

Matrix ALPS I I - τi = 1/4 [71.6347]

Matrix ALPS I I - τi = 1/8 [107.7316]

Matrix ALPS I I - τi = 1/16 [116.4127]

Theorem 8 provides convergence rate behaviour proof for the
case where τi is constant ∀i. The more elaborate case where τi
follows the policy described in (4.19) is left as an open ques-
tion for future work. To provide some insight for (4.21), for
τi = 1/4, ∀i and τi = 1/2, ∀i, δ4r < 0.1187 and δ4r < 0.095

guarantee convergence in Algorithm 10, respectively. While
the RIP requirements for memory-based MATRIX ALPS II
are more stringent than the schemes proposed in the pre-
vious section, it outperforms Algorithms 8 and 9. Figure
4.3 shows the acceleration achieved in MATRIX ALPS II by
using inexact projections PU . Using the proper projections
(4.8)-(4.9), Figure 4.3 shows acceleration in practice when us-
ing the adaptive momentum step size strategy: while a wide
range of constant momentum step sizes leads to convergence,
providing flexibility to select an appropriate τi, adaptive τi
avoids this arbitrary τi selection while further decreases the
number of iterations needed for convergence in most cases.

4.3.5 Accelerating MATRIX ALPS: ε-Approximation
of SVD via Column Subset Selection

A time-complexity bottleneck in the proposed schemes is the computation of the singular value decom-
position to find subspaces that describe the unexplored information in matrix X?. Unfortunately, the
computational cost of regular SVD for best subspace tracking is prohibitive for many applications.

100



4.3. Matrix Algebraic Pursuits

Based on [DFK+04, DKM06], we can obtain randomized SVD approximations of a matrix X using column
subset selection ideas: we compute a score for each column that represents its “significance”. In particular,
we define a probability distribution that weights each column depending on the amount of information
they contain; usually, the distribution is related to the `2-norm of the columns. The main idea of this
approach is to compute a surrogate rank-r matrix Pεr(X) by subsampling the columns according to this
distribution. It turns out that the total number of sampled columns is a function of the parameter ε.
Moreover, [DRVW06, DV06] proved that, given a target rank r and an approximation parameter ε, we
can compute an ε-approximate rank-r matrix Pεr(X), i.e.,

Definition 13. [ε-approximate low-rank projection] Let X be an arbitrary matrix. Then, Pεr(X) projection
provides a rank-r matrix approximation to X such that:

∥∥Pεr(X)−X
∥∥2

F
≤ (1 + ε)

∥∥Pr(X)−X
∥∥2

F
, where Pr(X) ∈ arg min

Y :rank(Y )≤r
‖X− Y ‖F . (4.22)

For the following theoretical results, we assume the following condition on the sensing operator A :∥∥A∗β
∥∥
F
≤ λ, ∀β ∈ Rp, where λ > 0. Using ε-approximation schemes to perform the Active subspace

selection step, the following upper bound holds. The proof is provided in [KC14]:

Lemma 22. [ε-approximate active subspace expansion] Let X(i) be the matrix estimate at the i-th iteration
and let Xi be a set of orthonormal, rank-1 matrices in Rp×n such that Xi ← Pr(X(i)). Furthermore, let

Dεi ← Pεr
(
PX⊥i ∇f(X(i))

)
,

be a set of orthonormal, rank-1 matrices that span rank-r subspace such that (4.22) is satisfied for X :=

PX⊥i ∇f(X(i)). Then, at each iteration, the Active Subspace Expansion step in Algorithms 8 and 9 captures
information contained in the true matrix X?, such that:

∥∥PX∗PS⊥i X?
∥∥
F
≤
(
2δ2r + 2δ3r

)∥∥X(i)−X?
∥∥
F

+
√

2(1 + δ2r)
∥∥ε
∥∥

2
+ 2λ

√
ε, (4.23)

where Si ← Xi ∪ Dεi and X ∗ ← Pr(X?).

Furthermore, to prove the following theorems, we require the following lemma; the proof is provided in
[KC14].

Lemma 23. [ε-approximation rank-r subspace selection] Let V(i) be a rank-2r proxy matrix in the subspace
spanned by Si and let Ŵ(i)← Pεr(V(i)) denote the rank-r ε-approximation to V(i). Then:

∥∥Ŵ(i)−V(i)
∥∥2

F
≤ (1 + ε)

∥∥Pr(V(i))−V(i)
∥∥
F
≤ (1 + ε)

∥∥PSi(V(i)−X?)
∥∥
F
≤ (1 + ε)

∥∥V(i)−X?
∥∥
F

MATRIX ALPS I using ε-approximate low-rank projection via column subset selection

Using ε-approximate SVD in MATRIX ALPS I, the following iteration invariant theorem holds:
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Theorem 9. [Iteration invariant with ε-approximate projections for MATRIX ALPS I] The (i+ 1)-th matrix
estimate X(i + 1) of MATRIX ALPS I with ε-approximate projections Dεi ← Pεr

(
PX⊥i ∇f(X(i))

)
and

Ŵ(i)← Pεr(V(i)) in Algorithm 8 satisfies the following recursion:

∥∥X(i+ 1)−X?
∥∥
F
≤ ρ
∥∥X(i)−X?

∥∥
F

+ γ‖ε‖2 + βλ, (4.24)

where ρ :=
(

1 + 3δr
1−δr

)
(2 + ε)

[
(1 + δ3r

1−δ2r )4δ3r + 2δ2r
1−δ2r

]
, β :=

(
1 + 3δr

1−δr

)
(2 + ε)

(
1 + δ3r

1−δ2r

)
2
√
ε, and

γ :=
(

1 + 3δr
1−δr

) (
2 + ε

)[(
1 + δ3r

1−δ2r
)√

2(1 + δ2r) + 2
√

1+δ2r
1−δ2r

]
.

Similar analysis can be conducted for the ADMiRA algorithm.

To illustrate the impact of SVD ε-approximation on the signal reconstruction performance of the proposed
methods, we replace the best rank-r projections in Algorithm 8 by the ε-approximation SVD algorithm,
presented in [DV06]. In our discussions, the column subset selection algorithm satisfies the following
theorem:

Theorem 10. Let X ∈ Rp×n be a signal of interest with arbitrary rank < min{p, n} and let Xr represent
the best rank-r approximation of X. After 2(r + 1)(log(r + 1) + 1) passes over the data, the Linear Time
Low-Rank Matrix Approximation algorithm in [DV06] computes a rank-r approximation Pεr(X) ∈ Rp×n

such that Definition 14 is satisfied with probability at least 3/4.

Figure 4.4: Performance comparison using ε-
approximation SVD [DV06] in MATRIX ALPS
II. p = n = 256, m = 0.4n2, rank of X? equals
2 and A constituted by permuted noiselets.
The non-smoothness in the error curves is due
to the extreme low rankness of X? for this set-
ting.
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Matrix ALPS II - ε = 0
Matrix ALPS II - ε = 0.2
Matrix ALPS II - ε = 0.4
Matrix ALPS II - ε = 0.6
Matrix ALPS II - ε = 0.8
Matrix ALPS II - ε = 0.9

The proof is provided in [DV06]. In total, Linear Time Low-
Rank Matrix Approximation algorithm [DV06] requiresO(pn

(r/ε + r2 log r) + (p + n)(r2/ε2 + r3 log r/ε +r4 log2 r)) and
O(min{p, n}(r/ε + r2 log r)) time and space complexity, re-
spectively. However, while column subset selection methods
such as [DV06] reduce the overall complexity of low-rank
projections in theory, in practice this applies only in very
high-dimensional settings. To strengthen this argument, in
Figure 4.4 we compare SVD-based MATRIX ALPS II with
MATRIX ALPS II using the ε-approximate column subset se-
lection method in [DV06]. We observe that the total number
of iterations for convergence increases due to ε-approximate
low-rank projections, as expected. Nevertheless, we observe
that, on average, the column subset selection process [DV06]
is computationally prohibitive compared to regular SVD due
to the time overhead in the column selection procedure—
fewer passes over the data are desirable in practice to trade-
off the increased number of iterations for convergence. In the
next section, we present alternatives based on recent trends
in randomized matrix decompositions and how we can use
them in low-rank recovery.

4.3.6 Accelerating MATRIX ALPS: SVD Approximation using Randomized Matrix
Decompositions
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Algorithm 11 Randomized MATRIX ALPS II with QR Factorization

1: Input: y, A, r, q, Tolerance η, MaxIterations
2: Initialize: X(0)← 0, X0 ← {∅}, Q(0)← 0, Q0 ← {∅}, τi ∀i, i← 0
3: repeat
4: Di ← RANDOMIZEDPOWERITERATION

(
PQ⊥i ∇f(Q(i)), r, q

)
(Rank-r subspace via Power Iteration)

5: Si ← Di ∪Qi (Active subspace expansion)

6: µi ← arg minµ
∥∥y −A

(
Q(i)− µ

2PSi∇f(Q(i))
)∥∥2

2
=
‖PSi∇f(Q(i))‖2F
‖APSi∇f(Q(i))‖22

(Step size selection)
7: V(i)← Q(i)− µi

2 PSi∇f(Q(i)) (Error norm reduction via gradient descent)
8: W ← RANDOMIZEDPOWERITERATION

(
V(i), r, q

)
(Rank-r subspace via Power Iteration)

9: X(i+ 1)← PWV(i) (Best rank-r subspace selection)
10: Q(i+ 1)← X(i+ 1) + τi(X(i+ 1)−X(i)) (Momentum update)
11: Qi+1 ← ortho(Xi ∪ Xi+1)
12: i← i+ 1
13: until ‖X(i)−X(i− 1)‖2 ≤ η‖X(i)‖2 or MaxIterations.

Finding low-cost SVD approximations to tackle the above complexity issues is a challenging task.
Recent works on probabilistic methods for matrix approximation [HMT11] provide a family of efficient
approximate projections on the set of rank-deficient matrices with clear computational advantages over
regular SVD computation in practice and attractive theoretical guarantees [PKB14]. In this work, we
build on the low-cost, power-iteration subspace tracking scheme, described in Algorithms 4.3 and 4.4 in
[HMT11]. Our proposed algorithm is described in Algorithm 11.

The convergence guarantees of Algorithm 11 follow the same motions described in Section 4.3.5, where ε
is a function of p, n, r and q.

4.4 Randomized Low-Memory Singular Value Projection

Our discussions so far evolve around greedy, first-order methods for the affine rank minimization problem
(4.3): (i) by “greedy method” we refer to using SVD computations to estimate the current best low-rank
approximation of a given putative anchor matrix point and, (ii) by “first-order method” we refer to the
calculation of the gradient of f per iteration Virtually all recovery algorithms require calculating the
gradient ∇f(X) = 2A∗(A(X) − y) at an intermediate iterate X, where A∗ is the adjoint of A. When
the range of A∗ is dense, this forces algorithms to use memory proportional to O(pn), where X ∈ Rp×n.
Second, after the iterate is updated with the gradient, projecting onto the low-rank space requires a
partial singular value decomposition (SVD); see the proposed algorithms in the previous section. Also,
this is usually problematic for the first few iterations of convex recovery algorithms, where they may
have to perform full SVD’s. In our case, greedy algorithms [KC14] fend off the complexity of full SVD’s,
since they need fixed rank projections, which can be approximated via Lanczos or randomized SVD’s
[HMT11].

Algorithms that avoid these two issues do exist, such as [WYZ12, RR13, LRS+10], and are typically
based on the Burer-Monteiro splitting [BM03]. The main idea in Burer-Monteiro splitting is to remove
the non-convex rank constraint by directly embedding into the objective: as opposed to optimizing
X, splitting algorithms directly work with its fixed factors UVT = X in an alternating fashion, where
U ∈ Rm×r̂ and V ∈ Rn×r̂ for some r̂ ≥ r. Unfortunately, rigorous guarantees are difficult.7 Recent

7If r̂ &
√
m, then [BM03] shows their method obtains a global solution, but this is impractical for large m. Moreover, it is shown
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work [JNS13] has shown approximation guarantees if A satisfies the rank restricted isometry property
with constant δ2r ≤ κ2/(100r) (in the noiseless case), where κ = σ1(X?)/σr(X

?), or δ2r ≤ 1/(3200r2) for
a bound independent of κ. The authors suggest that these bounds may be tightened, and that practical
performance is better than the bound suggests.

In this section, we merge the gradient calculation and the singular value projection steps into one and
show that this not only removes a huge computational burden, but suffers only a minor convergence
speed drawback in practice. Our contribution is a natural but non-trivial fusion of the Singular Value
Projection (SVP) algorithm in [JMD10] and the approximate projection ideas presented in the previous
section. The SVP algorithm is a hard-thresholding algorithm that has been considered in [JMD10, GM11].
Inexact steps in SVP have been considered as a heuristic [GM11] but have not been incorporated into
a convergence result.8 In the previous section, we propose a non-convex framework for affine rank
minimization (including variants of the SVP algorithm) that utilizes inexact projection operations with
provable signal approximation and convergence guarantees. Both [JMD10, KC14] do not consider
splitting techniques in the proposed schemes.

Contrary to [JMD10, KC14], we engineer the SVP algorithm to operate like splitting algorithms that directly
work with the factors; this added twist decreases the per iteration requirements in terms of storage and
computational complexity. Using this new formulation, each iteration is nearly as fast as in the splitting
method, hence removing a drawback to SVP in relation to splitting methods. Furthermore, we prove that,
under some conditions, it is still possible to obtain perfect recovery even if the projections are inexact. In
particular, our assumption is that the linear map A satisfies the rank restricted isometry property, and
we give an application that satisfies this assumption, allowing perfect recovery (in the noiseless case) or
stable recovery (in the presence of noise) from measurements m� pn. For example, in the noiseless case,
we require approximately δ2r ≤ 0.0037. This approach has been used for convex [RFP10] and non-convex
[JMD10, KC14] algorithms to obtain approximation guarantees.

Approximate singular value computations

The standard method to compute a partial SVD is the Lanczos method. By itself it is not numerically
stable and requires re-orthogonalization and implicit restarts. Excellent implementations are available,
but it is a sequential algorithm that calls matrix-vector products. This makes it more difficult to parallelize,
which is an issue on modern multi-processor computers. The matrix-vector multiplies are also slower
than grouping into matrix-matrix multiplies since it is harder to predict memory usage and this will lead
to cache misses; it also precludes the use of theoretically faster algorithms such as Strassen’s. Theoretically,
there are no known relative error bounds in norm (à la Theorem 11).

As an alternative, we turn to randomized linear algebra. On this front, we restrict ourselves to algorithms
that require only multiplications, as opposed to sub-sampling entries/rows/columns, as it is not effi-
cient in practice; see previous section. The randomized approach presented in Algorithm 12 has been
rediscovered many times, but has seen a recent resurgence of interest due to theoretical analysis [HMT11]:

that the explicit rank r̂ splitting method solves a non-convex problem that has the same local minima as (4.3) (if r̂ = r). However,
the non-convex problems are not equivalent (e.g. U = 0, V = 0 is a stationary point for the splitting problem whereas X = 0 is
generally not a stationary point for (4.3)). Furthermore, recovery bounds for non-convex algorithms, as in [GK09a] and the present
section, are statements about a sequence of iterates of the algorithm, and say nothing about the local minima.

8Inexact steps are often incorporated into analysis of algorithms for convex problems. Of particular note, [Lau12] allows inexact
eigenvalue computations in a modified Frank-Wolfe algorithm that has applications to (4.3).

104



4.4. Randomized Low-Memory Singular Value Projection

Algorithm 12 RandomizedSVD
Finds Q such that X ≈ PQX where PQ = QQH.

Require: Function h : Z̃ 7→ XZ̃, hH : Q̃ 7→ XHQ̃, r, q ∈ N // r: Rank of output, q: # of power iterations
1: ` = r + ρ // Typical value of ρ is 5
2: Ω a n× ` standard Gaussian matrix
3: Q← QR(h(Ω)) // The QR algorithm to orthogonalize W
4: for j = 1, 2, . . . , q do
5: Z← QR(hH(Q))
6: Q← QR(h(Z))
7: end for
8: Z← hH(Q)

9: (U,Σ,V)← factoredSVD(Q, I`,Z) // X̃i+1 = UΣVH in the appendix
10: Let Σr be the best rank r approximation of Σ
11: return (U,Σr,V) // Xi+1 = UΣrV

H in the appendix

Algorithm 13 factoredSVD(Ũ, D̃, Ṽ)

Computes the SVD UΣVH of the matrix X implicitly given by X = ŨD̃ṼH

1: (U,RU)← QR(Ũ) and (V,RV)← QR(Ṽ)

2: (Û,Σ, V̂)← DenseSVD(RUD̃RH
V)

3: return (U,Σ,V)← (UÛ,Σ,VV̂)

Theorem 11 (Average Frobenius error). Suppose X ∈ Rp×n, and choose a target rank r and oversampling
parameter ρ ≥ 2 where ` := r + ρ ≤ min{m,n}. Let Xr be the best rank r approximation in the Frobenius
norm. Calculate Q and PQ via RandomizedSVD using q = 0 and set X̃ = PQX (which is rank `). Then

E‖X− X̃‖2F ≤ (1 + ε) ‖X−Xr‖2F where ε =
r

ρ− 1
.

The theorem follows from the proof of Thm. 10.5 in [HMT11] (note that Thm. 10.5 is stated in terms of

E‖X− X̃‖F which is not the same as
√

E‖X− X̃‖2F ). The expectation is with respect to the Gaussian r.v.

in RandomizedSVD. For the sake of our analysis, we cannot immediately truncate X̃ to rank r since then
the error bound in [HMT11] is not tight enough. Thus, since X̃ is rank `, in practice we even observe that
‖X− X̃‖2F < ‖X−Xr‖2F , especially for small r, as shown in Figure 4.13 later in the text. The figure also
shows that using q > 0 power iterations is extremely helpful, though this is not taken into account in
our analysis since there are no useful theoretical bounds (in the Frobenius norm). Note that variants for
eigenvalues also exist; we refer to the equivalent of RandomizedSVD as RandomizedEIG, which has
the property that U = V and Σ need not be positive (cf., [HMT11, GM13])

Additional convex constraints

Consider the variant of (4.3):
minimize
X∈Rm×n

f(X)

subject to rank(X) ≤ r, X ∈ C,
(4.25)
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for a convex set C. Our main interests are C+ = {X : X � 0} and the matrix simplex C∆ = {X : X �
0, trace(X) = 1}. In both cases the constraints are unitarily invariant and the projection onto these sets
can be done by taking the eigenvalue decomposition and projecting the eigenvalues. Furthermore, for
these specific C, P{X:rank(X)≤r}∩C = PC ◦ Pr (this is not obvious; see [KBCK13]).9

In general, any convex set C satisfying the above property is compatible with our algorithm, as long as
X? ∈ C. We overload notation to use PC to denote both the projection of X onto the set as well as the
projection of its eigenvalues onto the analogous set.

4.4.1 The RSVP algorithm

Our approach is based on the projected gradient descent algorithm:

Xi+1 = Pεr(Xi+1 − µi∇f(Xi)), (4.26)

where Xi is the i-th iterate, ∇f(·) is the gradient of the loss function, µi is a step-size, and Pεr(·) is the
approximate projector onto rank r matrices given by RandomizedSVD. If we include a convex constraint
C, then the iteration is

Xi+1 = PC(Pεr(Xi+1 − µi∇f(Xi))). (4.27)

In practice, Nesterov acceleration improves performance:

Yi+1 = (1 + βi)Xi − βiXi−1 (4.28)

Xi+1 = P(Yi − µi∇f(Yi)), (4.29)

where βi is chosen βi = (αi−1−1)/αi and α0 = 1, 2αi+1 = 1+
√

4α2
i + 1 [Nes83] (see [KC14]). Theorem 12

holds for a stepsize µi based on the RIP constant, which is unknown. In practice, the algorithm consistently
converges as long as µi . 2

‖A‖2 .

Algorithm 14 shows implementation details that are important for keeping low-memory requirements.
The implementation of maps like A and At depends on the structure of A.

4.4.2 Convergence guarantees for RSVP

We assume the observations are generated by y = AX? + εwhere ε is a noise term, not to be confused
with the approximation error ε. In the following theorem, we will assume that ‖A‖2 ≤ pn/m, which is
true for the quantum tomography example [Liu11]; if A is a normalized Gaussian, then this assumption
holds in expectation.

9This formula is literally true for C+ and {X : X � 0, trace(X) ≤ 1}. For C = {X : X � 0, trace(X) = 1} constraints, PC can
increase the rank, so formally we must work on a restricted subspace and then embed back in the larger space, but this poses no
theoretical issues.
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Algorithm 14 Efficient implementation of SVP, K = {R,C}
Require: step-size µ > 0, measurements y, initial points U0 ∈ Km×r, V0 ∈ Kn×r, D0 ∈ Kr
Require: (optional) unitarily invariant convex set C
Require: Function A : (U,D,V) 7→ A(U diag(D)VH)
Require: Function At : (z,W) 7→ A∗(z)W
Require: Function AtH : (z,W) 7→ (A∗(z))HW

1: V−1 ← 0, U−1 ← 0, D−1 ← 0
2: for i = 0, 1, . . . do
3: Compute βi // See text
4: Uy ← [Ui,Ui−1], Vy ← [Vi,Vi−1]
5: Dy ← [(1 + βi)Di,−βiDi−1]
6: z← A(Uy,Dy,Vy)− y // Compute the residual
7: Define the functions

h : W 7→ Uy diag(Dy)VH
y W − µAt(z,W)

hH : W 7→ Vy diag(Dy)UH
y W − µAtH(z,W)

8: (Ui+1,Di+1,Vi+1) ← RandomizedSVD(h,hH, r) or (Ui+1,Di+1,Ui+1) ←
RandomizedEIG(h,hH, r)

9: Di+1 ← PC(Di+1) // Optional
10: end for
11: return X ← UiDiV

H
i // If desired

Theorem 12. (Iteration invariant) Pick an accuracy ε = r
ρ−1 , where ρ is defined as in Theorem 11. Define

` = r+ρ and let c be an integer such that ` = (c−1)r. Let µi = 1
2(1+δcr) in (4.26) and assume ‖A‖2 ≤ pn/m

and f(Xi) > C2‖ε‖2, where C ≥ 4 is a constant. Then the descent scheme (4.26) or (4.27) has the following
iteration invariant

Ef(Xi+1) ≤ θf(Xi) + τ‖ε‖2, (4.30)

in expectation, where

θ ≤ 12 · 1 + δ2r
1− δcr

·
(

ε

1 + δcr
· pn
m

+ (1 + ε)
3δcr

1− δ2r

)
,

and

τ ≤ 1 + δ2r
1− δcr

·
(

12 · (1 + ε)

(
1 +

2δcr
1− δ2r

)
+ 8

)
.

The expectation is taken with respect to Gaussian random designs in RandomizedSVD. If θ ≤ θ∞ < 1 for
all iterations, then limi→∞Ef(Xi) ≤ max{C2, τ

1−θ∞ }‖ε‖
2.

Each call to RandomizedSVD draws a new Gaussian random variable, so the expected value does not
depend on previous iterations. By Corollary 3.4 in [NT09a], δcr ≤ c · δ2r, which allows us to put θ and τ
in terms of δ2r if desired, at a slight expense in sharpness.

The expected value of the function converges linearly at rate θ to within a constant of the noise level, and
in particular, it converges to zero when there is no noise since C and τ are finite. Note that convergence
of the iterates follows from convergence of the function f :

Corollary 5. If f(Xi) ≤ γ, then ‖Xi −X?‖2F ≤
(
√
γ+‖ε‖2)2

1−δ2r .
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Proof. By the R-RIP and the triangle inequality,
√

1 + δ2r(A)‖Xi −X?‖F ≤ ‖A(Xi)−A(X?)‖2
= ‖(A(Xi)− y)− (A(X?)− y)‖2
≤ ‖(A(Xi)− y)‖2 + ‖ε‖2
≤ √γ + ‖ε‖2

Corollary 6 (Exact computation). If ε = 0 and there is no additional convex constraint C, then θ =
2δ2r

1−δ2r (1 + 2
C ) and τ = 1 + 2δ2r

1−δ2r , hence θ < 1 if δ2r < 1
3+4/C .

Corollary 6 shows that without the approximate SVD, the R-RIP constants are quite reasonable. For
example, with exact computation and no noise, any value of δ2r < 1/3 implies that limi→∞Xi = X?. With
noise, choosing C = 4 gives δ2r = 1/5 and θ = 3/4, τ = 3/2 and thus limi→∞ f(Xi) ≤ max{16, 6}‖ε‖2.

Note that the theorem gives pessimistic values for ε. We want the bound on θ to be less than 1 in order to
have a contraction, so we need

12 · 1 + δ2r
1− δcr

· ε

1 + δcr
· pn
m︸ ︷︷ ︸

I

+ 12(1 + ε) · 1 + δ2r
1− δcr

· 3δcr
1− δ2r︸ ︷︷ ︸

II

< 1

For a rough analysis, we will give approximate conditions so that each of the I and II terms is less than
0.5. It is clear that the terms blow up if δcr → 1, so we will assume δcr � 1 (and hence δ2r � 1). Then
setting 1 + δ2r ≈ 1 in the numerator of I, we require that

12

1− δ2
cr

· ε pn
m

<
1

2
(4.31)

which means that we need ε . m
24pn . For quantum tomography, p = n and m = O(rn), so we require

ε . O(r/n). From Theorem 11, our bound on ε is r/(ρ − 1), so we require ρ ' n, which defeats the
purpose of the randomized algorithm (in this case, one would just do a dense SVD). Numerical examples
in the next section will show that ρ can be nearly a small constant, so the theory is not sharp.

For the II term, again approximate 1 + δ2r ≈ 1 and then multiply the denominators and ignore the δcrδ2r
term to get

72δcr(1 + ε) . 1− δ2r − δcr. (4.32)

Since certainly ε ≤ 0.5 and δ2r + δcr ≤ 0.5, a sufficient condition is δcr < 1/216, which is reasonable
(cf. [JNS13]).

4.5 Solving the Robust PCA problem with Matrix ALPS

Robust Principal Component Analysis (RPCA) [CLMW11] deals with the challenge of recovering a low
rank and a sparse matrix component from a complete data matrix. Here, we consider its generalization
according to the following problem definition.
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PROBLEM 5.2. Given a linear operator A : Rp×n → Rm and a set of observations y ∈ Rm (usually
m� p · n):

y = AX? + ε,

where X? := L? + M? ∈ Rp×n is the superposition of a rank-r L? and a k-sparse M? component that we
desire to recover, identify a matrix L̂ ∈ Rp×n of rank (at most) r and a matrix M̂ ∈ Rp×n with sparsity level∥∥M̂

∥∥
0
≤ k such that:

{
L̂, M̂

}
= arg min

L, M: rank(L)≤r, ‖M‖0≤k

∥∥y −A(L + M)
∥∥

2
. (4.33)

Here, ε ∈ Rm represents the potential noise term. For different linear operator A and signal X?

configurations, the above problem arises in various research fields. In the case of RPCA, we acquire
a finite set of observations Y ∈ Rp×n according to Y = L? + M? with L? ∈ Rp×n and M? ∈ Rp×n,
defined above. The “robust” characterization of the RPCA problem refers to M? having gross non-zero
entries with arbitrary energy. Under mild assumptions concerning the incoherence between L? and M?

[CLMW11], we can efficiently reconstruct both the low-rank and sparse components using convex and
non-convex optimization approaches [CLMW11, ZT11].

While solving the RPCA problem itself is a difficult task, here we assume: (i) A is an arbitrary linear
operator satisfying both sparse- and rank-RIP (this assumption includes the identity linear map of RPCA
as a special case) and, (ii) the total number of observations in y is much less compared to the total number
of variables we want to recover, i.e., m � p · n. Before we present our algorithm and its analysis, we
note the following. The reconstruction of both L? and M? from y makes sense under mild conditions on
L? and M?. Borrowing from [CLMW11], we assume that the low rank component L? is not sparse and
uniformly bounded with respect to its singuar vectors and the sparse compoment M? is not low rank
with support set uniformly random over the entries of M?.

An important ingredient for our matrix analysis is the following lemma—the proof can be found in
[WSB11].

Lemma 24. Let F be a support set with |F| ≤ k and assume L ∈ Rp×n is a rank-r matrix, satisfying the
conditions above. Then, given a general linear operator A : Rp×n → Rm satisfying both sparse- and rank-RIP,
we have:

∥∥(A∗AL)F
∥∥
F
. δk+r(A)

∥∥L
∥∥
F
, for min{p, n} � k � r.

where δk+r(A) denotes the RIP constant of A over (disjoint) sparse index and low-rank subspace sets where
the combined cardinality is less than k + r.

Unfortunately, we cannot guarantee that the putative low rank and sparse solutions, i.e., Li and Mi,
respectively, are uniformly bounded or have random support set patterns, respectively, at each iteration
for arbitrary problem configurations. Although the potential optimization problem is non-convex,
recent works on non-convex optimization [ABRS10, CIM11] establish mild conditions on the objective
function and the regularization terms, that are satisfied in our setting, under which a stationary point to a
non-convex problem can be obtained using memory-less or memory-based projected gradient descent
methods.
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Algorithm 15 MATRIX ALPS Instance

1: Input: y, A, A∗, Tolerance η, MaxIterations, τi, ∀i
2: Initialize: {Q0,M0,L0} ← 0, {L0,M0} ← {∅}, i← 0
3: repeat
4: Low rank matrix estimation:
5: DLi ← ortho

(
Pr(∇f(Qi))

)

6: SLi ← DLi ∪ Li
7: VLi ← QLi − µLi

2 PSLi ∇f(Qi)

8: Li+1 ← Pr(VLi ) with Li+1 ← ortho (Li+1)
9: QLi+1 ← Li+1 + τi(Li+1 − Li)

10: Qi+1 ← QLi+1 + QMi
11: Sparse matrix estimation:
12: DMi ← supp

(
PΣk(∇f(Qi+1))

)

13: SMi ← DMi ∪Mi

14: (VMi )SMi ← (QMi )SMi −
µMi

2 (∇f(Qi+1))SMi
15: Mi+1 ← PΣk(VMi ) with Mi+1 ← supp (Mi+1)
16: QMi+1 ←Mi+1 + τi(Mi+1 −Mi)
17: Qi+1 ← QLi+1 + QMi+1

18: i← i+ 1
19: until ‖Yi −Yi−1‖2 ≤ η‖Yi‖2 or MaxIterations.

4.5.1 The MATRIX ALPS Framework for RPCA

We combine ALPS and MATRIX ALPS ideas for the RPCA case, based on acceleration techniques from
convex analysis [Nes83, KC11]. At each iteration, we leverage both low rank and sparse matrix estimates
from previous iterations to form a gradient surrogate with low-computational cost. Then, we update the
current estimates using memory to gain momentum in convergence as proposed in Nesterov’s optimal
gradient methods; see Algorithm 15. A key ingredient is the selection of the momentum term τ—constant
and adaptive momentum selection strategies can be found in [KC11].

To further improve the convergence speed, we replace the least-squares optimization steps with first-order
gradient descent updates—the step size µLi , µ

M
i selections follow from [KC11].

The best projection of an arbitrary matrix onto the set of low rank matrices requires sophisticated matrix
decompositions such as Singular Value Decomposition (SVD). Using the Lanczos approach, we require
O(rpn) arithmetic operations to compute a rank-r matrix approximation for a given constant accuracy—a
prohibitive time-complexity that does not scale well for many practical applications. Alternatives to
SVD can be found in [HMT11, ZT11]. Furthermore, [KC14] includes ε-approximate low rank matrix
projections in the recovery process and study their effects on the convergence.

The following theorem characterizes Algorithm 15 for the noiseless case using a constant momentum
step size selection strategy.
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Theorem 13. Let A : Rp×n → Rm be a linear operator satisfying rank-RIP and sparse-RIP with constants
δ4r(A) ≤ 0.09 and δ4k(A) ≤ 0.095, respectively. Furthermore, assume constant momentum step size
selection with τi = 1/4, ∀i. We consider the noiseless case where the set of observations satisfy y = AX? for
X? := L? + M? as defined in PROBLEM 5.2. Then, Algorithm 15 satisfies the following second-order linear
system:

x(i+ 1) ≤ (1 + τ)∆x(i) + τ∆x(i− 1), (4.34)

where x(i) :=

[ ∥∥Li − L?
∥∥
F∥∥Mi −M?
∥∥
F

]
and ∆ :=

[
∆11 ∆12

∆21 ∆22

]
depends on RIP constants δ4r(A) and δ4k(A).

Furthermore, the above inequality can be transformed into the following first-order linear system:

w(i+ 1) ≤
[
(1 + τ)∆ τ∆

I 0

]i

︸ ︷︷ ︸
∆̂

w(0), (4.35)

for w(i) := [x(i+ 1) x(i)]T . We observe that limi→∞w(i) = 0 since |λj(∆̂)| ≤ 1, ∀j.

4.6 Experiments

4.6.1 List of algorithms

For the ARM problem in PROBLEM 4.1, we compare the following algorithms: (i) the Singular Value
Projection (SVP) algorithm [MJD10], a non-convex first-order projected gradient descent algorithm with
constant step size selection (we study the case where µ = 1), (ii) the inexact ALM algorithm [LCM10]
based on augmented Langrance multiplier method, (iii) the OptSpace algorithm [KMO10], a gradient de-
scent algorithm on the Grassmann manifold, (iv) the Grassmannian Rank-One Update Subspace Estima-
tion (GROUSE) and the Grassmannian Robust Adaptive Subspace Tracking methods (GRASTA) [BNR10,
HBL11], two stochastic gradient descent algorithms that operate on the Grassmannian—moreover, to
allay the impact of outliers in the subspace selection step, GRASTA incorporates the augmented La-
grangian of `1-norm loss function into the Grassmannian optimization framework, (v) the Riemannian
Trust Region Matrix Completion algorithm (RTRMC) [BA11], a matrix completion method using first- and
second-order Riemannian trust-region approaches, (vi) the Low rank Matrix Fitting algorithm (LMatFit)
[WYZ12], a nonlinear successive over-relaxation algorithm and (vii) the algorithms MATRIX ALPS I,
ADMiRA [LB10], MATRIX ALPS II and Randomized MATRIX ALPS II with QR Factorization (referred
shortly as MATRIX ALPS II with QR) presented in this paper.

