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ABSTRACT

This thesis addresses the problem of a statistical description of the transport of sediment as

bed load. It highlights the role of fluctuations arising during the transport process, and their

impact on macroscopic averages. The results presented here are based on four experimental

studies. Two of them were published recently by Böhm et al. [2004] and Roseberry et al. [2012]
while the other two were carried out during the thesis. In particular, two high speed cameras

were used to automatically reconstruct particle trajectories over a window of approximately

1 m length, continuously over a few minutes. This constitutes, at the time of writing, one of

the largest sets of experimental particle trajectory data available.

Based on these experiments, two probabilistic models are proposed. The first one offers a

macroscopic picture of the fluctuations of particle activity (concentration of moving particles).

Based on a model recently proposed by Ancey et al. [2008], it allows for the accurate prediction

of the fluctuations observed in the bed load flux. A new formula for the probability density

function of the volume-averaged bed load flux is derived and compared to experimental data

as well as to existing theory. By slightly modifying the original model, it was also possible to

derive the probability density function of the inter-arrival time of particles. The latter shows

an unusual bimodal shape due to the effect of collective entrainment. This phenomenon is

referred to as the “separation of time scales” [Heyman et al., 2013].
Although providing an accurate picture of the macroscopic fluctuations arising in bed load

transport, the first model does not gather information about the spatial behaviour of the bed

load flux fluctuations. To remedy this, a new probabilistic model, able to locally describe the

transport process, is proposed. This model lies in-between a kinetic description of the trans-

port process and the macroscopic model proposed by Ancey et al. [2008]. In this regard, only

the particle positions are treated as random variables, while particle velocities are assumed to

be close to the Maxwellian equilibrium distribution.

By a careful analysis of first and second moments, in both spatial and temporal dimensions,

I prove the occurrence of large correlated structures that strongly perturb the average equi-

librium, while not fundamentally modifying it. Moreover, I show that the validity of Taylor’s

frozen flow hypothesis for bed load transport is severely called into question by the experi-

mental data, proving the peculiar behaviour of those structures during transport by the mean
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fluid flow.

Finally, a discussion about scales of fluctuations is provided. It follows from experimental

results, as well as from theoretical predictions, that local fluctuations may play an important

role in both an experimental setup and natural rivers. Indeed, the saturation and the corre-

lation lengths are often so large that fluctuations may interact in a non-trivial way with the

boundaries of the system, precluding the use of macroscopic average equations. Finally, this

thesis suggests that the inherent fluctuations of bed load transport rates may need to be taken

into account in numerical simulations in order to accurately describe the transport process.

Keywords: bed load, fluctuations, sediment transport, stochastic models.
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RÉSUMÉ

Cette thèse a pour objet la description statistique du transport solide par charriage. Plus

précisément, elle s’intéresse au rôle qu’ont les fluctuations dans le processus de transport,

ainsi qu’à leur impact sur les équations moyennées. Les résultats présentés dans cette thèse

reposent sur quatre études expérimentales. Deux d’entre elles ont été récemment publiées

par Böhm et al. [2004] et Roseberry et al. [2012], tandis que les deux autres ont été conçues

spécialement lors de cette thèse. En outre, deux caméras ultra rapides ont été utilisées afin

de reconstituer de façon automatique les trajectoires de particules solides sur une longueur

totale d’environ un mètre, durant des périodes de quelques minutes.

Grâce aux observations expérimentales, deux modèles probabilistes sont présentés. Le pre-

mier est une caractérisation macroscopique de l’activité solide, ou concentration de particules

en mouvement. Basé sur un modèle récemment proposé par Ancey et al. [2008], il permet de

caractériser précisément les fluctuations du débit solide. En outre, la densité de probabilité

du débit solide est obtenue analytiquement à partir du modèle et est comparée aux résul-

tats expérimentaux ainsi qu’à d’autres formules existantes dans la littérature. Grâce à une

modification du modèle original, la densité de probabilité du temps d’arrivée des particules a

aussi pu être obtenue de façon analytique. La forme de celle-ci présente deux modes distincts,

dus à l’entraînement collectif des particules. Ce phénomène a été dénommé “séparation

des échelles temporelles”. Bien que les fluctuations macroscopiques soient correctement

représentées par le modèle, ce dernier ne donne aucune information sur leur répartition dans

l’espace.

De fait, un nouveau modèle probabiliste, capable de décrire localement le processus de trans-

port est proposé. Ce modèle se situe entre une description cinétique complète du processus

de transport et l’approche macroscopique proposée par Ancey et al. [2008]. En effet, seules les

positions des particules sont considérées dans le modèle comme des variables aléatoires. Au

contraire, les vitesses des particules, qui, bien que fluctuantes, sont considérées proches de

l’équilibre Maxwellien, et donc indépendantes de leurs positions.

Par une analyse détaillée des moments spatio-temporels de premier et second ordres, il est dé-

montré que des structures cohérentes se développent et perturbent l’équilibre macroscopique,

sans toutefois le modifier. L’hypothèse de “frozen flow” proposée par Taylor est testée sur la
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base du modèle, mais sa validité dans le cas du transport solide par charriage est sérieuse-

ment mise en question par les résultats expérimentaux, prouvant le caractère particulier du

transport des structures cohérentes.

En dernier lieu, les échelles spatiales et temporelles sur lesquelles les fluctuations se pro-

duisent sont discutées. Les résultats expérimentaux, ainsi que les prédictions théoriques

s’accordent à dire que les fluctuations locales peuvent avoir un rôle important, tant à l’échelle

du laboratoire qu’à celle de la rivière. En effet, les longueurs de saturation et de corrélation

sont souvent si grandes que les fluctuations doivent probablement interagir de manière com-

plexe avec les conditions aux limites du système. Pour conclure, cette thèse prouve que les

fluctuations inhérentes au transport solide par charriage doivent être prises en compte dans

la modélisation numérique pour une description précise du phénomène.

Mots clefs : charriage, fluctuations, modèles stochastiques, transport de sédiment.
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GLOSSARY

adiabatic elimination The adiabatic elimination technique consists in removing from a cou-

pled system of equations the variables that evolve a lot faster than the dynamics of

interest, in order to simplify the system. 24, 25

birth-death A birth-death Markov process is a discrete-state continuous-time stochastic

process where the random variable evolves by unitary jumps of ±1. It is referred to

as “birth-death” since it has extensively been used to study the evolution of living

population of bacteria, animals. 5, 16, 19, 21, 22, 25, 60, 87

Euler–Maruyama scheme The Euler–Maruyama scheme is a method for the approximate

numerical solution of a stochastic differential equation. It is a simple generalization of

the explicit Euler method for ordinary differential equations to stochastic differential

equations. 87

Fokker–Planck equation The Fokker–Planck equation is a partial differential equation that

describes the time evolution of the probability density function of a random variable. It

was named after Adriaan Fokker and Max Planck and is also known as the Kolmogorov

forward equation. 23, 25, 27, 28, 80, 82, 84, 85

generating function Probability generating functions are used to transform a discrete space

of probabilities into a continuous one. When introduced into a master equation, these

functions allow in some cases the exact calculation of the probability density function.

84, 106

Langevin The Langevin equation is a special form of stochastic differential equation named

after Paul Langevin, who studied Brownian motion. In this form, the evolution of

the stochastic process is separated into two parts: a deterministic evolution term (also

called drift) and a noise term. The latter is often represented as increments of a Gaussian

noise process ξ(t ) or equivalently as the derivative of the Wiener process dW (t ). It is

uncorrelated in time, so that it is often referred to as “white noise”. 5, 28, 37, 84

likelihood function A likelihood function is a function of the parameters of a statistical model.

The likelihood of a set of parameter values of a stochastic model, given experimental

xix
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outcomes, is equal to the probability (given by the stochastic model) of observing all

those outcomes given the choice of parameter values. Likelihood functions play a key

role in statistical inference, especially methods of estimating a parameter from a set of

statistics. The best set of parameters is found by maximising the likelihood function. 77

Markov process A Markov process is a stochastic process that satisfies the Markov property,

also known as the “memoryless” property. Loosely speaking, a process satisfies the

Markov property if one can make predictions for the future of the process based solely

on its present state, independently of the process past history. 16, 19, 25, 27, 87, 106

master equation A master equation describe the temporal evolution of a probability function.

It is in general impossible to solve directly, as it involves discrete and delayed variables.

A usual procedure is to transform it into a Fokker–Planck equation, via Van Kampen’s

expansion. 19, 25, 27, 37, 85, 87

Monte Carlo simulations Monte Carlo simulation methods are a broad class of computa-

tional algorithms that rely on repeated random sampling to obtain numerical results

when analytical solutions are not known. Typically, computers simulations are run

many times over in order to obtain the distribution of the unknown probabilistic entity.

They are algorithmically cheap, but computationally expensive. 60, 77

Poisson representation Similar to Laplace or Fourier transform, or even to generating func-

tions, the Poisson representation transforms a discrete probability space into a contin-

uous one by assuming that the discrete random variable can be well represented by a

superposition of Poisson distributions whose rates have to be determined. It is used to

simplify and solve a master equation. 5, 21, 27–29, 33, 37, 80, 84–87

system-size expansion The system size expansion, also known as van Kampen’s expansion,

allows one to find an approximate solution of a non-linear master equation by only

retaining the leading order term of a linear noise approximation. The system size

expansion allows one to obtain an approximate statistical description that can be solved

much more easily than the master equation but that relies on the assumption of large

system size (e.g.: when the noise is small compared to the average behaviour). 85

Wiener process The Wiener process is a continuous-time stochastic process named in hon-

our of Norbert Wiener. It is also called standard Brownian motion and occurs frequently

in pure and applied mathematics, economics, quantitative finance and physics. It is

constituted by a sum of random and independent increments, drawn according to the

normal distribution. 28, 29, 84
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NOMENCLATURE

CONSTANTS

Symbol Description Units

L Measurement length m

T Measurement time s

µ f Dynamic fluid viscosity Pa.s

θ Mean bed slope ◦

% Fluid density kg.m−3

%s Particle density kg.m−3

νs Particle mean volume m3

B Flume width m

d 50 Particle mean diameter m

h Water Depth m

k B Boltzmann constant m2.kg.s−2.K−1

m Particle mass kg

v Depth average flow velocity m.s−1

FUNCTIONS

Symbol Description Units

f Pseudo density function of the Poisson variable -

G (x , t ) Spatio-temporal correlation function of the particle activity particles2.m−2

g (x ,x ′, t ) Spatial correlation function of the Poisson activity particles2.m−2

h(x −x ′) Conditional intensity of the point process particles.m−1

I Dispersion index -

xxi



Nomenclature

K (x ) Ripley’s K-function m

yb Bed elevation m

NOTATIONS

Symbol Description Units

x̄ Spatial or temporal average of the random variable x .

