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I Abstract

Many natural and man-made signals can be described as having a few degrees of freedom relative to their
size due to natural parameterizations or constraints; examples include bandlimited signals, collections of
signals observed from multiple viewpoints in a network-of-sensors, and per-flow traffic measurements of
the Internet. Low-dimensional models (LDMs) mathematically capture the inherent structure of such
signals via combinatorial and geometric data models, such as sparsity, unions-of-subspaces, low-rankness,
manifolds, and mixtures of factor analyzers, and are emerging to revolutionize the way we treat inverse
problems (e.g., signal recovery, parameter estimation, or structure learning) from dimensionality-reduced
or incomplete data.

Assuming our problem resides in a LDM space, in this thesis we investigate how to integrate such models
in convex and non-convex optimization algorithms for significant gains in computational complexity. We
mostly focus on two LDMs: (i) sparsity and (ii) low-rankness. We study trade-offs and their implications
to develop efficient and provable optimization algorithms, and-more importantly-to exploit convex and
combinatorial optimization that can enable cross-pollination of decades of research in both.

Beaucoup de signaux naturels et artificiels peuvent étre décrits comme ayant peu de degrés de liberté par
rapport a leur taille en raison de paramétrages naturels ou des contraintes; des exemples comprennent
les sighaux a bande limitée, les collections de signaux observés a partir de plusieurs points de vue dans
un réseau de capteurs, et les mesures de trafic d’Internet par flux. Les modéles de basse dimensionnalité
(MBD) capturent mathématiquement la structure inhérente de ces signaux via des modeles de données
combinatoires et géométriques, comme la parcimonie, les unions de sous-espaces, la faiblesse de rang, la
variété, et les mélanges d’analyseurs factorielles, et ils émergent pour révolutionner la fagcon dont nous
traitons les problémes inverses (par exemple, la récupération de signal, I’estimation de paramétres, ou
I’apprentissage de structure) a partir de données de dimensionnalité réduite ou incomplétes.

En supposant que notre probléme réside dans un espace de MBD, dans cette thése, nous étudions
comment intégrer ces modeles dans les algorithmes d’optimisation convexes et non convexes pour des
gains importants dans la complexité de calcul. Nous nous concentrons principalement sur deux MBDs:
(i) la parcimonie et (ii) la faiblesse de rang. Nous étudions les compromis et leurs implications pour
développer des algorithmes d’optimisation efficaces et prouvables, et — plus important encore — pour
exploiter I'optimisation convexe et combinatoire qui peut permettre la pollinisation croisée de décennies
de recherche a la fois.

Key words: Sparse Euclidean projections, sparse linear regression, compressed sensing, affine rank
minimization, matrix completion, structured sparsity, convex composite minimization, self-concordance.
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I | ntroduction

Living in the “information age”, we have witnessed an ever increasing interest in designing computing
systems that can analyze large amount of information in reasonable time: organizations ranging from
all-around data analytics companies to banks and from petroleum enterprises to bio-informatics research
labs move towards this direction. In order to accomplish the desiderata, one has to take into consideration
every aspect of data to conceive a viable and efficient system design: its volume, its variety and the need
for quick analysis tools (velocity); see Figure 1.

To quantify the importance of each attribute in such descrip-  Figure 1: The “3 V.’s” description of data.
tion, we highlight next some interesting statistics on the vol-
ume and the variety of data nowadays. Google processes
more than 24 Petabytes of data per day and collects data
originating from both social networks and multimedia por- RS s \‘ ‘ a
tals (images, video, social network data, etc.). The main ! \):

reason behind this huge data creation is the Web and its vol- I . 5 o ’
unteered users: the crowd has become an important data ll o

provider. Subsumed under the term Volunteered Informa- Volume Velocity Variety
tion (VI), non-expert users have been providing a wealth
of data online. However, in order to exploit this data in its
entirety, efficient compression algorithms are needed so that,
e.g., search queries can be efficiently completed, even in the compressed domain [VFK]. Moreover, data
mining methods should be able to operate with high accuracy in such compressed spaces via efficient
feature selection or dimensionality reduction schemes.

Within the same context, companies such as Microsoft, Facebook and Twitter further collect data that can
lead to social network inference (e.g., graph inference). As a representative example, Twitter collects more
than 50 million “tweets” per day, a huge amount of information that can be exploited to infer inter-user
dependencies and correlations.

From a different perspective, there are many problems where data is represented in the most usual
form (tables=matrices in databases); e.g., bank companies collect transaction data in database tables
where querying, monitoring or even prediction tasks are performed (e.g., portfolio suggestion in finance
optimization).

In addition to the above, recent studies have shown that more than 1:3 Exabytes of data are sampled,
stored and transfered over the (wireless) communication network, due to the bloom of smart-phones
in the phone industry. This underlines the need for more efficient sampling techniques—consider for
example the compressive sensing paradigm [CDS98, CT06, CRT06], described in the next chapters—in
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order to reduce the amount of data transmitted over the network, while pertaining the overall quality of
service.

To this end, there is an ever increasing need for computer hardware designs that can accommodate such
data “deluge”. However, the rate of data growth is far higher than the dictated growth in platform
computational capabilities—see Figure 2 for a relative com-
parison. Thus, by just using traditional statistical tools to
compress, analyze and process data, one might not fully ex-
M Platform capabilities Data capacity ploit the available data in its entirety, no matter how she/he
designs and optimizes the computer hardware. Therefore,
we need accurate, robust and scalable algorithms that can

Figure 2: Growth rate comparison.

)
£ handle larger amount of data simultaneously.
Within this context, this thesis focuses on and evolves around
Today novel, fast and provable algorithms for data analysis in large-
2010 . . . -
2000 scale problems. From our point of view, a brief description
1990 of data analysis in layers is given in Figure 3. While data

1980 querying and monitoring are two of the most used tasks in

data analysis (e.g., most database systems rely heavily on such tasks), here we study the two out-most
layers: data preprocessing and prediction. In particular, we concentrate on understanding and tackling
challenges in large scale inference problems and we do so in view of diverse machine learning and signal
processing applications.

Figure 3: Layers of data analysis tasks. The further we move away from the center of the circles, the
higher the complexity=business value of the task.

Our perspective can be summarized as follows: While the ambient dimension is vast in modern data anal-
ysis problems, the relevant information therein typically resides in a much lower dimensional space. To
this end, given a data set to analyze, one is usually interested in the simplest model that well-characterizes
the observations. This conclusion has lead to several new theoretical and algorithmic developments in
different communities, including theoretical computer science [BG1708], applied mathematics [RZMC11],
and digital signal processing [Don06, CW08]. In practice, it turns out that it is sufficient to identify a low
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