For the problem of RPCA in PROBLEM 5.2, we compare MATRIX ALPS II with GoDec [ZT11], a state-of-
the-art projected gradient descent algorithm.

4.6.2 Implementation details

To properly compare the algorithms in the above list, we preset a set of parameters that are common.
We denote the ratio between the number of observed samples and the number of variables in X? as
SR := m/(p·n) (sampling ratio). Furthemore, we reserve FR to represent the degree of freedom in a rank-r
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Figure 4.5: Median error per iteration for MATRIX ALPS II variants over 10 Monte-Carlo repetitions. In brackets,
we present the mean time consumed for convergene in seconds. (a) n = 1024, p = 256, m = 0.25n2, and rank r = 20.
(b) n = 2048, p = 512, m = 0.25n2, and rank r = 60. (c) n = 1000, p = 500, m = 0.25n2, and rank r = 50.

matrix to the number of observations—this corresponds to the following definition FR := (r(m+n−r))/m.
In most of the experiments, we fix the number of observable data m = 0.3pn and vary the dimensions
and the rank r of the matrix X?. This way, we create a wide range of different problem configurations
with variable FR.

Most of the algorithms in comparison as well as the proposed schemes are implemented in MATLAB. We
note that the LMaFit software package contains parts implemented in C that reduce the per iteration
computational time. This provides insights for further time savings in our schemes; we leave a fully
optimized implementation of our algorithms as future work. In this paper, we mostly test cases where
m � n. Such settings can be easily found in real-world problems such as recommender systems (e.g.
Netflix, Amazon, etc.) where the number of products, movies, etc. is much greater than the number of
active users.

In all algorithms, we fix the maximum number of iterations to 500, unless otherwise stated. To solve a
least squares problem over a restricted low-rank subspace, we use conjugate gradients with maximum
number of iterations given by cg_maxiter := 500 and tolerance parameter cg_tol := 10−10. We use the
same stopping criteria for the majority of algorithms under consideration:

∥∥X(i)−X(i− 1)
∥∥
F∥∥X(i)

∥∥
F

≤ tol, (4.36)

whereX(i), X(i− 1) denote the current and the previous estimate of X? and tol := 5 · 10−5. If this is not
the case, we tweak the algorithms to minimize the total execution time and achieve similar reconstruction
performance as the rest of the algorithms. For SVD calculations, we use the lansvd implementation in
PROPACK package [Lar]—moreover, all the algorithms in comparison use the same linear operators
A and A∗ for gradient and SVD calculations and conjugate-gradient least-squares minimizations. For
fairness, we modified all the algorithms so that they exploit the true rank. Small deviations from the true
rank result in relatively small degradation in terms of the reconstruction performance. In case the rank of
X? is unknown, one has to predict the dimension of the principal singular space. The authors in [MJD10],
based on ideas in [KMO10], propose to compute singular values incrementally until a significant gap
between singular values is found. Similar strategies can be found in [LCM10] for the convex case.

In MATRIX ALPS II and MATRIX ALPS II with QR, we performQi ← ortho(Xi ∪Xi+1) to construct a set
of orthonormal rank-1 matrices that span the subspace, spanned by Xi ∪ Xi+1. While such operation can
be implemented using factorization procedures (such as SVD or QR decompositions), in practice this
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degrades the time complexity of the algorithm substantially as the rank r and the problem dimensionality
increase. In our implementations, we simply union the set of orthonormal rank-1 matrices, without further
orthogonalization. Thus, we employ inexact projections for computational efficiency which results in
faster convergence. Figure 4.5 shows the time overhead due to the additional orthogonalization process.
We compare three algorithms: MATRIX ALPS II (no orthogonalization step), MATRIX ALPS II using SVD
for orthogonalization and, MATRIX ALPS II using QR for orthogonalization. In Figures 4.5(a)-(b), we
use subsampled and permuted noiselets for linear map A and in Figure 5(c), we test the MC problem.
In all the experimental cases considered in this work, we observed identical performace in terms of
reconstruction accuracy for the three variants, as can be also seen in Figure 4.5. To this end, for the rest of
the paper, we use MATRIX ALPS II where Qi ← Xi ∪ Xi+1.

4.6.3 Synthetic data

General affine rank minimization using noiselets: In this experiment, the set of observations y ∈ Rm

satisfy:

y = AX? + ε (4.37)

Here, we use permuted and subsampled noiselets for the linear operator A [WSB11]. The signal X? is
generated as the multiplication of two low-rank matrices, L ∈ Rp×r and R ∈ Rn×r, such that X? = LRT

and
∥∥X?

∥∥
F

= 1. Both L and R have random independent and identically distributed (iid) Gaussian
entries with zero mean and unit variance. In the noisy case, the additive noise term ε ∈ Rm contains
entries drawn from a zero mean Gaussian distribution with

∥∥ε
∥∥

2
∈ {10−3, 10−4}.

We compare the following algorithms: SVP, ADMiRA, MATRIX ALPS I, MATRIX ALPS II and MATRIX

ALPS II with QR for various problem configurations, as depicted in Table 4.1 (there is no available code
with arbitrary sensing operators for the rest algorithms). In Table 4.1, we show the median values of
reconstruction error, number of iterations and execution time over 50 Monte Carlo iterations. For all
cases, we assume SR = 0.3 and we set the maximum number of iterations to 500. Bold font denotes the
fastest execution time. Furthermore, Figure 4.6 illustrates the effectiveness of the algorithms for some
representative problem configurations.

In Table 4.1, MATRIX ALPS II and MATRIX ALPS II with QR obtain accurate low-rank solutions much
faster than the rest of the algorithms in comparison. In high dimensional settings, MATRIX ALPS II
with QR scales better as the problem dimensions increase, leading to faster convergence. Moreover, its
execution time is at least a few orders of magnitude smaller compared to SVP, ADMiRA and MATRIX

ALPS I implementations.

Robust matrix completion: We design matrix completion problems in the following way. The signal of
interest X? ∈ Rp×n is synthesized as a rank-r matrix, factorized as X? := LRT with

∥∥X?
∥∥
F

= 1 where
L ∈ Rp×r and R ∈ Rn×r as defined above. In sequence, we subsample X? by observing m = 0.3pn

entries, drawn uniformly at random. We denote the set of ordered pairs that represent the coordinates of
the observable entries as Ω = {(i, j) : [X?]ij is known} ⊆ {1, . . . , p} × {1, . . . , n} and let AΩ denote the
linear operator (mask) that samples a matrix according to Ω. Then, the set of observations satisfies:

y = AΩX? + ε, (4.38)

i.e., the known entries of X? are structured as a vector y ∈ Rm, disturbed by a dense noise vector ε ∈ Rm
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Table 4.1: General ARM using Noiselets.

Configuration FR SVP ADMiRA MATRIX ALPS I

p n r
∥∥ε∥∥2 iter. err. time iter. err. time iter. err. time

256 512 5 0 0.097 38 2.2 · 10−4 0.78 27 4.4 · 10−5 2.26 13.5 1 · 10−5 0.7

256 512 5 10−3 0.097 38 6 · 10−4 0.91 700 2 · 10−3 65.94 16 7 · 10−4 0.92

256 512 5 10−4 0.097 38 2.1 · 10−4 0.94 700 4.1 · 10−4 69.03 11.5 7.9 · 10−5 0.72

256 512 10 0 0.193 50 3.4 · 10−4 1.44 38 5 · 10−5 4.42 13 3.9 · 10−5 0.92

256 512 10 10−3 0.193 50 9 · 10−4 1.39 700 1.7 · 10−3 56.94 29 1.2 · 10−3 1.78

256 512 10 10−4 0.193 50 3.5 · 10−4 1.38 700 9.3 · 10−5 64.69 14 1.4 · 10−4 0.93

256 512 20 0 0.38 86 7 · 10−4 3.32 700 4.1 · 10−5 81.93 45 2 · 10−4 4.09

256 512 20 10−3 0.38 86 1.5 · 10−3 3.45 700 4.2 · 10−2 77.35 69 2.3 · 10−3 5.05

256 512 20 10−4 0.38 86 7 · 10−4 3.26 700 4 · 10−2 79.47 46 4 · 10−4 4.1

512 1024 30 0 0.287 66 4.9 · 10−4 8.79 295 5.4 · 10−5 143.53 24 1 · 10−4 8.01

512 1024 40 0 0.38 86 7 · 10−4 10.09 700 4.3 · 10−2 251.27 45 2 · 10−4 11.08

1024 2048 50 0 0.24 57 4.3 · 10−4 42.88 103 5.2 · 10−5 312.62 18 5.7 · 10−5 35.86

MATRIX ALPS II MATRIX ALPS II with QR

p n r
∥∥ε∥∥2 iter. err. time iter. err. time

256 512 5 0 0.097 8 7.1 · 10−6 0.42 10 9.1 · 10−6 0.39

256 512 5 10−3 0.097 9 7 · 10−4 0.56 20 7 · 10−4 0.93

256 512 5 10−4 0.097 8 7 · 10−5 0.5 10 7.8 · 10−5 0.46

256 512 10 0 0.193 10 2.3 · 10−5 0.68 13 2.4 · 10−5 0.64

256 512 10 10−3 0.193 19 1 · 10−3 1.29 27 1 · 10−3 1.35

256 512 10 10−4 0.193 10 1.1 · 10−4 0.68 13 1.1 · 10−4 0.62

256 512 20 0 0.38 21 1 · 10−4 1.92 24 1 · 10−4 1.26

256 512 20 10−3 0.38 36 1.5 · 10−3 2.67 39 1.5 · 10−3 1.69

256 512 20 10−4 0.38 21 2 · 10−4 1.87 24 2 · 10−4 1.22

512 1024 30 0 0.287 14 4.5 · 10−5 4.7 18 3.3 · 10−5 4.15

512 1024 40 0 0.38 21 1 · 10−4 6.01 24 1 · 10−4 4.53

1024 2048 50 0 0.24 12 2.5 · 10−5 22.76 15 3.3 · 10−5 17.94
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Figure 4.6: Low rank signal reconstruction using noiselet linear operator. The error curves are the median values
across 50 Monte-Carlo realizations over each iteration. For all cases, we assume m = 0.3pn. (a) p = 256, n = 512,
r = 10 and

∥∥ε∥∥
2
= 10−3. (b) p = 256, n = 512, r = 10 and

∥∥ε∥∥
2
= 10−4. (c) p = 256, n = 512, r = 20 and

∥∥ε∥∥
2
= 0.

(d) p = 512, n = 1024, r = 30 and
∥∥ε∥∥

2
= 0. (e) p = 512, n = 1024, r = 40 and

∥∥ε∥∥
2
= 0. (f) p = 1024, n = 2048,

r = 50 and
∥∥ε∥∥

2
= 0.

with fixed-energy, which is populated by iid zero-mean Gaussians.

To demonstrate the reconstruction accuracy and the convergence speeds, we generate various problem
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configurations (both noisy and noiseless settings), according to (4.38). The energy of the additive
noise takes values

∥∥ε
∥∥

2
∈ {10−3, 10−4}. All the algorithms are tested for the same signal-matrix-noise

realizations. A summary of the results can be found in Tables 4.2, 4.3 and, 4.4 where we present the
median values of reconstruction error, number of iterations and execution time over 50 Monte Carlo
iterations. For all cases, we assume SR = 0.3 and set the maximum number of iterations to 700. Bold font
denotes the fastest execution time. Some convergence error curves for specific cases are illustrated in
Figures 4.7 and 4.8.

In Table 4.2, LMaFit [WYZ12] implementation has the fastest convergence for small scale problem
configuration where p = 300 and n = 600. We note that part of LMaFit implementation uses C code for
acceleration. GROUSE [BNR10] is a competitive low-rank recovery method with attractive execution
times for the extreme low rank problem settings due to stochastic gradient descent techniques. Nevertheless,
its execution time performance degrades significantly as we increase the rank of X?. Moreover, we observe
how randomized low rank projections accelerate the convergence speed where MATRIX ALPS II with QR
converges faster than MATRIX ALPS II. In Tables 4.3 and 4.4, we increase the problem dimensions. Here,
MATRIX ALPS II with QR has faster convergence for most of the cases and scales well as the problem
size increases. We note that we do not exploit stochastic gradient descent techniques in the recovery
process to accelerate convergence which is left for future work.
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Figure 4.7: Low rank matrix recovery for the matrix completion problem. The error curves are the median values
across 50 Monte-Carlo realizations over each iteration. For all cases, we assume m = 0.3pn. (a) p = 300, n = 600,
r = 5 and

∥∥ε∥∥
2
= 0. (b) p = 300, n = 600, r = 20 and

∥∥ε∥∥
2
= 10−4.

4.6.4 Image compression

We use real images to highlight the reconstruction performance of the proposed schemes. In particular,
we perform grayscale image denoising from an incomplete set of observed pixels—similar experiments
can be found in [WYZ12]. Based on the matrix completion setting, we observe a limited number of pixels
from the original image and perform a low rank approximation based only on the set of measurements.
While the true underlying image might not be low-rank, we apply our solvers to obtain low-rank
approximations.

Figures 4.9 and 4.10 depict the reconstruction results. In the first test case, we use a 512× 512 grayscale
image as shown in the top left corner of Figure 4.9. For this case, we observe only the 35% of the total
number of pixels, randomly selected—a realization is depicted in the top right plot in Figure 4.9. In
sequel, we fix the desired rank to r = 40. The best rank-40 approximation using SVD is shown in the top
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Table 4.2: Matrix Completion problem for p = 300 and n = 600. “−” depicts no information or not
applicable due to time overhead.

Configuration FR SVP GROUSE TFOCS

p n r
∥∥ε∥∥2 iter. err. time iter. err. time iter. err. time

300 600 5 0 0.083 43 2.9 · 10−4 0.59 − 1.52 · 10−4 0.08 − 8.69 · 10−5 3.36

300 600 5 10−3 0.083 42 6 · 10−4 0.65 − 2 · 10−4 0.082 − 5 · 10−4 3.85

300 600 5 10−4 0.083 43 3 · 10−4 0.64 − 2 · 10−4 0.079 − 1 · 10−4 3.5

300 600 10 0 0.165 54 4 · 10−4 0.9 − 4.5 · 10−6 0.22 − 2 · 10−4 6.43

300 600 10 10−3 0.165 54 9 · 10−4 0.89 − 2 · 10−4 0.16 − 8 · 10−4 7.83

300 600 10 10−4 0.165 54 4 · 10−4 0.91 − 2 · 10−4 0.16 − 1 · 10−4 6.75

300 600 20 0 0.326 85 8 · 10−4 2.04 − 1 · 10−4 0.81 − 2 · 10−4 30.04

300 600 40 0 0.637 241 3.4 · 10−3 11.1 − 3.1 · 10−3 13.94 − − −
Inexact ALM OptSpace GRASTA

p n r
∥∥ε∥∥2 iter. err. time iter. err. time iter. err. time

300 600 5 0 0.083 24 6.7 · 10−5 0.47 31 2.8 · 10−6 2.41 − 2.2 · 10−4 2.07

300 600 5 10−3 0.083 24 6 · 10−4 0.49 297 5 · 10−4 22.82 − 1 · 10−4 2.07

300 600 5 10−4 0.083 24 1 · 10−4 0.49 267 1 · 10−4 21.56 − 8 · 10−5 2.1

300 600 10 0 0.165 26 1 · 10−4 0.6 37 2.3 · 10−6 8.42 − 8.6 · 10−6 4.5

300 600 10 10−3 0.165 26 8 · 10−4 0.59 304 8 · 10−4 66.02 − 5.5 · 10−3 3.43

300 600 10 10−4 0.165 26 1 · 10−4 0.61 304 1 · 10−4 65.56 − 5.3 · 10−3 3.44

300 600 20 0 0.326 44 3 · 10−4 1.37 − − − − 5 · 10−4 10.51

300 600 40 0 0.637 134 1.6 · 10−3 7.08 − − − − 5.2 · 10−3 251.34

RTRMC LMaFit MATRIX ALPS I

p n r
∥∥ε∥∥2 iter. err. time iter. err. time iter. err. time

300 600 5 0 0.083 13 1.2 · 10−4 0.59 20 2.2 · 10−4 0.054 22 1.8 · 10−5 0.76

300 600 5 10−3 0.083 13 1 · 10−4 0.59 19 5 · 10−4 0.049 37 7 · 10−4 1.34

300 600 5 10−4 0.083 13 2 · 10−4 0.59 21 1 · 10−4 0.052 18 1 · 10−4 0.61

300 600 10 0 0.165 16 1.1 · 10−3 1.03 23 1 · 10−4 0.064 16 1 · 10−4 0.65

300 600 10 10−3 0.165 17 1 · 10−4 1.09 26 8 · 10−4 0.077 30 1.1 · 10−3 1.16

300 600 10 10−4 0.165 17 2 · 10−4 1.09 32 1 · 10−4 0.097 16 1 · 10−4 0.63

300 600 20 0 0.326 22 4 · 10−4 2.99 37 2 · 10−4 0.12 37 2 · 10−4 2.05

300 600 40 0 0.637 35 3 · 10−5 11.83 233 4.9 · 10−4 2.52 500 6.5 · 10−2 45.67

ADMiRA MATRIX ALPS II MATRIX ALPS II with QR

p n r
∥∥ε∥∥2 iter. err. time iter. err. time iter. err. time

300 600 5 0 0.083 59 5.2 · 10−5 2.86 10 1.7 · 10−5 0.34 14 3.2 · 10−5 0.45

300 600 5 10−3 0.083 700 4 · 10−3 30.96 12 6 · 10−4 0.44 24 6 · 10−4 0.81

300 600 5 10−4 0.083 700 4.5 · 10−3 31.45 10 1 · 10−4 0.36 14 1 · 10−4 0.47

300 600 10 0 0.165 47 1 · 10−3 2.56 12 3 · 10−5 0.48 16 3.4 · 10−5 0.49

300 600 10 10−3 0.165 700 1.5 · 10−3 28.49 19 9 · 10−4 0.74 29 9 · 10−4 0.95

300 600 10 10−4 0.165 700 1 · 10−4 31.99 12 1 · 10−4 0.49 16 1 · 10−4 0.54

300 600 20 0 0.326 700 1.2 · 10−3 41.86 20 1 · 10−4 1.16 23 1 · 10−4 0.79

300 600 20 0 0.326 − − − 72 2 · 10−4 7.21 68 2 · 10−4 2.6

middle of Figure 4.9 where the full set of pixels is observed. Given a fixed common tolerance and the
same stopping criteria, Figure 4.9 shows the recovery performance achieved by a range of algorithms. We
repeat the same experiment for the second image in Figure 4.10. Here, the size of the image is 256× 256,
the desired rank is set to r = 30 and we observe the 33% of the image pixels. In constrast to the image
denoising procedure above, we measure the reconstruction error of the computed solutions with respect
to the best rank-30 approximation of the true image. In both cases, we note that MATRIX ALPS II has a
better phase transition performance as compared to the rest of the algorithms.

4.6.5 Quantum tomography

We apply Algorithm 14 to the quantum tomography problem, which is a particular instance of (4.3). For
details, we refer to [GLF+10, FGLE12]. The salient features are that the variable X ∈ Cn×n is constrained
to be Hermitian positive-definite, and that, unlike many low-rank recovery problems, the linear operator
A satisfies the R-RIP: [Liu11] establishes that Pauli measurements (which comprise A) have R-RIP with
overwhelming probability when m = O(rn log6 n). In the ideal case, X? is exactly rank 1, but it may
have larger rank due to some (non-Gaussian) noise processes, in addition to AWGN ε. Furthermore,
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Table 4.3: Matrix Completion problem for p = 700 and n = 1000. “−” depicts no information or not
applicable due to time overhead.

Configuration FR SVP Inexact ALM GROUSE

m n r
∥∥ε∥∥2 iter. err. time iter. err. time iter. err. time

700 1000 5 0 0.04 34 1.9 · 10−4 1.77 23 6.5 · 10−5 1.69 − 3.5 · 10−5 0.23

700 1000 5 10−3 0.04 34 4.2 · 10−4 1.92 23 3.7 · 10−4 1.87 − 3.1 · 10−4 0.24

700 1000 30 0 0.239 61 4.6 · 10−4 6.39 29 1.2 · 10−4 3.91 − 3.2 · 10−5 3.15

700 1000 30 10−3 0.239 61 1.1 · 10−3 6.33 29 1 · 10−3 3.87 − 8 · 10−4 3.14

700 1000 50 0 0.393 95 8.5 · 10−4 14.47 49 3.2 · 10−4 9.02 − 1.3 · 10−5 10.31

700 1000 50 10−3 0.393 95 1.6 · 10−3 15.15 49 1.4 · 10−3 9.11 − 8 · 10−4 10.34

700 1000 110 0 0.833 683 1.2 · 10−2 253.1 374 5.8 · 10−3 152.61 − 1.2 · 10−1 110.93

700 1000 110 10−3 0.833 682 1.3 · 10−2 256.21 374 6.8 · 10−3 154.34 − 1.05 · 10−1 111.05

LMaFit MATRIX ALPS II MATRIX ALPS II with QR

m n r
∥∥ε∥∥2 iter. err. time iter. err. time iter. err. time

700 1000 5 0 0.04 24 7.2 · 10−6 0.67 8 1.5 · 10−5 1.15 15 8.3 · 10−5 1.05

700 1000 5 10−3 0.04 17 3.7 · 10−4 0.5 10 4.5 · 10−4 1.38 15 3.8 · 10−4 1.1

700 1000 30 0 0.239 34 9.2 · 10−6 1.95 14 4.5 · 10−5 3.69 35 1.1 · 10−4 2.6

700 1000 30 10−3 0.239 30 1 · 10−3 1.71 25 1.1 · 10−3 6.1 35 1 · 10−3 2.61

700 1000 50 0 0.393 53 2.7 · 10−5 4.59 25 8.6 · 10−5 8.87 57 1.6 · 10−5 4.47

700 1000 50 10−3 0.393 52 1.4 · 10−3 4.53 40 1.6 · 10−3 14.38 57 1.4 · 10−3 4.49

700 1000 110 0 0.833 584 9 · 10−4 101.95 280 8 · 10−4 214.93 553 7 · 10−4 51.72

700 1000 110 10−3 0.833 584 3.7 · 10−3 102.15 336 4.7 · 10−3 261.98 551 3.7 · 10−3 51.62

Table 4.4: Matrix Completion problem for p = 500 and n = 2000. “−” depicts no information or not
applicable due to time overhead.

Configuration FR SVP Inexact ALM GROUSE

m n r
∥∥ε∥∥2 iter. err. time iter. err. time iter. err. time

500 2000 30 0 0.083 64 5.3 · 10−4 10.18 32 1.9 · 10−4 6.47 − 1.6 · 10−4 2.46

500 2000 30 10−3 0.083 64 1.1 · 10−3 6.69 32 1 · 10−3 4.51 − 6 · 10−4 1.94

500 2000 30 10−4 0.083 64 5.4 · 10−4 10.14 32 2.2 · 10−4 6.51 − 1.6 · 10−4 2.46

500 2000 50 0 0.408 103 1.1 · 10−4 15.74 54 5 · 10−4 10.8 − 8 · 10−5 7.32

500 2000 50 10−3 0.408 103 1.8 · 10−3 24.97 54 1.55 · 10−3 16.14 − 9 · 10−4 8.6

500 2000 50 10−4 0.408 102 1.1 · 10−3 24.85 54 5 · 10−4 16.17 − 7 · 10−5 8.59

500 2000 80 0 0.645 239 3.5 · 10−3 92.91 134 1.7 · 10−3 59.33 − 1 · 10−4 79.64

500 2000 80 10−3 0.645 239 4.2 · 10−3 94.86 134 2.8 · 10−3 60.68 − 1 · 10−4 79.98

500 2000 80 10−4 0.645 239 3.6 · 10−3 93.95 134 1.8 · 10−3 60.76 − 1 · 10−4 79.48

500 2000 100 0 0.8 523 1.1 · 10−2 259.13 307 6 · 10−3 173.14 − 4.5 · 10−2 143.41

500 2000 100 10−3 0.8 525 1.2 · 10−2 262.19 308 7 · 10−3 176.04 − 5.2 · 10−2 142.85

500 2000 100 10−4 0.8 523 1.1 · 10−2 262.11 307 6 · 10−3 170.47 − 5.1 · 10−2 144.78

LMaFit MATRIX ALPS II MATRIX ALPS II with QR

m n r
∥∥ε∥∥2 iter. err. time iter. err. time iter. err. time

500 2000 30 0 0.083 37 1.3 · 10−5 3.05 13 3.1 · 10−5 4.84 37 1.2 · 10−5 4.04

500 2000 30 10−3 0.083 37 1 · 10−3 2.52 22 1.1 · 10−3 5.35 37 1 · 10−3 3.32

500 2000 30 10−4 0.083 35 1 · 10−4 2.86 13 1.3 · 10−4 4.85 37 1.6 · 10−4 4.05

500 2000 50 0 0.408 60 6 · 10−5 6.06 22 1 · 10−4 7.6 60 2 · 10−4 5.67

500 2000 50 10−3 0.408 60 1.4 · 10−3 7.26 36 1.6 · 10−3 19.64 59 1.6 · 10−3 6.91

500 2000 50 10−4 0.408 60 2 · 10−4 7.29 22 2 · 10−4 11.87 59 2 · 10−4 6.75

500 2000 80 0 0.645 183 3 · 10−4 33.65 61 2 · 10−4 49.53 151 3 · 10−4 18.66

500 2000 80 10−3 0.645 183 2.3 · 10−3 33.48 92 2.4 · 10−3 75.51 151 2.3 · 10−3 18.87

500 2000 80 10−4 0.645 183 3 · 10−4 33.47 61 4 · 10−4 49.52 151 3 · 10−4 18.92

500 2000 100 0 0.8 519 1.5 · 10−3 115.11 148 4 · 10−4 153.74 429 7 · 10−4 55.1

500 2000 100 10−3 0.8 529 3.6 · 10−3 117.7 228 3.7 · 10−3 239.92 427 3.4 · 10−3 55.7

500 2000 100 10−3 0.8 520 1.6 · 10−3 116.66 148 6 · 10−4 154.46 428 8 · 10−4 55.07

it is known that the true solution X? has trace 1, which is also possible to exploit in our algorithmic
framework.

Since X is Hermitian, the U and V terms in the algorithm are identical. Several computations can be
simplified and there is a version of Algorithm 12 which exploits the positive-definiteness to incorporate a
Nyström approximation (and also forces the approximation to be positive-definite); see [HMT11, GM13].
Here, we focus on showing how the functions A and At can be computed (due to the complex symmetry,
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Figure 4.8: Low rank matrix recovery for the matrix completion problem. The error curves are the median values
across 50 Monte-Carlo realizations over each iteration. For all cases, we assume m = 0.3pn. (a) p = 700, n = 1000,
r = 30 and

∥∥ε∥∥
2
= 0. (b) p = 700, n = 1000, r = 50 and

∥∥ε∥∥
2
= 10−3. (c) p = 700, n = 1000, r = 110 and

∥∥ε∥∥
2
= 0.

(d) p = 500, n = 2000, r = 10 and
∥∥ε∥∥

2
= 0. (e) p = 500, n = 2000, r = 50 and

∥∥ε∥∥
2
= 10−3. (f) p = 500, n = 2000,

r = 80 and
∥∥ε∥∥

2
= 10−4.

AtH = At).

In quantum tomography, the linear operator has the form (A(X))j = 〈Ej ,X〉 where Ej = EH
j is the

Kronecker product of 2× 2 Pauli matrices. There are four possible Pauli matrices σx,y,z if we define σI to
be the 2× 2 identity matrix. For a qb-qubit system, Ej = σj1 ⊗ σj2 ⊗ . . .⊗ σjqb . For roughly 12 qubits and
fewer, it is simple to calculate A(X) by explicitly forming Ej and then creating a sparse matrix A with
the jth row of A equal to vec(Ej) so that A(X) = A vec(X). For larger systems, storing this sparse matrix
is impractical since there are m ≥ n rows and each row has exactly n non-zero entries, so there are over
n2 entries in A.

To keep memory low, we exploit the Kronecker-product nature of Ej and store it with only qb numbers.
When X = xxH, we compute 〈Ej ,X〉 = trace(EjxxH) = trace(xHEjx), and Ejx can be computed in
O(qbn) time. This gives us A. The output of A is real even when X is complex.

To compute At(z,W) when the dimensions are small, we just explicitly form the matrix M = A(z) and
then multiply MW. To form M, we use the same sparse matrix A as above and reshape the n2 vector
A∗z into a n× n matrix. For larger dimensions, when it is impractical to store A, we implicitly represent
M =

∑m
j=1 zjEj and thus MW =

∑m
j=1 zjEjW. In general, the output is complex. However, if it is

known a priori that X is real-valued, this can be exploited by taking the real part of M. This leads to a
considerable time savings (2× to 4×), and all experiments shown below make this assumption.

In our numerical implementation, we code both A and At in C and parallelize the code since this is the
most computationally expensive calculation. Our parallelization implementation uses both pthreads

on local cores as well as message passing among different computers. There are two approaches to
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Figure 4.9: Reconstruction performance in image denoising settings. The image size is 512× 512 and the desired
rank is preset to r = 40. We observe 35% of the pixels of the true image. Furthermore, we depict the median
reconstruction error with respect to the true image in dB over 10 Monte Carlo realizations.

parallelization: divide the indices j = 1, . . . ,m among different cores, or, when X or W has several
columns, send different columns to the different cores. Both approaches are efficient in terms of message
passing since A is parameterized and static. The latter approach only works when X or W has a
significant number of columns, and so it does not apply to Lanczos methods that perform only matrix-
vector multiplies.

Recording error metrics can be costly if not done correctly. Let X = xxH and Y = yyH be rank-r
factorizations. For the Frobenius norm error ‖X−Y‖F which requires n2 operations naively, we expand
the term and use the cyclic invariance of trace to get ‖X −Y‖2F = trace(xHxxHx) + trace(yHyyHy) −
2trace(xHyyHx), which requires only O(nr2) flops. In quantum information, another common metric is
the trace distance [NC10] ‖X −Y‖∗, where ‖ · ‖∗ is the nuclear norm. This calculation requires O(n3)

flops if calculated directly but can also be calculated cheaply via factoredSVD on U = V = [x,y] and
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Original Low Rank Approximation Observed Image
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Figure 4.10: Reconstruction performance in image denoising settings. The image size is 256× 256 and the desired
rank is preset to r = 30. We observe 33% of the pixels of the best rank-30 approximation of the image. Furthermore,
we depict the median reconstruction with respect to the best rank-30 approximation in dB over 10 Monte Carlo
realizations

D = [I,0; 0,−I]. The third common metric is the fidelity [NC10] given by ‖X1/2Y1/2‖∗. If either X or Y

is rank-1, this can be calculated cheaply as well.

Results: Figure 4.11 (left) plots convergence and accuracy results for a quantum tomography problem
with 8 qubits and m = 4rn with r = 1. The SVP algorithm works well on noisy problems but we
focus here on a noiseless (and truly low-rank) problem in order to examine the effects of approximate
SVD/eigenvalue computations. The figure shows that the power method with q ≥ 1 is extremely
effective even though it lacks theoretical guarantees; without the power method, take ρ ' 20 and we see
convergence, albeit slower. When m is smaller and the R-RIP is not satisfied, taking ρ or q too small can
lead to non-convergence.
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Figure 4.11: (Left) Convergence rate as a function of parameters to RandomizedSVD/RandomizedEIG.
(Right) Comparison of just eigenvalue computation times via three methods.

Figure 4.11 (right) is a direct comparison of RandomizedEIG (with ρ = 5 and q = 3) and the Lanczos
method for multiplies of the type encountered in the algorithm. The RandomizedEIG has the same
asymptotic complexity but much better constants.

Figure 4.12 shows that because the eigenvalue decomposition is a significant portion of the computational
cost, using RandomizedEIG instead of Lanczos makes a difference. The difference is not pronounced
in the small-scale full-memory implementation because the variable X is explicitly formed and matrix
multiplies are relatively cheap compared to other operations in the code. For larger dimensions with the

Figure 4.14: Accuracy comparison of several algo-
rithms, as a function of number of samples m. Each
point is the median of the results of 20 simulations.
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low-memory code, X is never explicitly formed
and multiplying with the gradient is quite costly.
The randomized method requires fewer multiplies,
explaining its benefit. For 12 qubits, the Lanczos
method averages 98.4 seconds/iteration, whereas
the randomized method averages just 59.2 seconds.
The right subfigure shows that the low-memory
implementation (which has memory requirement
O(rn)) still has only O(n2) time complexity per
iteration.

Figure 4.13 tests Theorem 11 by plotting the value
of

ε̃ = ‖X− X̃‖2F /‖X−Xr‖2F − 1

(which is bounded by ε) for matrices X that are
generated by the iterates of the algorithm. The
algorithm is set for r = 1 (so X is the sum of a
rank 2 term, which includes the Nesterov term,
and the full rank gradient), but the plots consider a range of r and a range of oversampling parameters ρ.
The plots use q = 0, 1 (top row, left to right) and q = 2 (bottom row, left) power iterations. Because X̃ has
rank ` = r + ρ, it is possible for ε̃ < 0, as we observe in the plots when r is small and ρ is large. For two
power iterations, the error is excellent. In all cases, the observed error ε̃ is much better than the bound ε
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Figure 4.12: Mean time of 10 iterations: this includes the matrix multiplications as well as eigen-
value computations. (Left) shows times for a complete iteration of our method on a single computer
using sparse matrix multiplies (“full memory”) and, above 11 qubits, the custom low-memory im-
plementation as well (not multi-threaded) on the same computer. (Right) shows times for just the
RandomizedSVD/RandomizedEIG.