〈•,•〉 Covariance of two random variables. For instance, 〈X , X 〉 =
〈X X 〉− 〈X 〉2

〈•〉 Ensemble average.

〈•〉s Ensemble average in stationary and homogeneous conditions.

RANDOM VARIABLES

Symbol Description Units

β (x , t ) Poisson representation of the density of particles in the bed particles.m−1

a Vector of all a i . particles

n Vector of all n i . particles

η(x , t ) Poisson activity particles.m−1

γ Particle activity particles.m−1

a Poisson rate of the number of moving particle in an observa-

tion window.

particles

a i Poisson rate of the number of moving particles in cell i . particles

b (x , t ) Density of particles in the bed particles.m−1

N /n Random variable/number of moving particles in a observation

window

particles

Ni /n i Random variable/number of moving particles in the cell i . particles

qs Solid flux m3.s−1

u Particle instantaneous velocity m.s−1

SCALARS

Symbol Description Units

∆x Length of an observation window/of a lattice cell m

λ Entrainment rate particles.m−1.s−1

`c Correlation length m

`s a t Saturation length m

Qs Cumulative solid flux m3
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Nomenclature

µ Collective entrainment rate s−1

Pe Local Péclet number -

σ Deposition rate s−1

σu Standard deviation of particle velocity m.s−1

L̃ Dimensionless length of an observation window (L/`c ) -

〈u 〉 Ensemble average of particle velocities m.s−1

ū Time average of particle velocities m.s−1

ζ Viscous drag coefficient kg.s−1

D Particle diffusivity m2.s−1

L Length of an observation window m

T Temperature K

tλ Entrainment time scale s

tµ Collective entrainment time scale s

tσ Deposition time s

tc Correlation time in the frozen-flow hypothesis s

tr Velocity relaxation time s

Pe Péclet number -

St Particle Stokes number -
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I INTRODUCTION

1 Context
From the mountains to the seas, the transport of sediment is reshaping the surface of our

planet. Grain after grain, stone after stone, the slow but unstoppable work of the wind and

water is continually changing the landscape: digging or filling rivers, displacing beaches,

moving dunes, covering villages, and demanding the respect of humans.

More discrete and insidious than its cousins, debris flows and avalanches, bed load transport

remains nonetheless a vicious child. As its name suggests, “bed load” describes the transport

of particles, from sand to boulders, by a fluid running along a granular bed. Particles being

fairly heavy, the fluid (air or water) is not able to sustain their motion for long periods as in

the case of smaller materials, transported as suspension or wash load. Instead, like a player

kicking a ball, the fluid flow intermittently dislodges particles from the bed, forcing them to

slide, roll or jump further downstream where they stop again. The particles are thus almost

always in contact with the bed, forming a dynamic “load” (Fig. 1.1).

Figure 1.1: Sediment transport by bed load. Frame superposition of an high speed film. Flow
is from left to right. Particle size ' 8 mm.
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Chapter I. Introduction

Bed load is one of the most important actors in sediment transport, but also perhaps one

of the least understood. Human activities are directly impacted by bed load, while a lot of

economic sectors depend critically on the mastery of sediment transport. For instance, in

desert areas, roads and fields are continuously disappearing under sand dunes. In marine

environments, harbours and waterways are threatened with sediment accumulation, while

famous world heritage sites such as Venezia’s lagoon or Mont-Saint-Michel’s bay require a

miracle not to be buried under sand. Beaches are moving, and with them tourists, rivers are

meandering and changing constantly their path, threatening houses.

Switzerland is particularly concerned with bed load transport by water, which each year moves

billions of tons of rocks from the high Alpine mountains to the lowland valleys via a connected

network of torrents and rivers. Dams, bridges and embankments have major consequences

for bed load transport as they locally break up sediment continuity and modify the flow. For

instance, it is common to see a net erosion of the river bed behind a dam, because no more

sediment is delivered from the upstream valley. Embankments and bridges, for their part,

may accelerate or decelerate locally the flow and lead to erosion or deposition respectively.

Although the channelling of rivers surely benefited the economic development of valleys in

the past, the ecological impacts caused by the modification of the sediment transport process

are more uncertain. This is evidenced by the recent projects planned to restore rivers –the

Rhône river for instance– to their initial braided patterns.

Although the frequency and strength of heavy sediment transport events has not noticeably

changed during the last century in Switzerland, the vulnerability of constructions has dramati-

cally increased. Thus, there is a real need to predict more precisely the regions of potential

risk, in the short and long term. This, however, could be realised only if a better picture of the

transport process can be drawn. Until now, models predicting bed load transport perform

poorly, even at short term. Discrepancies between predictions and observations as large as

3 to 4 orders of magnitude are commonly reported in the literature [Recking et al., 2012].
Meanwhile, bed load transport rates are seen to fluctuate significantly, even under relatively

constant flow and bed conditions, calling into question the feasibility of long term sediment

budget predictions.

The well known example of atmospheric convection may be worth recalling here. Indeed,

it has been shown that some extremely simplified non-linear deterministic systems evolve

in such a way that the prediction of their behaviour in the long term is impossible, as an

infinitesimal error in the initial conditions will always grow exponentially. This phenomena is

known as “deterministic chaos” and conditions atmospheric convection models —one reason

why people will never stop complaining about the quality of weather forecasts. Interestingly

enough, bed load transport may share some similarities with those systems, first of which is

the non-linearity arising from the coupling between the fluid flow and the sediment phase via

the erodible bed. In contrast to the well established Navier–Stokes equations for the atmo-

spheric boundary layer, no universal equation exists for sediment transport and mathematical

evidence for the presence of “deterministic chaos" in sediment transport systems has not
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2. Motivation

Figure 1.2: Two pictures of the same river reach taken at a year interval. Navisence river
(Switzerland).

been found yet.

The apparent fluctuations of bed load rates in most Swiss rivers suggests the presence of

dynamic processes constantly evolving, maintaining the overall system far from a traditional

stable equilibrium (Fig. 1.2). The role of noise in such an environment is crucial in driving the

system from one state to another. Noise is intrinsically present in sediment transport. First,

because bed particles are discrete elements of various shapes, sizes and densities, their motion

down the river will be extremely more random than a viscous oil flowing down a plate, for

example. Second, noise exists because river flows are highly turbulent, especially in mountain

rivers, and flow turbulence has been proved to be a chaotic deterministic system.

2 Motivation
The problem arising in any system subject to noise at the micro-scale is the calculation of

consistent average values, or relationships, that can be used to describe its macroscopic

behaviour. For instance, for systems in thermodynamic equilibrium, such as inert gas in a box,

statistical mechanics tells us that macroscopic variables, such as pressure and temperature,

derive from the microscopic random motion of molecules.

Another instructive example can be found in the Reynolds-average Navier-Stokes equations.

This set of equations is obtained after decomposing the instantaneous velocity of the flow into

a constant and a fluctuating part, u = ū+u ′, and averaging the whole equations. The averaged

equations reveal an extra contributing factor u ′i u ′j , called the Reynolds stress tensor. This

term typically expresses the fact that fluctuations play a non-negligible role in the macroscopic

average, so that they cannot be simply ignored.

In a similar manner, this thesis addresses the possible link between the microscopic stochastic

motion of bed load particles under water and macroscopic variables, such as the average bed

3



Chapter I. Introduction

load flux (see the definition in section 2). In other words, how is individual particle motion

reflected through larger scale transport relations? More precisely, how does noise, intrinsically

present at small scales, modify the equilibrium and the average macroscopic equations? Until

now, the variability of bed load has been deliberately ignored in most bed load transport

models. Is this approximation physically justified or, on the contrary, do the macroscopic

averaged equations include additional terms similar to Reynolds stresses ?

This thesis aims thus at studying the physics of bed load transport to understand and quantify

the fluctuations observed in the solid flux.

3 Thesis contributions and layout
There are two major contributions in this thesis:

1. It pushes forward Böhm et al.’s [2004] and Ancey et al.’s [2006] studies, as well as Ancey

et al.’s [2008] stochastic model by highlighting several new applications of the theory.

First, various statistics of the bed load flux according to Ancey et al.’s [2008]model are

derived [Heyman et al., 2013]. Second, we explore the potential applications of [Ancey &

Heyman, 2014] stochastic model to characterise spatio-temporal correlation structures

in the particle activity. Those structures are shown to span over large scales, suggesting

their non-linear interactions with Exner and Saint-Venant equations.

2. The theoretical predictions are supported by a large set of experimental data. Among

others, two experiments, denoted by H and J, were carried out to precisely measure the

bed load transport process. They show that the proposed model for bed load transport

is capable of reproducing many of the features of the fluctuations of transport rates.

Notably, the scale dependence of fluctuations is well reproduced by the generalized

model of Ancey & Heyman [2014].

Theoretically, the approach adopted in this thesis is the one adopted by Ancey et al. [2008],
that is, the use of Markov processes to model the random motion of bed load particles. This

framework allows to predict the behaviour of the temporal and spatial evolution of the solid

flux based on microscopic particle motions. Experimentally, this thesis provides high quality

data, in an amount sufficient to obtain unbiased statistical results. Modern signal processing

techniques as well as cutting-edge image analysis techniques, borrowed from computer vision

science, were used to automatized the treatment of raw experimental data.

This thesis is divided in three main chapters. In the first chapter, I review some of the existing

bed load transport models by focusing particularly on contributions to the stochastic frame-

work. Being the corner-stone of any sediment transport theory, the definitions of the solid

flux found in the literature are then reviewed in a critical way. Finally, the literature about the

physics of the entrainment, the deposition and the transport of bed load particles is reviewed.
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The second chapter is dedicated to theoretical developments. I first review the birth-death

Markov model of particle exchanges proposed by Ancey et al. [2008]. Then, I present Ancey &

Heyman’s [2014] extension of the latter model to a spatial dimension: after deriving the master

equation that governs moving particles locally, a transformation called Poisson representation

is used to obtain a Langevin-like 1 stochastic partial differential equation. First and second

moments of this equation are analytically derived for some simple cases.

The third chapter is entirely dedicated to experimental comparisons. After presenting the

various experiments, the processing techniques as well as the averaging methods, I compare

some of the theoretical predictions of Ancey et al.’s [2008]model to experimental data. Then,

I compare the spatial and the temporal behaviour of the fluctuations of particle activity

predicted by the generalized model of Ancey & Heyman [2014]with experimental data. Finally,

by comparing spatial and temporal fluctuations of the particle activity, I test the validity of the

frozen flow hypothesis in the case of bed load transport.

Finally, I conclude this thesis with a discussion about the importance of taking into account

fluctuations of the concentration of moving particles while modelling bed load transport.

1. Most of the stochastic terms used are defined in the glossary, at the beginning of the thesis.
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II STATE OF THE ART

1 Hundred years of research
The sediment transport problem aimed originally at estimating the quantity of solid matter

that can be transported by a fluid flow, depending on the strength of the latter.

In the late XIX-th century, du Boys [du Boys, 1879] proposed the first modern formula relating

solid flux qs (see possible definitions in section 2) to the flow shear stress τ 1 acting on the

bed as well as the critical shear stress τc needed for sediment to start moving. On the basis

of this early attempt, several empirical or semi-empirical relationships have been proposed.

Surprisingly enough, they often share the same form as the original Du Boy’s equation. Among

others, the empirical formula of Meyer-Peter & Muller [1948], dating from 1948, is still largely

used today by engineers:

qs ∝
p
τ(τ−τc ), (2.1.1)

A review of the applicability of such formula and the experimental studies that support them

is given in Graf [1971].

Apart from such empirical work, a few studies have also succeeded in describing the sediment

transport process with the help of physically based arguments. Shields [1936], for instance,

recognized in the different variables playing a role in the transport process, that the flow shear

1. In open-channel flow in homogeneous steady conditions, τ= %g h sinθ , with % the water density, g the
gravity acceleration, h the water depth and θ the bed slope. More generally, τ=% (v ∗)2, where v ∗ is the shear flow
velocity.
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stress could be non-dimensionalized with respect to gravity, sediment density and diameter 2.

The “Shields” stress has become today a quantity of reference.

A pioneer in the physics of granular media, from suspension, saltation in air, to bed load

transport in water, can be found in the personality of Ralph A. Bagnold. Bagnold was originally

a commander of the British Army’s Long Range Desert Group during World War II and he pub-

lished a substantial amount of experimental and theoretical work on sediment transport. By

assuming the equilibrium between stream power and bed load layer dissipation, he provided

physically based arguments for the dependence of solid flux on shear stress at the power 3/2

[Bagnold, 1956, 1973].

Hans A. Einstein, the first son of Albert Einstein, recognized the intermittent and random

behaviour of the transport of bed load particles under water [Ettema & Mutel, 2004]. In 1937,

he proposed a probabilistic framework that described the random motion of bed load particles

[Einstein, 1937]. His subsequent research, ingeniously relating flow turbulence and sediment

load, lead to a statistically based formula [Einstein, 1950]. The latter relates the dimensionless

Shields stress to a dimensionless particle flux, through an integral relationship representing

the exceedance probability of the instantaneous flow shear stress above a threshold value.

Since then, several stochastic formulas have been proposed based on this concept [Bridge &

Bennett, 1992; Cao, 1997; Kleinhans & van Rijn, 2002; Van Prooijen & Winterwerp, 2010].

Since Einstein’s effort, some researchers have seen the probabilistic framework as a powerful

tool to analyse and describe particle motion. By observing the motion of bedforms, Hamamori

[1962] proposed an explicit formula for the density probability of the observed bed load

flux. The highest fluctuations were found to reach four times the mean bed load flux. Sun &

Donahue [2000] proposed a two-state Markov model suggesting that bed load transport rates

would follow a binomial distribution. Parker et al. [2000] recast the sediment continuity Exner

equation into a stochastic equation by considering an active layer of random height. Wu &

Chou [2003] considered the rolling and lifting probabilities of particles in a turbulent stream

while Wu & Yang [2004] proposed a stochastic partial transport model for mixed size sediments.

On the other hand, Turowski [2010] suggested that the shape of the probability distribution

of the bed load flux was a function of the inter-arrival time of particles. More recently, in

four companion papers, Furbish et al. [2012a] provided further insights into particle random

motion and its consequences on macroscopic conservation equations (see section 2). They

based their theoretical analysis on a large set of experimental particle trajectories.

The common development and migration of bed morphology such as ripples, dunes, an-

tidunes or bars [Best, 2005] in streams subject to bed load transport also calls into question

the equilibrium hypothesis between the flow and the sediment phase. Interestingly, the length

taken for the sediment phase to adapt to a change in the flow conditions (also called saturation

length) has been proven to play a fundamental role in the initial growth of instabilities [An-

2. The dimensionless Shields stress, τs = τ/((% −%s )g d 50), with % and %s the water and sediment density
respectively, g the gravity acceleration and d 50 the mean sediment diameter
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dreotti et al., 2012, 2010; Parker, 1975]. On the other hand, Coleman & Nikora [2011] suggested

that the presence of random bed patches reflecting the passage of turbulent events may also

be involved in the early bedform development stage. Recent statistical studies of bed load time

series over a fully developed dune field also showed non-trivial fractal properties of the bed

load rates, suggesting a complex interaction between the fluctuations and the mean driving

processes [Singh et al., 2009]. Concerning bed forms, Jerolmack & Mohrig [2005] demonstrated

how the development and migration of bed forms may be well described by adding a noise

term in the sediment continuity equation. Radice et al. [2013] showed that the moving particle

concentration was strongly correlated to sweeps events at low transport rates, confirming the

observations of Drake et al. [1988].

The stochastic framework has two advantages compared to classical sediment transport

descriptions: (i) it allows the derivation of macroscopic conservation laws from microscopic

considerations and (ii) fluctuations of the variables may also be predicted. The latter is

particularly suited for bed load transport rates, which are known to show fluctuations that

are often larger than the mean [Ancey et al., 2006; Drake et al., 1988; Hoey, 1992; Kuhnle &

Southard, 1988; Singh et al., 2009]. Surprisingly, stochastic approaches remain an exception

in the bulk of the literature on bed load transport and are mainly absent from practical

engineering applications. Besides the relative mathematical difficulties presupposed by

such framework, the principal reason for such an absence may be that the acquisition of

highly resolved experimental data, mandatory for any statistical analysis, is a difficult, if not

impossible, task in the field as well as in the laboratory. Meanwhile, the bed of a river reach or

an experimental flume often evolves so quickly (with the migration of bedform for instance)

that the sampling of long time series under steady transport conditions is rarely possible.

An increasing number of experiments use high-speed films of particle motion to study bed

load transport. Together with extensive numerical treatment, this data provides ground-

breaking precision in the description of sediment particles dynamics [Ancey et al., 2006;

Campagnol et al., 2013; Martin et al., 2012; Nikora et al., 2002; Radice et al., 2006; Roseberry

et al., 2012]. This may allow to recast the sediment transport problem into a more general

physical framework. The cornerstone of such a universal framework is the definition of the

solid flux, which is reviewed in the following section.

2 Definition(s) of bed load flux
Detailed reviews of the possible definitions of bed load flux can be found in [Ancey, 2010;

Furbish et al., 2012a]. The natural definition of the vertically integrated flux on a surface A0

yields

qs =

∫

A

~u · ~n dA, [m3s−1] (2.2.1)

9



Chapter II. State of the art

where A is the portion of surface A0 occupied by a particle, ~u the velocity vector of that particle

and ~n the normal to A0. Similar definitions involve clipping functions (i.e., a function that

equals 1 inside a particle and 0 outside) [Radice et al., 2010]. As pointed out by Furbish

et al. [2012a], this definition is impractical due to the experimental precision it requires to be

quantified.

In equilibrium and homogeneous conditions and for particles of equal sizes, the solid flux per

unit width through a facet normal to the particle velocity is often expressed as

q̄s =
νs

B
ū γ̄, [m2s−1] (2.2.2)

where νs [m3] is the volume of a particle, B is the flume width, ū [m.s−1] is the mean particle

velocity and γ̄ [particles.m−1] is the mean particle activity, or concentration of moving par-

ticles per meter length. The upper bar denotes either spatial, temporal averaging, or both.

Alternatively, an entrainment form of the solid flux has been popularised by Einstein [1950]
and reads

q̄s =
νs

B
λ̄L̄ j , [m2s−1] (2.2.3)

where λ̄ [particles.m−1.s−1] is the mean particle entrainment rate per meter length and L̄ j [m]
is the mean particle jump length. The equivalence between Eq.(2.2.3) and Eq.(2.2.2) is shown

in section 4.1.

As pointed out by several authors [Ancey, 2010; Coleman & Nikora, 2009; Furbish et al., 2012a],
these two last definitions only hold as a macroscopic average for continuous fields. However,

bed load transport at low to moderate transport rates is known to be highly intermittent [Cao,

1997; Drake et al., 1988] so that the details of the averaging procedure (temporal or spatial

average) may influence the measured flux. A careful analysis of the averaging procedure can

reveal additional terms in the macroscopic average (see for instance [Coleman & Nikora, 2009]
for the Exner equation).

To avoid these undesired properties of averaging procedures, ensemble averaging 3 has been

proposed, notably in the theory of granular suspensions. As pointed out by Herczynski

& Pienkowska [1980]: “The main advantage of ensemble averaging (in contrast to volume

averaging) is that the operations of differentiation and ensemble averaging commute”. For

instance, Ancey et al. [2008] provided a possible definition of an ensemble average bed load

flux. However, the complexity of such a definition of the flux makes it of little use in practice.

Furbish et al. [2012a] also proposed an ensemble average 4 procedure that leads to a slightly

different form of the bed load flux. By considering the joint density function of particle activity

3. Here, ensemble averaging has to be understood in the sense, average over the ensemble of particle phase-
space configurations, that is over all couples (x i , u i ).

4. In that case, ensemble averaging stands for an average over all the possible states of any random variable(s).
This is a more general definition found in stochastic textbooks Gillespie [1991].
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Figure 2.1 – Ensemble average procedure of Furbish et al. [2012a] to get the solid flux through
a surface.

flux. However, the complexity of such a definition of the flux makes it of little use in practice.

Furbish et al. [2012a] also proposed an ensemble average 4 procedure that leads to a slightly

different form of the bed load flux. By considering the joint density function of particle

activity (γ) and the particle position increments inside a given region of bed area dB and

during a small time interval dt , they derived a master equation describing the solid volume

passing through a point x during dt . By expanding it by powers of x − r , the distance to that

point (Fig. 2.1), they obtained at first order that the ensemble averaged solid flux is

�
qs

�
=
νs

B

��
γu
�
+
∂

∂ x

�
κγ
��

, [m2s−1] (2.2.4)

where κ [m2.s−1] is a diffusivity constant. The notation 〈•〉 denotes ensemble average. The

ensemble average flux (2.2.4), in contrast to Eq. (2.2.2) includes a diffusive term that is

positive when particle activity is varying through space.