(shown bottom row, right) from Theorem 11, suggesting that it may be possible to have a more refined
analysis.

Finally, to test scaling to very large data, we compute a 16 qubit state (n = 65536), using a known
quantum state as input, with realistic quantum mechanical perturbations (global depolarizing noise
of level γ = 0.01; see [FGLE12]) as well as AWGN to give a SNR of 30 dB, and m = 5n = 327680

measurements. The first iteration uses Lanczos and all subsequent iterations use RandomizedEIG using
ρ = 5 and q = 3 power iterations. On a cluster with 10 computers, the mean time per iteration is 401

seconds. The table in Fig. 4.15 (left) shows the error metrics of the recovered matrix, and Fig. 4.15 (right)
plots the convergence rate of the Frobenius-norm error and trace distance.

Figure 4.14 reports the median error on 20 test problems across a range of m. Here, X? is only ap-
proximately low rank and Y is contaminated with noise. We compare the convex approach [FGLE12],
the “AltMinSense” approach [JNS13], and a standard splitting approach. AltMinSense and the convex
approach have poor accuracy; the accuracy of AltMinSense can be improved by incorporating symmetry,
but this changes the algorithm fundamentally and the theoretical guarantees are lost. The splitting
approach, if initialized correctly, is accurate, but lacks guarantees. Furthermore, it is slower in practice
due to slower convergence, though for some simple problems (i.e., no convex constraints C) it is possible
to accelerate using L-BFGS [Lau12].

4.6.6 Video background subtraction via RPCA

We consider the problem of background subtraction in video sequences: static brackground scenes
are considered low-rank while moving foreground objects are sparse data. Using the complete set of
measurements, this problem falls under the RPCA framework. We apply the GoDec algorithm [ZT11]
and the MATRIX ALPS scheme on a 144 x 176 x 200 video sequence. Both solvers use the same low-rank
projection operators based on randomized QR factorization ideas [HMT11, ZT11]. Representative results
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Figure 4.13: Top row: ε̃ for (left) q = 0 and (right) q = 1 power iterations. Bottom row: ε̃ for q = 2 power
iterations (left), and (right) shows the bound ε.

are depicted in Figure 4.16.

4.7 Discussion

In this chapter, we present new strategies and review existing ones for hard thresholding methods to
recover low-rank matrices from dimensionality reducing, linear projections. Our discussion starts and
revolves around four basic building blocks that exploit the problem structure to reduce computational
complexity without sacrificing stability.

In theory, constant µi selection schemes are accompanied with strong RIP constant conditions but em-
pirical evidence reveal signal reconstruction vulnerabilities. While convergence derivations of adaptive
schemes are characterized by weaker bounds, the performance gained by this choice in terms of conver-
gence rate, is quite significant. Memory-based methods lead to convergence speed with (almost) no extra
cost on the complexity of hard thresholding methods—we provide theoretical evidence for convergence
for simple cases but more theoretical justification is needed to generalize this part as future work. Lastly,
further estimate refinement over low rank subspaces using gradient update steps or pseudo-inversion
optimization techniques provides signal reconstruction efficacy, but more computational power is needed
per iteration.

We connect ε-approximation low-rank revealing schemes with first-order gradient descent algorithms to
solve general affine rank minimization problems; to the best of our knowledge, this is the first attempt to
theoretically characterize the performance of iterative greedy algorithms with ε-approximation schemes.
In all cases, experimental results illustrate the effectiveness of the proposed schemes on different problem
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Figure 4.15: The table (left) shows error metrics for the noisy rank-1 16-qubit recovery. The figure (right)
shows the convergence rate for the same simulation.

configurations.

Randomization is a powerful tool to accelerate and scale optimization algorithms, and it can be rigorously
included in algorithms that are robust to small errors. Within the low-rank recovery context, we leverage
randomized approximations to remove memory bottlenecks by merging the two-key steps of most
recovery algorithms in affine rank minimization problems: gradient calculation and low-rank projection.
Unfortunately, the current black-box approximation guarantees, such as Theorem 11, are too pessimistic
to be directly used in theoretical characterizations of our approach. For future work, motivated by the
overwhelming empirical evidence of the good performance of our approach, we plan to directly analyze
the impact of randomization in characterizing the algorithmic performance.

Finally, we study the general problem of sparse plus low rank matrix recovery from incomplete and
noisy data. In essence, the problem under consideration includes various low-dimensional models as
special cases such as sparse signal reconstruction, affine rank minimization and robust PCA. Based on this
algorithm, we derive improved conditions on the restricted isometry constants that guarantee the success
of reconstruction. Furthermore, we show that the memory-based scheme provides great computational
advantage over both the convex and the non-convex approaches.

The discussion in this chapter leads to the following open problem/extension: Let us consider a content-
data structure in the form of a matrix C ∈ Rm×n, where each row represent a specific content item and
each column represent a single server. Then Cij = 1 if server j contains item i. We expect each server to
contain a small fraction of the overall content, so that each column of C will have few non-zero entries.

We can further group the contents into categories, such as sport movies, documentaries, news, Bollywood
movies and so on. We expect that if a server contains an item from category k, then it will be more likely
to contain other items of the same category.

According to the discussion above, one might be interested in the following problem:
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Original Low rank Sparse

GoDec

MATRIX ALPS

Figure 4.16: Background subtraction in video sequence. Median execution times over 10 Monte-Carlo iterations.
GoDec: 34.8 sec—MATRIX ALPS: 15.8 sec.

Open question 6. Let C ∈ Rp×n be a given (possible binary) matrix that partially indices items to servers.
Furthermore, let C(i), i = 1, . . . , l be a set of l submatrices (of known but not necessarily equal size) as a
non-overlapping fragmentation of C such that ∪iC(i) → C; here, ∪ denotes the union/remapping of the set
of submatrices into full matrix. Given Ω as the set of index pairs corresponding to the observable (non-zero)
entries in C, we define the linear operator A : Rp×n → Rm as a linear mask over the observable entries. To
this end, we are interested in the following optimization problem:

minimize
C(i), i=1,...,p

∑

i

rank(C(i)) subject to y = A(∪iC(i)) (4.39)

where y = A(C) denotes the set of observable entries.
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Appendix

In this section, we present some lemmas that are useful in our subsequent developments—these lemmas
are consequences of the R-RIP of A.

Lemma 25. [LB10] Let A : Rp×n → Rm be a linear operator that satisfies the R-RIP with constant δr and
let A∗ : Rm → Rp×n be the adjoint operation. Then, ∀v ∈ Rm, the following holds true:

∥∥PS(A∗v)
∥∥
F
≤
√

1 + δr
∥∥v
∥∥

2
, (4.40)

where S is a set of orthonormal, rank-1 matrices in Rp×n such that rank(PSX) ≤ r, ∀X ∈ Rp×n.

Lemma 26. [LB10] Let A : Rp×n → Rm be a linear operator that satisfies the R-RIP with constant δr. Then,
∀X ∈ Rp×n, the following holds true:

(1− δr)
∥∥PSX

∥∥
F
≤
∥∥PSA∗APSX

∥∥
F
≤ (1 + δr)

∥∥PSX
∥∥
F
, (4.41)

where S is a set of orthonormal, rank-1 matrices in Rp×n such that rank(PSX) ≤ r, ∀X ∈ Rp×n.

Lemma 27. [GM11] Let A : Rp×n → Rm be a linear operator that satisfies the R-RIP with constant δr and
S be a set of orthonormal, rank-1 matrices in Rp×n such that rank(PSX) ≤ r, ∀X ∈ Rp×n. Then, for µ > 0,
A satisfies:

λ(µPSA∗APS) ∈ [µ(1− δr), µ(1 + δr)]. (4.42)

where λ(B) represents the range of eigenvalues of the linear operator B : Rm → Rp×n. Moreover, ∀X ∈ Rp×n,
it follows that:

∥∥(I− µPSA∗APS)PSX
∥∥
F
≤ max {µ(1 + δr)− 1, 1− µ(1− δr)}

∥∥PSX
∥∥
F
. (4.43)

Lemma 28. [GM11] Let A : Rp×n → Rm be a linear operator that satisfies the R-RIP with constant δr and
S1,S2 be two sets of orthonormal, rank-1 matrices in Rp×n such that

rank(PS1∪S2
X) ≤ r, ∀X ∈ Rp×n. (4.44)

Then, the following inequality holds:
∥∥PS1

A∗APS⊥1 X
∥∥
F
≤ δr

∥∥PS⊥1 X
∥∥
F
,∀X ∈ span(S2).

A well-known lemma used in the convergence rate proofs of this class of greedy hard thresholding
algorithms is defined next.

Lemma 29. [Ber95] Let J ⊆ Rp×n be a closed convex set and f : J → R be a smooth objective function
defined over J . Let X∗ ∈ J be a local minimum of the objective function f over the set J . Then

〈∇f(X∗),X−X∗〉 ≥ 0, ∀X ∈ J . (4.45)

Remark 8. Let X = UΣVT ∈ Rp×n and Y = ŨΣ̃ṼT ∈ Rp×n. Assume two sets: i) S1 = {uiuTi : i ∈ I1}
where ui is the i-th singular vector of X and I1 ⊆ {1, . . . , rank(X)} and, ii) S2 = {uiuTi , ũjũjT : i ∈
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I2, j ∈ I3} where ũi is the i-th singular vector of Y, I1 ⊆ I2 ⊆ {1, . . . , rank(X)} and, I3 ⊆ {1, . . . , rank(Y)}.
We observe that the subspaces defined by uiuTi and ũjũjT are not necessarily orthogonal. To this end, let
Ŝ2 = ortho(S2); this operation can be easily computed via SVD. Then, the following commutativity property holds
true for any matrix W ∈ Rp×n:

PS1
PŜ2

W = PŜ2
PS1

W. (4.46)

Proof of Lemma 21

Given X ∗ ← Pr(X?) using SVD factorization, we define the following quantities: Si ← Xi ∪ Di, S∗i ←
ortho (Xi ∪ X ∗). Then, given the structure of the sets Si and S∗i

PSiP(S∗i )⊥ = PDiP(X∗∪Xi)⊥ and PS∗i PS⊥i = PX∗P(Di∪Xi)⊥ . (4.47)

Since the subspace defined in Di is the best rank-r subspace, orthogonal to the subspace spanned by Xi:
∥∥PDiPX⊥i ∇f(X(i))

∥∥2

F
≥
∥∥PX∗PX⊥i ∇f(X(i))

∥∥2

F
⇒
∥∥PSi∇f(X(i))

∥∥2

F
≥
∥∥PS∗i ∇f(X(i))

∥∥2

F

Removing the common subspaces in Si and S∗i by the commutativity property of the projection operation
and using the shortcut PA\B ≡ PAPB⊥ for sets A, B, we get:∥∥PSi\S∗i ∇f(X(i))

∥∥2
F
≥
∥∥PS∗i \Si∇f(X(i))

∥∥2
F
⇒∥∥PSi\S∗i A∗A(X? −X(i)) + PSi\S∗i A

∗ε
∥∥
F
≥
∥∥PS∗i \SiA∗A(X? −X(i)) + PS∗i \SiA

∗ε
∥∥
F

(4.48)

Next, we assume that P(A\B)⊥ denotes the orthogonal projection onto the subspace spanned by PAPB⊥ .
Then, on the left hand side of (4.48), we have:

∥∥PSi\S∗i A
∗A(X? −X(i)) + PSi\S∗i A

∗ε
∥∥
F

(i)

≤
∥∥PSi\S∗i A

∗A(X? −X(i))
∥∥
F

+
∥∥PSi\S∗i A

∗ε
∥∥
F

(ii)
=
∥∥PSi\S∗i (X? −X(i)) + PSi\S∗i A

∗A(X? −X(i))
∥∥
F

+
∥∥PSi\S∗i A

∗ε
∥∥
F

(iii)
=
∥∥(I− PSi\S∗i A

∗APSi\S∗i )(X? −X(i)) + PSi\S∗i A
∗AP(Si\S∗i )⊥(X? −X(i))

∥∥
F

+
∥∥PSi\S∗i A

∗ε
∥∥
F

≤
∥∥(I− PSi\S∗i A

∗APSi\S∗i )(X? −X(i))
∥∥
F

+
∥∥PSi\S∗i A

∗AP(Si\S∗i )⊥(X? −X(i))
∥∥
F

+
∥∥PSi\S∗i A

∗ε
∥∥
F

(iv)

≤ δ3r
∥∥X? −X(i)

∥∥
F

+
∥∥PSi\S∗i A

∗ε
∥∥
F

+
∥∥PSi\S∗i A

∗AP(Si\S∗i )⊥(X? −X(i))
∥∥
F

(v)

≤ δ3r
∥∥X? −X(i)

∥∥
F

+
∥∥PSi\S∗i A

∗ε
∥∥
F

+ δ3r
∥∥P(Si\S∗i )⊥(X? −X(i))

∥∥
F

(vi)

≤ 2δ3r
∥∥X? −X(i)

∥∥
F

+
∥∥PSi\S∗i A

∗ε
∥∥
F

(4.49)

where (i) due to triangle inequality over Frobenius metric norm, (ii) since PSi\S∗i (X(i)−X?) = 0, (iii)

by using the fact that X(i) −X? := PSi\S∗i (X(i) −X?) + P(Si\S∗i )⊥(X(i) −X?), (iv) due to Lemma 27,
(v) due to Lemma 28 and (vi) since

∥∥P(Si\S∗i )⊥(X? −X(i))
∥∥
F
≤
∥∥X(i)−X?

∥∥
F

.
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For the right hand side of (4.48), we calculate:

∥∥PS∗i \SiA
∗A(X? −X(i)) + PS∗i \SiA

∗ε
∥∥
F
≥
∥∥PS∗i \Si(X

? −X(i))
∥∥
F
−
∥∥PS∗i \SiA

∗AP(S∗i \Si)⊥(X? −X(i))
∥∥
F

−
∥∥(PS∗i \SiA

∗APS∗i \Si − I)(X? −X(i))
∥∥
F
−
∥∥PS∗i \SiA

∗ε
∥∥
F

≥
∥∥PS∗i \Si(X

? −X(i))
∥∥
F
− 2δ2r

∥∥X(i)−X?
∥∥
F
−
∥∥PS∗i \SiA

∗ε
∥∥
F

(4.50)

by using Lemmas 27 and 28. Combining (4.49) and (4.50) in (4.48), we get:

∥∥PX∗\SiX?
∥∥
F
≤ (2δ2r + 2δ3r)

∥∥X(i)−X?
∥∥
F

+
√

2(1 + δ2r)
∥∥ε
∥∥

2
.

Proof of Theorem 6

Let X ∗ ← Pr(X?) be a set of orthonormal, rank-1 matrices that span the range of X?. In Algorithm 1,
W(i)← Pr(V(i)). Thus:

∥∥W(i)−V(i)
∥∥2

F
≤
∥∥X? −V(i)

∥∥2

F
⇒

∥∥W(i)−X? + X? −V(i)
∥∥2

F
≤
∥∥X? −V(i)

∥∥2

F
⇒
∥∥W(i)−X?

∥∥2

F
≤ 2〈W(i)−X?,V(i)−X?〉 (4.51)

From Algorithm 1, i) V(i) ∈ span(Si), ii) X(i) ∈ span(Si) and iii) W(i) ∈ span(Si). We define
E ← ortho(Si ∪X ∗) where rank(span(E)) ≤ 3r and let PE be the orthogonal projection onto the subspace
defined by E .

Since W(i)−X? ∈ span(E) and V(i)−X? ∈ span(E), the following hold true:

W(i)−X? = PE(W(i)−X?) and V(i) −X? = PE(V(i)−X?).

Then, (4.51) can be written as:∥∥W(i)−X?
∥∥2
F
≤ 2〈PE(W(i)−X?),PE(V(i)−X?)〉

= 2〈PE(W(i)−X?),PE(X(i)−X? − µiPSiA
∗A(X(i)−X?))〉︸ ︷︷ ︸

.
=A

+2µi〈PE(W(i)−X?),PEPSi(A
∗ε)〉︸ ︷︷ ︸

.
=B

(4.52)

In B, we observe:

B := 2µi〈PE(W(i)−X?),PEPSi(A∗ε)〉
(i)
= 2µi〈W(i)−X?,PSi(A∗ε)〉
(ii)

≤ 2µi
∥∥W(i)−X?

∥∥
F

∥∥PSi(A∗ε)
∥∥
F

(iii)

≤ 2µi
√

1 + δ2r
∥∥W(i)−X?

∥∥
F

∥∥ε
∥∥

2
(4.53)

where (i) holds since PSiPE = PEPSi = PSi for span(Si) ∈ span(E), (ii) is due to Cauchy-Schwarz
inequality and, (iii) is easily derived using Lemma 25.

128



4.7. Discussion

In A, we perform the following motions:

A := 2〈W(i)−X?,PE(X(i)−X?)− µiPSiA
∗APE(X(i)−X?)〉

(i)
= 2〈W(i)−X?,PE(X(i)−X?)− µiPSiA

∗A
[
PSi + PS⊥i

]
PE(X(i)−X?)〉

= 2〈W(i)−X?, (I− µiPSiA
∗APSi)PE(X(i)−X?)〉 − 2µi〈W(i)−X?,PSiA

∗APS⊥i PE(X(i)−X?)〉
(ii)

≤ 2
∥∥W(i)−X?

∥∥
F

∥∥(I− µiPSiA∗APSi)PE(X(i)−X?)
∥∥
F
+ 2µi

∥∥W(i)−X?
∥∥
F

∥∥PSiA∗APS⊥i PE(X(i)−X?)
∥∥
F

(4.54)

where (i) is due to PE(X(i) − X?) := PSiPE(X(i) − X?) + PS⊥i PE(X(i) − X?) and (ii) follows from
Cauchy-Schwarz inequality. Since 1

1+δ2r
≤ µi ≤ 1

1−δ2r , Lemma 27 implies:

λ(I− µiPSiA∗APSi) ∈
[

1− 1− δ2r
1 + δ2r

,
1 + δ2r
1− δ2r

− 1

]
≤ 2δ2r

1− δ2r
.

and thus:

∥∥(I− µiPSiA∗APSi)PE(X(i)−X?)
∥∥
F
≤ 2δ2r

1− δ2r
∥∥PE(X(i)−X?)

∥∥
F
.

Furthermore, according to Lemma 28:

∥∥PSiA∗APS⊥i PE(X(i)−X?)
∥∥
F
≤ δ3r

∥∥PS⊥i PE(X(i)−X?)
∥∥
F

since rank(PKX) ≤ 3r, ∀X ∈ Rp×n for K ← ortho(E ∪ Si). Since PS⊥i PE(X(i) −X?) = PX∗\(Di∪Xi)X?

where

Di ← Pk
(
PX⊥i ∇f(X(i))

)
,

then:

∥∥PS⊥i PE(X(i)−X?)
∥∥
F

=
∥∥PX∗\(Di∪Xi)X?

∥∥
F
≤ (2δ2r + 2δ3r)

∥∥X(i)−X?
∥∥
F

+
√

2(1 + δ2r)
∥∥ε
∥∥

2
,

using Lemma 21. Combining the above in (4.54), we compute:

A ≤
( 4δ2r
1− δ2r

+ (2δ2r + 2δ3r)
2δ3r

1− δ2r

)∥∥W(i)−X?
∥∥
F
·
∥∥X(i)−X?

∥∥
F
+

2δ3r
1− δ2r

∥∥W(i)−X?
∥∥
F

√
2(1 + δ2r)

∥∥ε∥∥
2

(4.55)

Combining (4.53) and (4.55) in (4.52), we get:

∥∥W(i)−X?
∥∥
F
≤
( 4δ2r
1− δ2r

+ (2δ2r + 2δ3r)
2δ3r

1− δ2r

)∥∥X(i)−X?
∥∥
F
+
(2√1 + δ2r

1− δ2r
+

2δ3r
1− δ2r

√
2(1 + δ2r)

)∥∥ε∥∥
2

(4.56)

Focusing on steps 5 and 6 of Algorithm 1, we perform similar motions to obtain:

∥∥X(i+ 1)−X?
∥∥
F
≤
(1 + 2δ2r

1− δ2r

)∥∥W(i)−X?
∥∥
F

+

√
1 + δr

1− δr
∥∥ε
∥∥

2
(4.57)
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Combining the recursions in (4.56) and (4.57), we finally compute:

∥∥X(i+ 1)−X?
∥∥
F
≤ ρ
∥∥X(i)−X?

∥∥
F

+ γ
∥∥ε
∥∥

2
,

for ρ :=
(

1+2δ2r
1−δ2r

)(
4δ2r

1−δ2r + (2δ2r + 2δ3r)
2δ3r

1−δ2r

)
and

γ :=

((1 + 2δ2r
1− δ2r

)(2
√

1 + δ2r
1− δ2r

+
2δ3r

1− δ2r
√

2(1 + δ2r)
)

+

√
1 + δr

1− δr

)

For the convergence parameter ρ, further compute:

(1 + 2δ2r
1− δ2r

)( 4δ2r
1− δ2r

+ (2δ2r + 2δ3r)
2δ3r

1− δ2r

)
≤ 1 + 2δ3r

(1− δ3r)2

(
4δ3r + 8δ2

3r

)
=: ρ̂. (4.58)

for δr ≤ δ2r ≤ δ3r. Calculating the roots of this expression, we easily observe that ρ < ρ̂ < 1 for
δ3r < 0.1235.

Proof of Theorem 7

Before we present the proof of Theorem 7, we list a series of lemmas that correspond to the motions
Algorithm 2 performs.

Lemma 30. [Error norm reduction via least-squares optimization] Let Si be a set of orthonormal, rank-1
matrices that span a rank-2r subspace in Rp×n. Then, the least squares solution V(i) given by:

V(i)← arg min
V:V∈span(Si)

∥∥y −AV
∥∥2

2
satisfies: (4.59)

∥∥V(i)−X?
∥∥
F
≤ 1√

1− δ2
3r(A)

∥∥PS⊥i (V(i)−X?)
∥∥
F

+

√
1 + δ2r

1− δ3r
∥∥ε
∥∥

2
. (4.60)

Proof. We observe that
∥∥V(i)−X?

∥∥2

F
is decomposed as follows:

∥∥V(i)−X?
∥∥2

F
=
∥∥PSi(V(i)−X?)

∥∥2

F
+
∥∥PS⊥i (V(i)−X?)

∥∥2

F
. (4.61)

In (4.59), V(i) is the minimizer over the low-rank subspace spanned by Si with rank(span(Si)) ≤ 2r.
Using the optimality condition (Lemma 29) over the convex set Θ = {X : span(X) ∈ Si}, we have:

〈∇f(V(i)),PSi(X? −V(i))〉 ≥ 0⇒ 〈AV(i)− y,APSi(V(i)−X?)〉 ≤ 0. (4.62)

for PSiX? ∈ span(Si). Given condition (4.62), the first term on the right hand side of (4.61) becomes:

∥∥PSi(V(i)−X?)
∥∥2

F
= 〈V(i)−X?,PSi(V(i)−X?)〉
(4.62)

≤ 〈V(i)−X?,PSi(V(i)−X?)〉 − 〈AV(i)− y,APSi(V(i)−X?)〉
≤ |〈V(i)−X?, (I−A∗A)PSi(V(i)−X?)〉|+ 〈ε,APSi(V(i)−X?)〉 (4.63)
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Focusing on the term |〈V(i)−X?, (I−A∗A)PSi(V(i)−X?)〉|, we derive the following:

|〈V(i)−X?, (I−A∗A)PSi (V(i)−X?)〉| = |〈V(i)−X?,PSi (V(i)−X?)〉 − 〈V(i)−X?,A∗APSi (V(i)−X?)〉|
(i)
= |〈PSi∪X∗ (V(i)−X?),PSi (V(i)−X?)〉
− 〈APSi∪X∗ (V(i)−X?),APSi (V(i)−X?)〉|
(ii)
= |〈PSi∪X∗ (V(i)−X?),PSi∪X∗PSi (V(i)−X?)〉
− 〈APSi∪X∗ (V(i)−X?),APSi∪X∗PSi (V(i)−X?)〉|
= |〈V(i)−X?, (I− PSi∪X∗A

∗APSi∪X∗ )PSi (V(i)−X?)〉|

where (i) follows from the facts that V(i)−X? ∈ span(ortho(Si ∪ X ∗)) and thus PSi∪X∗(V(i)−X?) =
V(i) − X? and (ii) is due to PSi∪X∗PSi = PSi since span(Si) ⊆ span(ortho(Si ∪ X ∗)). Then, (4.63)
becomes:∥∥PSi (V(i)−X?)

∥∥2
F
≤ |〈V(i)−X?, (I− PSi∪X∗A

∗APSi∪X∗ )PSi (V(i)−X?)〉|+ 〈ε,APSi (V(i)−X?)〉
(i)

≤
∥∥V(i)−X?

∥∥
F

∥∥(I− PSi∪X∗A
∗APSi∪X∗ )PSi (V(i)−X?)

∥∥
F

+
∥∥PSiA∗ε∥∥F ∥∥PSi (V(i)−X?)

∥∥
F

(ii)

≤ δ3r
∥∥PSi (V(i)−X?)

∥∥
F

∥∥V(i)−X?
∥∥
F

+
√

1 + δ2r
∥∥PSi (V(i)−X?)

∥∥
F

∥∥ε∥∥
2
, (4.64)

where (i) comes from Cauchy-Swartz inequality and (ii) is due to Lemmas 25 and 27. Simplifying the
above quadratic expression, we obtain:

∥∥PSi(V(i)−X?)
∥∥
F
≤ δ3r

∥∥V(i)−X?
∥∥
F

+
√

1 + δ2r
∥∥ε
∥∥

2
. (4.65)

As a consequence, (4.61) can be upper bounded by:

∥∥V(i)−X?
∥∥2

F
≤
(
δ3r
∥∥V(i)−X?

∥∥
F

+
√

1 + δ2r
∥∥ε
∥∥

2

)2
+
∥∥PS⊥i (V(i)−X?)

∥∥2

F
. (4.66)

We form the quadratic polynomial for this inequality assuming as unknown variable the quantity∥∥V(i)−X?
∥∥
F

. Bounding by the largest root of the resulting polynomial, we get:

∥∥V(i)−X?
∥∥
F
≤ 1√

1− δ2
3r(A)

∥∥PS⊥i (V(i)−X?)
∥∥
F

+

√
1 + δ2r

1− δ3r
∥∥ε
∥∥

2
. (4.67)

The following Lemma characterizes how subspace pruning affects the recovered energy:

Lemma 31. [Best rank-r subspace selection] Let V(i) ∈ Rp×n be a rank-2r proxy matrix in the subspace
spanned by Si and let X(i+ 1)← Pr(V(i)) denote the best rank-r approximation to V(i), according to (4.7).
Then:

∥∥X(i+ 1)−V(i)
∥∥
F
≤
∥∥PSi(V(i)−X?)

∥∥
F
≤
∥∥V(i)−X?

∥∥
F
. (4.68)

Proof. Since X(i+ 1) denotes the best rank-r approximation to V(i), the following inequality holds for
any rank-r matrix X ∈ Rp×n in the subspace spanned by Si, i.e. ∀X ∈ span(Si):

∥∥X(i+ 1)−V(i)
∥∥
F
≤
∥∥X−V(i)

∥∥
F
. (4.69)
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Since PSiV(i) = V(i), the left inequality in (4.68) is satisfied for X := PSiX? in (4.69).

Lemma 32. Let V(i) be the least squares solution in Step 2 of the ADMiRA algorithm and let X(i+ 1) be a
proxy, rank-r matrix to V(i) according to: X(i+ 1)← Pk(V(i)). Then,

∥∥X(i+ 1)−X?
∥∥
F

can be expressed
in terms of the distance from V(i) to X? as follows:

∥∥X(i+ 1)−X?
∥∥
F
≤
√

1 + 3δ2
3r

∥∥V(i)−X?
∥∥
F

+
√

1 + 3δ2
3r

√
3(1 + δ2r)

1 + 3δ2
3r

∥∥ε
∥∥

2
. (4.70)

Proof. We observe the following

∥∥X(i+ 1)−X?
∥∥2

F
=
∥∥X(i+ 1)−V(i) + V(i)−X?

∥∥2

F

=
∥∥V(i)−X?

∥∥2

F
+
∥∥V(i)−X(i+ 1)

∥∥2

F

− 2〈V(i)−X?,V(i)−X(i+ 1)〉. (4.71)

Focusing on the right hand side of expression (4.71), 〈V(i)−X?,V(i)−X(i+1)〉 = 〈V(i)−X?,PSi(V(i)−
X(i+ 1))〉 can be similarly analysed as in Lemma 10 where we obtain the following expression:

|〈V(i)−X?,PSi (V(i)−X(i+ 1))〉| ≤ δ3r
∥∥V(i)−X?

∥∥
F

∥∥V(i)−X(i+ 1)
∥∥
F

+
√

1 + δ2r
∥∥V(i)−X(i+ 1)

∥∥
F

∥∥ε∥∥
2
. (4.72)

Now, expression (4.71) can be further transformed as:

∥∥X(i+ 1)−X?
∥∥2

F

(i)

≤
∥∥V(i)−X?

∥∥2

F
+
∥∥V(i)−X(i+ 1)

∥∥2

F

+ 2(δ3r
∥∥V(i)−X?

∥∥
F

∥∥V(i)−X(i+ 1)
∥∥
F

+
√

1 + δ2r
∥∥V(i)−X(i+ 1)

∥∥
F

∥∥ε
∥∥

2
) (4.73)

where (i) is due to (4.72). Using Lemma 31, we further have:

∥∥X(i+ 1)−X?
∥∥2

F
≤
∥∥V(i)−X?

∥∥2

F
+
∥∥PSi(V(i)−X?)

∥∥2

F

+ 2
(
δ3r
∥∥V(i)−X?

∥∥
F

∥∥PSi(V(i)−X?)
∥∥
F

+
√

1 + δ2r
∥∥PSi(V(i)−X?)

∥∥
F

∥∥ε
∥∥

2

)
(4.74)

Furthermore, replacing
∥∥PSi(X? −V(i))

∥∥
F

with its upper bound defined in (4.65), we get:

∥∥X(i+ 1)−X?
∥∥2

2

(i)

≤
(

1 + 3δ2
3r

)(∥∥V(i)−X?
∥∥

2
+

√
3(1 + δ2r)

1 + 3δ2
3r

∥∥ε
∥∥
)2

(4.75)

where (i) is obtained by completing the squares and eliminating negative terms.
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Applying basic algebra tools in (4.70) and (4.60), we get:

∥∥X(i+ 1)−X?
∥∥
F
≤
√

1 + 3δ2
3r

1− δ2
3r

∥∥PS⊥i (V(i)−X?)
∥∥
F

+
(√1 + 3δ2

3r

1− δ3r
+
√

3
)√

1 + δ2r
∥∥ε
∥∥

2
.

Since V(i) ∈ span(Si), we observe PS⊥i (V(i)−X?) = −PS⊥i X? = −PX∗\(Di∪Xi)X?. Then, using Lemma
21, we obtain:

∥∥X(i+ 1)−X?
∥∥
F
≤
(
2δ2r + 2δ3r

)
√

1 + 3δ2
3r

1− δ2
3r

∥∥X? −X(i)
∥∥
F

+

[√
1 + 3δ2

3r

1− δ2
3r

√
2(1 + δ3r)

+
(√1 + 3δ2

3r

1− δ3r
+
√

3
)√

1 + δ2r

]
∥∥ε
∥∥

2
(4.76)

Given δ2r ≤ δ3r, ρ is upper bounded by ρ < 4δ3r
√

1+3δ3r
1−δ2

3r
. Then, 4δ3r

√
1+3δ3r
1−δ2

3r
< 1⇔ δ3r < 0.2267.

Proof of Theorem 8

Let X ∗ ← Pr(X?) be a set of orthonormal, rank-1 matrices that span the range of X?. In Algorithm 3,
X(i+ 1) is the best rank-r approximation of V(i). Thus:∥∥X(i+ 1)−V(i)

∥∥2
F
≤
∥∥X? −V(i)

∥∥2
F
⇒
∥∥X(i+ 1)−X?

∥∥2
F
≤ 2〈X(i+ 1)−X?,V(i)−X?〉 (4.77)

From Algorithm 3, i) V(i) ∈ span(Si), ii) Qi ∈ span(Si) and iii) W(i) ∈ span(Si). We define E ←
ortho(Si ∪ X ∗) where we observe rank(span(E)) ≤ 4r and let PE be the orthogonal projection onto the
subspace defined by E .

Since X(i+ 1)−X? ∈ span(E) and V(i)−X? ∈ span(E), the following hold true:

X(i+ 1)−X? = PE(X(i+ 1)−X?),

and,

V(i)−X? = PE(V(i)−X?).

g(i+ 1) ≤
[
b1

(α(1 + τi) +
√

∆

2

)i+1

+ b2

(α(1 + τi)−
√

∆

2

)i+1
]
∥∥X(0)−X?

∥∥
F

≤
[

(b1 + b2)
(α(1 + τi) +

√
∆

2

)i+1
]
∥∥X(0)−X?

∥∥
F

(4.78)

133



Chapter 4. Greedy methods for affine rank minimization

Then, (4.101) can be written as:∥∥X(i+ 1)−X?
∥∥2
F
≤ 2〈PE(X(i+ 1)−X?),PE(V(i)−X?)〉

= 2〈PE(X(i+ 1)−X?),PE
(
Qi + µiPSiA

∗A(X? −Qi)−X?
)
〉

(i)
= 2〈X(i+ 1)−X?,PE(Qi −X?)− µiPSiA

∗A
[
PSi + PS⊥i

]
PE(Qi −X?)〉

= 2〈X(i+ 1)−X?, (I− µiPSiA
∗APSi )PE(Qi −X?)〉 − 2µi〈X(i+ 1)−X?,PSiA

∗APS⊥i PE(Qi −X?)〉

(ii)

≤ 2
∥∥X(i+ 1)−X?