Despite being a powerful theoretical tool, ensemble averaging is of little help for experi-

mentalists, doomed to measure only spatial or temporal averages. Meanwhile, there is an

issue in determining the required experimental time and space resolution of measurements

in order to obtain unbiased estimates of averages [Bunte & Abt, 2005; Singh et al., 2009].
Ergodicity, defined as the equivalence between time/space average and ensemble average 5,

is a seriously questionable assumption in the case of bed load transport and will be carefully

4In that case, ensemble averaging stands for an average over all the possible states of any random variable(s).
This is a more general definition found in stochastic textbooks Gillespie [1991].

5A different but equivalent definition of an ergodic system is its ability, in finite time (or space), to explore all
of its possible states [Gillespie, 1991]. This definition clearly relates time (in the exploration process) and the
ensemble of all possible states.
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3 Erosion, transport and deposition
Most of the formula stating the equilibrium between the flow and the solid flux fail to repro-

duce the behaviour of sediment transport near the threshold of motion, particularly in steep

mountainous streams [Nitsche et al., 2011; Recking et al., 2012]. Notably, the high fluctuations

observed may partially originate from temporary disequilibriums between erosion and de-

position rates. In this spirit, Lajeunesse et al. [2010] described the transport of particles by

a turbulent flow based on the erosion/deposition model of Charru [2006]; Charru & Hinch

[2006]. Ancey et al. [2008] proposed an erosion/deposition model describing the fluctuation

of the number of moving particles in an observation window, based upon their observations

of a highly simplified particle flow experiment.

The main idea behind those models is that particle motions can be broken down into three

independent phases: particle entrainment, particle transport and particle deposition. The

physics of those are reviewed below.

3.1 Particle entrainment

The entrainment of a resting particle by a fluid flow has been extensively studied and its

random character is now widely accepted [Celik et al., 2010; Detert et al., 2010; Dwivedi et al.,

2011; Einstein, 1950; Papanicolaou et al., 2002; Schmeeckle et al., 2007; Valyrakis et al., 2010;

Wu & Chou, 2003]. At low to moderate flows, entrainment is a discrete process: a single

particle lying at the bed surface is entrained if the forces exerted by the surrounding fluid are

sufficiently large to dislodge it. The force impulse —the time integral of the force exerted on the

particle— has been proven to be of primary importance for particle entrainment. Celik et al.

[2010] proposed that entrainment would only occur if the force impulse on a particle exceeded

a certain impulse threshold depending on particle diameter and bed packing conditions.

Meanwhile, the mean return time of such an event can be accurately described by extreme

value theory. Valyrakis et al. [2011] suggests that the survival function of a particle resting at

the surface the bed is closely approached by an exponential distribution at low flow rates. The

latter is a one-parameter distribution and is characteristic of memoryless (uncorrelated) pro-

cesses. In other words, the time between entrainment events being exponentially distributed,

a particle lying on the bed surface has always the same chance to be entrained, regardless of

past flow behaviour.

The inter-arrival time of particle entrainment can thus be fully defined by an average particle

entrainment rate λ′ [s−1]. Equivalently, an entrainment time scale is defined as tλ′ = 1/λ′ [s].
Assuming that the bed surface has a constant density of apparent particlesψs

6 [particles/m2],
the average entrainment rate per meter flume length is λ=λ′Bψs [particles.m−1s−1], B being

6. ψs = d −2π/4∼ 0.78d −2 [particles/m2] for a squared packing of sphere of diameter d andψs = d −2π/(2
p

3)∼
0.91d −2 for a triangular packing.
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the flume width. In other words, given a flume reach of∆x meters and during a short time

interval∆t , there is a probability λ∆x∆t � 1 that a single particle is entrained in the reach.

Experiments suggest that the entrainment rate λ is linearly related to flow shear stress beyond

a critical threshold [Charru, 2006; Lajeunesse et al., 2010]. λ may also be parametrized as

a smooth function of shear stress, tending quickly to zero when the shear stress becomes

smaller than the critical stress for incipient motion. Equivalently, the entrainment time scale

tλ becomes infinitely large as the shear stress decreases, so that the sediment transport may

be considered “frozen” for observation times smaller than tλ.

There is evidence that other entrainment mechanisms exist, such as simultaneous entrainment

of multiple particles by a coherent flow structure [Dinehart, 1999; Drake et al., 1988], impact

and destabilization by moving particles [Heyman et al., 2013; Schmeeckle et al., 2001], or

local rearrangements of the granular bed. These mechanisms cannot be strictly described

by the entrainment time scale tλ defined previously, the latter involving particles entrained

independently of others. On the contrary, these types of entrainment involve particles that

are “collectively” entrained, breaking the assumption of independence. A nice illustration of

these phenomena can be seen in the detail of Fig. 4.5, which shows a typical tree-like structure

indicating correlation in particle entrainment. Ancey et al. [2008] used the term “collective

entrainment” to describe them.

Several causes for correlated entrainment of particles can be distinguished in the case of bed

load transport occurring under water:

1. The critical angle of stability for grains sheared by a fluid flow is known to be significantly

reduced [Loiseleux et al., 2005]. As avalanche precursors might happen below the critical

angle of stability [Kiesgen de Richter et al., 2012; Staron et al., 2006], small avalanches,

or local rearrangements, triggered by the entrainment of a particle, are likely to occur

when the local bed slope is sufficiently steep.

2. When the bed shear stress is close to particle incipient motion, small disturbances may

initiate particle motion. This is true for turbulent eddies that locally dislodge particles

[Papanicolaou et al., 2002] (see also point 4 below). Fast-moving particles that settle on

the bed may also potentially disturb resting particles. Particle momentum grows as d 3

and drag force as d 2 so that beyond a critical diameter, particle-particle interactions

should become more important than flow-particle interactions. As steep slope streams

generally convey large particles, particle-particle interactions may be an important

mode of entrainment.

3. The dynamics of impacts has a strong importance in the transmission of momentum

from moving particles to the bed [Schmeeckle et al., 2007]. During an impact involving

one moving particle and one resting bed particle, the viscous fluid trapped between the

two particles strongly damps the contact and dissipates most of the momentum. The

coefficient of restitution (the ratio of momentum effectively transmitted) is known to be

13
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a function of the particle Stokes number at impact 7 which compares particle inertia to

viscous forces induced by the fluid drainage [Joseph et al., 2001; Legendre et al., 2005]:
for St< 101, the impact is completely damped (the restitution coefficient is null) while

for St> 102 the coefficient of restitution is greater than 0.8. Thus, in air, for sand particles

(d∼ 1mm) of moderate velocities 0.5m/s, St∼ 105. In water, for similar sand particles

moving at an intermediate velocity 〈u 〉= 0.05m/s (experiment R), St∼ 7 ·100 while for

gravel particles comparable to those used in experiment B and J, St∼ 6 ·102. These values

suggest that the momentum transfer during particle collisions can be important even

under water. Thus collective entrainment by impact destabilization is likely to occur

for large and fast enough particles. It is best apprehended by looking at the trajectories

of particles in the time-space plane (Fig. 4.5). The tree-like structures observable are

typical of “explosive” chain reactions: a particle starts moving, entrains another, which

entrains another, etc.

4. Turbulent eddies are spatially correlated, and thus may dislodge several particles simul-

taneously, leading to “clouds” of moving particles. Drake et al. [1988] described them as

"sweep-transport" events, that occur only about 9% of the time but still account for 90%

of the cumulative load, highlighting thus their importance.

Ancey et al. [2008] suggested that all these mechanisms can be described, as a rough approxi-

mation, by a positive feedback effect of moving particles on the entrainment of new particles.

As done for the particle entrainment rate, a collective entrainment rate µ [s−1], or equivalently

a collective particle time scale as tµ = 1/µ [s]may be defined. tµ is thus the average time for a

moving particle to destabilize and entrain another particle. Equivalently, there is a probability

µ∆t � 1 that a moving particle entrains another one during the small time interval∆t .

It is worth pointing out that the separation of the particle entrainment process into two

additive and independent processes (namely entrainment and collective entrainment with rate

λ and µ) is only a working hypothesis which is not physically justified. In fact, both processes

are hardly differentiable, and are likely to simultaneously play a role in the entrainment of new

particles.

3.2 Particle transport

Once in motion, particles are advected by the fluid flow. Starting from rest, an entrained

particle accelerates to its maximum velocity. Its velocity will be frequently altered due to

repeated impacts on the bed as well as by fluctuations of the turbulent drag. Several cycles of

acceleration and deceleration are repetitively observed before a particle stops. Meanwhile,

there is evidence that particles undergo diffusion during their motion, so that an initial cloud

of moving particles will spread through space over short time periods [Hill et al., 2010; Nikora

et al., 2002]. This behaviour is mainly explained by the fluctuations of particle velocities. Re-

7. St= Repρs /(9ρ f ), with Rep = 〈u 〉d 50/ν f the particle Reynolds number and ρ f the fluid density. Note that
some authors also includes the effect of the added mass of fluid moving with the particle.
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cent experimental studies suggested that particle velocities follow an exponential distribution

[Lajeunesse et al., 2010; Roseberry et al., 2012].

Mechanistic models have been proposed to describe particle saltation and rolling motion

[Sekine & Kikkawa, 1992]. Stochastic models were also proposed to take into account the

random forces involved during particle transport (collisions, flow drag...), assuming that the

evolution of the velocity of a particle follows a Langevin equation [Ancey & Heyman, 2014; Fan

et al., 2014; Furbish et al., 2012b].

3.3 Particle deposition

After being entrained, a particle is dragged by the flow for a certain time before depositing

onto the bed. Deposition occurs when two conditions are met: (i) the particle velocity is not

large enough to maintain the motion and (ii) the particle is trapped into a sufficiently deep

bed asperity [Quartier et al., 2000; Riguidel et al., 1994]. A myriad of factors can affect the

deposition of particles. First, as we will see in the next section, particle velocity is a fluctuating

quantity. Second, particles are (in general) not spherical so that the contact dynamics between

moving particles and the bed are complex [Schmeeckle et al., 2001]. Third, the bed surface,

made of an ensemble of different particle shapes and sizes, is highly irregular so that asperities

are randomly distributed on its surface.

In this regard, deposition may also be envisioned as a random process. tσ [s] is then defined

as the mean time taken for a moving particle to deposit. Assuming the deposition process to

be memoryless (i.e., a particle has always the same chance to deposit), the deposition time

of a single particle is exponentially distributed with mean tσ. Equivalently, a deposition rate

σ= t −1
σ [s

−1] can be defined, such that for each small time interval∆t , a moving particle has a

probabilityσ∆t � 1 to deposit.

The mean deposition time may scale on particle settling time, that is

tσ ∝
d 50

u s
, (2.3.1)

with u s the settling velocity of particles, and d 50 the mean particle diameter [Charru, 2006].

3.4 Birth-death Markov process

To understand the coupled and simultaneous effect of entrainment, transport and deposition

of particles, Ancey et al. [2008]modelled the temporal evolution of the number of moving

particles within a control volume V . The number of moving particles N (t ) varies with time as

a result of particle exchanges with bed such as deposition and entrainment, as seen previously.

Ancey et al. [2008] found that N (t ) follows a negative Binomial distribution, explaining thus
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the relatively large fluctuations of N (t ) compared to its mean.

As shown by Ancey et al.’s [2008]model, birth-death Markov processes are particularly inter-

esting to simply characterize particle dynamics and to derive stochastic equations for the bulk

solid phase, based on particle microscopic motions. It is thus the framework adopted in this

thesis.
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III THEORY

1 Physics of bed load transport
Bed load transport occurs on the surface of a granular bed sheared by a fluid. In mountainous

areas, sand, gravel and pebbles are transported in mildly sloping torrents by shallow water

flows. It is often possible to consider that the river (or equivalently the experimental channel)

has an infinite width and is transporting water and sediments in a unique direction (taken to

be ~x ) as shown in Fig. 3.1.

For uni-directional problems, the simplest morphodynamic model that can be envisioned

comprises the shallow-water (Saint-Venant) equations for the conservation of mass and

yb

ys

v

qs
x

Figure 3.1: Flow configuration.
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momentum of the water phase and the Exner equation for the continuity equation of the bed:

∂ h

∂ t
+
∂ hv

∂ x
= 0, (3.1.1)

∂ hv

∂ t
+
∂ hv 2

∂ x
+ g h cosθ

∂ h

∂ x
= g h sinθ −

τ

%
, (3.1.2)

(1−ζb )
∂ yb

∂ t
= −

∂ qs

∂ x
=D −E , (3.1.3)

in which h = ys − yb denotes the flow depth, yb and ys the positions of the bed and water

surfaces, v the depth-averaged velocity, % the water density, τ is the bottom shear stress, ζb

the bed porosity, qs the solid flux, and D and E represent the deposition and entrainment

rates. The bed slope is defined as tanθ = ∂x yb . In most models based on (3.1.1)–(3.1.3), the

governing equations are closed by empirical relationships for the flow resistance τ [Ferguson,

2007, 2012; Katul et al., 2002; Morvan et al., 2008] and sediment transport rate qs [Fredsoe,

2012; Graf & Altinakar, 2005], both being functions of the flow variables v and h, and additional

parameters (e.g., bed roughness and slope).

The water flow is characterized by its depth-averaged velocity v and flow depth h, which

are assumed to be prescribed and independent of the sediment transport. The water flow is

turbulent, but the details of the turbulence and velocity field are ignored. Turbulence dissipa-

tion and flow resistance due to the particles are entirely encoded in the τb (v, h) expression,

which will not be studied here. I only focus on the sedimentary part of the coupled system,

that is the evolution of the solid flux qs (or alternatively, the evolution of the deposition and

entrainment rate, D and E respectively). A solution of the coupled system (3.1.1)–(3.1.3) can

only be obtained through numerical simulation [Cao et al., 2004; Cordier et al., 2011] and is

thus not adequate for analytical results.

2 Ancey et al.’s [2008]model
Being the basis of all the results of this thesis, the model of Ancey et al. [2008], as well as the

principal theoretical results, are briefly reviewed in the following.

2.1 Physical space and assumptions

Ancey et al. [2008]modelled the temporal evolution of N (t )moving particles within a control

volume V (Fig. 3.2). The number of moving particles varies with time as a result of particle

exchanges with bed such as deposition and entrainment. The volume is taken to be infinitely

long, so that fluxes through volume boundaries could be neglected. Thus, in this model, the

transport of particles by the flow does not play any role in the variation of N .
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∆x

N (t )
λ σµ

V

Figure 3.2: Configuration of the birth-death model.

A convenient framework to investigate the statistics of these exchanges is the theory of birth-

death Markov processes, widely used in population-dynamics models or chemical kinetics

[Gillespie, 1977]. The resulting governing equation is the so-called master equation that

describes the time variations of P(n , t ), the probability of observing n moving particles within

the cell at time t . The model of Ancey et al. [2008] belongs to the class of Markov processes

with discrete states in continuous time. Indeed, N (t ) is an integer-valued random variable as

there is a countable number of moving particles in the volume.

2.2 Master equation and steady state behaviour

The exchange probabilities are considered over an infinitesimal time increment∆t , which is

assumed to be sufficiently small that at most one exchange occurs in the interval (t , t +∆t ).
The probability of entrainment (birth) is

P(n→ n +1,∆t ) = (λ∆x +µn )∆t +o(∆t ), (3.2.1)

with λ the mean entrainment rate per meter length, and µ the collective entrainment rate.

The transition probability of deposition is

P(n→ n −1,∆t ) = nσ∆t +o(∆t ), (3.2.2)

withσ the mean deposition rate.

Given this transition probabilities, Ancey et al. [2008] obtained the master equation governing

the time evolution of the probability function of N (t ),

∂

∂ t
P(n , t ) = (n +1)σP(n +1, t )+

�

λ∆x +(n −1)µ
�

P(n −1, t ) (3.2.3)

−
�

λ∆x +n (σ+µ)
�

P(n , t ), n > 0
∂

∂ t
P(0, t ) = σP(1, t )−λ∆x P(0, t ). (3.2.4)
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Using generating functions, Ancey et al. [2008] found that the stationary probability function

of N (t ) is negative Binomial for µ> 0

Ps (n ) =NegBin(n ; r, p ) =
Γ(r +n )
Γ(r )n !

p r (1−p )n , n ≥ 0, (3.2.5)

with parameters r =λ∆x/µ and p = 1−µ/σ, and where Γ denotes the gamma function. The

mean is

〈N 〉=
λ∆x

σ−µ
, (3.2.6)

and the variance is

Var(N ) =
λ∆xσ

(σ−µ)2
. (3.2.7)

Forµ= 0, Ancey et al. [2008] found that N (t ) follows a Poisson distribution of rate rp =λ∆x/σ„

Ps (n ) =
(rp )n

n !
e−rp , n ≥ 0, (3.2.8)

with mean and variance equal to λ∆x/σ.

Ancey et al.’s [2008]model allows thus to model the fluctuations of the erosion and deposition

rates E and D, found in the Exner equation (3.1.3), through the fluctuation of N (t ):

E (t ) ' λ+µN (t ),

D(t ) ' σN (t ). (3.2.9)

2.3 Recasting the problem into Poisson representation

It is worth noting that despite appearances, the solutions corresponding to the µ> 0 and the

µ= 0 cases are connected. Indeed, the negative binomial distribution can be interpreted as a

compound probability distribution (e.g., the probability distribution function of a random

variable whose parameters are themselves random variables) of a Poisson distributed random

variable with a rate a following a gamma distribution

Ps (n ) =

∫

a

e−a a n

n !
Ga(a ;α,β )da =NegBin(n , r, p ) =

Γ[r +n ]
Γ[r ]

p r (1−p )n , (3.2.10)

20



3. Ancey & Heyman’s [2014] local model

with α= r = λ∆x/µ and β = 1/p −1= µ/(σ−µ). So, interestingly, the Poisson distribution

is retrieved even in the case µ> 0, but hidden behind the stochastic variations of its rate a .

A physical interpretation can then be put forward. In the absence of collective entrainment

(µ= 0), the behaviour is Poissonian with a fixed rate rp = a =λ∆x/σ dictated by entrainment

and deposition of individual particles. When collective entrainment occurs (µ > 0), the

behaviour can still be seen as Poissonian, but with a random rate [Ancey et al., 2006]. This

random rate follows a gamma distribution, whose parameters are greatly influenced by µ,

especially when µ→σ (β →∞). It is shown in Appendix A.1 that a generalized solution to

the forward master equation (3.2.4) can be found in the form of a Poisson representation.

This transformation, in a similar manner to Fourier and Laplace transforms or generating

functions, greatly simplifies the solutions of birth-death processes.

3 Ancey & Heyman’s [2014] local model
Ancey & Heyman [2014] proposed a local description of the sediment transport process, based

on Ancey et al.’s [2008]model. This local description is recalled in the following section.

A complete local description of the process would require a phase-space description of the

bed load particles, so that both position and momentum of individual particles would be

regarded as random variables. This is the basis of kinetic theory. However, such a system

requires closure equations (for instance a collision operator), which, if tractable in ideal gases

or fluids, remain unknown in the case of bed load transport. Alternatively, instead of working

in the full phase-space domain, it is often possible to reduce the problem’s dimensionality to a

simpler “concentration space”, where particles are defined uniquely by their positions (and

no longer by their momentum). In such a representation, particles are still moving, but their

velocities evolve randomly and independently of their position. In the language of statistical

mechanics, the particles are supposed to be close to the Maxwellian equilibrium state [Böhm

et al., 2004; Nicolis & Prigogine, 1977]. This approximation requires that the relaxation time of

particle velocity is much smaller than any other characteristic times (for instance tσ, tµ, tλ,

...).

The physical space is divided into a regular lattice, composed of cells of volume∆V . Typically,

a cell has a fixed width (the flume width B ) and depth (flow depth h) so that the only important

length is∆x , the length of the cell parallel to the mean particle flow 1. Let Ni to denote the

random variable of the number of particles in motion in cell i , whose centres are located at x i

(Fig. 3.3). n = (n 0, n 1, n 2, . . . , n m ) is the vector of the number of moving particles in all cells.

1. In contrast to Ancey et al.’s [2008]model,∆x does not need to be large.
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∆x

x i−3 x i−2 x i−1 x i x i+1 x i+2

Ni−3 Ni−2 Ni−1 Ni Ni+1 Ni+2

Figure 3.3: Physical space and variables for the local model.