∥∥
F

∥∥(I− µiPSiA
∗APSi )PE(Qi −X?)

∥∥
F

+ 2µi
∥∥X(i+ 1)−X?

∥∥
F

∥∥PSiA∗APS⊥i PE(Qi −X?)
∥∥
F

(4.79)

where (i) is due to PE(Qi −X?) := PSiPE(Qi −X?) + PS⊥i PE(Qi −X?) and (ii) follows from Cauchy-
Schwarz inequality. Since 1

1+δ3r
≤ µi ≤ 1

1−δ3r , Lemma 27 implies:

λ(I− µiPSiA∗APSi) ∈
[

1− 1− δ3r
1 + δ3r

,
1 + δ3r
1− δ3r

− 1

]
≤ 2δ3r

1− δ3r
.

and thus:

∥∥(I− µiPSiA∗APSi)PE(Qi −X?)
∥∥
F
≤ 2δ3r

1− δ3r
∥∥PE(Qi −X?)

∥∥
F
.

Furthermore, according to Lemma 28:

∥∥PSiA∗APS⊥i PE(Qi −X?)
∥∥
F
≤ δ4r

∥∥PS⊥i PE(Qi −X?)
∥∥
F

since rank(PKQ) ≤ 4r, ∀Q ∈ Rp×n where K ← ortho(E ∪ Si). Since PS⊥i PE(Qi −X?) = PX∗\(Di∪Xi)X?

where

Di ← Pk
(
PQ⊥i ∇f(Qi)

)
,

then:

∥∥PS⊥i PE(Qi −X?)
∥∥
F

=
∥∥PX∗\(Di∪Xi)X?

∥∥
F
≤ (2δ3r + 2δ4r)

∥∥Qi −X?
∥∥
F
, (4.80)

using Lemma 21. Using the above in (4.79), we compute:

∥∥X(i+ 1)−X?
∥∥
F
≤
( 4δ3r

1− δ3r
+ (2δ3r + 2δ4r)

2δ3r
1− δ3r

)∥∥Qi −X?
∥∥
F

(4.81)

Furthermore:

∥∥Qi −X?
∥∥
F

=
∥∥X(i) + τi(X(i)−X(i− 1))

∥∥
F

=
∥∥(1 + τi)(X(i)−X?) + τi(X

? −X(i− 1))
∥∥
F

≤ (1 + τi)
∥∥X(i)−X?

∥∥
F

+ τi
∥∥X(i− 1)−X?

∥∥
F

(4.82)
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Combining (4.81) and (4.108), we get:

∥∥X(i+ 1)−X?
∥∥
F
≤ (1 + τi)

( 4δ3r
1− δ3r

+ (2δ3r + 2δ4r)
2δ3r

1− δ3r

)∥∥X(i)−X?
∥∥
F

+ τi

( 4δ3r
1− δ3r

+ (2δ3r + 2δ4r)
2δ3r

1− δ3r

)∥∥X(i− 1)−X?
∥∥
F

(4.83)

Let α := 4δ3r
1−δ3r + (2δ3r + 2δ4r)

2δ3r
1−δ3r and g(i) :=

∥∥X(i + 1) −X?
∥∥
F

. Then, (4.83) defines the following
homogeneous recurrence:

g(i+ 1)− α(1 + τi)g(i) + ατig(i− 1) ≤ 0 (4.84)

Using the method of characteristic roots to solve the above recurrence, we assume that the homogeneous
linear recursion has solution of the form g(i) = ri for r ∈ R. Thus, replacing g(i) = ri in (4.84) and
factoring out r(i−2), we form the following characteristic polynomial:

r2 − α(1 + τi)r − ατi ≤ 0 (4.85)

Focusing on the worst case where (4.85) is satisfied with equality, we compute the roots r1,2 of the
quadratic characteristic polynomial as:

r1,2 =
α(1 + τi)±

√
∆

2
, where ∆ := α2(1 + τi)

2 + 4ατi.

Then, as a general solution, we combine the above roots with unknown coefficients b1, b2 to obtain (4.78).

Using the initial condition g(0) :=
∥∥X(0) − X?

∥∥
F

X(0)=0
=

∥∥X?
∥∥
F

= 1, we get b1 + b2 = 1. Thus, we
conclude to the following recurrence:

∥∥X(i+ 1)−X?
∥∥
F
≤
(α(1 + τi) +

√
∆

2

)i+1

.

Proof of Theorem 12

There are three aspects to the proof. Even without approximate SVD calculations, the problem is non-
convex, so we must leverage the R-RIP to prove that iterates converge. Mixed in with this calculation
is the approximate nature of our rank ` point X̃i+1, where we will apply the bounds from Theorem 11.
Finally, we relate X̃i+1 to its rank r version Xi+1.

An important definition for our subsequent developments is the following:

Definition 14 (ε-approximate low-rank projection). Let X be an arbitrary matrix. For any ε > 0,
Pεr′,`′(X) provides a rank-`′ matrix approximation to X such that

E
∥∥Pεr′,`′(X)−X

∥∥2

F
≤ (1 + ε)

∥∥Pr′(X)−X
∥∥2

F
, (4.86)

where Pr′(X) ∈ arg minY:r(Y)≤r′ ‖X−Y‖F .

Let Xi be the putative rank r solution at the i-th iteration, X? be the rank r matrix we are looking for and
X̃i+1 be the rank l matrix, obtained using approximate SVD calculations. Define L := 2(1 + δr+`) and
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M := 2(1− δ2r). Then, we have:

f(X̃i+1) = f(Xi) + 〈∇f(Xi), X̃i+1 −Xi〉+ ‖A(X̃i+1 −Xi)‖2F
≤ f(Xi) + 〈∇f(Xi), X̃i+1 −Xi〉+

L

2
‖X̃i+1 −Xi‖2F

= f(Xi)−
1

2L
‖∇f(Xi)‖2F +

L

2

(
‖X̃i+1 −Xi‖2F + 2〈 1

L
∇f(Xi), X̃i+1 −Xi〉+

1

L2
‖∇f(Xi)‖2F

)

= f(Xi)−
1

2L
‖∇f(Xi)‖2F +

L

2
‖X̃i+1 −

(
Xi −

1

L
∇f(Xi)

)
‖2F . (4.87)

By construction X̃i+1 ∈ Pεr,`
(
Xi − 1

L∇f(Xi)
)

(since the step-size is µ = 1/L), so, forXi+1 ∈ Pr
(
Xi − 1

L∇f(Xi)
)
,

E‖X̃i+1 − (Xi −
1

L
∇f(Xi))‖2F ≤ (1 + ε)‖Xi+1 − (Xi −

1

L
∇f(Xi))‖2F

≤ (1 + ε)‖X? − (Xi −
1

L
∇f(Xi))‖2F (4.88)

by the definition of Pr(·) (since r(X?) = r). Combining (4.88) with (5.48), we obtain:

Ef(X̃i+1) ≤ f(Xi)−
1

2L
‖∇f(Xi)‖2F +

L

2
(1 + ε)‖X? −Xi +

1

L
∇f(Xi)‖2F

= f(Xi)−
1

2L
‖∇f(Xi)‖2F + (1 + ε)

(
1

2L
‖∇f(Xi)‖2F + 〈∇f(Xi), X? −Xi〉+

L

2
‖X? −Xi‖2F

)

≤ (1 + ε)

[
f(Xi) + 〈∇f(Xi), X? −Xi〉+

L

2
‖X? −Xi‖2F

]
+

ε

2L
‖∇f(Xi)‖2F (4.89)

where we use the fact that f(Xi) ≥ 0 in the last inequality. Due to the restricted strong convexity of f
that follows from the restricted isometry property, we have:

f(X?) ≥ f(Xi) + 〈∇f(Xi),X
? −Xi〉+

M

2
‖X? −Xi‖2F

f(X?)− M

2
‖X? −Xi‖2F ≥ f(Xi) + 〈∇f(Xi),X

? −Xi〉

which, combined with (4.89), leads to:

Ef(X̃i+1) ≤ (1 + ε)

[
f(X?) +

L−M
2
‖X? −Xi‖2F

]
+

ε

2L
‖∇f(Xi)‖2F (4.90)

Due to the R-RIP,

‖X? −Xi‖2F ≤
‖A(X? −Xi)‖22

1− δ2r
(4.91)

Now define a constant C and assume f(Xi) = ‖y −AXi‖22 > C2‖ε‖22 (if the assumption fails, it means
Xi is already close to X?). In particular, in the noiseless case ‖ε‖ = 0, we may pick C arbitrarily large and
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set all 1/C terms to zero.

‖A(X? −Xi)‖2F = ‖y −A(Xi)− ε‖22
= ‖y −A(Xi)‖22 + ‖ε‖22 − 2〈ε,y −A(Xi)〉
≤ f(Xi) + ‖ε‖22 + 2‖ε‖2‖y −A(Xi)‖2

≤ f(Xi) + ‖ε‖22 +
2

C
f(Xi) (4.92)

Substituting (4.92) and (5.52) into (5.50), expanding the values of L and M , and noting that f(X?) =
‖y −A(X?)‖22 = ‖ε‖22, gives

Ef(X̃i+1) ≤ (1 + ε)

[
‖ε‖22 +

δr+` + δ2r
1− δ2r

(
f(Xi) + ‖ε‖22 +

2

C
f(Xi)

)]
+

ε

2L
‖∇f(Xi)‖2F

≤ (1 + ε)

[
δr+` + δ2r
1− δ2r

(
1 +

2

C

)
f(Xi) +

(
1 +

δr+` + δ2r
1− δ2r

)
‖ε‖22

]
+

ε

2L
‖∇f(Xi)‖2F (4.93)

We bound ‖∇f(Xi)‖ using our assumption on the magnitude of ‖A‖:

‖∇f(Xi)‖2F = 4‖A∗ (y −A(Xi)) ‖2F ≤ 4‖A∗‖2‖y −A(Xi)‖22 = 4‖A‖2f(Xi) ≤ 4
mn

m
f(Xi) (4.94)

For quantum tomography, we even have AA∗ = mn
m I , so the inequality holds with equality (and m = n).

Combining (4.93) with (4.94) and by the definition of L, we obtain:

Ef(X̃i+1) ≤ (1 + ε)

[
δr+` + δ2r

1− δ2r

(
1 +

2

C

)
f(Xi) +

(
1 +

δr+` + δ2r
1− δ2r

)
‖ε‖22

]
+

ε

1 + δr+`
· mn
m
f(Xi)

=

(
ε

1 + δr+`
· mn
m

+ (1 + ε)
δr+` + δ2r

1− δ2r

(
1 +

2

C

))

︸ ︷︷ ︸
θ′

f(Xi) + (1 + ε)

(
1 +

δr+` + δ2r
1− δ2r

)

︸ ︷︷ ︸
τ ′

‖ε‖22

(4.95)

Note that if an exact SVD computation is used, then not only is ε = 0 but also X̃i+1 is rank r, so we are
done and can use θ = θ′ and τ = τ ′. To finish the proof, we now relate Ef(Xi+1) to Ef(X̃i+1). In the
algorithm, Xi+1 is the output of RandomizedSVD, and X̃i+1 is the intermediate value UΣV H on line
10 of Algo. 12. Given X̃i+1 with r(X̃i+1) = ` > r, Xi+1 is defined as the best rank-r approximation to
X̃i+1.10 Thus, the following inequality holds true:

‖Xi+1 −X?‖F = ‖Xi+1 − X̃i+1 + X̃i+1 −X?‖F
≤ ‖Xi+1 − X̃i+1‖F + ‖X̃i+1 −X?‖F
≤ 2‖X̃i+1 −X?‖F (4.96)

since ‖Xi+1−X̃i+1‖F ≤ ‖X?−X̃i+1‖F . In particular, since the above is valid for any value of the random
variable X̃i+1, E ‖Xi+1 − X?‖2F ≤ E 4‖X̃i+1 − X?‖2F . This bound is pessimistic and in practice the

10If we include a convex constraint C then instead of defining Xi+1 = Pr(X̃i+1) we have Xi+1 = PC(Pr(X̃i+1)). In this case,

‖PC(Pr(X̃i+1))−X?‖F = ‖PC(Pr(X̃i+1)−X?)‖F ≤ ‖Pr(X̃i+1)−X?‖F .

The first equality follows from X? ∈ C and the second is true since the projection onto a non-empty closed convex set is
non-expansive. Hence the result in (4.96) still applies when we include the C constraints.
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constant is close to 1 rather than 4.

We will again assume that f(X̃i+1), f(Xi+1) ≥ C2‖ε‖22, and C > 2, since otherwise the current point is a
good-enough solution. We have:

f(Xi+1) = ‖y −A(Xi+1)‖22 = ‖A(X? −Xi+1) + ε‖22
= ‖A(X? −Xi+1)‖22 + ‖ε‖22 + 2〈A(X? −Xi+1), ε〉
= ‖A(X? −Xi+1)‖22 + ‖ε‖22 + 2〈y −A(Xi+1)− ε, ε〉
= ‖A(X? −Xi+1)‖22 + ‖ε‖22 + 2〈y −A(Xi+1), ε〉+ 2〈−ε, ε〉
≤ ‖A(X? −Xi+1)‖22 + ‖ε‖22 + 2‖y −A(Xi+1)‖2‖ε‖2 − 2‖ε‖22
≤ ‖A(X? −Xi+1)‖22 − ‖ε‖22 +

2

C
f(Xi+1)

which, if 1− 2/C ≥ 0, implies

f(Xi+1) ≤ 1

1− 2/C
‖A(X? −Xi+1)‖22 −

1

1− 2/C
‖ε‖22 (4.97)

By the R-RIP assumption, we have:

‖A(X? −Xi+1)‖22 ≤ (1 + δ2r)‖X? −Xi+1‖2F . (4.98)

Using (4.96) and (4.98) in (4.97), we obtain:

f(Xi+1) ≤ 4(1 + δ2r)

1− 2/C
‖X̃i+1 −X?‖2F −

1

1− 2/C
‖ε‖22 (4.99)

Using the R-RIP property again, the following sequence of inequalities holds:

‖X̃i+1 −X?‖2F ≤
‖A(X̃i+1 −X?)‖2F

1− δr+`
≤ 1 + 2/C

1− δr+`
f(X̃i+1) +

1

1− δr+`
‖ε‖22 (4.100)

where the second inequality is obtained following same motions as (4.92). Combining (4.99)-(4.100) with
(4.95), we obtain:

Ef(Xi+1) ≤
4(1 + δ2r)

1− 2/C
· 1 + 2/C

1− δr+`
· θ′︸ ︷︷ ︸

θ

·f(Xi) +

(
4(1 + δ2r)

1− 2/C
· 1 + 2/C

1− δr+`
· τ ′ + 4(1 + δ2r)

1− 2/C
· 1

1− δr+`
− 1

1− 2/C

)
︸ ︷︷ ︸

τ

‖ε‖22

Now we simplify the result to make it more interpretable. Define ρ = `− r. Let c be the smallest integer
such that ` ≥ (c− 1)r (and for simplicity, assume ` = (c− 1)r) so that δr+` = δcr and δr+` + δ2r ≤ 2δcr. By
Theorem 11, ε ≤ r

ρ−1 = r
(c−2)r−1 . For concreteness, take C ≥ 4 so that 1+ 2/C ≤ 3/2 and (1−2/C)−1 ≤ 2.

Then

θ ≤ 12 · 1 + δ2r
1− δcr

·
(

ε

1 + δcr
· mn
m

+ (1 + ε)
3δcr

1− δ2r

)
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and

τ ≤
(

12 · 1 + δ2r
1− δcr

· (1 + ε)

(
1 +

δ2r + δcr
1− δ2r

)
+

8(1 + δ2r)

1− δcr

)

≤ 1 + δ2r
1− δcr

·
(

12 · (1 + ε)

(
1 +

2δcr
1− δ2r

)
+ 8

)

Proof of Theorem 13

Here, we prove the convergence of Algorithm 2, both for the low rank and the sparse matrix estimate
part, and then combine the corresponding theoretical results. Let L∗ ← ortho(L?) be a set of orthonormal,
rank-1 matrices that span the range of L? andM∗ be the set of indices of the non-zero elemetns in M∗.
For the low rank matrix estimate, we observe the following:

∥∥Li+1 −VLi
∥∥2

F
≤
∥∥L? −VLi

∥∥2

F
⇒

∥∥Li+1 − L? + L? −VLi
∥∥2

F
≤
∥∥L? −VLi

∥∥2

F
⇒

∥∥Li+1 − L?
∥∥2

F
+
∥∥VLi − L?

∥∥2

F
+ 2〈Li+1 − L?,L? −VLi 〉 ≤

∥∥L? −VLi
∥∥2

F
⇒

∥∥Li+1 − L?
∥∥2

F
≤ 2〈Li+1 − L?,VLi − L?〉 (4.101)

From Algorithm 2, it is obvious that (i) VLi ∈ span(SLi ), (ii) QLi ∈ span(SLi ) and (iii) Li+1 ∈ span(SLi ).
We define E := SLi ∪ L∗ where rank(span(E)) ≤ 4r and let PE be the orthogonal projection onto the
subspace defined by E . We highlight that PEPSLi = PSLi .

Since Li+1 − L? ∈ span(E) and VLi − L? ∈ span(E), the following hold true:

Li+1 − L? = PE(Li+1 − L?) and VLi − L? = PE(VLi − L?).

Then, (4.101) can be written as:

∥∥Li+1 − L?
∥∥2

F

≤ 2〈PE(Li+1 − L?),PE(VLi − L?)〉

= 2〈PE(Li+1 − L?),PE
(
QLi + µLi PSLi A

∗(y −AQi)− L?
)
〉

= 2〈Li+1 − L?,PE(QLi − L?) + µLi PEPSLi
(
A∗(A(L? + M?)−AQi)

)
〉 (4.102)

= 2〈Li+1 − L?,PE(QLi − L?) + µLi PEPSLi
(
A∗A(L? + M?)−A∗A(QLi + QMi

)
〉

= 2〈Li+1 − L?,PE(QLi − L?)− µLi PEPSLi A
∗A(QLi − L?)− µLi PEPSLi A

∗A(QMi −M?)〉
= 2〈Li+1 − L?,PE(QLi − L?)− µLi PEPSLi A

∗APE(QLi − L?)〉 − 2µLi 〈Li+1 − L?,PEPSLi A
∗A(QMi −M?)〉

= 2〈Li+1 − L?,PE(QLi − L?)− µLi PEPSLi A
∗A
[
PSLi + P⊥SLi

]
PE(QLi − L?)〉

− 2µLi 〈Li+1 − L?,PEPSLi A
∗A(QMi −M?)〉 (4.103)
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due to PE(QLi − L?) := PSLi PE(Q
L
i − L?) + P⊥SLi PE(Q

L
i − L?). The first term in (4.103) satisfies:

2〈Li+1 − L?,PE(QLi − L?)− µLi PEPSLi A
∗A
[
PSLi + P⊥SLi

]
PE(QLi − L?)〉

≤ 2
∥∥Li+1 − L?

∥∥
F

∥∥(I − µLi PEPSLi A∗APSLi )PE(QLi − L?)
∥∥
F
+ 2µLi

∥∥Li+1 − L?
∥∥
F

∥∥PSLi A∗AP⊥SLi PE(QLi − L?)
∥∥
F

≤ 4δ3r(A)

1− δ3r(A)

∥∥Li+1 − L?
∥∥
F

∥∥QLi − L?
∥∥
F
+

2δ4r(A)

1− δ3r(A)
(2δ3r(A) + 2δ4r(A))

∥∥Li+1 − L?
∥∥
F

∥∥QLi − L?
∥∥
F

(4.104)

where (4.104) holds, since 1
1+δ3r(A) ≤ µLi ≤ 1

1−δ3r(A) , using Lemma 3 in [?]:

λ(I− µLi PSLi A
∗APSLi ) ∈

[
1− 1− δ3r(A)

1 + δ3r(A)
,

1 + δ3r(A)

1− δ3r(A)
− 1

]
≤ 2δ3r(A)

1− δ3r(A)
. (4.105)

and thus:

∥∥(I− µLi PSLi A
∗APSLi )PE(QLi − L?)

∥∥
F
≤ 2δ3r(A)

1− δ3r(A)

∥∥PE(QLi − L?)
∥∥
F
.

Furthermore, according to Lemma 4 in [KC11]:

∥∥PSLi A
∗AP⊥SLi PE(Q

L
i − L?)

∥∥
F
≤ δ4r(A)

∥∥P⊥SLi PE(Q
L
i − L?)

∥∥
F

since rank(PE∪SLi Q) ≤ 4r, ∀Q ∈ Rp×n. Moreover:

∥∥P⊥SLi PE(Q
L
i − L?)

∥∥
F
≤ (2δ3r(A) + 2δ4r(A))

∥∥QLi − L?
∥∥
F
,

using ideas from Lemma 21.

The second term in (4.103) satsifies:

2µLi 〈Li+1 − L?,PEPSLi A
∗A(QMi −M?)〉 ≤ 2

1− δ3r(A)

∥∥Li+1 − L?
∥∥
F

∥∥PSLi A
∗A(QMi −M?)

∥∥
F

≤ 2

1− δ3r(A)

∥∥Li+1 − L?
∥∥
F
δ3r+3k(A)

∥∥QMi −M?
∥∥
F

using Lemma 3.2 in [WSB11]. Replacing the above results in (4.103), we compute:

∥∥Li+1 − L?
∥∥
F
≤ α

∥∥QLi − L?
∥∥
F

+ β
∥∥QMi −M?

∥∥
F
, (4.106)

where α :=
(

4δ3r(A)
1−δ3r(A) + 2δ4r(A)

1−δ3r(A) (2δ3r(A) + 2δ4r(A))
)

and β := 2δ3r+3k(A)
1−δ3r(A) . Following similar steps for

the sparse matrix estimate part, we end up with the following inequality bound for Mi+1:

∥∥Mi+1 −M?
∥∥
F
≤ γ

∥∥QMi −M?
∥∥
F

+ ζ
∥∥QLi − L?

∥∥
F
, (4.107)

where γ := 2(δ4k(A)+δ3k(A))
1−δ3k(A) and ζ := 2δ3r+4k(A)

1−δ3k(A) .

Furthermore:

∥∥QLi − L?
∥∥
F

=
∥∥Li + τi(Li − Li−1)− L?

∥∥
F

=
∥∥(1 + τi)(Li − L?) + τi(L

? − Li−1)
∥∥
F

≤ (1 + τi)
∥∥Li − L?

∥∥
F

+ τi
∥∥Li−1 − L?

∥∥
F

(4.108)
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and

∥∥QMi −M?
∥∥
F

=
∥∥Mi + τi(Mi −Mi−1)−M?

∥∥
F

=
∥∥(1 + τi)(Mi −M?) + τi(M

? −Mi−1)
∥∥
F

≤ (1 + τi)
∥∥Mi −M?

∥∥
F

+ τi
∥∥Mi−1 −M?

∥∥
F

(4.109)

Combining (4.108), (4.109) into (4.106) and (4.107), we get:

∥∥Li+1 − L?
∥∥
F
≤ α(1 + τi)

∥∥Li − L?
∥∥
F

+ ατi
∥∥Li−1 − L?

∥∥
F

+ β(1 + τi)
∥∥Mi −M?

∥∥
F

+ βτi
∥∥Mi−1 −M?

∥∥
F

(4.110)

and

∥∥Mi+1 −M?
∥∥
F
≤ γ(1 + τi)

∥∥Mi −M?
∥∥
F

+ γτi
∥∥Mi−1 −M?

∥∥
F

+ ζ(1 + τi)
∥∥Li − L?

∥∥
F

+ ζτi
∥∥Li−1 − L?

∥∥
F

(4.111)

The inequalities (4.110) and (4.111) define the following coupled set of inequalities:

[ ∥∥Li+1 − L?
∥∥
F∥∥Mi+1 −M?
∥∥
F

]
≤ (1 + τi)∆

[ ∥∥Li − L?
∥∥
F∥∥Mi −M?
∥∥
F

]
+ τi∆

[ ∥∥Li−1 − L?
∥∥
F∥∥Mi−1 −M?
∥∥
F

]
(4.112)

where ∆ :=

[
α β

ζ γ

]
. Furthermore, we define x(i) :=

[ ∥∥Li − L?
∥∥
F∥∥Mi −M?
∥∥
F

]
to obtain inequality (4.34). We can

convert this second-order linear system into a two-dimensional first-order system where the variables of
the linear system are multi-dimensional. To achieve this, we define a new state variable y(i) where:

y(i) := x(i+ 1).

and thus, y(i+ 1) := x(i+ 2). Using the new variable above, we define the following two-dimensional
first-order system:

{
y(i+ 1)− (1 + τi)∆y(i)− τi∆x(i) ≤ 0,

x(i+ 1) ≤ y(i).

which, moreover, defines the following linear system that characterizes the evolution of two state
variables, {y(i),x(i)}:

[
y(i+ 1)

x(i+ 1)

]
≤
[
(1 + τi)∆ τi∆

I 0

] [
y(i)

x(i)

]
⇒
[
x(i+ 2)

x(i+ 1)

]
≤
[
(1 + τi)∆ τi∆

I 0

] [
x(i+ 1)

x(i)

]
,

with well-defined initial conditions x(0) :=

[ ∥∥L?
∥∥
F∥∥M?
∥∥
F

]
and y(0) := x(1) = (1 + τi)∆x(0). For w(i) :=

[
x(i+ 1)

x(i)

]
, we obtain the linear system:

w(i+ 1) ≤
[
(1 + τi)∆ τi∆

I 0

]

︸ ︷︷ ︸
∆̂

w(i).
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Unfolding the recursion, we get the inequality (4.35):

w(i+ 1) ≤ ∆̂iw(0).

Assuming A : Rp×n → Rm is a linear operator satisfying rank-RIP and sparse-RIP with constants
δ4r(A) ≤ 0.09 and δ4k(A) ≤ 0.095, respectively, and satisfies jointly the low rank- and sparse-RIP with
constant δ3r+3k(A) ≤ 0.095, we observe that the eigenvalues of ∆̂ are distinct and real and satisfy
|λj(∆̂)| < 1, ∀j. Furthermore, |I− ∆̂| 6= 0. To complete the proof, we use the following Theorem from
[?] — the proof is omitted:

Theorem 14 (Necessary and Sufficient Conditions for Global Stability: Distinct Real Eigenvalues). Con-
sider the system w(i+ 1) = ∆̂w(i) + B where w(0) is given. We assume that |I− ∆̂| 6= 0 and ∆̂ has distinct
real eigenvalues. Then:

• The steady-state equilibrium w̃ = [I− ∆̂]−1B is globally stable if and only if |λj(∆̂)| < 1, ∀j.

• limi→∞w(i) = w̃ if and only if |λj(∆̂)| < 1, ∀j.

In our simple case, we consider B := 0. Thus, the steady-state equilibrium in (4.35) satisfies w̃ = 0. Then,
we conclude limi→∞w(i) = 0 and, thus:

∥∥Li − L?
∥∥
F
→ 0 and

∥∥Mi −M?
∥∥
F
→ 0,

as i→∞.
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5 Convex approaches in low-
dimensional modeling

Introduction

It is obvious so far that mathematical optimization is used in many applications: from portfolio opti-
mization and kernel density estimation to quantum state tomography and video background subtraction,
from image processing in biology to compressed sensing and neuronal spike detection. In all cases and
given the resources available, we are interested in finding the best solution x? that best fits / interprets
the problem at hand.

As already mentioned, for this purpose, one should fully understand the nature of the problem in order
to formulate it with maximum fidelity. As concrete examples, in Chapter 3 we provide both convex
and non-convex model descriptions of sparsity models that appear in practice such as rooted-connected
sparsity model or pairwise overlapping group model. We show that, depending on the model followed at
this stage, there are different tools to be used in order to simulate and finally predict the real underlying
process.

Hitherto, most of our discussions so far focused on the case of greedy, non-convex methods where one
operates directly on the discrete model. However, while the discrete model might be often closer to what
we expect from the physical process, it is absolutely necessary to highlight the consequences of such
selection. E.g., while in the case of compressed sensing and affine rank minimization problems one can
use greedy algorithms for fast and accurate solutions (see Chapters 2 and 4), there are problem cases
where non-convexity cannot guarantee convergence to a “good” solution (i.e., in the best case, we cannot
hope for more than a locally optimally point). Moreover, deviations from the strict discrete model in the
non-convex case usually lead to severe degradations in signal reconstruction.

From a computational point of view, it is almost common sense to assume that non-convex problem
formulations are more difficult to solve in their entirety. Most of the non-convex models presented in this
thesis are discrete and their usage in practice might lead to some NP-hard problem formulations; e.g.,
consider the `0 “norm” minimization formulation in the case of compressed sensing.

Based on the above, researchers very often in practice lean to choose “less-good” models—i.e., models
that do not fully comply with the problem and might lead to model discrepancies; see Chapter 3—than
“good” models that are difficult to handle in practice. E.g., convex relaxations are usually less susceptible
to model mismatches and result into better recovery performance in compressive image recovery; e.g.,
see Figures 3.7-3.8. This fact is also mirrored by the computational practice over the past decades: both in
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F2

Fµ

FL

F : convex

Saturday, June 21, 14

Class Property
x,y ∈ dom(f), v ∈ Rn, 0 ≤ µ ≤ L < +∞

FL ‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖
Fµ µ

2
‖x− y‖2 + f(x) +∇f(x)T (y − x) ≤ f(y)

F2 |ϕ′′′(t)| ≤ 2ϕ′′(t)3/2: ϕ(t) = f(x + tv), t ∈ R

Figure 5.1: Common structural assumptions on the smooth function f .

academia and industry, the most widespread optimization models followed in practice are that of convex
non-linear optimization.1

However, convexity by itself does not imply tractability. Our purpose in this chapter is to highlight that, in
order to apply convex optimization techniques with provable guarantees, one needs to be aware of the
underlying nature of the problem at hand and exploit the structure, as well as the theory that applies. To
show this, we focus on problems of the following composite form:2

F ∗ := min
x∈Rn

{F (x) | F (x) := f(x) + g(x)} , (5.1)

where f and g are both closed and convex, and n is the problem dimension. In the canonical setting of the
composite minimization problem (5.1), the functions f and g are assumed to be smooth and non-smooth,
respectively [Nes13]. The literature on the formulation, analysis, and applications of composite convex
minimization is ever expanding due to its broad applications in machine learning, signal processing,
and statistics. For instance, such composite objectives naturally arise in maximum a posteriori model
estimation, where we regularize a model likelihood function as measured by a data-driven smooth
term f with a non-smooth model prior g, which carries some notion of model complexity (e.g., sparsity,
low-rankness, etc.).

A vignette of algorithmic approaches

In theory, many convex problem instances of the form (5.1) have a well-understood structure, and hence
high accuracy solutions can be efficiently obtained with polynomial time methods, such as interior point
methods (IPM) after transforming them into conic quadratic programming or semidefinite programming
formulations [BTN01, GBY06, NN94]. In practice, however, the curse-of-dimensionality renders these
methods impractical for large-scale problems. Moreover, the presence of a non-smooth term g prevents
direct applications of scalable smooth optimization techniques, such as sequential linear or quadratic
programming.

Fortunately, we can provably trade-off accuracy with computation for large-scale applications by further
exploiting the individual structures of f and g. Existing methods invariably rely on two structural
assumptions that particularly stand out among many others. First, we often assume that f has Lipschitz

1This includes the ancestor of convex optimization, linear optimization.
2According to conventional wisdom, regularized convex optimization formulations is preferred over constrained ones since

unconstrained optimization is generally easier to solve than constrained one. Thus, in this chapter we focus on the former formulation.
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continuous gradient (i.e., f ∈ FL: cf., Fig. 5.1). Second, we assume that the proximity operator of g is
somewhat easy to compute; see also Sections 6.3-6.4. On the basis of these structures, we can design
algorithms featuring a full spectrum of (nearly) dimension-independent, global convergence rates with
well-understood analytical complexity (see Table 5.1).

Table 5.1: Taxonomy of convex optimization methods when f ∈ FL to reach F (xk)− F ∗ ≤ ε.

Order Method example Main oracle Analytical complexity

1-st [Accelerated] gradient ∇f [O(ε−1/2)] O(ε−1)
1+-th Proximal quasi-Newton Hk,∇f O(log ε−1) or faster
2-nd Proximal Newton ∇2f,∇f O(log log ε−1)

[BF12, LSS12, Nes04, NW06].

Unfortunately, existing large-scale algorithms have become inseparable with the Lipschitz gradient
assumption on f and are still being applied to solve (5.1) in applications where this assumption does
not hold. For instance, when proximity operation is not easy to compute, it is still possible to establish
convergence—albeit slower—with smoothing, splitting or primal-dual decomposition techniques [CP11,
EB92, Nes05a, Nes05b, TDSD13]. However, when f /∈ FL, the composite problems of the form (5.1) are
not within the full theoretical grasp. In particular, there is no known global convergence rate. One kludge
to handle f /∈ FL is to use sequential quadratic approximation of f to reduce the subproblems to the
Lipschitz gradient case. For local convergence of these methods, we need strong regularity assumptions
on f (i.e., µI � ∇2f(x) � LI) near the optimal solution. Attempts at global convergence require a
globalization strategy such as line search procedures, as we describe next. However, neither the strong
regularity nor the line search assumptions can be certified a priori.

Self-concordance in composite convex minimization

To this end, we address the following question in this paper: “Is it possible to efficiently solve large-
scale instances of (5.1) for non-global Lipschitz continuous gradient f with rigorous global convergence
guarantees?” The answer is positive (at least for a broad class of functions): We can still cover a full
spectrum of global convergence rates with well-characterizable computation and accuracy trade-offs
(akin to Table 5.1 for f ∈ FL) for self-concordant f (in particular, self-concordant barriers) [NT09b, NN94]:

Definition 15 (Self-concordant (barrier) functions). A convex function f : Rn → R is said to be self-
concordant (i.e., f ∈ FM ) with parameter M , if |ϕ′′′(t)| ≤ Mϕ′′(t)3/2, where ϕ(t) := f(x + tv) for all
t ∈ R, x ∈ dom(f) and v ∈ Rn such that x + tv ∈ dom(f). When M = 2, the function f is said to be a
standard self-concordant, i.e., f ∈ F2.a A standard self-concordant function f ∈ F2 is a ν-self-concordant
barrier of a given convex set Ω with parameter ν > 0, i.e., f ∈ Fν , when ϕ also satisfies |ϕ′(t)| ≤ √νϕ′′(t)1/2

and f(x)→ +∞ as x→ ∂Ω, the boundary of Ω.

aWe use this constant for convenience in the derivations since if f ∈ FM , then (M2/4)f ∈ F2.

While there are other definitions of self-concordant functions and self-concordant barriers [BV04, NT09b,
NN94, Nes04], we use Definition 15 in the sequel, unless otherwise stated.
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Why is the assumption f ∈ F2 interesting for composite minimization?

The assumption f ∈ F2 in (5.1) is quite natural for two reasons. First, several important applications
directly feature a self-concordant f , which does not have global Lipschitz continuous gradient. Second,
self-concordant composite problems can enable approximate solutions of general constrained convex
problems where the constraint set is endowed with a ν-self-concordant barrier function.3 We highlight
three examples below, based on compositions with the log-functions.

Log-determinant: The matrix variable function f(Θ) := − log det Θ is self-concordant with dom(f) :=

{Θ ∈ Sp |Θ � 0}. As a stylized application, consider learning a Gaussian Markov random field (GMRF)
of p nodes/variables from a dataset D := {φ1,φ2, . . . ,φm}, where φj ∈ D is a p-dimensional random
vector with Gaussian distribution N (µ,Σ). Let Θ := Σ−1 be the inverse covariance (or the precision)
matrix for the model. To satisfy the conditional dependencies with respect to the GMRF, Θ must have
zero in (Θ)ij corresponding to the absence of an edge between node i and node j; cf., [Dem72].

We can learn GMRF’s with theoretical guarantees from as few as O(d2 log p) data samples, where d is the
graph node degree, via `1-norm regularization formulation (see [RWRY11]):

Θ∗ := arg min
Θ�0

{
− log det(Θ) + tr(Σ̂Θ)︸ ︷︷ ︸

=:f(Θ)

+ ρ‖vec(Θ)‖1︸ ︷︷ ︸
=:g(Θ)

}
, (5.2)

where ρ > 0 parameter balances a Gaussian model likelihood and the sparsity of the solution, Σ̂ is the
empirical covariance estimate, and vec is the vectorization operator. The formulation also applies for
learning models beyond GMRF’s, such as the Ising model, since f(Θ) acts also as a Bregman distance
[BEGd08].

Numerical solution methods for solving problem (5.2) have been extensively studied, e.g. in [BEGd08,
HSDR11, LSS12, Lu10, OONR12, RRG+12, SR09, SMG10, Yua12]. However, none so far exploits self-
concordance and feature global convergence guarantees.

Log-barrier for linear inequalities: The function f(x) := − log(aTx − b) is a self-concordant barrier
with dom(f) :=

{
x ∈ Rn | aTx > b

}
. As a stylized application, consider the low-light imaging problem

in signal processing [HMW12, FBD10], where the imaging data is collected by counting photons hitting a
detector over the time. In this setting, we wish to accurately reconstruct an image in low-light, which
leads to noisy measurements due to low photon count levels. We can express our observation model
using the Poisson distribution as:

P(y|A(x)) =

m∏

i=1

(aTi x)yi

yi!
e−aTi x,

where x is the true image, A is a linear operator that projects the scene onto the set of observations, ai is
the i-th row of A, and y ∈ Zm+ is a vector of observed photon counts.

3Let us consider a constrained convex minimization x∗C := arg minx∈C g(x), where the feasible convex set C is endowed with
a ν-self-concordant barrier ΨC(x). If we let f(x) := ε

ν
ΨC(x), then the solution x∗ of the composite minimization problem (5.1)

well-approximates x∗C as g(x∗) ≤ g(x∗C) + (∇f(x∗) + ∂g(x∗))T (x∗ − x∗C) + ε. The middle term can be controlled by accuracy at
which we solve the composite minimization problem [Nes11, Nes13].
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Via the log-likelihood formulation, we stumble upon a composite minimization problem:

x∗ := arg min
x∈Rn

{ m∑

i=1

aTi x−
m∑

i=1

yi log(aTi x)

︸ ︷︷ ︸
=:f(x)

+g(x)
}
, (5.3)

where f(x) is self-concordant (but not standard). In the above formulation, the typical image priors
g(x) include the `1-norm for sparsity in a known basis, total variation semi-norm of the image, and the
positivity of the image pixels. While the formulation (5.3) seems specific to imaging, it is also common
in sparse regression with unknown noise variance [SBdG12], heteroschedastic LASSO [DHMS13], and
barrier approximations of, e.g., the Dantzig selector [CT07] as well.

The current state of the art solver is called SPIRAL-TAP [HMW12], which biases the logarithmic term
(i.e., log(aTi x + ε)→ log(aTi x), where ε� 1) and then applies non-monotone composite gradient descent
algorithms for FL with a Barzilai-Borwein step-size as well as other line-search strategies.

Logarithm of concave quadratic functions: The function f(x) := − log
(
σ2 − ‖Ax− y‖22

)
is self-concordant

with dom(f) :=
{
x ∈ Rn | ‖Ax− y‖22 < σ2

}
. As a stylized application, we consider the basis pursuit

denoising (BPDN) formulation [VDBF08] as:

x∗ := arg min
x∈Rn

{
g(x) | ‖Ax− y‖22 ≤ σ2

}
. (5.4)

The BPDN criteria is commonly used in magnetic resonance imaging (MRI) where A is a subsampled
Fourier operator, y is the MRI scan data, and σ2 is a known machine noise level (i.e., obtained during
a pre-scan). In (5.4), g is an image prior, e.g., similar to the Poisson imaging problem. Approximate
solutions to (5.4) can be obtained via a barrier formulation:

x∗t := arg min
x∈Rn

{
−t log

(
σ2 − ‖Ax− y‖22

)

︸ ︷︷ ︸
=:f(x)

+ g(x)
}
, (5.5)

where t > 0 is a penalty parameter which controls the quality of the approximation. The BPDN
formulation is quite generic and has several other applications in statistical regression, geophysics, and
signal processing.

Several different approaches solve the BPDN problem (5.4), some of which require projections onto the
constraint set, including Douglas-Rachford splitting [ABDF11], proximal methods [ABDF10, CW05a],
and the SPGL1 method [VDBF08].

Chapter roadmap

Interior point methods are always an option while solving the self-concordant composite problems (5.1)
numerically by means of disciplined convex programming [GBY06, L0̈4]. More concretely, in the IPM
setting, we set up an equivalent problem to (5.1) that typically avoids the non-smooth term g(x) in the
objective by lifting the problem dimensions with slack variables and introducing additional constraints.
The new constraints may then be embedded into the objective through a barrier function. We then solve
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a sequence of smooth problems (e.g., with Newton methods) and “path-follow”4 to obtain an accurate
solution [NT09b, Nes04]. In this loop, many of the underlying structures within the original problem,
such as sparsity, can be lost due to pre-conditioning or Newton direction scaling (e.g., Nesterov-Todd
scaling, [NT97]). The efficiency and the memory bottlenecks of the overall scheme then heavily depends
on the workhorse algorithm that solves the smooth problems.

In this chapter, we introduce an algorithmic framework that directly handles the composite minimization
problem (5.1) without increasing the original problem dimensions. Instead of solving a sequence of
smooth problems, we solve a sequence of non-smooth proximal problems with a variable metric (i.e.,
our workhorse). Fortunately, these proximal problems feature the composite form (5.1) with a Lipschitz
gradient (and oft-times strongly convex) smooth term. Hence, we leverage the tremendous amount of
research on large-scale algorithms (cf., Table 5.1) done over the last decades. Surprisingly, we can even
retain the original problem structures that lead to computational ease in many cases (e.g., see Section
5.4.2).

In particular:

1. In Section 5.3. we propose a new variable metric framework for minimizing the sum f + g of a
self-concordant function f and a convex, possibly nonsmooth function g. Our approach relies on
the solution of a convex subproblem obtained by linearizing and regularizing the first term f . To
achieve monotonic descent, we develop a new set of analytic step-size selection and correction
procedures based on the structure of the problem. We establish both the global and the local
convergence of different variable metric strategies.

As an extension, we pay particular attention to diagonal variable metrics as many of the proximal
subproblems can be solved exactly (i.e., in closed form). We derive conditions on when these
variants achieve locally linear convergence.

2. We apply our algorithms to the aforementioned large-scale real-world and synthetic problems
(Section 5.4) to highlight the strengths and the weaknesses of our scheme. For instance, in the
graph learning problem (5.2), our framework can avoid matrix inversions as well as Cholesky
decompositions in learning graphs. In Poisson intensity reconstruction (5.3), up to around 80×
acceleration is possible over the state-of-the-art solver (Section 5.4).

This chapter is based on the joint work with Volkan Cevher, Quoc Tran-Dinh and Rabeeh Mahabadi
Karimi [TDKC13c, TDKC13b, KC13, TDKC13a, KMTDC14].

5.1 Preliminaries

Notation: We reserve lower-case and bold lower-case letters for scalar and vector representation,
respectively. Upper-case bold letters denote matrices. We denote Sp++ for the set of symmetric positive
definite matrices of size p×p. For a proper, lower semicontinuous convex function f from Rn to R∪{+∞},
we denote its domain by dom(f), i.e., dom(f) := {x ∈ Rn | f(x) < +∞} (see, e.g., [Roc70]).

Weighted norm and local norm: Given a matrix H ∈ Sn++, we define the weighted norm ‖x‖H :=√
xTHx, ∀x ∈ Rn; its dual norm is defined as ‖x‖∗H := max‖y‖H≤1 yTx =

√
xTH−1x. Let f ∈ F2 and

4It is also referred to as a homotopy method.
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x ∈ dom(f) so that ∇2f(x) is positive definite. For a given vector v ∈ Rn, the local norm around
x ∈ dom(f) with respect to f is defined as ‖v‖x :=

(
vT∇2f(x)v

)1/2, while the corresponding dual norm

is given by ‖v‖∗x =
(
vT∇2f(x)−1v

)1/2.

Subdifferential and subgradient: Given a proper, lower semicontinuous convex function, we define
the subdifferential of g at x ∈ dom(g) as

∂g(x) :=
{
v ∈ Rn | g(y)− g(x) ≥ vT (y − x), ∀y ∈ dom(g)

}
.

If ∂g(x) 6= ∅ then each element in ∂g(x) is called a subgradient of g at x. In particular, if g is differentiable,
we use ∇g(x) to denote its derivative at x ∈ dom(g), and ∂g(x) ≡ {∇f(x)}.

Proximity operator: A basic tool to handle the nonsmoothness of a convex function g is its proximity
operator, whose definition is given in Chapter 6. For notational convenience in our derivations, we alter
this definition in the sequel as follows: Let g be a proper lower semicontinuous and convex in Rn and
H ∈ Sn++. We define

P gH(u) := (H + ∂g)−1(u) = arg min
x∈Rn

{
g(x) +

1

2
xTHx− uTx

}
, ∀u ∈ Rn, (5.6)

as the proximity operator for the nonsmooth g, which has the following properties.

Lemma 33. The operator P gH in (5.6) is single-valued and satisfies the following property:

(P gH(u)− P gH(v))T (u− v) ≥ ‖P gH(u)− P gH(v)‖2H , (5.7)

for all u,v ∈ Rn. Consequently, P gH is a non-expansive mapping, i.e.,

‖P gH(u)− P gH(v)‖H ≤ ‖u− v‖∗H . (5.8)

Proof. The single-valuedness of P gH is obvious due to the strong convexity of the objective function in
(5.6). Let ξu := P gH(u) and ξv := P gH(v). By the definition of P gH, we have u − Hξu ∈ ∂g(ξu) and
v −Hξu ∈ ∂g(ξv). Since g is convex, we have (u−Hξu − (v −Hξv))

T
(ξu − ξv) ≥ 0. This inequality

leads to (u−v)T (ξu−ξv) ≥ (ξu−ξv)TH(ξu−ξv) = ‖ξu − ξv‖2H which is indeed (5.7). Via the generalized
Cauchy-Schwarz inequality, (5.7) leads to (5.8).

Key self-concordant bounds: Based on [Nes04, Theorems 4.1.7 and 4.1.8], for a given standard self-
concordant function f , we recall the following inequalities

ω(‖y − x‖x) +∇f(x)T (y − x) + f(x) ≤ f(y), (5.9)

f(y) ≤ f(x) +∇f(x)T (y − x) + ω∗(‖y − x‖x), (5.10)

where ω : R → R+ is defined as ω(t) := t − ln(1 + t) and ω∗ : [0, 1] → R+ is defined as ω∗(t) :=

−t− ln(1− t). These functions are both nonnegative, strictly convex and increasing. Hence, (5.9) holds
for all x,y ∈ dom(f), and (5.10) holds for all x,y ∈ dom(f) such that ‖y − x‖x < 1. In contrast to the
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“global” inequalities for the function classes FL and Fµ (cf., Fig. 5.1), the self-concordant inequalities
are based on “local” quantities. Moreover, these bounds are no longer quadratic which prevents naive
applications of the methods from Fµ,L.

5.2 Related work

One of the main approaches in this setting is based on operator splitting. By presenting the optimality
condition of problem (5.1) as an inclusion of two monotone operators, one can apply splitting techniques,
such as forward-backward or Douglas-Rachford methods, to solve the resulting monotone inclusion
[BAC11, FP03, GO09]. In our context, several variants of this approach have been studied. For example,
projected gradient or proximal-gradient methods and fast proximal-gradient methods have been consid-
ered, see, e.g., [BT09a, MF81, Nes13]. In all these methods, the main assumption required to prove the
convergence is the global Lipschitz continuity of the gradient of the smooth function f . Unfortunately,
when f /∈ FL, these theoretical results on the global convergence and the global convergence rates are no
longer applicable.

Other mainstream approaches for (5.1) include augmented Lagrangian and alternating techniques: cf.,
[BPC+11, GM12]. These methods have empirically proven to be quite powerful in specific applications.
The main disadvantage of these methods is the manual tuning of the penalty parameter in the augmented
Lagrangian function, which is not yet well-understood for general problems. Consequently, the analysis
of global convergence as well as the convergence rate is an issue since the performance of the algorithms
strongly depends on the choice of this penalty parameter in practice. Moreover, as indicated in a recent
work [GOS12], alternating direction methods of multipliers as well as alternating linearization methods
can be viewed as splitting methods in the convex optimization context. Hence, it is unclear if this line of
work is likely to lead to any rigorous guarantees.

An emerging direction for solving composite minimization problems (5.1) is based on the proximal-
Newton method. The origins of this method can be traced back to the work of [Bon94], which relies on
the concept of strong regularity introduced by [Rob80] for generalized equations. In the convex case, this
method has been studied by several authors such as [BF12, LSS12, SRB11]. So far, methods along this
line are applied to solve a generic problem of the form (5.1). The convergence analysis of these methods
is encouraged by standard Newton methods and requires the strong regularity of the Hessian of f near
the optimal solution (i.e., µI � ∇2f(x) � LI). Moreover, the global convergence can only be proved by
applying a certain globalization strategy such as line-search or trust-region. Unfortunately, none of these
assumptions can be verified before the algorithm execution for the intended applications.

5.3 The Self-Concordant Optimization (SCOPT) framework

In this section, we propose a variable metric optimization framework that rigorously trades off computation
and accuracy of solutions without transforming (5.1) into a higher dimension smooth convex optimization
problem. We assume theoretically that the proximal subproblems can be solved exactly. Moreover, our
theory can be extended to include the inexact case, where we solve parts of the optimization up to a
sufficiently high accuracy (typically, it is at least higher than (e.g., 0.1ε) the desired accuracy ε of (5.1) at
the few last iterations), see, e.g., [TDNSD13]. In our theoretical characterizations, we only rely on the
following assumption:
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Assumption A.1. The function f is convex and standard self-concordant (see Definition 15). The function
g from Rn to R ∪ {+∞} is proper, lower semicontinuous, convex and possibly nonsmooth with a tractable
proximity operator.

Unique solvability of (5.1) and its optimality condition: First, we show that problem (5.1) is uniquely
solvable. The proof of this lemma can be done similarly as [Nes04, Theorem 4.1.11] and is provided in
the appendix.

Lemma 34. Suppose that the functions f and g of problem (5.1) satisfy Assumption 1. If λ(x) :=

‖∇f(x) + v‖∗x∗ < 1, for some x ∈ dom(F ) and v ∈ ∂g(x), the solution x∗ of (5.1) exists and is unique.

Thus, we show that a local condition λ(x) < 1 for some x provides us with some global information on f .

Since this problem is convex, the following optimality condition is necessary and sufficient:

0 ∈ ∇f(x∗) + ∂g(x∗). (5.11)

The solution x∗ is called strongly regular if ∇2f(x∗) � 0. In this case,∞ > σ∗max ≥ σ∗min > 0, where σ∗min

and σ∗max are the smallest and the largest eigenvalue of∇2f(x∗).

Fixed-point characterization: Let H ∈ Sn++. We define SH(x) := Hx −∇f(x). Then, from (5.11), we
have

SH(x∗) ≡ Hx∗ −∇f(x∗) ∈ Hx∗ + ∂g(x∗).

By using the definition of P gH(·) in (5.6), one can easily derive the fixed-point expression

x∗ = P gH (SH(x∗)) , (5.12)

that is, x∗ is the fixed-point of the mapping RgH(·), where RgH(·) := P gH(SH(·)). The formula in (5.12)
suggests that we can generate an iterative sequence based on the fixed-point principle, i.e., xk+1 :=

RgH(xk) starting from x0 ∈ dom(F ) for k ≥ 0. Theoretically, under certain assumptions, one can ensure
that the mapping RgH is contractive and the sequence generated by this scheme is convergent.

We note that if g ≡ 0 and H ∈ Sn++, then P gH defined by (5.6) reduces to P gH(·) = H−1(·). Consequently,
the fixed-point formula (5.12) becomes x∗ = x∗ −H−1∇f(x∗), which is equivalent to∇f(x∗) = 0.

Our variable metric framework: Given a point xk ∈ dom(F ) and a symmetric positive definite matrix
Hk, we consider the function

Q(x; xk,Hk) := f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)THk(x− xk), (5.13)

for x ∈ dom(F ). The function Q(·; xk,Hk) is—seemingly—a quadratic approximation of f around xk.
Now, we study the following scheme to generate a sequence

{
xk
}
k≥0

:

xk+1 := xk + αkd
k, (5.14)
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where αk ∈ (0, 1] is a step size and dk is a search direction.

Let sk be a solution of the following problem:

sk ∈ S(xk,Hk) := arg min
x∈dom(F )

{
Q(x; xk,Hk) + g(x)

}
= P gHk

(
Hkx

k −∇f(xk)
)
. (5.15)

Since we do not assume that Hk to be positive definite, the solution sk may not exist. We require the
following assumption:

Assumption A.2. The subproblem (5.15) has at least one solution sk, i.e., S(xk,Hk) 6= ∅.

In particular, if Hk ∈ Sn++, then the solution sk of (5.15) exists and is unique, i.e., S(xk,Hk) =
{
sk
}
6= ∅.

Up to now, we have not required the uniqueness of sk. This assumption will be specified later in the next
sections. Throughout this paper, we assume that both Assumptions A.1 and A.2 are satisfied without
referring to them specifically.

Now, given sk, the direction dk is computed as

dk := sk − xk. (5.16)

If we define Gk := Hkd
k, then Gk is called the gradient mapping of (5.1) [Nes04], which behaves similarly

as gradient vectors in non-composite minimization. Since problem (5.15) is solvable due to Assumption
A.2, we can write its optimality condition as

0 ∈ ∇f(xk) + Hk(sk − xk) + ∂g(sk). (5.17)

It is easy to see that if dk = 0, i.e., sk ≡ xk, then (5.17) reduces to 0 ∈ ∇f(xk) + ∂g(xk), which is exactly
(5.11). Hence, xk is a solution of (5.1).

In the variable metric framework, depending on the choice of Hk, the iteration scheme (5.14) leads to
different methods for solving (5.1). For instance,

1. If Hk := ∇2f(xk), then the method (5.14) is a proximal-Newton method.

2. If Hk is a symmetric positive definite matrix approximation of ∇2f(xk), then the method (5.14) is a
proximal-quasi Newton method.

3. If Hk := LkI, where Lk is, say, an approximation for the local Lipschitz constant of f and I is the
identity matrix, then the method (5.14) is a proximal-gradient method.

Many of these above methods have been studied for (5.1) when f ∈ FL: cf., [BF12, BT09a, CPR13,
LSS12]. Note however that, since the self-concordant part f of F is not (necessarily) globally Lipschitz
continuously differentiable, these approaches are generally not applicable in theory.

Given the search direction dk defined by (5.16), we define the following proximal-Newton decrement5 λk
and the weighted norm βk:

λk := ‖dk‖xk =
(
(dk)T∇2f(xk)dk

)1/2
and βk := ‖dk‖Hk

. (5.18)

5This notion is borrowed from standard the Newton decrement defined in [Nes04, Chapter 4].
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In the sequel, we study only the proximal-Newton method; a complete description of all variable metric
strategies is given in [TDKC13a].

Remark 9. If g ≡ 0 and∇2f(xk) ∈ Sn++, then dk = −∇2f(xk)−1∇f(xk) is the standard Newton direction. In
this case, λk defined by (5.18) reduces to λk ≡ ‖∇f(xk)‖∗xk , the Newton decrement defined in [Nes04, Chapter 4].
Moreover, we have λk ≡ λ(xk), as defined in Lemma 34.

5.3.1 A proximal-Newton method

If we choose Hk := ∇2f(xk), then the method described in (5.14) is called the proximal Newton algorithm.
For notational ease, we redefine skn := sk and dkn := dk, where the subscript n is used to distinguish
proximal Newton related quantities from the other variable metric strategies. Moreover, we use the
shorthand notation P gx̄ := P g∇2f(x̄), whenever x̄ ∈ dom(f). Using (5.15) and (5.16), skn and dkn are given
by

skn := P g
xk

(
∇2f(xk)xk −∇f(xk)

)
, dkn := skn − xk. (5.19)

Then, the proximal-Newton method generates a sequence
{
xk
}
k≥0

starting from x0 ∈ dom(F ) according
to

xk+1 := xk + αkd
k
n, (5.20)

where αk ∈ (0, 1] is a step size. If αk < 1, then the iteration (5.20) is called the damped proximal-Newton
iteration. If αk = 1, then it is called the full-step proximal-Newton iteration.

Global convergence: We first show that with an appropriate choice of the step-size αk ∈ (0, 1], the
iterative sequence

{
xk
}
k≥0

generated by the damped-step proximal Newton scheme (5.20) is a decreasing
sequence; i.e., F (xk+1) ≤ F (xk)− ω(σ) whenever λk ≥ σ, where σ > 0 is fixed. The following theorem
provides an explicit formula for the step size αk whose proof can be found in the appendix.

Theorem 15. If αk := 1
1+λk

∈ (0, 1], then the scheme in (5.20) generates xk+1 satisfies:

F (xk+1) ≤ F (xk)− ω(λk). (5.21)

Moreover, the step αk is optimal. The number of iterations to reach the point xk such that λk < σ for some
σ ∈ (0, 1) is kmax :=

⌊
F (x0)−F (x∗)

ω(σ)

⌋
+ 1.

Local quadratic convergence rate: We now establish the local quadratic convergence of the scheme
(5.20). A complete proof of this theorem can be found in the appendix.
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Theorem 16. Assume that x∗ is the unique solution of (5.1) and is strongly regular. Let
{
xk
}
k≥0

be a
sequence generated by the proximal Newton scheme (5.20) with αk ∈ (0, 1]. Then:

a) If αkλk < 1− 1√
2

, then it holds that

λk+1 ≤
(

1− αk + (2α2
k − αk)λk

1− 4αkλk + 2α2
kλ

2
k

)
λk. (5.22)

b) If the sequence
{
xk
}
k≥0

is generated by the damped proximal-Newton scheme (5.20), starting from x0

such that λ0 ≤ σ̄ :=
√

5− 2 ≈ 0.236068 and αk := (1 + λk)−1, then {λk}k locally converges to 0+ at
a quadratic rate.

c) Alternatively, if the sequence
{
xk
}
k≥0

is generated by the full-step proximal-Newton scheme (5.20)

starting from x0 such that λ0 ≤ σ̄ := 0.25(5 −
√

17) ≈ 0.219224 and αk = 1, then {λk}k locally
converges to 0+ at a quadratic rate.

Consequently, the sequence
{
xk
}
k≥0

also locally converges to x∗ at a quadratic rate in both cases b) and c),
i.e.,

{
‖xk − x∗‖x∗

}
k≥0

locally converges to 0+ at a quadratic rate.

A two-phase algorithm for solving (5.1): Now, by the virtue of the above analysis, we can propose a
two-phase proximal-Newton algorithm for solving (5.1). Initially, we perform the dub-step proximal-
Newton iterations until we reach the quadratic convergence region (Phase 1). Then, we perform full-step
proximal-Newton iterations, until we reach the desired accuracy (Phase 2). The pseudocode of the
algorithm is presented in Algorithm 16.

Algorithm 16 (Proximal-Newton algorithm)

Inputs: x0 ∈ dom(F ), tolerance ε > 0.
Initialization: Select a constant σ ∈ (0, (5−

√
17)

4 ], e.g., σ := 0.2.

for k = 0 to Kmax do
1. Compute the proximal-Newton search direction dkn as in (5.19).
2. Compute λk :=

∥∥dkn
∥∥

xk
.

3. if λk > σ then xk+1 := xk + αkd
k
n, where αk := (1 + λk)−1.

4. elseif λk > ε then xk+1 := xk + dkn.
5. else terminate.

end for

The radius σ of the quadratic convergence region in Algorithm 16 can be fixed at any value in (0, σ̄], e.g.,
at its upper bound σ̄. An upper bound Kmax of the iterations can also be specified, if necessary. The
computational bottleneck in Algorithm 16 is typically incurred Step 1 in Phase 1 and Phase 2, where
we need to solve the subproblem (5.15) to obtain a search direction dkn. When problem (5.15) is strongly
convex, i.e., ∇2f(xk) ∈ Sn++, one can apply first order methods to efficiently solve this problem with
a linear convergence rate (see, e.g., [BT09a, Nes04, Nes13]) and make use of a warm-start strategy by
employing the information of the previous iterations.
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Iteration-complexity analysis. The choice of σ in Algorithm 16 can trade-off the number of iterations
between the damped-step and full-step iterations. If we fix σ = 0.2, then the complexity of the full-
step Newton phase becomes O

(
ln ln

(
0.28
ε

))
. The following theorem summarizes the complexity of the

proposed algorithm.

Theorem 17. The maximum number of iterations required in Algorithm 1 does not exceed Kmax :=⌊
F (x0)−F (x∗)

0.017

⌋
+
⌊
1.5
(
ln ln

(
0.28
ε

))⌋
+ 2 provided that σ = 0.2 to obtain λk ≤ ε. Consequently,

‖xk − x∗‖x∗ ≤ 2ε, where x∗ is the unique solution of (5.1).

Proof. Let σ = 0.2. From the estimate (5.22) of Theorem 16 and αk−1 = 1 we have λk ≤ (1 − 4λk−1 +

2λ2
k−1)−1λ2

k−1 for k ≥ 1. Since λ0 ≤ σ, by induction, we can easily show that λk ≤ (1−4σ+2σ2)−1λ2
k−1 ≤

cλ2
k−1, where c := 3.57. This implies λk ≤ c2

k−1λ2k

0 ≤ c2
k−1σ2k . The stopping criterion λk ≤ ε

in Algorithm 16 is ensured if (cσ)2k ≤ cε. Since cσ ≈ 0.71 < 1, the last condition leads to k ≥
(ln 2)−1 ln

(
− ln(cσ)
− ln(cε)

)
. By using c = 3.57, σ = 0.2 and the fact that ln(2)−1 < 1.5, we can show that

the last requirement is fulfilled if k ≥
⌊
1.5
(
ln ln

(
0.28
ε

))⌋
+ 1. Now, combining the last conclusion and

Theorem 15 with noting that ω(σ) > 0.017 we obtain Kmax as in Theorem 17.

Finally, we prove ‖xk−x∗‖x∗ ≤ 2ε. Indeed, we have rk := ‖xk−x∗‖x∗ ≤ ‖x
k+1−xk‖

xk

1−‖xk−x∗‖x∗ +‖xk+1−xk‖x∗ =

λk
1−rk

+ rk+1, whenever rk < 1. Next, using (5.77) with αk = 1, we have rk+1 ≤ (3−rk)r2
k

1−4rk+2r2
k

. Combining

these inequalities, we obtain (1−rk)(1−7rk+3r2
k)rk

1−4rk+2r2
k

≤ λk ≤ ε. Since the function s(r) := (1−r)(1−7r+3r2)r
1−4r+2r2

attains a maximum at r∗ ≈ 0.08763 and it is increasing on [0, r∗]. Moreover, (1−rk)(1−7rk+3r2
k)

1−4rk+2r2
k

≥ 0.5 for

rk ∈ [0, r∗], which leas to 0.5rk ≤ (1−rk)(1−7rk+3r2
k)rk

1−4rk+2r2
k

≤ ε. Hence, rk ≤ 2ε provided that rk ≤ r0 ≤ r∗ ≈
0.08763.

Remark 10. When g ≡ 0, we can modify the proof of estimate (5.22) to obtain a tighter bound λk+1 ≤ λ2
k

(1−λk)2 .
This estimate is exactly [Nes04, ], which implies that the radius of the quadratic convergence region is σ̄ :=

(3−
√

5)/2.

A modification of the proximal-Newton method: In Algorithm 16, if we remove Step 4 and replace
analytic step-size selection calculation in Step 3 with a backtracking line-search, then we reach the
proximal Newton method of [LSS12]. Hence, this approach in practice might lead to reduced overall
computation since our step-size αk is selected optimally with respect to the worst case problem structures
as opposed to the particular instance of the problem. Since the backtracking approach always starts
with the full-step, we also do not need to know whether we are within the quadratic convergence
region. Moreover, the cost of evaluating the objective at the full-step in certain applications may not be
significantly worse than the cost of calculating αk or may be dominated by the cost of calculating the
Newton direction.

In stark contrast to backtracking, our new theory behooves us to propose a new forward line-search
procedure as illustrated by Figure 5.2. The idea is quite simple: we start with the “optimal” step-
size αk and increase it towards full-step with a stopping condition based on the objective evaluations.
Interestingly, when we analytically calculate the step, we also have access to the side information on
whether or not we are within the quadratic convergence region, and hence, we can automatically switch
to Step 4 in Algorithm 16. Alternatively, calculation of the analytic step-size can enhance backtracking
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Figure 5.2: Illustration of step-size selection procedures

since the knowledge of αk reduces the backtracking range from (0, 1] to (αk, 1] with the side-information
as to when to automatically take the full-step without function evaluation.

5.4 Experiments

In this section, we illustrate our optimization framework via numerical experiments on the variants
discussed in this chapter. All the tests are performed in MATLAB 2011b running on a PC Intel Xeon
X5690 at 3.47GHz per core with 94Gb RAM.6

5.4.1 Empirical performance comparison

By using the graph selection problem, we first show that the modifications on the proximal-Newton
method provides advantages in practical convergence as compared to state-of-the-art strategies and
provides a safeguard for line-search procedures in optimization routines. We then highlight the impact of
different subsolvers for (5.23) in the practical convergence of the algorithms.

Comparison of different step-size selection procedures

We apply four different step-size selection procedures in our proximal-Newton framework to solve
problem (5.2). Specifically, we test the algorithm based on the following configuration:

(i) We implement Algorithm 17 in MATLAB using FISTA [BT09a] to solve the dual subproblem with
the following stopping criterion: ‖Θi+1 −Θi‖F ≤ 10−8 ×max {‖Θi+1‖F , 1}.

(ii) We consider four different globalization procedures, whose details can be found in Section 5.3.1:
a) NoLS which uses the analytic step size α∗k = (1 + λk)−1, b) BtkLS which is an instance of the
proximal-Newton framework of [LSS12] and uses the standard backtracking line-search based on
the Amirjo’s rule, c) E-BtkLS which is based on the standard backtracking line-search enhanced
by the lower bound α∗k and, d) FwLS as the forward line-search by starting from α∗k and increasing
the step size until either infeasibility or the objective value does not improve.

(iii) We test our implementation on four problem cases: The first problem is a synthetic examples of
size p = 10, where the data is generated as in [KC13]. We run this test for 10 times and report
computational primitives in average. Three remaining problems are based on real data from

6We also provide MATLAB implementations of the examples in this section as a software package (SCOPT) at http://lions.epfl.
ch/software.
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http://ima.umn.edu/~maxxa007/send_SICS/, where the regularization parameters are chosen as
the standard values (cf., [TDKC13c, LSS12, HSDR11]).

The numerical results are summarized in Table 5.2. Here, #iter denotes the (average) number of iterations,
#chol represents the (average) number of Cholesky decompositions and #Mm is the (average) number
of matrix-matrix multiplications.