3.1 Particle transport

In this section, we will see how Ancey & Heyman [2014] take into account particle transport in

the birth-death formalism.

Mechanistic Langevin equation

The position of a bed load particle during its transport by the flow can be reconstructed with

the help of Newton’s second law. However, most of the forces acting on a single particles (flow

drag, collisions,...) are fluctuating quantities. Thus, it is tempting to compare the motion of a

bed load particle to Brownian motion 2 in a potential (also called correlated random walk).

In this spirit, the motion of a bed load particle may be described by a Langevin equation in

phase-space [Uhlenbeck & Ornstein, 1930]

dx

dt
= u , (3.3.1)

m
du

dt
= −ζ(u −〈u 〉)+

p

2k B Tζξ(t ), (3.3.2)

where x [m] is the abscissa of the centre of mass of a moving particle, u [m.s−1] denotes its

velocity, m [kg] the immersed mass of the particle, ζ [kg.s−1] a (viscous) drag coefficient 3,

〈u 〉 the mean particle velocity, k B [m2.kg.s−2.K−1] the Boltzmann constant and T [K] the

“temperature” 4 of the medium where the particle evolves. ξ(t ) is a white noise term.

In essence, (3.3.2) is nothing but Newton’s second law applied to a particle when both a

deterministic and a random force exist. The deterministic force is comparable with the mean

2. Keeping in mind that Brownian particles are much smaller than bed load particles so that the microscopic
forces involved are certainly different but can still be approximated by similar stochastic laws.

3. The Stokes law for a sphere of diameter d gives ζ= 3πµ f d , where µ f [Pa.s] is the dynamic fluid viscosity.
4. Note that in our case, it makes no sense to define a macroscopic “temperature”, as the local mixing results

from various phenomena such as turbulent diffusion and particle impacts. Thus, k B and T are only used in analogy
with the Brownian motion.
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(viscous) flow drag while the random force originates from the frequent impacts on the bed

and the fluctuations of turbulent flow drag.

The stochastic equations (3.3.1) and (3.3.2) are equivalent to the Fokker–Planck equation for

the (Lagrangian) distribution function of particle position and velocity P(x , u , t ):

∂ P

∂ t
=−

∂

∂ x
(u P)+

∂

∂ u

�

ζ

m
(u − ū s )P

�

+
∂ 2

∂ u 2

�

k B Tζ

m 2 P

�

. (3.3.3)

The marginal probability density function of particle velocities Pu in stationary (t → ∞)

homogeneous conditions derives straightforwardly from the Fokker–Planck equation (3.3.3):

Pu (u , t →∞) =
1

σu
p

2π
exp

�

−
(u −〈u 〉)2

2σ2
u

�

, (3.3.4)

where σ2
u = k B T /m . This is a Gaussian distribution of mean 〈u 〉 and variance σ2

u , often

referred to as Maxwell–Boltzmann distribution. Note that, in this model, nothing precludes u

from being negative.

The mean squared displacement (MSD) through time of a particle is a quantity of particular

interest, since it can be easily measured experimentally. Uhlenbeck & Ornstein [1930] gave the

expression of the MSD for the Brownian motion in a potential (3.3.1)–(3.3.2):

MSD=
¬

(X (t )−〈X (t )〉)2
¶

=
2k B Tm

ζ2

�

e−ζ|t |/m −1+
ζ|t |
m

�

. (3.3.5)

At large times, t →∞, the MSD tends to 2k B T |t |/ζ. This linear dependence in time is the

classical scaling of a pure Brownian motion. At small times t → 0, the MSD is proportional to

k B T t 2/m . The dependence on t 2 suggests the ballistic limit of particle trajectories at small

time scales due to time correlations in particle velocity.

In the limit of large ζ/m , Eq.(3.3.2) should relax rapidly to a quasi-stationary state in which

du /dt → 0. In that case, an adiabatic elimination of the fast variable can be achieved and

leads to the marginal distribution function for the particle position Px (x , t ) [Gardiner, 2002]:

∂ Px (x , t )
∂ t

=−
∂

∂ x
(〈u 〉Px (x , t ))+

∂ 2

∂ x 2

�

k B T

ζ
Px (x , t )

�

. (3.3.6)

Using the equivalence between the probability density function of particle positions (La-

grangian) and the particle concentration γ(x , t ) [particles.m−1] (Eulerian)[Gardiner, 2002], the
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latter follows

∂ γ(x , t )
∂ t

=−
∂ 〈u 〉γ(x , t )

∂ x
+
∂ 2Dγ(x , t )
∂ x 2 . (3.3.7)

Thus, at equilibrium, the motion of a cloud of particles can be approximated by the sum of

an advective and a diffusive term. The apparent diffusivity coefficient is D = k B T /ζ=σ2
u tr ,

where tr = ζ/m is the relaxation time of particle velocities.

To summarize, three temporal scales are involved in particle transport: tr = m/ζ, the re-

laxation time of particle velocities; ta =∆x/ 〈u 〉, an advection time scale; and td =∆x 2/D,

a diffusion time scale. ∆x is the characteristic length scale of the problem. The adiabatic

elimination procedure relies on the assumption that tr � (ta , td ). In this limit, the MSD scales

linearly with time.

Particle diffusion as a jump process

We saw that, according to the transport model (3.3.2), the time evolution of the probability

density function of the position of a moving particle can be broken down, at large time (t > tr ),

into advection (with velocity 〈u 〉) and diffusive spreading (at rate D).

Advection can be considered to be a purely deterministic process (it only results in a drift

term in the Fokker–Planck equation (3.3.3)) and therefore does not cause any stochastic

fluctuations. On the contrary, diffusion itself can be locally described by a birth-death Markov

process [Ancey & Heyman, 2014]:

P(n i → n i −1, n i+1→ n i+1+1|t ) = d n i∆t +o(∆t ),

P(n i → n i −1, n i−1→ n i−1+1|t ) = d n i∆t +o(∆t ), (3.3.8)

and are associated to the multivariate master equation

∂

∂ t
P(n , t ) =

∑

i

d
¦

(n i +1)
�

P(n + r+i + r−i+1, t )+P(n + r+i + r−i−1, t )
�

−2n i P(n , t )
©

,(3.3.9)

where r±i is a vector whose elements are all 0 excepted its i -th value: ri = ±1, rk = 0 for

k 6= i . P(n + r+i + r−i−1, t ) is thus the probability of observing the system in the state n ′ =
(n 1, n 2, . . . , n i−1 − 1, n i + 1, n i+1, . . .). The average behaviour is readily obtained from (3.3.9)
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[Gillespie, 1991] and reads

∂ 〈Ni 〉
∂ t

= d (〈Ni−1〉+ 〈Ni+1〉−2 〈Ni 〉) . (3.3.10)

The particle activity (the concentration in moving particles) is defined by



γ(x i )
�

= 〈Ni 〉/∆x

and letting∆x → 0, Eq. (3.3.10) transforms to

∂



γ
�

∂ t
=D

∂ 2



γ
�

∂ x 2 , (3.3.11)

with D = d∆x 2 held constant. Recall that a frame of reference moving at the constant speed

〈u 〉was used. Thus, in the static frame of reference,



γ
�

should follow

∂



γ
�

∂ t
−〈u 〉

∂



γ
�

∂ x
=D

∂ 2



γ
�

∂ x 2 . (3.3.12)

Note that Eq. (3.3.12) is very close to the limiting behaviour of Eq. (3.3.7). The difference is

that D and 〈u 〉 comes up as a weighting parameter of the diffusion term ∂ 2



γ
�

/∂ x 2 and the

advective term ∂



γ
�

/∂ x respectively while they act directly on the flux terms in Eq. (3.3.7). In

practice, for constant diffusivity D and constant average particle velocity 〈u 〉, Eq. (3.3.12) and

Eq. (3.3.7) are equivalent. It is worth noting that the change of referential (a lattice moving

at the velocity 〈u 〉) is only valid in the case of a constant average particle velocity. If 〈u 〉 is

changing through space and time, this approach cannot be used 5.

The approximation of particle transport as a local jump process at the micro-scale relies on

strong simplifying hypothesis. First, the limiting diffusive behaviour supposes that the time

scale is sufficiently large for Eq. (3.3.7) to be valid [Othmer et al., 1988]. Indeed, the particle

transport process shows some non-vanishing correlation and thus pure diffusion is only

observed for t � tr , where tr is the relaxation time of particle velocity. On the contrary, when

studying the local jump process on a lattice, the probabilities are considered over infinitesimal

time increments. Thus, at these small time scales, the diffusion approximation may not be

valid. Second, the local jump process was assumed to have the same rate in both forward

and backward directions. This may not be true at small time in the case of an asymmetric

distribution of particle velocities 6 Third, diffusive models suffer from the deficiency of the

linear heat equation, that is the possibility of infinitely fast propagation of particles [Müller &

5. As particle concentration can be interpreted as a compressible medium, an equation of mass conservation
for compressible flows may be more appropriate to describe the transport of particles when their average velocity
is changing in time or space.

6. It can be shown that if the second moment of the particle velocities exists, the distribution of the sum of
many small particle displacements will always converge to a symmetric Gaussian distribution, leading to a a
symmetric jump process at large time. At small time, the shape of the distribution of the particle velocities may
have a strong impact on the symmetry of the jump process.
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Hillen, 1998].

Several models have been proposed to overcome the limitations created by the diffusion

approximation. Those take into account the fact that the transport of a particle is appropriately

modelled by a correlated random walk [Goldstein, 1951](in contrast to the pure Brownian

motion which is uncorrelated [Einstein, 1906]). Among them, the so called velocity jump

process [Müller & Hillen, 1998; Othmer et al., 1988] succeeds in describing the random walk

of biological organisms (cells, bacteria...). This process is shown to be governed by a well

known linear equation: the telegraph equation. At infinite time, the diffusion limit is retrieved.

Inserting reactions (birth and death of particles for instance) into this framework is not obvious

and non-linear terms might complicate the equation [Müller & Hillen, 1998].

Though questionable at the micro-scale (for small time intervals), the diffusion approximation

will be used in the following. Indeed, together with the Poisson represention (Appendix A.1),

the approximation of particle transport as a local jump Markov process allows to study the

coupled effects of entrainment, deposition and transport of particles locally. In other words, it

is a minimum price to pay to continue the analysis and achieve analytical results.

3.2 Master equation

In their birth-death model, Ancey et al. [2008] introduced the probability rates of particle

exchanges with the bed, namely the particle mean entrainment rate λ, particle mean collective

entrainment rate µ and particle mean deposition rateσ. Together with these exchanges, the

local model allows particles to migrate locally from one cell to another with rate d .