Table 5.2: METADATA FOR THE LINE SEARCH STRATEGY COMPARISON

LS SCHEME Synthetic (ρ = 0.01) Arabidopsis (ρ = 0.5) Leukemia (ρ = 0.1) Hereditary (ρ = 0.1)

#iter #chol #Mm #iter #chol #Mm #iter #chol #Mm #iter #chol #Mm

NoLS 25.4 - 3400 18 - 1810 44 - 9842 72 - 20960
BtkLS 25.5 37.0 2436 11 25 718 15 50 1282 19 63 2006
E-BtkLS 25.5 36.2 2436 11 24 718 15 49 1282 15 51 1282
FwLS 18.1 26.2 1632 10 17 612 12 34 844 14 44 1126

We can see that our new step-size selection procedure FwLS shows superior empirical performance as
compared to the rest: The standard approach NoLS usually starts with pessimistic step-sizes which
are designed for worst-case problem structures. Therefore, we find it advantageous to continue with a
forward line-search procedure. Whenever it reaches the quadratic convergence, no Cholesky decom-
positions are required. This makes a difference, compared to standard backtracking line-search BtkLS

where we need to evaluate the objective value at every iteration. While there is no free lunch, the cost
of computing λk is O(p2) in FwLS, which turns out to be quite cheap in this application. The E-BtkLS
combines both backtrack line-search and our analytic step-size α∗k := (1 + λk)−1, which outperforms
BtkLS as the regularization parameter becomes smaller. Finally, we note that the NoLS variant needs
more iterations but it does not require any Cholesky decompositions, which might be advantageous in
homogeneous computational platforms.

5.4.2 Graphical model selection

We customize our optimization framework to solve the graph selection problem (5.2). For notational
convenience, we maintain a matrix variable Θ instead of vectorizing it. We observe that f(Θ) :=

− log(det(Θ)) + tr(Σ̂Θ) is a standard self-concordant function, while g(Θ) := ρ ‖vec(Θ)‖1 is convex and
nonsmooth. The gradient and the Hessian of f can be computed explicitly as ∇f(Θ) := Σ̂−Θ−1 and
∇2f(Θ) := Θ−1 ⊗Θ−1, respectively. Next, we formulate our proposed framework to construct two
algorithmic variants for (5.2).

Dual proximal-Newton algorithm

We consider a second order algorithm via a dual solution approach for (5.15). This approach is first
introduced in our earlier work [TDKC13c], which did not consider the new modifications we propose in
Section 5.3.1.

We begin by deriving the following dual formulation of the convex subproblem (5.15). Let pk := ∇f(xk),
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the convex subproblem (5.15) can then be written equivalently as

min
x∈Rn

{
1

2
xTHkx + (pk −Hkx

k)Tx + g(x)

}
. (5.23)

By using the min-max principle, we can write (5.23) as

max
u∈Rn

min
x∈Rn

{
1

2
xTHkx + (pk −Hkx

k)Tx + uTx− g∗(u)

}
, (5.24)

where g∗ is the Fenchel conjugate function of g, i.e. g∗(u) := sup
x

{
uTx− g(x)

}
. Solving the inner

minimization in (5.24) we obtain

min
u∈Rn

{
1

2
uTH−1

k u + p̃Tk u + g∗(u)

}
, (5.25)

where p̃k := H−1
k pk − xk. Note that the objective function ϕ(u) := g∗(u) + 1

2uTH−1
k u + p̃Tk u of (5.25) is

strongly convex, one can apply the fast projected gradient methods with a linear convergence rate for
solving this problem, see [Nes13, BT09a].

In order to recover the solution of the primal subproblem (5.15), we note that the solution of the parametric
minimization problem in (5.24) is given by x∗(u) := xk −H−1

k (pk + u). Let u∗xk be the optimal solution
of (5.25). We can recover the primal proximal-Newton search direction dk of the subproblem (5.15) as

dkn = −∇2f(xk)−1
(
∇f(xk) + u∗xk

)
. (5.26)

To compute the quantity λk defined by (5.18) in Algorithm 16, we use (5.26) such that

λk = ‖dkn‖xk =
∥∥∇f(xk) + u∗xk

∥∥∗
xk
. (5.27)

Note that computing λk by (5.27) requires the inverse of the Hessian matrix∇2f(xk).

Surprisingly, this dual approach allows us to avoid matrix inversion as well as Cholesky decomposition
in computing the gradient ∇f(Θi) and the Hessian ∇2f(Θi) of f in graph selection. An alternative is of
course to solve (5.15) in its primal form. Though, in such case, we need to compute Θ−1

i at each iteration
i (say, via Cholesky decompositions).

The dual subproblem (5.25) becomes as:

U∗ = arg min
‖vec(U)‖∞≤1

{
1

2
tr((ΘiU)2) + tr(Q̃U)

}
, (5.28)

for the graph selection, where Q̃ := ρ−1[ΘiΣ̂Θi − 2Θi]. Given the dual solution U∗ of (5.28), the primal
proximal-Newton search direction (i.e. the solution of (5.15)) is computed as

∆i := −
(

(ΘiΣ̂− I)Θi + ρΘiU
∗Θi

)
. (5.29)

The quantity λi defined in (5.27) can be computed as follows, where Wi := Θi(Σ̂ + ρU∗):

λi :=
(
p− 2 · tr (Wi) + tr

(
W2

i

))1/2
. (5.30)
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Algorithm 17 summarizes the description above. Overall, this proximal-Newton (PN) algorithm does

Algorithm 17 (Dual PN for graph selection (DPNGS))

Input: Matrix Σ̂ � 0 and a given tolerance ε > 0. Set σ := 0.25(5−
√

17).
Initialization: Find a starting point Θ0 � 0.
for i = 0 to imax do

1. Set Q̃ := ρ−1
(
ΘiΣ̂Θi − 2Θi

)
.

2. Compute U∗ in (5.28).
3. Compute λi by (5.30), where Wi :=Θi(Σ̂+ρU∗).
4. If λi ≤ ε terminate.
5. Compute ∆i := −

(
(ΘiΣ̂− I)Θi + ρΘiU

∗Θi

)
.

6. If λi > σ, then set αi := (1 + λi)
−1. Otherwise, set αi = 1.

7. Update Θi+1 := Θi + αi∆i.
end for

not require any matrix inversions or Cholesky decompositions. It only needs matrix-vector and matrix-matrix
calculations, which might be attractive for different computational platforms (such as GPUs or simple
parallel implementations) or appropriate matrix multiplication approximations can lead to accelerations
[KVZ14]. Note however that as we work through the dual problem, the primal solution can be dense
even if majority of the entries are rather small (e.g., smaller than 10−6).7

We now explain the underlying costs of each step in Algorithm 17, which is useful when we consider
different strategies for the selection of the step size αk. The computation of Q̃ and ∆i require basic
matrix multiplications. For the computation of λi, we require two trace operations: trace(Wi) in O(p)

time-complexity and trace(W2
i ) in O(p2) complexity. We note here that, while Wi is a dense matrix, the

trace operation in the latter case requires only the computation of the diagonal elements of W2
i . Given

Θi, αi and ∆i, the calculation of Θi+1 has O(p2) complexity. In contrast, evaluation of the objective can
be achieved through Cholesky decompositions, which has O(p3) time complexity.

To compute (5.28), we can use the fast proximal-gradient method (FPGM) [Nes13, BT09a] with step size
1/Lwhere L is the Lipschitz constant of the gradient of the objective function in (5.28). It is easy to observe
that L := γ2

max(Θi) where γmax(Θi) is the largest eigenvalue of Θi. For sparse Θi, we can approximately
compute γmax(Θi) is O(p2) by using iterative power methods (typically, 10 iterations suffice). The projection
onto ‖vec(U)‖∞ ≤ 1 clips the elements by unity in O(p2) time. Since FPGM requires a constant number
of iterations kmax (independent of p) to achieve an εin solution accuracy, the time-complexity for the
solution in (5.28) is O(kmaxM), where M is the cost of matrix multiplication. We have also implemented
block coordinate descent and active set methods which scale O(p2) in practice when the solution is quite
sparse.

Overall, the major operation with general proximal maps in the algorithm is typically the matrix-matrix
multiplications of the form ΘiUΘi, where Θi and U are symmetric positive definite. This operation
can naturally be computed (e.g., in a GPU) in a parallel or distributed manner. For more details of such
computations we refer the reader to [BT89]. It is important to note that without Cholesky decompositions
used in objective evaluations, the basic DPNGS approach theoretically scales with the cost of matrix-
matrix multiplications.

7In our MATLAB code, we made no attempts to sparsify of the primal solution. The overall efficiency can be improved via
thresholding tricks, both in terms of time-complexity (e.g., less number of iterations) and matrix estimation quality.
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Proximal-gradient algorithm

For our experiments, we only describe the proximal gradient method of our approach to be used in
the experiments for the case of the graph selection problem. Since g(Θ) := ρ ‖vec(Θ)‖1 and ∇f(Θi) =

vec(Σ̂−Θ−1
i ), the subproblem (5.15) becomes

∆i+1 := Tτiρ
(
Θi − τi(Σ̂−Θ−1

i )
)
−Θi, (5.31)

where Tτ : Rp×p → Rp×p is the component-wise matrix thresholding operator which is defined as
Tτ (Θ) := max {0, |Θ| − τ}. We also note that the computation of ∆i+1 requires a matrix inversion
Θ−1
i . Since Θi is positive definite, one can apply Cholesky decompositions to compute Θ−1

i in O(p3)

operations. To compute the quantity λi, we have λi := ‖∆i‖Θi
=
∥∥Θ−1

i ∆i

∥∥
2
. We also choose Li :=

0.5
∥∥∇2f(Θi)

∥∥
2

= 0.5
∥∥Θ−1

i

∥∥2

2
. The above are summarized in Algorithm 18.

Algorithm 18 (Proximal-gradient method for graph selection (ProxGrad1))

Initialization: Choose a starting point Θ0 � 0 .
for i = 0 to imax do

1. Compute Θ−1
i via Cholesky decomposition.

2. Set τi := L−1
i .

3. Compute the search direction ∆i as (5.31).
4. Compute βi := Li ‖vec(∆i)‖2 and λi :=

∥∥Θ−1
i ∆i

∥∥
2
.

5. Determine the step size αi := βi
λi(λi+βi)

.
6. Update Θi+1 := Θi + αi∆i.

end for

The per iteration complexity is dominated by matrix-matrix multiplications and Cholesky decompositions
for matrix inversion calculations. In particular, Step 1 requires a Cholesky decomposition with O(p3)

time-complexity. Step 2 requires to compute `2-norm of a symmetric positive matrix, which can be
done by a power-method in O(p2) time-complexity. The complexity of Steps 3, 4 and 6 requires O(p2)

operations. Step 2 may require additional bisection steps whenever λk < 1.

Impact of different solvers for the subproblems

As mentioned in the introduction, an important step in our second order algorithmic framework is the
solution of the subproblem (5.15). If the variable matrix Hk is not diagonal, computing skHk

corresponds
to solving a convex subproblem. For a given regularization term g, we can exploit different existing
approaches to tackle this problem. We illustrate that the overall framework is quite robust against the
solution accuracy of the individual subsolver.

In this test, we consider the broadly used `1-norm function as the regularizer. Hence, (5.15) collapses to
an unconstrained LASSO problem; cf. [WNF09]. We implement the proximal-Newton algorithm to solve
the graph learning problem (5.2) where g(x) := ρ ‖x‖1. To show the impact of the subsolver in (5.2), we
implement the following methods, which are all available in our software package SCOPT:

(i) pFISTA and dFISTA: in these cases, we use the FISTA algorithm [BT09a] for solving the primal
(5.23) and the dual subproblem (5.25). Morever, to speedup the computations, we further run these
methods on the GPU [NVIDIA Quadro 4000].
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Table 5.3: METADATA FOR THE SUBSOLVER EFFICIENCY COMPARISON— ρ = 0.5

SUB-SOLVERS Estrogen (p = 692) Arabidopsis (p = 834) Leukemia (p = 1255) Hereditary(p = 1869)

#iter #chol time[s] #iter #chol time[s] #iter #chol time[s] #iter #chol time[s]

pFISTA 9 29 13.10 10 35 24.76 9 31 286.57 17 80 1608.66
pFISTA[gpu] 9 29 10.70 10 35 16.81 9 31 231.97 17 80 1265.97
dFISTA 8 16 4.66 10 17 10.92 14 22 50.19 14 27 147.86
dFISTA[gpu] 8 16 4.16 10 17 7.89 14 22 43.53 14 27 120.16
FastAS 7 24 28.69 8 27 96.93 9 31 532.11 11 40 1682.28
BCDC 8 25 90.35 9 28 227.27 9 31 549.80 12 47 3452.82
MatQUIC 11 29 21.61 10 35 50.67 10 35 119.06 14 44 891.29
ProxGrad1 175 175 8.82 226 226 17.78 230 230 44.06 660 660 350.52

Table 5.4: METADATA FOR THE SUBSOLVER EFFICIENCY COMPARISON — ρ = 0.1

SUB-SOLVERS Estrogen (p = 692) Arabidopsis (p = 834) Leukemia (p = 1255) Hereditary(p = 1869)

#iter #chol time[s] #iter #chol time[s] #iter #chol time[s] #iter #chol time[s]

pFISTA 34 101 357.25 57 148 1056.90 143 242 7490.27 - - -
pFISTA[gpu] 34 101 300.90 57 148 730.07 143 242 6083.06 - - -
dFISTA 14 32 12.51 12 35 15.53 12 34 38.73 14 44 150.03
dFISTA[gpu] 14 32 11.18 12 35 11.18 12 34 33.45 14 44 121.37
FastAS - - - - - - - - - - - -
BCDC 13 48 1839.17 15 50 4806.62 - - - - - -
MatQUIC 30 88 573.87 36 95 1255.13 36 95 4260.97 - - -
ProxGrad1 4345 4345 224.95 6640 6640 532.77 9225 9225 1797.49 - - -

(ii) FastAS: this method corresponds to the exact implementation of the fast active-set method pro-
posed in [KP10] for solving the primal-dual (5.23).

(iii) BCDC: here, we consider the block-coordinate descent method implemented in [HSDR11] for solving
the primal subproblem (5.23).

We also compare the above variants of the proximal-Newton approach with (i) the proximal-gradient
method (Algorithm 18) denoted by ProxGrad1 and (ii) a precise MATLAB implementation of QUIC
(MatQUIC), as described in [HSDR11]. For the proximal-Newton and MatQUIC approaches, we terminate
the execution if the maximum number of iterations exceeds 200 or the total execution time exceeds the 5

hours. The maximum number of iterations in ProxGrad1 is set to 104.

The results are reported in Tables 5.3-5.4. Overall, we observe that dFISTA shows superior performance
across the board in terms of computational time and the total number of Cholesky decompositions
required. Here, #nnz represents the number of nonzero entries in the final solution. The notation “−”
indicates that the algorithms exceed either the maximum number of iterations or the time limit (5 hours).

If the parameter ρ is relatively large (i.e., the solution is expected to be quite sparse), FastAS, BCDC and
MatQUIC perform well and converge in a reasonable time. This is expected since all three approaches
vastly rely on the sparsity of the solution: the sparser the solution is, the faster their computations are
performed, as restricted on the active set of variables. However, when ρ is small, the performance of
these methods significantly degrade due to the increased number of active (non-zero) entries.

Aside from the above, ProxGrad1 performs well in terms of computational time, as compared to the
rest of the methods. Unfortunately, the number of Cholesky decompositions in this method can become
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as many as the number of iterations, which indicates a computational bottleneck in high-dimensional
problem cases. Moreover, when ρ is small, this method also slows down and requires more iterations to
converge.

On the other hand, we also note that pFISTA is rather sensitive to the accuracy of the subsolver within
the quadratic convergence region. In fact, while pFISTA reaches medium scale accuracies in a manner
similar to dFISTA, it spends most of its iterations trying to achieve the higher accuracy values. However,
this could also be an artifact of our MATLAB implementation.

5.4.3 Sparse covariance estimation

Let {xj}mj=1 be a collection of n-variate random vectors, i.e., xj ∈ Rn, drawn from a joint probability
distribution with positive definite covariance matrix Σ. In this context, assume there may exist unknown
marginal independences among the variables to discover; we note that (Σ)kl = 0 when the k-th and l-th
variables are independent. Thus, Σ ranges from being diagonal, where every component is independent
to every other component, to being a fully dense matrix, where all the components are unconditionally
pairwise dependent. In this work, we consider problems where Σ is unknown and sparse, i.e., only a
small number of entries are nonzero. Our goal is to recover the nonzero pattern of Σ, as well as compute
a decent approximation, from a (possibly) limited sample corpus.

Covariance estimation is an important problem, found in diverse research areas. In classic portfolio
optimization [Mar52], the covariance matrix over the asset returns is unknown and thus it is approximated
from historical data. Unfortunately though, “...financial data is typically non-stationary. This limits
the amount of data that can be used to meaningfully estimate (...) the covariance of the asset return
vector" [Pol12]. In this context, even the estimation of the most significant dependencies among assets
might lead to meaningful decisions for portfolio optimization. Moreover, shrinkage operations over
the covariance estimates, such as sparsity-inducing regularization, mitigate the instability (due to the
small sample size) of classic sample covariance estimators [BL08]. In bioinformatics, we are interested
in inferring the dependency network among genes [SS05]: groups might be completely independent
from other groups. In its simplest form, this problem boils down to the covariance estimation problem
from insufficiently small amount of gene expression data, where sparsity regularization has shown to
help in practice [KSB09]. Other applications of the sparse covariance estimation include fMRI imaging
[VGPT10], data mining [AKMZ02], etc. Overall, sparse covariance matrices come with nice properties
such as natural graphical interpretation, whereas are easy to be transfered and stored.

Optimization Criteria for Sparse Covariance Estimation

Given {xj}mj=1, the empirical covariance8 matrix Σ̂ = 1
m

∑m
j=1(xj − µ̂)(xj − µ̂)T , where µ̂ = 1

m

∑m
j=1 xj ,

turns out to be (near) optimal only in fixed, low-dimensional settings where sufficient data is provided
(chapter 3.2, [And58]). Unfortunately, such traditional estimation techniques are prone to errors when
the dimensionality of the problem increases and m� n [Joh01].

To mitigate such phenomena and based on observations in [Dem72], recent works utilize general thresh-
olding techniques to compute a succinct solution that fits the model adequately. According to these

8In what follows, one can safely work with correlation matrices instead of covariance ones: In such case, the true correlation
matrix has the same sparsity pattern as the true covariance matrix and its diagonal entries have unit values. The analysis employed
in this paper apply for both cases.
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approaches, we approximate Σ with Θ? where:

Θ? ∈ arg min
Θ

{
1

2
‖Θ− Σ̂‖2F + λ‖Θ‖#

}
; (5.32)

here, λ > 0 is a regularization parameter that controls the sparsity of the solution and ‖ · ‖# denotes a
sparsity-inducing regularization norm; a non-exhaustive list of such thresholding functions includes
entrywise hard thresholding [BL08] and soft-thresholding [RLZ09].9 One can easily identify that (5.32) is
the proximity operator proposed by Moreau [Mor62]; a generalization of the Euclidean projection where
additional structure is incorporated as a regularization to “bias” the estimate.

Unfortunately, the solution of (5.32) is not guaranteed to be a positive definite matrix (in the non-
asymptotic sense), according to the following theorem; the proof is provided in [GR13, GR12]:

Theorem 18 ([GR13, GR12]). Let A ∈ Sn++ andHk(β) = β ·1|β|>k and Sλ(β) = sign(β)·max{|β|−λ, 0}
denote the elementwise hard- and soft-thresholding operations for β ∈ R, with parameters k and λ, respectively.
Even if A is a sparse matrix, there is no guarantee in general that Hk(A) � 0 and Sλ(A) � 0, for any
k, λ; i.e., there are no universal values k0 > 0 and λ0 > 0 such that Hk0

(A) � 0 and Sλ0
(A) � 0 for any

A ∈ Sn++, except for some trivial cases.

Therefore, even if we asssume Σ̂ � 0, the positive-definite cone is not invariant with respect to general
elementwise thresholding operations such as hard- and soft-thresholding10; this leads to the surprising
result that sparsity-inducing regularization cannot preserve positive definiteness at the same time.

To this end, consider the following estimator for Σ where we force the positive definiteness of the solution
with the constraint Θ � 0:

Θ? = arg min
Θ�0

{
1

2
‖Θ− Σ̂‖2F + λ‖Θ‖#

}
. (5.33)

For easily computable proximity operators (e.g., both hard- and soft-thresholding operations apply
elementwise and incur very little computational cost), the main computational bottleneck of solving
(5.33) is due to the constraint Θ � 0: the putative solution must be projected onto the positive definite
cone Sn++ by “forcing” its eigenvalues to be positive.

To overcome this difficulty, we consider a variant of (5.33) with # = 1, as described next

SPARSE COVARIANCE ESTIMATION: Given a set of n-dimensional samples {xj}mj=1, drawn from a joint
probability density function with unknown sparse covariance Σ ∈ Sn++, we approximate Σ as the solution to
the following optimization problem:

Θ? = arg min
Θ

{ 1

2ρ
‖Θ− Σ̂‖2F − log det(Θ)

︸ ︷︷ ︸
=f(Θ)

+
λ

ρ
‖Θ‖1

︸ ︷︷ ︸
=g(Θ)

}
. (5.34)

9There are several works that consider ‖ · ‖#, where the norm operates only on the off-diagonal elements. Our work naturally
extends to these cases.

10The authors in [GR13, GR12] actually show that the positive definite cone is invariant to such thresholding operations if Σ̂ is a
sparse matrix with a specific tree-based nonzero pattern.
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In this case, we incorporate an additional regularization term to promote positive definite solutions with
no constraints. The log det(Θ) term in (5.34) operates as a log-barrier function for the positive-definite
cone set. Though, while we avoid the computation of the projection onto Sn++, we note that this criterion
introduces an additional regularization parameter ρ in the objective function, which needs to be carefully
selected.

Prior work

In [XMZ12], the authors propose a Alternating Direction Method of Multipliers (ADMM) variant to solve
(5.33) where # = 1. Such approaches are quite powerful in practice for specific applications. Their main
drawback is the manual tuning of the penalty parameter in the augmented Lagrangian function: The
authors found that a constant step size selection µ = 2 (eq. (6) in [XMZ12]) leads to a fast and stable
implementation of their proposed scheme. Unfortunately, the analysis of the global convergence as well
as the convergence rate of such schemes is an issue since they strongly depend on the choice of µ.

From a different perspective and inspired by [DVR08], [BT11] derives the following optimization criterion:

Θ? = arg min
Θ�0

{
log det(Θ) + trace(Θ−1Σ̂) + λ‖Θ‖1

}
, (5.35)

under the assumption that variables x satisfy sub-Gaussian tail conditions. Since (5.35) is highly nonconvex,
as the sum of convex and concave functions, the authors follow a majorization-minimization strategy,
where the log det(·) part is linearized to be the majorizer function.11

To the best of our knowledge, only the work presented in [Rot12] considers (5.34) where an iterative
block-coordinatewise graphical LASSO approach is utilized with the following guarantees:

Theorem 19 ([Rot12]). Assume Σ ∈ Sn++ with sparsity ‖Σ‖0 ≤ k, such that 0 < ε1 ≤ λmin(Σ) ≤
λmax(Σ) ≤ ε2 < ∞, for ε1, ε2 constants. Moreover, assume that the samples {xj}mj=1 satisfy E

[
|xj |2α

]
≤

c <∞ for all j and for α ≥ 2. Then, if λ = O
(√

n4/α

N

)
, ρ = O

(√
k·n4/α

N

‖R−1‖F

)
and

(
(k + 1)n4/α

)
∈ o(N),

then:

‖Θ? −Σ‖F = O
(√

(k + 1)n4/α

N

)
, where R denotes the true correlation matrix. (5.36)

We underline that the above theorem holds for all probability distributions and better bounds can be
obtained under Gaussian assumptions. Moreover, no convergence guarantee is provided for this scheme.

A summary of the discussion above is given in Table 5.5.

How to solve subproblem for sparse covariance estimation: An important ingredient for our scheme is
the calculation of the descent direction. For simplicity we use FISTA, a fast `1-norm regularized gradient
method for solving the proximal subproblem, and describe how to efficiently implement such solver for
our case.12

11In practice, a Alternating Direction Method of Multipliers (ADMM) algorithm is proposed which has slow convergence in
general for arbitrary step size selections.

12We note that one can solve (5.39) using a dual approach. In this case, the subproblem becomes
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Table 5.5: Summary of related work.

[XMZ12] [BT11] [Rot12] [Wan12] This work

Complexity per iteration O(n3) O(n3) O(n3) O(n3) O(n3)

# of tuning parameters 2 1 2 1 2

Convergence guarantee X – X – X

Convergence rate Linear Linear –† –† Quadratic

Covariate distribution Any Gaussian Any Gaussian Any
†To the best of our knowledge, block coordinate descent algorithms have known convergence only for the case

of Lipschitz continuous gradient objective functions [BT13].

Given the current estimate of xi in the i-th iteration, the gradient and the Hessian of function f(·) around
xi can be computed respectively as:

∇f(xi) =
1

ρ

(
xi − vec(Σ̂)

)
− vec

(
mat(xi)

−1
)
∈ Rp×1, (5.37)

and

∇2f(xi) =
∂∇f(xi)

∂xi
=

Ip×p
ρ

+ (mat(xi)
−1 ⊗mat(xi)

−1) ∈ Rp×p. (5.38)

Using (5.37), (5.38), let h := ∇f(xi)−∇2f(xi)xi. One can easily observe that the proximal subproblem
is equivalent to:

δi = arg min
δ

{
1

2
δT∇2f(xi)δ + hT δ
︸ ︷︷ ︸

ϕ(δ)

+g(δ)

}
, (5.39)

where ϕ(·) is a smooth convex function13 with Lipschitz constant:

L :=

∥∥∥∥
I

ρ
+ (mat(xi)

−1 ⊗mat(xi)
−1)

∥∥∥∥
2→2

=
1

ρ
+

1

λ2
min(mat(xi))

. (5.40)

Combining the above quantities in a ISTA-like gradient descent procedure [DDDM04], we have:

δk+1 = S λ
Lρ

(
δk − 1

L
∇ϕ(δk)

)
, (5.41)

where we use superscript k to denote the k-th iteration of the ISTA procedure (as opposed to the
subscript i for the i-th iteration). Here,∇ϕ(δk) = ∇2f(xi)δ

k + h and S λ
Lρ

(x) := sign(x) max{|x| − λ
Lρ , 0}.

Furthermore, to achieve an O(1/k2) convergence rate, one can use acceleration techniques that lead to
FISTA algorithm [BT09b], based on Nesterov’s seminal work [Nes83].

Implementation details: We observe that L and h can be precomputed once. Given xi, we compute
λmin(mat(xi)) in O(n3) time complexity, while h can be computed with O(n3) time cost using the Kro-

min‖u‖∞≤1

{
1
2
uT
(
∇2f(xi)

)−1
u + q̃Tu

}
, where q̃ = ρ

λ

((
∇2f(xi)

)−1
q− xi

)
. However, the inversion of the Hes-

sian creates a computational bottleneck due itsO(p3) (i.e.,O(n6)) time cost.
13If∇2f(xi) � µI where µ is known, then ϕ(·) is strongly convex and more acceleration in the convergence rate sense can be

achieved.
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necker product property vec(AXB) = (BT ⊗A)vec(X). Similarly,∇ϕ(δk) can be iteratively computed
in O(n3) time cost. Overall, the above procedure has O(K · n3) computational cost, where K is the total
number of iterations.

In this section, we conduct extensive experiments to compare the numerical performance of several meth-
ods on both real and synthetic datasets. All approaches under comparison are optimally implementing in
MATLAB code with no C-coded parts. Our experiments are executed using a MATLAB based environment
on a MacBook Air, equipped with a 1.8 GHz Intel Core i7 processor and 4GByte 1333 MHz DDR3 main
memory. Overall, the proposed scheme achieves the desiderata with smaller computational cost and
better covariance recovery performance, as opposed to the rest of the schemes under comparison.

Time efficiency of SCOPT in sparse covariance estimation

To the best of our knowledge, only the work of A. Rothman [Rot12] considers the same objective function
(5.34) for the problem of sparse covariance estimation. According to [Rot12], the proposed algorithm
follows similar motions with the graphical LASSO method [FHT08] and the graphical elastic net algorithm
[CPS11]: Every covariate is computed via a column- and row-wise cyclical coordinate descent method
where each column and row of the estimate is estimated using a `1-norm LASSO type of optimization.

We generate the following three synthetic examples [Rot12]:

(i) In the first scenario, Σ ≡ Σ1 where:

Σ1(i, j) =

{
1 if i = j,

0.4 if |i− j| = 1,

i.e., Σ1 is a tridiagonal covariance matrix. This model might occur in random processes, where the
correlations are localized in time, i.e., the current variable depends heavily only on the recent and
future variable, but weakly on the rest.

(ii) In the second scenario, Σ ≡ Σ2 is a block-sparse covariance matrix with overlapping blocks
of dependencies and unit diagonal entries. In particular, we assume that there are b blocks of
dependent variables Bq, q ∈ [b], where each block Bq of variables has variable size. Then:

Σ2(i, j) =





1 if i = j,

0.4 if i, j ∈ Bq for some q ∈ [b],

0.8 if i, j lie in adjacent blocks,
0 elsewhere.

We tested various number of blocks b = 5, 10, 50, 100 for the cases n = 500, 1000, 2000, 5000. This
model generalizes scenario (i) where larger sets of (consecutive in time) variables are dependent;
furthermore, variables that belonging to two blocks simultaneously show higher correlation.

(iii) Finally, in the third scenario, Σ ≡ Σ3 is a random positive definite covariance matrix with ‖Σ3‖0 =

k. In our experiments, we test sparsity levels k such that k
n2 = {0.05, 0.1, 0.2}.

In all cases and without loss of generality, we assume that the variables are drawn from a joint Gaussian
probability distribution. Given Σ, we generate {xj}mj=1 random n-variate vectors according to N (0,Σ),

where n ∈ {500, 1000, 2000, 5000} and m = n
2 . We highlight that the sample covariance matrix Σ̂ =
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1
m

∑m
j=1 xjx

T
j is ill-conditioned in all cases with rank(Σ̂) ≤ n

2 . We observe that the number of unknowns

is
(
n
2

)
= n(n−1)

2 ; in our testbed, this corresponds to estimation of 4950 up to 12, 497, 500 variables,
depending on the value of n.

Implementation-wise, we set the total number of iterations to Imax = 500 and the error tolerance to
γ = 10−10. The approximation tolerance of the subsolver (5.39) ε equals to 10−8. To compute L in (5.40),
we use a power method scheme with Pw = 20 iterations. All algorithms under comparison are initialized
with x0 = vec

(
diag(Σ̂)

)
. As an execution wall time, we set T = 3600 seconds (1 hour). In all cases, we

set ρ = 0.1.

Table 5.6: Summary of comparison results for time efficiency.

Model F (Θ?) (×102) Time (secs)

n λ [Rot12] SCOPT SCOPT FLS [Rot12] SCOPT SCOPT FLS

Σ1

500 0.3 6.942 6.884 6.884 25.752 21.722 2.592

1000 0.2 26.644 26.266 26.266 229.031 184.221 23.697

2000 0.1 233.729 232.726 232.726 247.064 202.134 82.932

5000 0.1 − − 582.585 > T > T 1330.641

Σ2

500 b = 5 0.5 260.232 245.591 245.591 62.965 342.067 96.777

1000 b = 10 0.5 553.821 502.550 502.550 477.548 3272.567 174.414

2000 b = 50 0.2 − − 1358.171 > T > T 471.932

5000 b = 100 0.1 − − 7529.334 > T > T 3394.512

Σ3

100

k
n2 = 0.05 1 32.013 31.919 31.919 8.288 9.996 3.584
k
n2 = 0.1 0.5 36.190 34.689 34.689 10.470 12.761 5.012
k
n2 = 0.2 0.5 62.143 53.081 53.081 18.446 14.720 6.257

1000

k
n2 = 0.05 1 − − 2711.931 > T > T 759.724
k
n2 = 0.1 1 − − 4734.251 > T > T 875.344
k
n2 = 0.2 1 − − 5553.508 > T > T 1059.709

2000

k
n2 = 0.05 1 − − 3244.956 > T > T 1121.377
k
n2 = 0.1 1 − − 3847.061 > T > T 2157.029
k
n2 = 0.2 1 − − − > T > T > T

Table 5.6 contains the summary of results. Overall, we observe that the proposed framework shows
superior performance across diverse configuration settings, both in terms of time complexity and objective
function minimization efficiency: both SCOPT and SCOPT FLS (Forward Line Search as described in the
previous subsections) find solutions with lower objective function value, as compared to [Rot12], within
the same time frame. The regular SCOPT algorithm performs relatively well in terms of computational
time as compared to the rest of the methods. However, its convergence rate heavily depends on the
conservative τi selection.

Reconstruction efficiency of SCOPT in sparse covariance estimation

In this subsection, we measure the Σ reconstruction efficacy of solving (5.34), as compared to other
optimization formulations for sparse covariance estimation. To this end, we compare the Θ? estimates as
computed by: (i) the Alternating Direction Method of Multipliers (ADMM) implementation [XMZ12] of
(5.33) for # = 1, (ii) the coordinate descent algorithm for solving (5.35) as presented in [Wan12] and, (iii)
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our presented algorithm for the problem described in (5.34). It is obvious that the direct comparison of
the achieved objective function values has no clear interpretation. Thus, we use as comparison metric the
normalized distance ‖Θ

?−Σ‖F
‖Σ‖F for each estimate as well as the captured sparsity pattern in Σ.

Table 5.7 aggregates the experimental results. Without loss of generality, we fix λ = 0.5, ρ = 0.1 for
the case n = 100 and, λ = 1.5, ρ = 0.1 for the cases n = 2000, 5000. SCOPT framework is at least as
competitive with the state-of-the-art implementations for sparse covariance estimation. It is evident that
the proposed SCOPT variant, based on self-concordant analysis, is at least one order of magnitude faster
than the rest of algorithms under comparison. In terms of reconstruction efficacy, using our proposed
scheme, we can achieve marginally better Σ reconstruction performance, as compared to [XMZ12].
However, SCOPT FLS recovers & 60% of the true sparsity pattern; at least 82% better sparsity recovery
than [XMZ12] and [Wan12].14

Table 5.7: Summary of comparison results for reconstruction of efficiency.

Model ‖Θ? − Σ‖F /‖Σ‖F Time Support Recovery (%)

n N [Wan12] [XMZ12] SCOPT FLS [Wan12] [XMZ12] SCOPT FLS [Wan12] [XMZ12] SCOPT FLS

Σ3

100

n/2 1.180 0.912 0.908 0.456 0.252 2.604 9.49 38.76 66.87

n 0.9201 0.554 0.542 0.494 0.108 0.155 9.47 34.01 71.01

10n 0.396 0.192 0.190 0.451 0.108 0.054 9.50 42.29 75.87

2000

n/2 − 0.428 0.428 > T 350.145 203.515 − 32.80 69.42

n − 0.352 0.352 > T 385.340 167.688 − 45.23 71.89

10n − 0.211 0.209 > T 401.970 122.535 − 52.32 74.77

5000

n/2 − − 0.424 > T > T 2496.112 − − 59.78

n − − 0.350 > T > T 1792.086 − − 62.65

10n − − 0.258 > T > T 1558.192 − − 65.41

Application to classic portfolio optimization

Introduced by Harry Markowitz [Mar52], mean-variance optimization (MVO) lies at the heart of classic
portfolio optimization theory as a means of asset allocation recommendations with minimum risk. Shortly,
assume we possess historical stock market data {r(i)}Ttotal

i=1 of n stocks, where r(i) ∈ Rn,∀i, represent the
actual return of the i-th asset over a time period Ttotal; both monthly- and daily-based data apply. Our
goal is to propose a portfolio w ∈ Rn such that its application in future stock market sessions would
result into a desired stock return µ with the minimum possible risk.

In mathematical terms, the above describe the following optimization problem:

minimize
w

wTΣw

subject to wT r = µ
∑

i

wi = C, wi ≥ 0, ∀i.
(5.42)

Here, Σ ∈ Sn+ is the true covariance matrix over the asset returns, r ∈ Rn denotes the true asset returns, w

represents a weighted probability distribution over the set of assets such that
∑
i wi = C and C is the

total capital to be invested. Without loss of generality, one can assume a normalized capital such that∑
i wi = 1. In such case, wTΣw is both the risk of the investment as well as a metric of variance of the

portfolio selection.

14The solutions returned by SCOPT FLS are not fully dense but capture most of the actual nonzero pattern of Σ.
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In practice, both r and Σ are unknown and MVO requires an estimation for both. One can easily observe
that the total number of variables to estimate is n +

(
n
2

)
. While for small-sized portfolios, i.e., n = 10,

the sample estimates r̂ = 1
T

∑
i∈T r(i) and Σ̂ = 1

T−1

∑
i∈T
(
r(i) − r̂

) (
r(i) − r̂

)T
, T ⊂ Ttotal, are reliable

approximations, they quickly become problematic in the large scale: the amount of data required increases
quadratically to be commensurate with the degree of dimensionality. Due to such difficulties, even a
simple equal weighted portfolio w such that wi = 1/n, ∀i, is often preferred in practice [DGU09].

Nevertheless, data analysts and practitioners regularly assume that many elements of the covariance
matrix are zero, a property which is appealing due to its interpretability and ease of estimation. Moreover,
there are cases in practice where most of the variables are correlated to only a few others.

In the discussion below, (i) we highlight a small part of the independences observed among stock
variables, based on a real stock market dataset, further stressing the belief that forcing sparsity in
covariance estimates might be a favorable strategy, (ii) we compare the out-of-sample performance using
different covariance estimates, based on synthetic data.

Dataset and methodology: All simulations for this application are based on daily financial data, crawled
from the Yahoo Finance website15 over the period between 01.09.2009 and 31.08.2013. The complete
description of the dataset is given in Table 5.8. Stocks are retrieved from stock markets in the America
(e.g., Dow Jones, NYSE, etc.), Europe (e.g., London Stock Exchange, Paris Stock parket, etc.), Asia (e.g.,
Nikkei, etc) and Africa (e.g., South Africa’s stock exchange).

Table 5.8: Stock dataset description

Stock market period Number of stocks s Trading days d

01.09.2009− 31.08.2013 2833 1038

For our experimental setup, we follow the next strategy[BDDM+09]: using historical daily observations
over a sliding time window of 3- or 6-month period, we compute a sparse covariance Θ? via the proposed
method, using only stock records within this period.

Results: Here, we conduct experiments to showcase: (i) possible correlations/anti-correlations and
independence between stocks, induced by the estimated sparse covariance matrix, (ii) the out-of-sample
performance of MVO when a sparse covariance matrix is used between the proposed portfolios and
well-established strategies.

Dependencies in stocks: Based on the estimated sparse covariances, both positive and negative correlations,
as well as full independece cases are reported. The top plot of Figure 5.3 shows a case of nearly
independence: based on covariance estimates using the SCOPT algorithm, Coca-Cola stock behavior is
uncorrelated to that of Blinx stock, an Internet Media platform service. The same holds for many pairs of
stocks in the data set at hand: background knowledge on the model governing the data indicate that assets
belonging to different stock sectors are more likely to be independent. On the other hand, the middle plot
of Figure 5.3 shows positive correlation between the Galaxy Entertainment Group, an investment holding
company in the Hong Kong Stock Exchange, and SAP enterprise software corporation.16 Finally, we show

15http://finance.yahoo.com
16We mention that in 2006, Galaxy Entertainment Group “...chose the SAP ERP Human Capital Management and SAP ERP

Financials solutions to enable its business to grow and launch new resorts and casinos with minimal impact to the business
operation...” [sap].
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two of the stock variables with the most negative correlation estimated during the period in September
2009 and September 2013: IP Group, a british intellectual property business company, and Petroneft
resources company, a gas and oil extraction company – in this case, further underlying information might
be unknown to us for understanding their negative correlation.
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Figure 5.3: Representative stock behavior.

Figures 5.4 and 5.5 show some representa-
tive correlation estimates we observed dur-
ing the period 01.09.2009 and 31.08.2013.
Using the SCOPT algorithm with regular-
ization parameters λ = 0.1 and ρ = 1, we
solve (5.34) with tolerance γ = 10−12 and
ε = 10−10. Here, the sample covariance
Σ̂ uses all the provided data within the
time period of interest. By sorting the non-
diagonal elements of Θ? and keeping the
most important correlations, we obtain the
infographics provided in Figures 5.4 and 5.5.

Out-of-sample performance with synthetic data:
From the discussion above, it is appar-
ent that both strong and weak correlations
among stock assets are evident in practice.
As pointed out in [HR11], the behavior of
non-diagonal entries in correlation matrix
estimates is such that it is not easily dis-
tinguishable whether small values indicate
weak dependence between variables or estimation fluctuations, especially in the large dimension setting
with small sample corpus. Under these settings, [HR11] propose that small values should be considered
as zeros while only large values can be considered as good covariate estimates. Thus, assuming a sparse
covariance matrix Σ in the true underlying model is sustainable.

Figure 5.4: Top five (in magnitude) correlations for three stock assets: Chine mobile (left panel), Boeing
(center panel) and, MetLife insurance (right panel).

To measure the performance of using a sparse covariance estimate in MVO, we assume the following
synthetic case: Let Σ ∈ Sn++ be synthetically generated as a Gaussian covariance matrix to represent the
correlations among assets. Furthermore, assume that only k entries of Σ are “significant”: we construct
their absolute values to be at least two orders of magnitude larger than the rest of the entries; this
assumption is partially supported by the analysis above on real datasets. In our experiments below we
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Stock Abbr. Company name

RBS Royal Bank of Scotland
AMEC AMEC Group
BAC Bank of America
PKX Posco

FXPO Ferrexpo
EOG EOG Resources
PTR PetroChina
BP BP
DB Deutsche Bank

USB U.S. Bank Corp.
AURR Aurora Russia
GLE Glencore
IBM IBM
ARC Arc Document
UTX United Technologies
RCI Rogers Communications

EMC EMC Corporation
EMX EMX Industries
ARM ARM Holdings

AZEM Azem Chemicals
NCR NCR Electronics
PFE Pfizer Inc.
RVG RetroScreen Virology
SNY Sanofi healthcare
IPO Intellectual Property
VCT Victrex Chemicals
PEBI Port Erin BioFarma

Figure 5.5: We focus on three sectors: (i) bank industry (light purple), (ii) petroleum industry (dark
purple), (iii) Computer science and microelectronics industry (light yellow), (iv) Pharmaceuticals/Chem-
istry industry (green). Any miscellaneous companies are denoted with dart yellow. Positive correlations
are denoted with blue arcs; negative correlations with black arcs. The width of the arcs denotes the
strength of the correlation - here, the maximum correlation (in magnitude) is 0.3934.

set n = 500, 1000 and consider a sampling time window of N = 90, 180 days (i.e., an approximately 3-
and 6-month sampling period).

Given the above, both Σ̂ and Θ? are calcuated – we use our algorithm for the latter. Using these two
quantities, we then solve (5.42) for Σ← Σ̂ and Σ← Θ? for various expected returns µ and record the
computed minimum risk portfolios wsample and wSCOPT, respectively. Finally, given wsample and wSCOPT,
as well as the equal-weight portfolio wequal := 1

n · 1n×1, we report the risk/variances achieved by the
constructed portfolios using the ground truth covariance Σ.

Overall, we report lower variances wTΣw for minimum variance portfolios when Θ? is used, compared
with the risk achieved by the equally-weighted portfolio or the sample covariance estimation. We provide
some representative evaluations in Table 5.9. By using our approach, we achieve the minimum risk over
all the configurations considered; of course, such approach comes with some complexity to compute Θ?

as compared to the rest of the approaches. The empirical covariance strategy with wsample has the worst
performance in terms of minimum risk achieved for most of our testings; we point out that, in this case,
Σ̂ is a rank-defficient positive semidefinite matrix.
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Table 5.9: Summary of comparison results for reconstruction of efficiency – all strategies considered
achieve the requested return µ.

Model Risk wTΣw

λ k
n2 (%) wsample wequal wSCOPT

Σ3
(n = 500,
N = 90)

1.1 0.5 0.0347 0.0094 0.0066

1.3 1 0.0393 0.0125 0.0096

1.8 5 0.0801 0.0216 0.0166

2.0 7 0.1336 0.0256 0.0200

2.1 10 0.1118 0.0315 0.0272

2.3 15 0.1328 0.0379 0.0314

2.3 20 0.1920 0.0451 0.0442

2.5 30 0.2280 0.0559 0.0695

Model Risk wTΣw

λ k
n2 (%) wsample wequal wSCOPT

Σ3
(n = 500,
N = 180)

0.8 0.5 0.0183 0.0105 0.0074

1.0 1 0.0174 0.0110 0.0081

1.5 5 0.0405 0.0227 0.0165

1.7 7 0.0481 0.0270 0.0193

1.8 10 0.0521 0.0315 0.0229

2.0 15 0.0616 0.0376 0.0272

2.0 20 0.0713 0.0444 0.0313

2.2 30 0.0976 0.0531 0.0403

Model Risk wTΣw

λ k
n2 (%) wsample wequal wSCOPT

Σ3
(n = 1000,
N = 90)

1.4 0.5 0.0760 0.0065 0.0053

1.7 1 0.0810 0.0078 0.0059

2.3 5 0.0902 0.0158 0.0129

2.7 7 0.1968 0.0188 0.0159

3.0 10 0.2232 0.0223 0.0196

3.8 15 0.2463 0.0267 0.0231

4.5 20 0.2408 0.0307 0.0257

4.5 30 0.4925 0.0375 0.0365

Model Risk wTΣw

λ k
n2 (%) wsample wequal wSCOPT

Σ3
(n = 1000,
N = 180)

1.4 0.5 0.0223 0.0066 0.0050

1.7 1 0.0233 0.0076 0.0072

2.3 5 0.0513 0.0157 0.0115

2.7 7 0.0529 0.0183 0.0139

3.0 10 0.0706 0.0217 0.0177

3.8 15 0.0876 0.0264 0.0202

4.5 20 0.0872 0.0307 0.0227

4.5 30 0.1075 0.0373 0.0291

5.5 Discussion

In this chapter, we propose a variable metric method for minimizing convex functions that are composi-
tions of proximity functions with self-concordant smooth functions. Our framework does not rely on the
usual Lipschitz gradient assumption on the smooth part for its convergence theory. A highlight of this
work is the new set of analytic step-size selection and correction procedures, which are best matched to
the underlying problem structures. Our empirical results illustrate that the new theory leads to significant
improvements in the practical performance of the algorithmic instances when tested on a variety of
different applications.

In this work, we present a convergence proof for composite minimization problems under the assumption
of exact algorithmic calculations at each step of the methods. An interesting problem to pursue is the
extension of this analysis to include inexact calculations and study how these errors propagate into the
convergence and convergence rate guarantees [KMTDC14]. We hope this paper triggers future efforts
along this direction.

We highlight three key practical contributions to numerical optimization. First, in the proximal-Newton
method, our analytical step-size procedures allow us to do away with any globalization strategy (e.g.,
line-search). This has a significant practical impact when the evaluation of the functions is expensive.
We show how to combine the analytical step-size selection with the standard backtracking or forward
line-search procedures to enhance the global convergence of our method. Our analytical quadratic
convergence characterization helps us adaptively switch from damped step-size to a full step-size. Second,
in the proximal-gradient method setting, we establish a step-size selection and correction mechanism.
The step-size selection procedure can be considered as a predictor, where existing step-size rules that
leverage local information can be used. The step-size corrector then adapts the local information of the
function to achieve the best theoretical decrease in the objective function. While our procedure does not
require any function evaluations, we can further enhance convergence whenever we are allowed function
evaluations. Finally, our framework, as we demonstrate in [TDKC13b], accommodates a path-following

172



5.5. Discussion

strategy, which enable us to approximately solve constrained non-smooth convex minimization problems
with rigorous guarantees.

As a possible application of the proposed framework we propose the following: Consider the sparse PCA
problem where the data matrix A ∈ Rn×n:

maximize
x

xTAx

subject to ‖x‖0 ≤ k, ‖x‖2 = 1
(5.43)

We can transform this problem by “lifting” it to the matrix case and introducing a regularizer parameter:

maximize
Z

trace(AZ)− λ
√
‖Z‖0

subject to Z � 0, trace(Z) = 1, rank(Z) = 1
(5.44)

where Z := xxT . Usually
√
‖Z‖0 is substituted by its convex surrogate (for fixed scale) ‖ · ‖1 since

‖Z‖1 ≤
√
‖Z‖0‖Z‖F =

√
‖Z‖0. This leads to:

maximize
Z

trace(AZ)− λ‖Z‖1

subject to Z � 0, trace(Z) = 1, rank(Z) = 1

Open question 7. Instead of relaxing the constraints, use the problem formulation presented above to propose
a projected algorithm as follows:

maximize
Z

trace(AZ)− λ‖Z‖1 subject to Z ∈ C

where C = {X : Z � 0, trace(Z) = 1, rank(Z) = 1}. We know from Chapter 2 that the projection PC(B):

minimize
Z

‖B− Z‖F subject to Z ∈ C

can be computed exactly. Hows does this approach work in practice?

Open question 8. Since the Z � 0 constraint usually requires a eigenvalue decomposition, we use this
constraint to create a self-concordant barrier function and regularize the objective. This way, we can define a
path-following barrier scheme [TDKC13b] using proximal operations (without transforming the non-smooth
part ‖ · ‖1 into linear constraints):

maximize
Z

t (trace(AZ)− λ‖Z‖1) + log det(Z)

subject to trace(Z) = 1, rank(Z) = 1
(5.45)

Appendix

We provide the detailed proofs of the theoretical results in the main text here.
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Proof of Lemma 34

Since g is convex, we have

g(y) ≥ g(x) + vT (y − x), ∀v ∈ ∂g(x).

By adding this inequality to (5.9) and notting that F (x) := f(x) + g(x), ∀x, we obtain

F (y) ≥ F (x) + (∇f(x) + v)
T

(y − x) + ω(‖y − x‖x)

≥ F (x)− λ(x) ‖y − x‖x + ω(‖y − x‖x). (5.46)

Here, the last inequality is due to the generalized Cauchy-Schwartz inequality and λ(x) := ‖∇f(x) + v‖∗x.
Let LF (F (x)) := {y ∈ dom(F ) | F (y) ≤ F (x)} be a sublevel set of F . Then, for any y ∈ LF (F (x)), we
have F (y) ≤ F (x) which leads to

λ(x) ‖y − x‖x ≥ ω(‖y − x‖x),

due to (5.46). Since ω is convex and strictly increasing, the equation λ(x)t− ω(t) = 0 has unique solution
t∗ > 0, if λ(x) < 1. Therefore, for any 0 ≤ t ≤ t∗, we have ‖y − x‖x ≤ t∗. This implies that LF (F (x)) is
bounded. Hence, x∗ exists due to the well-known Weierstrass theorem. The uniqueness of x∗ follows
from the monotonicity of ω(·). �

Proofs of global convergence: Theorem 15

In this subsection, we provide the proof of Theorem 15. We first provide a key result quantifying the
improvement of the objective as a function of the step-size αk.

Maximum decrease of the objective function: Let βk := ‖dk‖Hk , λk := ‖dk‖xk and xk+1 := xk +

αkd
k = (1− αk)xk + αks

k, where αk :=
β2
k

λk(λk+β2
k)
∈ (0, 1]. We will prove below that the following holds

at each iteration of the algorithms

F (xk+1) ≤ F (xk)− ω
(
β2
k

λk

)
. (5.47)

Moreover, the choice of αk is optimal (in the worse-case sense).

Proof. Indeed, since g is convex and αk ∈ (0, 1], we have g(xk+1) = g
(
(1− αk)xk + αks

k
)
≤ (1 −

αk)g(xk) + αkg(sk), which leads to

g(xk+1)− g(xk) ≤ αk(g(sk)− g(xk)). (5.48)

Combining (5.48) with the self-concordant property (5.10) of f , we obtain

F (xk+1) ≤ F (xk) +∇f(xk)T (xk+1 − xk) + ω∗
(
‖xk+1 − xk‖xk

)
+ αk

(
g(sk)− g(xk)

)

(5.16)
≤ F (xk) + αk∇f(xk)Tdk + ω∗

(
αk‖dk‖xk

)
+ αk

(
g(sk)− g(xk)

)
. (5.49)
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Since sk is the unique solution of (5.15), by using the optimality condition (5.17), we get

−∇f(xk)−Hk(sk − xk) ∈ ∂g(sk)⇒
−∇f(xk)T (sk − xk)− ‖sk − xk‖2Hk

∈ (sk − xk)T∂g(sk). (5.50)

Combining (5.50) with g(xk)− g(sk) ≥ vT (xk − sk), v ∈ ∂(sk), due to the convexity of g(·), we have

g(sk)− g(xk) ≤ −∇f(xk)T (sk − xk)− ‖sk − xk‖2Hk
. (5.51)

Using (5.51) in (5.49) together with the definitions of βk and λk, we obtain

F (xk+1)
(5.16)
≤ F (xk)− αkβ2

k + ω∗ (αkλk) . (5.52)

Let us consider the function ϕ(α) := αβ2
k − ω∗(αλk). By the definition of ω∗(·), we can easily show that

ϕ(α) attains the maximum

αk :=
β2
k

λk(λk + β2
k)
,

provided that αk ∈ (0, 1]. Moreover, ϕ(αk) = ω(β2
k/λk), which proves (5.47). Since αk maximizes ϕ over

[0, 1], this value is optimal.

Since Hk := ∇2f(xk), we observe βk := ‖dk‖Hk
≡ ‖dk‖xk =: λk, where dk ≡ dkn. In this case, the step

size αk in (5.47) becomes αk = λk
1+λk

which is in (0, 1). Moreover, (5.47) reduces to

F (xk+1) ≤ F (xk)− ω(λk),

which is indeed (5.21).

Finally, we assume that, for a given σ ∈ (0, 1), we have λk ≥ σ for 0 ≤ k ≤ kmax − 1. Since ω strictly
increases, it follows from (5.21) by induction that

F (x∗) ≤ F (xk) ≤ F (x0)−
k−1∑

j=0

ω(λj) ≤ F (x0)− kω(σ).

This estimate shows that the number of iterations to reach λk < σ is at least kmax =
⌊
F (x0)−F (x∗)

ω(σ)

⌋
+ 1. �

Proofs of local convergence: Theorem 16

Optimality conditions as fixed-point formulations: Let f be a given standard self-concordant function,
g be a given proper, lower semicontinuous and convex function, and Hk be a given symmetric positive
definite matrix. Besides the two key inequalities (5.9) and (5.10), we also need the following inequality
[NN94, Nes04, Theorem 4.1.6] in the proofs below:

(1− ‖y − x‖x)
2∇2f(x) � ∇2f(y) � (1− ‖y − x‖x)

−2∇2f(x), (5.53)

for any x,y ∈ dom(f) such that ‖y − x‖x < 1.
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For a fixed x̄ ∈ dom(F ), where F := f + g, we redefined the following operators:

P gx̄ (z) :=
(
∇2f(x̄) + ∂g

)−1
(z), Sx̄(z) := ∇2f(x̄)z−∇f(z), (5.54)

and
ex̄(Hk, z) :=

(
∇2f(x̄)−Hk

)
(z− xk). (5.55)

Here, P gx̄ and Sx̄ can be considered as a generalized proximal operator of g and the gradient step of f ,
respectively. While ex̄(Hk, ·) measures the error between∇2f(x̄) and Hk along the direction z − xk.

Next, given sk is the unique solution of (5.15), we characterize the optimality condition of the original
problem (5.1) and the subproblem (5.15) based on the P gx̄ , Sx̄ and ex̄(Hk, ·) operators. From (5.17), we
have

Sx̄(xk) + ex̄(Hk, s
k) ∈ ∇2f(x̄)sk + ∂g(sk).

By the definition of P gx̄ in (5.54), the above expression leads to

sk = P gx̄
(
Sx̄(xk) + ex̄(Hk, s

k)
)
. (5.56)

By replacing x̄ with x∗, i.e., the unique solution of (5.1), into (5.56) we obtain

sk = P gx∗
(
Sx∗(x

k) + ex∗(Hk, s
k)
)
. (5.57)

Moreover, if we replace Hk by∇2f(x∗) in the above fixed-point expression, we finally have

x∗ = P gx∗ (Sx∗(x
∗)) . (5.58)

Formulas (5.56) to (5.58) represent the fixed-point formulation of the optimality conditions.

Key estimates: Let rk := ‖xk − x∗‖x∗ and λk be defined by (5.18). For any αk ∈ (0, 1]:

‖sk+1
n − skn‖xk ≤

α2
kλ

2
k

1− αkλk
+

2αkλk − α2
kλ

2
k

(1− αkλk)2
‖dk+1‖xk , (5.59)

‖sk − x∗‖x∗ ≤
r2
k

1− rk
+ ‖(Hk −∇2f(x∗))dk‖∗x∗ ,provided that αkλk < 1 and rk < 1. (5.60)

Proof. First, by using the nonexpansiveness of P g
xk

in Lemma (33), it follows from (5.56) that

‖sk+1 − sk‖xk =
∥∥∥P gxk(Sxk(xk+1) + exk(Hk+1, s

k+1))− P g
xk

(Sxk(xk) + exk(Hk, s
k))
∥∥∥

xk

(5.8)
≤
∥∥Sxk(xk+1) + exk(Hk, s

k)− Sx∗(x
∗)
∥∥∗

x∗

(i)

≤
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)

∥∥∗
xk

+
∥∥exk(Hk+1, s

k+1)− exk(Hk, s
k)
∥∥∗

xk

(ii)
=

∥∥∥∥
∫ 1

0

(
∇2f(xk + τ(xk+1 − xk))−∇2f(xk)

)
(xk+1 − xk)dτ

∥∥∥∥
∗

xk

+
∥∥exk(Hk+1, s

k+1)− exk(Hk, s
k)
∥∥∗

xk
, (5.61)

where (i) and (ii) are due to the triangle inequality and the mean-value theorem, respectively.
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Second, we estimate the first term in (5.61). For this purpose, we define

Σk :=

∫ 1

0

(
∇2f(xk + τ(xk+1 − xk))−∇2f(xk)

)
dτ,

Mk := ∇2f(xk)−1/2Σk∇2f(xk)−1/2. (5.62)

Based on the proof of [Nes04, Theorem 4.1.14], we can show that

‖Mk‖2 ≤
∥∥xk+1 − xk

∥∥
xk

1− ‖xk+1 − xk‖xk
.

Using this estimate, the definition (5.62) and noting that xk+1 = xk + αkd
k, we obtain

‖Σk(xk+1 − xk)‖∗xk = ‖Mk(xk+1 − xk)‖xk
(i)

≤ ‖Mk‖2‖xk+1 − xk‖xk

≤ ‖xk+1 − xk‖2xk
1− ‖xk+1 − xk‖xk

=
α2
k‖dk‖2xk

1− αk‖dk‖xk
, (5.63)

where (i) is due to the Cauchy-Schwartz inequality.

Third, we consider the second term in (5.61) for Hk ≡ ∇2f(xk). By the definition of ex̄, it is obvious that
exk(∇2f(xk), sk) = 0. Hence, we have

T2 :=
∥∥exk(∇2f(xk+1), sk+1)− exk(∇2f(xk), sk)

∥∥∗
xk

=
∥∥exk(∇2f(xk+1), sk+1)

∥∥∗
xk

(5.64)

=
∥∥∥
(
∇2f(xk+1)−∇2f(xk)

)
dk+1

∥∥∥
∗

xk
.

We now define the following quantity, whose spectral norm we bound below

Nk := ∇2f(xk)−1/2
(
∇2f(xk+1)−∇2f(xk)

)
∇2f(xk)−1/2. (5.65)

By applying (5.53) with x = xk and y = xk+1, we can bound the spectral norm of Nk as follows

‖Nk‖2 ≤ max
{

1−
(
1− ‖xk+1 − xk‖xk

)2
,
(
1− ‖xk+1 − xk‖xk

)−2 − 1
}

=
2‖xk+1 − xk‖xk − ‖xk+1 − xk‖2xk

(1− ‖xk+1 − xk‖xk)2
. (5.66)

Therefore, from (5.64) we can obtain the following estimate

(T2)
2

= exk(∇2f(xk+1), sk+1)T∇2f(xk)−1exk(∇2f(xk+1), sk+1)

= (dk+1)T ∇2f(xk)1/2 N2
k ∇2f(xk)1/2 dk+1

≤ ‖Nk‖22 ‖dk+1‖2xk . (5.67)

By substituting (5.66) into (5.67) and noting that αkdk = xk+1 − xk, we obtain

T2 ≤
2αk

∥∥dk
∥∥

xk
− α2

k

∥∥dk
∥∥2

xk

(1− αk ‖dk‖xk)2
‖dk+1‖xk . (5.68)
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Now, by substituting (5.63) and (5.68) into (5.61) and noting that Hk ≡ ∇2f(xk), sk ≡ skn, dk ≡ dkn and
λk ≡

∥∥dkn
∥∥

xk
, we obtain

∥∥sk+1
n − skn

∥∥
xk
≤

α2
k

∥∥dkn
∥∥2

xk

1− αk ‖dkn‖xk
+

2αk
∥∥dkn

∥∥
xk
− α2

k

∥∥dkn
∥∥2

xk

(1− αk ‖dkn‖xk)2
‖dk+1

n ‖xk .

which is indeed (5.59).

Similarly to Proof of (5.61) and (5.63), we have

‖sk − x∗‖x∗ (5.58)
=
∥∥∥P gx∗(Sx∗(x

k) + ex∗(Hk, s
k))− P gx∗(Sx∗(x

∗))
∥∥∥

x∗

(5.8)
≤
∥∥Sx∗(x

k) + ex∗(Hk, s
k)− Sx∗(x

∗)
∥∥∗

x∗

≤
∥∥∥∥
∫ 1

0

(
∇2f(x∗ + τ(xk − x∗))−∇2f(x∗)

)
(xk − x∗)dτ

∥∥∥∥
∗

x∗
+
∥∥ex∗(Hk, s

k)
∥∥∗

x∗

(5.63)
≤

∥∥xk − x∗
∥∥2

x∗

1− ‖xk − x∗‖x∗
+
∥∥(Hk −∇2f(x∗)

)
dk
∥∥∗

x∗
, (5.69)

which is indeed (5.60) since rk =
∥∥xk − x∗

∥∥
x∗

.

Proof of Theorem 16: Since xk = skn − dkn due to (5.20), we have xk+1 = xk + αkd
k
n = skn − (1− αk)dkn,

which leads to

dk+1
n = sk+1

n − xk+1 = sk+1
n − skn + (1− αk)dkn.

By applying the triangle inequality to the above expression, we have

‖dk+1
n ‖xk = ‖sk+1

n − skn + (1− αk)dkn‖xk ≤ ‖sk+1
n − skn‖xk + (1− αk)‖dkn‖xk . (5.70)

Substituting (5.59) into (5.70) we obtain

‖dk+1
n ‖xk ≤

α2
kλ

2
k

1− αkλk
+

2αkλk − α2
kλ

2
k

(1− αkλk)2
‖dk+1‖xk + (1− αk)λk.

Rearranging this inequality we get

‖dk+1
n ‖xk ≤

(
(1− αkλk)

(
1− αk + (2α2

k − αk)λk
)

1− 4αkλk + 2α2
kλ

2
k

)
λk, (5.71)

provided that 1− 4αkλk + 2α2
kλ

2
k > 0. Now, by applying (5.53) with x = xk and y = xk+1, one can show

that

‖dk+1
n ‖xk+1 ≤ ‖dk+1

n ‖xk
1− αk‖dkn‖xk

. (5.72)

We note that 1− 4αkλk + 2α2
kλ

2
k > 0 if αkλk < 1− 1/

√
2. By combining (5.71) and (5.72) we obtain

λk
∥∥dk+1

n

∥∥
xk+1 ≤

(
1− αk + (2α2

k − αk)λk
1− 4αkλk + 2α2

kλ
2
k

)
λk,
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which is (5.22).

Next, we consider the sequence
{
xk
}
k≥0

generated by dub-step proximal Newton method (5.20) with
the step size αk = (1 + λk)−1. Then, (5.22) is transformed into

λk+1 ≤
2λk

1− 2λk − λ2
k

λk. (5.73)

Assuming λk ≤ σ̄ :=
√

5− 2, we can easily deduce that 2λk
1−2λk−λ2

k
≤ 1 and thus, λk+1 ≤ λk. By induction,

if λ0 ≤ σ̄ then, λk+1 ≤ λk for all k ≥ 0. Moreover, we have λk+1 ≤ 2
1−2σ̄−σ̄2λ

2
k, which shows that the

sequence {λk}k≥0 converges to zero at a quadratic rate, which completes the proof of part b).

Now, since αk = 1, the estimate (5.22) reduces to λk+1 ≤ λ2
k

1−4λk+2λ2
k

. By the same argument as in the
proof of part b), we can show that the sequence {λk}k≥0 converges to zero at a quadratic rate.

Finally, we prove the last statement in Theorem 16. By substituting Hk := ∇2f(xk) into (5.59), we obtain

‖sk − x∗‖x∗ ≤
r2
k

1− rk
+ ‖(∇2f(xk)−∇2f(x∗))dk‖∗x∗ . (5.74)

Let T3 := ‖(∇2f(xk)−∇2f(x∗))dk‖∗x∗ . Similarly to the proof of (5.68), we can show that

T3 ≤
[

2‖xk − x∗‖x∗ − ‖xk − x∗‖2x∗
(1− ‖xk − x∗‖x∗)2

]
‖dk‖x∗ ≤ αk

(2− rk)rk
(1− rk)2

(rk+1 + rk). (5.75)

Here the second inequality follows from the fact that ‖dk‖x∗ = αk‖xk+1 − xk‖x∗ ≤ αk[‖xk+1 − x∗‖x∗ +

‖xk − x∗‖x∗ ] = αk(rk+1 + rk). We also have rk+1 = ‖xk+1 − x∗‖x∗ = ‖(1 − αk)xk + αks
k − x∗‖x∗ ≤

(1− αk)rk + αk‖sk − x∗‖x∗ . Using these inequalities, (5.75) and (5.74) we get

rk+1 ≤ (1− αk)rk + αk
r2
k

1− rk
+ α2

k

(2− rk)rk
(1− rk)2

(rk+1 + rk). (5.76)

Rearranging this inequality to obtain

rk+1 ≤
(

1− αk + (2α2
k + 3αk − 2)rk + (1− αk − α2

k)r2
k

1− 2(1 + α2
k)rk + (1 + α2

k)r2
k

)
rk. (5.77)

We consider two cases:

Case 1: αk = 1: We have rk+1 ≤ 3−rk
1−4rk+2r2

k
r2
k. Hence, if rk < 1− 1/

√
2 then 1− 4rk + 2r2

k > 0. Moreover,

rk+1 ≤ rk if 3rk − r2
k < 1 − 4rk + 2r2

k, which is satisfied if rk < (7 −
√

37)/6 ≈ 0.152873. Now, if we
assume that r0 ≤ σ ∈ (0, (7 −

√
37)/6), then, by induction, we have rk+1 ≤ 3−σ

1−4σ+2σ2 r2
k. This shows

that {rk}k≥0 locally converges to 0+ at a quadratic rate. Since rk :=
∥∥xk − x∗

∥∥
x∗

, we can conclude that
xk → x∗ at a quadratic rate as k →∞.