In the following, the rate coefficients λ,σ,µ and d are assumed to be constant in space and

time. This leads us to focus on fluctuations that originate from the randomness of particle

motions rather than fluctuations arising because of local changes in flow or bed slope —

which would in turn modify the rate coefficients, when bedforms are present for instance.

The transition probabilities of particle exchanges with the bed, as well as the local diffusion

process form the elementary rules governing the evolution of a multivariate birth-death

Markov process. From these simple rules, a multivariate master equation describing the

temporal evolution of P(n , t ) can be derived:

∂ P(n , t )
∂ t

=

∑

i

d (n i +1)
�

P(n + r+i + r−i+1, t )+P(n + r+i + r−i−1, t )
�

(3.3.13)

+ (n i +1)σP(n + r+i , t )+
�

λ∆x +(n i −1)µ
�

P(n + r−i , t )

−
�

λ∆x +n i (σ+µ)+2d n i
�

P(n , t ),

Unlike (3.2.4), there is no easy way to solve (3.3.13) by generating functions because of the

coupling that arises between cells. However, in Appendix A.1, it was shown that the Pois-
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son representation transforms a discrete master equation into a continuous Fokker–Planck

equation. Moreover, in the Poisson representation, uni-molecular reactions —entrainment,

deposition and diffusion— only result in drift terms in the Fokker–Planck equation [Chaturvedi

& Gardiner, 1978; Gardiner & Chaturvedi, 1977]. In the following, the multivariate Poisson

representation is thus used to solve (3.3.13).

3.3 Poisson representation

Fokker–Planck equation

The multivariate Poisson representation of an array of discrete random variables n = (n 1, n 2, . . . , n m )
is defined as:

P(n , t ) =
∏

i

∫

R+

e−a i a n
i

n !
f (a , t )da , (3.3.14)

where a = (a 1, a 2, . . . , a m ) and f (a , t ) is a multivariate pseudo-probability density function.

Here, in contrast with the univariate case, f is called a pseudo-probability as it cannot be

taken for granted that f is positive at any time [Gardiner & Chaturvedi, 1977]. The rules of

transformation being the same as those used in Appendix A.1, a governing equation for f (a , t )
—a being the vector of all a i — generalizing (A.1.13) is readily obtained:

∂

∂ t
f (a , t ) =

∑

i

µ
∂ 2a i f

∂ a 2
i

+
∂

∂ a i

��

d (a i+1+a i−1−2a i )+λ∆x −a i (σ−µ)
�

f
	

. (3.3.15)

As noted earlier, only the collective entrainment results in a diffusive term in the Fokker–Planck

equation for f (a , t ).

Langevin stochastic equation

The Langevin form of the stochastic equation equivalent to (3.3.15) is

da i (t ) =
�

d (a i+1+a i−1−2a i )+λ∆x −a i (σ−µ)
�

dt +
p

2µa i dWi (t ), (3.3.16)

which holds for i = 2, 3 . . . and where dWi is the time derivative of a Wiener process for cell i (a

white noise). In a similar manner as for Eq. (A.1.24), the noise term of Eq. (3.3.16) is said to be

multiplicative since its amplitude is modulated by the random variable a i .

In a similar way as for the definition of the particle activity γ(x , t ), letη(x , t ) denote the Poisson
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density variable, or Poisson activity:

η(x i , t ) = a i (t )/∆x . (3.3.17)

Using equations (3.3.16)-(3.3.17) and letting∆x → 0, the Langevin stochastic partial differen-

tial equation in the Poisson density variable is obtained:

dη(x , t ) =
�

D∇2η(x , t )+ (µ−σ)η(x , t )+λ
�

dt +
p

2µη(x , t )dW (x , t ), (3.3.18)

where W (x , t ) is now a spatial Wiener process with the correlation function

dW (x , t )dW (x ′, t ) =δ(x −x ′)dt .

The multiplicative noise term arising in Eq. (3.3.18) is perfectly uncorrelated in time and

space.

In a similar manner as in eq. (3.3.12), the local jump process transforms into a diffusion

process in the continuum limit of the Poisson representation, with diffusivity D = d∆x 2.

Thanks to the overall linearity of the deterministic part of Eq. (3.3.18), the deterministic

advection flux can be reintroduced in the stochastic equation (3.3.18):

dη(x , t ) =
�

−〈u 〉∇η(x , t )+D∇2η(x , t )− (σ−µ)η(x , t )+λ
�

dt +
p

2µη(x , t )dW (x , t )

(3.3.19)

Eq. (3.3.19) thus models the stochastic evolution of the rate (per unit length) of the Poisson

distribution followed by Ni (t ). It is shown in Appendix A.3 how Eq. (3.3.19) can be solved

numerically and how it can be related to the point process framework [Cox & Isham, 1980].

Eq. (3.3.19) also shares interesting similarities with the BCRE model of dry granular avalanches

of Bouchaud et al. [1995]. In appendix A.2, I show how Eq. (3.3.19) may be used as a stochastic

version of the BCRE model in order to characterize spatial correlations in some dry granular

flows.

It has been shown in equation (A.1.2) that the p -factorial moment of N equals the p -moment
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of a . Similar relationships are found between spatial moments of η(x , t ) and γ(x , t ):




η(x , t )
�

=



γ(x , t )
�




η(x , t ),η(x ′, t )
�

+



η(x , t )
�

δ(x −x ′) =



γ(x , t ),γ(x ′, t )
�

, (3.3.20)

where the notation 〈•,•〉 denotes the covariance of two variables (e.g., 〈X , X ′〉 = 〈X X ′〉 −
〈X 〉 〈X ′〉).

In the following, the first and second moments of Eq. (3.3.19) are studied.

3.4 First moment

The average behaviour of η(x , t ) is easily obtained by dropping the noise term in Eq. (3.3.19)

and using (3.3.20):

∂



γ(x , t )
�

∂ t
−〈u 〉

∂



γ(x , t )
�

∂ x
=D

∂ 2



γ(x , t )
�

∂ x 2 +λ− (σ−µ)



γ(x , t )
�

(3.3.21)

It is a linear advection-diffusion-reaction equation. Note that no shocks can develop in (3.3.21),

as the diffusive term tends to smooth out high gradients in particle activity and Eq. (3.3.21)

remains valid at all times. A stationary (t →∞) and homogeneous solution can be found

providing thatσ>µ:




γ
�

s =
λ

σ−µ
, (3.3.22)

where the notation 〈•〉s denotes ensemble average in stationary and homogeneous conditions.

Two cases are of special interest. The first one concerns the steady state of (3.3.21) when a

Dirichlet boundary condition is imposed. In that case, the particle activity “relaxes” to its

equilibrium value over a characteristic saturation length `s a t . The latter is known to play a

fundamental role in bedform dynamics [Andreotti et al., 2012, 2010; Balmforth & Provenzale,

2001; Charru, 2006; Parker, 1975]. The second problem of interest is an initial-value problem

describing the release and spread of a sediment pulse through time by (3.3.21).

First, we address the Dirichlet boundary value problem and sow how a characteristic saturation

length naturally appears in the solution. The steady state of (3.3.21) is sought for a prescribed

Dirichlet boundary condition at the origin



γ(0)
�

= 0 (Fig. 3.4). The problem simplifies to the

ordinary differential equation

Dy ′′−〈u 〉y ′− (σ−µ)y =−λ, y (0) = 0, (3.3.23)
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�
γ(x )
�

�s a t
γ(x )

x
0

Figure 3.4 – Boundary value problem corresponding to the relaxation of particle activity to
equilibrium. �s a t is the saturation length.

with y (x ) =
�
γ(x )
�
. The solution of (3.3.23) is found with classical methods and is given by

�
γ(x )
�
=

λ

σ−µ
�
1− e −x/�s a t
�

, �s a t =
2D

〈u〉

����
1+

4D (σ−µ)
〈u〉2 −1

�−1

. (3.3.24)

The last expression can be simplified by introducing a dimensionless number�e , that can

be interpreted as a local Péclet number comparing diffusion and advection time scales with

respect to a correlation length scale �c =
�

D /(σ−µ):

�e =
〈u〉�c

D
. (3.3.25)

The correlation length scale originates from the coupled action of diffusion and particle

exchanges with the bed (collective entrainment and deposition) but its meaning is best

understood while studying spatial correlations. With respect to these new variables, the

saturation length is

�s a t =
2�c

�e

��
1+4�e

−2−1
�−1

. (3.3.26)

The behaviour of �s a t is shown in Fig. 3.5(a). It increases with the local Péclet number at con-

stant �c (and thus with 〈u〉) and with the correlation length at constant�e . More precisely,

if the deposition rate decreases, �c increases and thus so too does �s a t . Roughly speaking, if

the particles are moving longer, they will have an impact far from their initial positions, so

�s a t will be increased. Equivalently, if the collective entrainment rate increases, �c and �s a t

increase. This can be explained by the longer distance needed for the collective feedback

on particle entrainment to be fully developed. In contrast with aeolian sediment transport,

the saturation length �s a t does not originate from particle inertia (which is negligibly small

in water) but rather from the particle exchanges with the bed while being advected down-
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Figure 3.5: (a) `s a t as a function of the local Péclet number and the correlation length `c . (b)
Spread of a sediment pulse (Eq. (3.3.29)) forPe = 2.

about saturation length in bed load transport under water is available yet, so no comparison

can be made with the theoretical prediction.

Now, we focus on the time and space propagation of a sediment pulse. While the particle

flow is initially at equilibrium (the particle activity given by (3.3.22)), the balance between

entrainment and deposition is suddenly disrupted by adding an instantaneous source of

sediment at x = 0. The evolution of the perturbation term 〈γ∗〉 = 〈γ〉 − 〈γ〉s subject to the

initial condition 〈γ∗〉= γ0δ(x ), where γ0 denotes the strength of the source (i.e., the volume of

sediment released) is sought in the following. The scaled variables x = x̃`c , t = t̃ /(σ−µ) are

introduced so that in a dimensionless form, (3.3.21) reads

∂



γ∗
�

∂ t̃
+Pe

∂



γ∗
�

∂ x̃
=
∂ 2



γ∗
�

∂ x̃ 2 −



γ∗
�

, (3.3.27)

wherePe is the local Péclet number defined previously. In the limit D→ 0, (3.3.21) degenerates

into a purely hyperbolic equation with a sink term. The method of characteristics leads to a

solution of the form

〈γ∗〉= γ0δ(x −〈u 〉 t )e−t (σ−µ), t ≥ 0, (3.3.28)

31



Chapter III. Theory

which shows that the initial pulse is transported along the characteristics x =Pe t̃ (thus at

constant velocity) by the stream with no deformation, but its strength is attenuated exponen-

tially over time. For finite values of particle diffusivity, and using Fourier transformation in the

space variable, the solution of (3.3.27) is given by (see appendix A.4)




γ(x̃ , t̃ )
�

=



γ
�

s +
γ0

p

4πt̃
exp

�

−
(x̃ −Pe t̃ )2

4t̃
− t̃

�

, t̃ ≤ 0, x̃ ∈R. (3.3.29)

The existence of a sink term implies that the volume of sediment released is not conserved,

but decreases exponentially over time (bed aggradation due to the excess in sediment). For

Pe > 0, the initial source of sediment spreads at infinite velocity as is the case for any linear

diffusion problem. Such non-physical behaviour was previously discussed in section 3.1.