Case 2: αk = (1 + λk)−1: Since λk =
∥∥xk+1 − xk

∥∥
xk
≤ ‖x

k+1−x∗‖
x∗+‖xk−x∗‖

x∗
1−‖xk−x∗‖x∗

= rk+1+rk
1−rk

. We have

1− αk ≤ rk+1+rk
(1+λk)(1−rk) ≤

rk+1+rk
1−rk

. Substituting this into (5.76) and using the fact that αk ≤ 1, we have

rk+1 ≤
(rk+1 + rk)rk

1− rk
+

r2
k

1− rk
+

(2− rk)rk
(1− rk)2

(rk+1 + rk).
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Rearranging this inequality, we finally get

rk+1 ≤
4− 3rk

1− 5rk + 3r2
k

r2
k. (5.78)

Since 1 − 5rk + 3r2
k > 0 if rk < (5 −

√
13)/6, we can see from (5.78) that rk < (9 −

√
57)/12 ≈ 0.120847

then rk+1 ≤ rk. By induction, if we choose r0 ≤ σ̄ ∈ (0, (9 −
√

57)/12) then rk+1 ≤ 4−3σ̄
1−5σ̄+3σ̄2 r2

k, which
shows that {rk}k≥0 converges to 0+ at a quadratic rate. Consequently, the sequence

{
xk
}
k≥0

locally
converges to x∗ at a quadratic rate. �
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Conclusions
In this thesis, our key contention is that while the ambient dimension is large in many machine
learning/signal processing problems, the relevant state information therein often resides in a much
lower dimensional space. Such observation has led and can still guide exciting developments under dif-
ferent low-dimensional modeling frameworks, such as compressive sensing, matrix completion, portfolio
optimization, graph model selection, image processing and, nonparametric Bayesian inference, while
revealing new measurement systems, tools and methods for information extraction from low-dimensional
or incomplete data.

It is our belief that real progress on high-dimensional statistics and optimization requires a coordinated ef-
fort based on combinatorial and geometric foundations that unify convex and combinatorial optimization
frameworks. As a first step towards this direction, this thesis presents algorithmic solutions that benefit
from both worlds: a salient feature of our approach is computational thinking to not only best leverage
our current computational infrastructure but also to best exploit new developments in approximate linear
algebra methods. Based on this premise, we propose scalable and accurate algorithmic frameworks (both
convex and non-convex) that scale well to accommodate this data “deluge”, promising substantial reduc-
tions in acquisition time, communication bandwidth, digital storage, and computational resources. Our
confidence that substantial progress can be made is backed up by a great body of promising preliminary
empirical results.

We believe that this research thrust demonstrates that the underlying mathematical framework extends
far beyond a concrete application. We rigorously show how various seemingly different-and extremely
fundamental-scientific and engineering applications, such as optimal financial portfolio design, density
learning from data, etc., can be readily handled by our theoretical and algorithmic developments.

However, we identify that there are several aspects that have not been considered in this thesis. As a
representative and—we think—very interesting research direction to follow is that of combining theo-
retical computer science results with machine learning/signal processing problems. Such techniques are still
relatively new and not widespread, since only recently has the randomized linear algebra community
achieved nearly-optimal error bounds, and there are no standard implementations yet. E.g., as shown,
finding low-cost SVD or eigenvalue decomposition approximations is a challenging task. Although the
randomized techniques require roughly the same arithmetic operations as the “exact” approaches, they
usually reveal more degrees of freedom on the strategies that can be followed, which is essential to take
advantage of modern computer architecture; e.g., can randomized techniques lead to simpler and parallel
implementations in practice?

We hope that the research presented in this thesis triggers a lot of interesting questions to pursue, such as
the ones shown at the end of each chapter of this manuscript.
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More applications

To further highlight the potential importance of the material presented in this thesis, we mention some
applications that we believe can find algorithmic solutions in the proposed schemes.

Applications in biomedical imaging and genetics: An important class of low-dimensional models is
based on groups of variables that should either be selected or discarded together. These structures
naturally arise in applications such as neuronal imaging [GK09b, JGM+11], gene expression inference
[STM+05, OJV11] and bioinformatics [RBV08, ZSSL10]. For example, in cancer research, the groups
might represent genetic pathways that constitute cellular processes. Identifying which processes lead
to the development of a tumor can allow biologists to directly target certain groups of genes instead of
others [STM+05]. Incorrect identification of the active/inactive groups can thus have a rather dramatic
effect on the speed at which cancer therapies are developed.

In bioinformatics, we are interested in inferring the dependency network among genes: groups might
be completely independent from other groups. In its simplest form, this problem boils down to the
covariance estimation problem from insufficiently small amount of gene expression data, where low-
dimensional modeling and reconstruction has shown to help in practice [KSB09]. However, we believe
there is a lot of space for improvements upon the state-of-the-art approaches.

Applications in neuroscience: In order to understand the functioning of the human brain, it is necessary
to identify and study the behavior of neuronal cell membranes under rapid change in the electric
potential. However, to observe such phenomena, electrical activities on neurons need to be recorded
using specialized microscopy equipment. Such low-light imaging problems have also been identified in
other signal processing problems [HMW12], where the imaging data is collected by counting photons
hitting a detector over time.

In this context, one wishes to accurately reconstruct the underlying phenomena under the presence
of noise. As an illustrative example of how our algorithms are useful in this setting, neuronal cell
membranes can be considered as the static background of the recorded phenomenon over time; such
information is well approximated as a low-rank component. Furthermore, any time dependent electrical
activity induced in-vitro can be considered as sparse activity. Identification and decomposition of such
components can be performed using the proposed algorithms from a limited number of measurements.
This way we can facilitate the interpretation of the signals in terms of the chosen structures, revealing
information that could be used to better understand their properties.

Applications in quantum computing: Quantum information theory enables solutions of scientific and
engineering problems, such as fast integer factorizations and database searches, that are not within the
reach of our conventional technology. Realizing the full potential of the quantum computation systems is
believed to be one of the most important problems of our current century.

While quantum information theory is too far in its infancy to build a quantum computer, quantum
tomography measurements are being performed now [GLF+10]. The proposed research contributes
in three related research themes, currently developed within this context: (i) provides scalable and
approximate projection methods for quantum systems, which are important ingredients for large-scale
optimization procedures, (ii) supports but also further contributes in the current theory for scalable
and accurate quantum state tomography, (iii) describes low-dimensionality reducing mechanisms and
algorithms, imperative for the development of efficient physical quantum tomography systems.
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6 Appendix A: Mathematical prerequi-
sites

This chapter contains the necessary background to support the developments presented in this thesis.
Our intension is to provide a complete set of preliminary tools that makes reading this dissertation easy.
No attempt has been made though to connect the different pieces presented in this chapter.

6.1 Norms, convexity and (sub)gradients

Norms: We define the `np -norm in n-dimensions as:

‖x‖p =

{
(
∑n
i=1 |xi|p)

1/p if p ∈ (0,∞),

maxi |xi| if p =∞.

The `0 pseudo-norm is defined as: ‖x‖0 := |supp(x)|.

The nuclear norm of a matrix X ∈ Rp×n with rank(X) = k is defined as:

‖X‖? =
k∑

i=1

σi,

where σi represents the i-th singular value of X.

The total-variation norm of a matrix X is given by:

‖X‖TV :=

{∑
i,j |Xi,j+1 −Xi,j |+ |Xi+1,j −Xi,j | anisotropic case,

∑
i,j

√
|Xi,j+1 −Xi,j |2 + |Xi+1,j −Xi,j |2 isotropic case

One can easily extend this norm to vectors by “vectorizing” properly X.

Convexity basics: For completeness, we briefly define two important notions in optimization: convex
functions and convex sets.

Definition 16. Let B ⊆ Rn be a subset of points in n-dimensions. Then, B is a convex set if and only if,
∀x, y ∈ B, every point on the line segment that connects x and y belongs also in B.
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The same definition extends to matrices, etc. The following definition declares one of the many conditions
that a function should satisfy such to be convex.

Definition 17. Let f : B → R be a function, defined over the convex set B ⊆ Rn. Then, f is a convex
function if and only if, ∀x, y ∈ B and ∀γ ∈ [0, 1], the following holds:

f(γx + (1− γ)y) ≤ γf(x) + (1− γ)f(y),

i.e., the line segment between any two points on the graph of f lies above the graph.

Subgradient and gradient: Given a proper, lower semicontinuous convex function f , we define its subdiffer-
ential at x ∈ dom(f) as

∂f(x) :=
{
v ∈ Rn | f(y)− f(x) ≥ vT (y − x), ∀y ∈ dom(f)

}
.

If ∂f(x) 6= ∅ then each element in ∂f(x) is called a subgradient of f at x. In particular, if f is differentiable,
we use ∇f(x) to denote its derivative at x ∈ dom(f), and ∂f(x) ≡ {∇f(x)}.

Let f be a twice differentiable, smooth function, i.e., the subdifferential ∂f(x) is constituted only by the
gradient∇f(x). The Hessian matrix of f at w ∈ dom(f) is computed as:

∇2f(w) =




∂2f

∂x2
1

(w)
∂2f

∂x1 ∂x2
(w) · · · ∂2f

∂x1 ∂xn
(w)

∂2f

∂x2 ∂x1
(w)

∂2f

∂x2
2

(w) · · · ∂2f

∂x2 ∂xn
(w)

...
...

. . .
...

∂2f

∂xn ∂x1
(w)

∂2f

∂xn ∂x2
(w) · · · ∂2f

∂x2
n

(w)




.

6.2 Low-dimensional models

A key notion that defines low-dimensional models (LDMs) is the sparse synthesis model: In such model,
using the appropriate collection of atoms, an object of interest (e.g., vector, matrix, tensor, etc.) follows
an given LDM if it can be well-described as a sparse linear combination/superposition of atoms that
“live” in the underlying LDM. Here, by “sparse linear combination/superposition” we refer to the latent
degrees of freedom that the object actually has, a compared to its ambient dimension. To motivate our
discussion, consider two cases: (i) the vector case with the sparsity LDM and, (ii) the matrix case with
the low-rankness LDM.

In the first case, using the appropriate basis Ψ ∈ Rn×n, an n-dimensional x can be well-described as
a k-sparse (k � n) linear combination of atoms {ψi}ni=1 that correspond to columns of Ψ. Typical
examples of sparse-inducing bases are wavelet transform for piecewise smooth signals [Huo99], Fourier
transform for smooth and periodic signals, curvelets for images with edges [CD00], etc. Similarly, in the
low-rankness LDM, a (p × n)-dimensional r-rank matrix X can be well-approximated as the r-sparse
superposition of 1-rank orthogonal matrices matrices that live in the range space of X.

The seminal work in [CDS98] is one of the first to present a unifying framework using atoms for the
sparse synthesis model. Based on the above, [CRPW12, RRN12] propose the following mathematical
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Figure 6.1: (Left panel): Cross-polytope as atomic norm for sparse signals (Middle panel): Hypercube as
atomic norm for binary signals (Right panel): Nuclear norm ball as atomic norm for low rank matrices.

formalism: Let A := {a1,a2, · · · : ai ∈ Rn, ∀i} be the atomic set of signals that can be synthesized as a
k-sparse positive linear combination of atoms ai in A; for example in the vector case,

x =

k∑

i=1

ciai, ci ≥ 0, ai ∈ A and ‖c‖0 ≤ k. (6.1)

Given an atomic set A, we define its convex hull conv(A) as the set of points within the convex hull of
the atoms ai ∈ A, ∀i. Given A and a signal x ∈ Rn, we define the atomic norm as:

‖x‖A = inf





|A|∑

i=1

ci
∣∣ x =

|A|∑

i=1

ciai, ci ≥ 0, ∀ai ∈ A



 . (6.2)

To showcase the omnipresence of this formulation, we present a few representative examples that fall
under the same “umbrella”; see Figure 6.1:

(i) Sparse signals, i.e., Ψ = I. In this case, A = {±ei, ∀i ∈ N} where ei is the canonical vector in n-
dimensions with 1 in the i-th position and the rest are equal to 0. The conv(A) is the cross-polytope
in n-dimensions, i.e., the closed unit ball in the `1-norm on Rn. The atomic norm ‖x‖A is the
`1-norm ‖x‖1.

(ii) Binary signals. The atomic set is defined asA = {±1}n with conv(A) the hypercube in n-dimensions.
The atomic norm ‖x‖A is the `∞-norm ‖x‖∞.

(ii) Low-rank signals. The atomic set is defined as the set of 1-rank orthonormal matrices with conv(A)

the nuclear norm ball (p× n)-dimensions. The atomic norm ‖x‖A is the nuclear norm ‖X‖?.

The notion of atomic norm decomposition extends to multiway arrays: permutation matrices, etc.

6.3 Projection and proximity operations

Projection operations: Given an anchor point x ∈ Rn, the Euclidean distance of an arbitrary w ∈ Rn to x

is given by their `2-norm difference ‖x−w‖2. An interesting question regarding Euclidean distances is

185



Chapter 6. Appendix A: Mathematical prerequisites

finding point(s) w with the minimum Euclidean distance to x that satisfies(-y) additional constraints.

In this thesis, we will be mostly interested in the following abstract problem: Given a setM and an
anchor point x ∈ Rn, a key operation in our subsequent discussions is the following projection problem:

PM(x) ∈ arg min
w∈Rn

{
‖w − x‖22

∣∣ w ∈M
}
. (6.3)

Depending on the nature ofM, the above problem might have a closed form solution. However, in this
thesis, we mostly focus on hard projection problems whereM contains both combinatorial and convex
constrants to be satisfied; more information is given in Chapter 1.

Proximity operations: Consider g : Rn → R is a function. We define the proximity operator of g as
[CW05b, eq. (2.13)]:

proxgλ(x) := arg min
w∈Rn

{
1

2
‖w − x‖22 + λ · g(w)

}
, (6.4)

where g can be considered as a regularizer for the Euclidean distance metric with λ > 0 as the regularizer
weight. One can easily observe the connection between the proximity operator in (6.4) and the projection
operation in (6.3): assuming g is defined such that well-represents a predefined model1, proximity
operator regularizes the Euclidean distance objective function by incorporating the constraint of (6.3) in
the objective. Moreover, it is known that we can obtain equivalent solutions by appropriately selecting λ.

6.4 Optimization basics

Existing algorithmic solutions invariably rely on two structural assumptions on the objective function
that particularly stand out among many others: the Lipschitz continuous gradient assumption and the
strong regularity condition.

Definition 18. (Lipschitz gradient continuity) Let f : Rn → R be a convex, smooth differentiable function.
Then, f is a smooth Lipschitz continuous gradient function if and only if for any v, w ∈ dom(f):

‖∇f(v)−∇f(w)‖2 ≤ L‖v −w‖2,

for some global constant L > 0.

Definition 19. (Strong regularity condition) Let f : Rn → R be a L-Lipschitz convex, twice differentiable
function. Then, f is strongly convex if and only if:

µI � ∇2f(x) � LI, ∀x ∈ dom(f),

for some global constant µ > 0.

In order to use the previous structures in practice, one needs efficient optimization solutions that scale
up in high-dimensional settings. In our discussions next, it will be apparent that the key actors for this

1As we explain in the next chapter, consider the case where g(x) := ‖x‖0 is the `0-norm that well-approximates the discrete
simple sparsity model.
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purpose are projection and proximity operations over restricted sets that go beyond simple selection
heuristics, with provable solution quality as well as low-complexity runtime/space bounds.

Projection operations faithfully follow the underlying combinatorial model but, in most cases, result in
hard-to-solve or even combinatorial optimization problems. Furthermore, model misspecification often
results in wildly inaccurate solutions.

Proximity operators of (often convex) model-structured functions often can only partially describe the
true underlying model and might lead to “rules-of-thumb” in problem solving (e.g., how to set up the
regularization parameter). However, such approaches work quite well in practice and are more robust to
deviations from the model, leading to satisfactory solutions.

Here, our intention is to present an overview of the dominant approaches followed in practice. We
consider the following three general optimization formulations:

• Projection formulation: Given a signal model M known a priori, let f : Rn → R be a closed
data fidelity/loss function; e.g., in the case of linear regression with measurement matrix Φ and
measurements y = Φx?, f usually represents the least-squares metric f(x) := ‖y −Φx‖22. In the
chapters next, we consider the projected minimization problem:

minimize
x∈Rn

f(x) subject to x ∈M. (6.5)

• Proximity formulation: Given a signal model M, let f : Rn → R be a closed data fidelity/loss
function, g : Rn → R a closed regularization term, possibly non-smooth, that “faithfully” models
M and λ > 0. In some cases, we use the following composite minimization formulation as solution
to the problem at hand:

minimize
x∈Rn

f(x) + λ · g(x). (6.6)

• Model-structured function minimization: Given a signal model M, let g : Rn → R be a closed
regularization term, possibly non-smooth, that “faithfully” modelsM. Moreover, let f : Rn → R
be a closed data fidelity/loss function and σ > 0. Consider the following minimization problem:

minimize
x∈Rn

g(x) subject to f(x) ≤ σ. (6.7)

In most of the cases above, we assume that f is a convex, twice differential function,M usually describes
a non-convex set and g represents its tightest convex function modelingM. The above will be apparent
from the context in each chapter.

6.4.1 Projected gradient descent method

Iterative “greedy” algorithms solving (6.5) greedily refine a current LDM solution, using only “local”
information available at the current iteration. Most of the algorithmic solutions so far concentrate on the
projected gradient descent algorithm: a popular method, known for its simplicity and ease of implementation.
Per iteration, the total computational complexity is determined by the calculation of the gradient and the
projection operation onM as in (6.3). The above lead to the following simple recursion:

xi+1 = PM
(
xi − µ

2
∇f(xi)

)
, (6.8)
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where µ is a step size and PM(·) is the projection onto the modelM.

Representative examples within the LDM framework are hard thresholding methods over simple sparse
sets [BD09a, NT09a, Fou11, KC11, KPC12], as we describe in Chapters 1 and 2.

6.4.2 Proximity methods

Proximity gradient methods for (6.6) are iterative processes that rely on two key structural assumptions:
(i) f has Lipschitz continuous gradient2 (see Definition 18) and (ii) the regularizing term g is endowed
with a tractable proximity operator. As often happens in practice, we will further focus on the convex
case, where f is convex and g is proper, lower semicontinuous and possibly nonsmooth convex function.

By the Lipschitz gradient continuity and given a putative solution xi ∈ dom(f + g), one can locally
approximate f around xi using a quadratic function as:

f(x) ≤ Q(x,xi) := f(xi) +∇f(xi)T (x− xi) +
L

2
‖x− xi‖22, ∀x ∈ dom(f + g).

The special structure of this upper-bound allows us to consider a majorization-minimization approach:
instead of solving (6.6) directly, we solve a sequence of simpler composite quadratic problems:

xi+1 ∈ arg min
x∈Rn

{
Q(x,xi) + g(x)

}
. (6.9)

In particular, we observe that (6.9) is equivalent to the following iterative proximity operation, similar to
(6.4):

xi+1 ∈ arg min
x∈Rn

{
1

2

∥∥∥∥x−
(

xi − 1

L
∇f(xi)

)∥∥∥∥
2

2

+
1

2L
g(x)

}
. (6.10)

Here, the anchor point w in (6.4) is the gradient descent step: w := xi − 1
L∇f(xi).

Instances of (6.10) have convergence rate:

f(x) + λ · g(x)−min
x

{
f(x) + λ · g(x)

}
≤ O

(
1

T

)
,

where T is the total number of iterations.

Iterative algorithms can use memory to provide momentum in convergence. Based on Nesterov’s optimal
gradient methods [Nes83], [BT09b] proves the universality of such acceleration in the composite convex
minimization case of (3.22), where g(x) can be any convex norm with tractable proximity operator, with
convergence rate:

f(x) + λ · g(x)−min
x

{
f(x) + λ · g(x)

}
≤ O

(
1

T 2

)
,

However, the resulting optimization criterion in (6.10) is more challenging when g stands for more
elaborate LDMs. Within this context, [SRB11, VSBV13] present a new convergence analysis for proximity

2In [TDKC13a], we consider a more general class of functions with no global Lipschitz constant L over their domain. The
description of this material is provided in Chapter 5.
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(accelerated) gradient problems, under the assumption of inexact proximity evaluations and study how
these errors propagate into the convergence rate.

An emerging direction for solving composite minimization problems of the form (6.6) is based on
the proximity-Newton method [FM81]. The origins of this method can be traced back to the work of
[FM81, Bon94], which relies on the concept of strong regularity introduced by [Rob80] for generalized
equations–see Definition (19). This method has been recently studied by several authors such as [BF12,
LSS12, SRB11]. The convergence analysis of these methods is encouraged by standard Newton methods
and requires the strong regularity of the Hessian of f near the optimal solution (i.e., µI � ∇2f(x) � LI). In
this case, we identify that the basic optimization framework above can be easily adjusted to second-order
Newton gradient and quasi-Newton approaches:

xi+1 ∈ arg min
x∈Rn

{
1

2

∥∥x−
(
xi −H−1

i ∇f(xi)
)∥∥2

Hi
+

1

2
g(x)

}
. (6.11)

where Hi represents either the actual Hessian of f at xi (i.e.,∇2f(xi)) or a symmetric positive definite
matrix approximating∇2f(xi). Given a computationally efficient Newton direction, one can re-use the
model-based proximity solutions presented in the previous subsection along with a second order variable
metric gradient descent scheme, as presented in (6.11) [TDKC13a].
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École Polytechnique Fédérale de Lausanne (EPFL) Tel: [+41 21 69] 36484
Rue de la Barre 6, Station 11, CH-1005 Lasaunne E-mail:
Switzerland anastasios.kyrillidis@epfl.ch

CONTACT
INFORMATION

Data analytics, machine learning, convex and non-convex analysis and optimization, structured low dimensionalRESEARCH
INTERESTS models, compressed sensing.
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Developer/programmer on recommender systems August 2013 - January 2014

• Development of co-clustering algorithm for customer-product recommendation system.
• Design and implementation of low space- and time-complexity compression schemes for fast access and

search in time-series databases.

Dialogos Ltd. Chania, Crete

Developer/programmer on automated speech-enabled systems June 2006 - September 2006

• Development of phone-based application that allows access to financial information and other banking
services.

• Development of speech-based application for individuals with special needs.

JournalsPUBLICATIONS

1. Quoc Tran-Dinh, Anastasios Kyrillidis and Volkan Cevher, “An inexact proximal path-following algorithm for con-
strained convex minimization”, accepter in SIAM Journal on Optimization (SIOPT), 2014.

2. Michail Vlachos, Nikolaos Freris and Anastasios Kyrillidis, “Compressive mining: fast and optimal data mining in
the compressed domain”, accepted in Very Large Data Bases (VLDB) Journal, 2014.

3. Anastasios Kyrillidis and George. N. Karystinos, “Fixed-rank Rayleigh quotient maximization by an M -PSK se-
quence,” to appear in IEEE Trans. on Communications, 2014.

4. Anastasios Kyrillidis and Volkan Cevher, “Matrix recipes for hard thresholding methods,” Journal of Mathematical
Imaging and Vision (JMIV), April 2013, Springer.

5. Nikolaos D. Sidiropoulos and Anastasios Kyrillidis, “Multi-way compressed sensing for sparse low rank tensors,”
IEEE Signal Processing Letters, 19(11):757-760, Oct. 2012.

Book chapters

1. Volkan Cevher, Sina Jafarpour and Anastasios Kyrillidis, “Linear inverse problems with norm and sparsity con-
straints,”, in Practical Applications of Sparse Modeling, Sept. 2014, MIT Press. (Authors listed in alphabetical
order.)

Preprints

1 of 4

mailto:anastasios.kyrillidis@epfl.ch


1. Quoc Tran Dinh, Anastasios Kyrillidis and Volkan Cevher, “Composite self-concordant minimization”, submitted
to Journal of Machine Learning Research, 2013.

2. Luca Baldassarre, Nirav Bhan, Volkan Cevher and, Anastasios Kyrillidis, “Group-sparse model selection: Hardness
and relaxations,” submitted to IEEE Trans. on Information Theory, 2013. (Authors listed in alphabetical order.)

3. Anastasios Kyrillidis, Luca Baldassarre, Stephen Becker and Volkan Cevher, “Sparse projections onto general hy-
perplanes”, preprint, 2013.

4. Georgios Skoumas, Dieter Pfoser and Anastasios Kyrillidis, “Location estimation using crowdsourced geospatial
data”, preprint, 2014.

5. Anastasios Kyrillidis, Luca Baldassarre, Marwa El-Halabi, Quoc Tran-Dinh and Volkan Cevher, “Structured
sparsity: discrete and convex approaches”, submitted as book chapter to “Compressed sensing and its application”,
Springer, 2014.

Conference Papers

1. Michail Vlachos, Francesco Fusco, Harry Mavroforakis, Anastasios Kyrillidis and Vassilis Vasileiadis “Scalable
and robust co-clustering of large customer-product graphs”, accepted in CIKM, 2014.

2. Dimitris Papailiopoulos, Anastasios Kyrillidis and Christos Boutsidis, “Provable deterministic leverage scores sam-
pling”, ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2014.

3. Anastasios Kyrillidis, Rabeeh Karimi Mahabadi, Quoc Tran-Dinh and Volkan Cevher, “Scalable sparse covariance
estimation via self-concordance”, AAAI Conference on Artificial Intelligence (AAAI-14), 2014.

4. Anastasios Kyrillidis, Michail Vlachos and Anastasios Zouzias, “Approximate matrix multiplication with applica-
tion to linear embeddings”, IEEE ISIT Symposium, 2014.

5. Anastasios Kyrillidis and Anastasios Zouzias, “Non-uniform feature sampling in decision tree ensembles”, IEEE
ICASSP, Florence, Italy, 2014.

6. George Skoumas, Dieter Pfoser and Anastasios Kyrillidis, “On quantifying qualitative geospatial data: A probabilis-
tic approach”, ACM GEOCROWD 2013.

7. Stephen Becker, Volkan Cevher and Anastasios Kyrillidis, “Randomized low-memory singular value projection”,
10th International Conference on Sampling Theory and Applications (SampTA), 2013. (Authors listed in alpha-
betical order.)

8. Anastasios Kyrillidis, Stephen Becker, Volkan Cevher and Christoph Koch, “Sparse projections onto the simplex,”,
International Conference on Machine Learning (ICML), 2013.

9. Quoc Tran Dinh, Anastasios Kyrillidis and Volkan Cevher, “A proximal Newton framework for composite minimiza-
tion: Graph learning without Cholesky decompositions and matrix inversions,” International Conference on Machine
Learning (ICML), 2013.

10. Anastasios Kyrillidis and Volkan Cevher, “Fast proximal algorithms for self-concordant minimization with applica-
tion to sparse graph selection,” IEEE ICASSP, Vancouver, Canada, May 2013.

11. Anastasios Kyrillidis and Volkan Cevher, “Matrix ALPS: Accelerated low rank and sparse matrix reconstruction,”
IEEE SSP, Ann Arbor, MI USA, August 2012.

12. Anastasios Kyrillidis and Volkan Cevher, “Combinatorial selection and least absolute shrinkage via the CLASH algo-
rithm,” IEEE ISIT, Cambridge, MA USA, July 2012.

13. Anastasios Kyrillidis, Gilles Puy and Volkan Cevher, “Hard thresholding with norm constraints,” IEEE ICASSP,
Kyoto, Japan, March 2012.

14. Anastasios Kyrillidis and Volkan Cevher, “Recipes on hard thresholding methods,”, 4th IEEE CAMSAP, Puerto
Rico, Dec. 2011.

15. Anastasios Kyrillidis and George. N. Karystinos, “Rank-deficient quadratic-form maximization over M -phase alpha-
bet: Polynomial-complexity solvability and algorithmic developments,” IEEE ICASSP, Prague, Czech Republic, May
2011.

Invited Talks/Workshops

1. Scalable solutions to some “hard” problems via self-concordance, EcoCloud Annual Event, Lausanne, Switzerland,
June 2014.

2. Composite self-concordant minimization, ENS, Paris, France, Mar. 2014.

2 of 4



3. Sparse simplex projections for portfolio optimization, 2013 IEEE GlobalSIP Symposium on Signal and Information
Processing in Finance and Economics, Austin, TX US, Dec. 2013.

4. A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix
inversions, Signal Processing with Adaptive Sparse Structured Representations (SPARS) Workshop, Lausanne,
Switzerland, July 2013.

5. Randomized low-memory singular value projection, CECAM Workshop on Tensor Network Algorithms in Compu-
tational Physics and Numerical Analysis, Zurich, Switzerland, May 2013.

6. Sparse projections onto the simplex, Discrete Optimization in Machine Learning (DISCML) NIPS Workshop, Lake
Tahoe, CA US, Dec. 2012.

7. Scalable and accurate learning of sparse Gaussian Markov random fields, Machine Learning Workshop (MLWS),
Lausanne, Switzerland, Nov. 2012.

8. Fast proximal algorithms for self-concordant minimization with application to sparse graph selection, Asilomar confer-
ence on signals, systems and computers, Pacific Grove, CA US, Nov. 2012.

9. Combinatorial selection and least absolute shrinkage via the CLASH algorithm, Sparse representation and low rank
approximation NIPS Workshop, Sierra Nevada, Spain, Dec. 2011.

10. Combinatorial selection and least absolute shrinkage via the CLASH algorithm, IMA annual program, High dimen-
sional phenomena workshop, Minneapolis, MN US, Sept. 2011.

11. Recipes for Hard Thresholding Methods, Signal processing with adaptive sparse structured representations (SPARS),
Edinburgh, UK, June 2011.

12. Polynomial complexity computation of the M-phase vector that maximizes a rank-deficient quadratic form, Discrete
Optimization (DisOpt) PhD Seminars, EPFL, Nov. 2010.

Scientific programming toolsTECHNICAL
SKILLS • Matlab, R.

Programming Languages

• C, Python.

OS

• Expert Linux knowledge (especially Debian-based distributions).

• Experience with distributed computing for data analysis.

AWARDS &
DISTINCTIONS Distinctions

Graduated 1st in a class of 137 ECE undergraduate students (July 2008 - GPA: 9.08/10.0).

Selected among 800 students from all around Europe to participate in Vulcanus in Japan program - internship
at Sanyo Electric Std. (Osaka).

Awards

AAAI 2014 Travel Student award

Graduate Studies Fellowship Award:

• EPFL Ph.D. fellowship, 2010.
• Alexander S. Onassis Public Benefit Foundation (2008-2009-2010).
• Special Research Fund Account, Technical University of Crete, 2009.

Undergraduate Studies Fellowship Award:

• Undergraduate Studies Distinction and Fellowship Award, Technical Chamber of Greece, 2004.
• Undergraduate Studies Fellowship Award 2004 for ranking 3rd in a class of 137, Greek National Fellowship

Foundation (IKY).
• Undergraduate Studies Distinction and Fellowship Award, Technical Chamber of Greece, 2003.
• Undergraduate Studies Fellowship Award 2003 for ranking 2nd in a class of 137, Greek National Fellowship

Foundation (IKY).
• Undergraduate Studies Fellowship Award 2002 for ranking 1st in a class of 137, Greek National Fellowship

Foundation (IKY).

3 of 4



Teaching AssistantACADEMIC
EXPERIENCE

EPFL

• Theory and Methods for Linear Inverse Problems (Ph.D.) Fall ‘12
• Circuits and Systems I (BSc.) Fall ‘11

Technical University of Crete

• Information and Coding Theory (BSc.) Spring ‘09
• Estimation and Detection Theory (M.Sc.) Fall ‘09
• Signals and Systems (BSc.) Fall ‘08, Fall ‘09

Administration

Lab Administrator of DISPLAY (DIgital Image and Signal Processing LaboratorY) Lab., Dept. of Electronic and
Computer Engineering, Technical University of Crete, Chania (2 years experience).

4 of 4


	Cover page
	Acknowledgements
	Abstract
	Contents
	Introduction
	Sparse Euclidean projections onto sets
	Preliminaries
	Related work
	Sparse Euclidean projections onto norm constraints
	Sparse projection onto 2-norm constraints
	Sparse projection onto -norm constraints

	Sparse Euclidean projections onto the simplex
	Convex simplex projections and other definitions
	Greedy selectors for sparse simplex-type projections

	Applications
	Sparse portfolio optimization
	Sparse kernel density estimation

	Discussion

	Greedy methods for sparse linear regression
	Preliminaries
	Related work
	Algebraic Pursuits (ALPS)
	IHT: the ALPS backbone
	Step size selection strategies
	Updates over restricted support sets in ALPS
	Memory in ALPS

	Combinatorial selection and least absolute shrinkage via the CLASH algorithm
	Intuition behind Clash 
	From simple sparsity to structured sparsity
	The Clash algorithm

	Beyond 1-norm: Normed-Pursuits
	Experiments
	Performance evaluation of ALPS
	Sparsity and 1-norm
	Sparsity and other norms
	Image processing

	Discussion

	Beyond simple sparsity
	Preliminaries
	Sparse group models
	The discrete model
	Convex approaches

	Sparse dispersive models
	The discrete model
	Convex approaches

	Hierarchical sparse models
	The discrete model
	Convex approaches

	Applications
	Compressive Imaging
	Neuronal spike detection from compressed data

	Discussion

	Greedy methods for affine rank minimization
	Preliminaries
	Related work
	Matrix Algebraic Pursuits
	Hard thresholding ingredients in the matrix case
	Convergence guarantees for matrix ALPS
	Complexity Analysis
	Memory-based Acceleration
	Accelerating Matrix ALPS:  -Approximation of SVD via Column Subset Selection
	Accelerating Matrix ALPS: SVD Approximation using Randomized Matrix Decompositions 

	Randomized Low-Memory Singular Value Projection
	The RSVP algorithm
	Convergence guarantees for RSVP

	Solving the Robust PCA problem with Matrix ALPS
	The Matrix ALPS Framework for RPCA

	Experiments
	List of algorithms
	Implementation details
	Synthetic data
	Image compression
	Quantum tomography
	Video background subtraction via RPCA

	Discussion

	Convex approaches in low-dimensional modeling
	Preliminaries
	Related work
	The Self-Concordant Optimization (SCOPT) framework
	A proximal-Newton method

	Experiments
	Empirical performance comparison
	Graphical model selection
	Sparse covariance estimation

	Discussion

	Conclusions
	Appendix A: Mathematical prerequisites
	Norms, convexity and (sub)gradients
	Low-dimensional models
	Projection and proximity operations
	Optimization basics
	Projected gradient descent method
	Proximity methods


	Bibliography
	Curriculum Vitae