3.5 Second moments

Spatial correlations

Let g (x ,x ′, t ) to denote the spatial correlation function of the Poisson density variable η(x , t ).
By definition:

g (x ,x ′, t ) =



η(x , t ),η(x ′, t )
�

≡



η(x , t )η(x ′, t )
�

−



η(x , t )
�2 . (3.3.30)

I show in appendix A.5 that g follows the differential equation

1

2

∂ g (r, t )
∂ t

=D
∂ 2 g (r, t )
∂ r 2 − (σ−µ)g (r, t )+µ




γ
�

s δ(r ), (3.3.31)

with r = |x − x ′|. The spatial correlation function of η does not depend on the average

velocity of particles. For t →∞, the stationary solution g s (x ) is obtained by means of Fourier

transforms (see appendix A.5):




η(x ),η(x ′)
�

s =



γ
�

s

2`c

µ

σ−µ
exp

�

−
|x −x ′|
`c

�

, (3.3.32)

where the correlation length in the x -direction `c =
p

D/(σ−µ) has been introduced previ-

ously.

The relation between second moment of η in the Poisson representation and of γ is obtained
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using Eq. (3.3.20). Thus, the stationary homogeneous spatial correlation function of the

particle activity is




γ(x , t ),γ(x ′, t )
�

s =δ(x −x ′)



γ
�

s +



γ
�

s

2`c

µ

σ−µ
exp

�

−
|x −x ′|
`c

�

. (3.3.33)

The stationary spatial correlation function is thus the sum of a Dirac delta function of intensity

equal to the mean density of moving particles and an exponential decay with a characteristic

length defined by `c . The correlation length increases with the diffusivity of particles and the

collective entrainment rate, but decreases with the deposition rate.

When µ = 0, the process becomes spatially uncorrelated (Poisson point process) but the

correlation length remains positive. On the other hand, when µ > 0, the process becomes

spatially correlated, so that it cannot be described anymore by a Poisson point process. In

the limit µ→σ, spatial correlations become infinitely large. When µ≤σ, the system loses its

stability and an exponential increase in the number of moving particles is observed.

Another quantity of interest, often used to describe spatial point processes, is the conditional

intensity h(x − x ′), which gives the conditional probability of finding a particle at x ′ given

that there is a particle at x [Cox & Isham, 1980]. The conditional intensity and the correlation

function are directly related by




γ(x , t ),γ(x ′, t )
�

s =δ(x −x ′)



γ
�

s +



γ
�

s h(x −x ′)−



γ
�2

s ,

so that, by identification, we have

h(x −x ′) =



γ
�

s +
1

2`c

µ

σ−µ
exp

�

−
|x −x ′|
`c

�

, x ,x ′ ∈R (3.3.34)

A more convenient function for data analysis is the K -function [Ripley, 1976], where K (r )
represents the expected number of moving particles found in a ball of radius r > 0 centred on a

particle location divided by the mean process rate. This can be calculated from the conditional

intensity function by:

K (r ) =
1



γ
�

s

∫ r

0

h(u )du

= r +
1



γ
�

s

µ

σ−µ

�

1−exp

�

−
r

`c

��

. (3.3.35)
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x
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~y

Figure 3.6: Principle of the K-function for a two-dimensional point process.

For a uncorrelated Poisson point process in one dimension, K (r ) = r . Equation (3.3.35) shows

that K (r )> r if µ> 0; so the point process is said to be clustered. This is not surprising as we

already noticed particle clusters in Fig. 4.5 and in appendix A.3.

Spatio-temporal correlations

Now, I consider the spatio-temporal correlation function of Eq. (3.3.19), defined as

G (x , t ) =



γ(x , t ),γ(0, 0)
�

s . (3.3.36)

For any linear Markovian system, a linear equation also exists for the evolution of the time

correlation [Gillespie, 1991],

∂G (x , t )
∂ t

=D
∂ 2G (x , t )
∂ x 2 −〈u 〉

∂G (x , t )
∂ x

− (σ−µ)G (x , t ), (3.3.37)

where the initial condition G (x , 0) is the stationary-homogeneous spatial correlation function

(3.3.33). By making the transformations t̃ = (σ−µ)t , x̃ = x/`c , the expression of the spatio-

temporal correlation function can be obtained (details in appendix A.6):

G
�

x̃ , t̃
�

=Gd (x̃ , t̃ )+Gr (x̃ , t̃ ), t̃ , x̃ ∈R, (3.3.38)
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Figure 3.7: Contour plot of the spatio-temporal correlation function G
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s /`c ) for
Pe = 2, 5 and 10 (from left to right) talking µ= 3.5 s−1 andσ= 4.0 s−1.

with

Gd
�

x̃ , t̃
�

=



γ
�

s

2`c

p

π|t̃ |
exp



−
�

x̃ −Pe t̃
�2

4t̃
− t̃



, (3.3.39)

and

Gr (x̃ , t̃ ) =



γ
�

s µ

4`c (σ−µ)

(

erfc





�

1−
Pe

2

�

p

|t̃ |+
x̃

2
p

|t̃ |



exp(x̃ −Pe t̃ ) (3.3.40)

+ erfc





�

1+
Pe

2

�

p

|t̃ | −
x̃

2
p

|t̃ |



exp(Pe t̃ − x̃ )

)

.

G (x , t ) is the sum of two contributing terms. Gd (x , t ) quantifies the spread and advection

of the delta-correlated term of Eq. (3.3.33) while Gr (x , t ) encodes the relaxation of the non-

Poissonian spatial correlations through time. If µ= 0, the stochastic process is purely Poisson-

nian so that Gr (x , t ) = 0. In Fig. 3.7, I plot G
�

x̃ , t̃
�

/(



γ
�

s /`c ) for different values ofPe .

It is clear from Fig. 3.7 thatPe plays a crucial role in the spread of the correlation function

of the particle activity through time and space. In particular, in the limit of large Pe (right

side of Fig. 3.7), the spatial correlation function of the particle activity (3.3.33) is projected

without deformation onto the time axes. In this case, spatial correlations at a given time

(Eq. (3.3.33)) are equal to temporal correlations at a given location (Eq. (3.3.37) with x̃ = 0).

The correspondence between the space and the time axes is then given by x ∼ 〈u 〉 t or x̃ ∼Pe t̃

(the proof is given in appendix A.7). This limiting case may be compared with Taylor’s frozen

turbulence hypothesis in fluid mechanics [Moin, 2009].
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4 Summary

4.1 Local model key-points

In this chapter, a local stochastic model was proposed for the motion of bed load particles

under water. Based on Ancey et al.’s [2008] birth-death Markov process, this local model is

able to capture the correlated structures that develop during particle motions at all spatial

scales. In separating the stochastic evolution of particle velocities from the bed exchange

processes, a master equation for the probability density of the particle activity through space

and time could be derived. The Poisson representation was then used to solve the master

equation, and to derive a Langevin equation for the Poisson activity η(x , t ) of the form

∂ η(x , t )
∂ t

= deterministic flux+deterministic sources+ stochastic sources. (3.4.1)

The deterministic bed load flux includes both a purely advective term and a diffusive term due

to particle velocity fluctuations. The latter has also been reported recently by Furbish et al.

[2012a], using an ensemble averaging procedure.

The expression for the moving phase, together with the Exner equation (the Exner equation

expresses the conservation of the sediment mass during bed exchanges) thus form a set of

coupled stochastic differential equations,

dη(x , t ) =
�

−〈u 〉∇η(x , t )+D∇2η(x , t )− (σ−µ)η(x , t )+λ
�

dt +
p

2µη(x , t )dW (x , t ),

dβ (x , t ) = dη(x , t )+
�

〈u 〉∇η(x , t )−D∇2η(x , t )
�

dt , (3.4.2)

where β (x , t ) is the Poisson representation of the density of particles in the bed b (x , t ). The

bed elevation is then simply yb ∝ νs b (x , t )/B , B being the flume width. This system may be

solved with numerical schemes adapted for stochastic equations with special care to preserve

the positivity of η [Higham, 2008]. The evolution of the bed elevation can be coupled to the

Saint-Venant equations (3.1.1)–(3.1.3) in a complete morpho-dynamical scheme.

Analytical results for the first and second moments of the particle activity were also derived.

Two length scales appeared naturally from the analysis: the saturation length scale `s a t and

the correlation length scale `c . A local Péclet numberPe was also found to play an important

role in the motion of particles.
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4.2 Model limits

Like any simplification of reality, the model proposed here relies on fairly strong simplifying

assumptions. First, a full phase-space representation has been avoided by suggesting that

the relaxation time of particle velocity was small compared to the other time scales. Second,

sediment particles have been assumed to be points. Thus, in the model, two particles can

be found to be separated by a distance less than their diameter, leading to non-physical

inter-penetration of particles.

Third, the interactions of moving particles with the bed have been simplified to the point of

absurdity. Indeed, only three types of exchanges with the bed have been retained: entrainment,

collective entrainment and deposition. More complex exchanges involving two or more

particles may also be involved, particularly when particle activity becomes high. Once a

sheet-layer flow is fully developed, the simple exchanges assumed here may be insufficient to

describe reality, as moving particles would be continuously interacting with each others. In

this limit, continuous models based on energy dissipation inside the bed load layer [Bagnold,

1973]might be more adequate.

Last but not least, all the analytical results presented in this chapter are based on the assump-

tion that all exchange rates remained constant in time and space. As those rates are expected

to change with flow shear velocity and local bed slope, even a weak coupling between the bed

load phase, the bed, and the fluid flow may reveal complex and non-linear phenomena. Still,

it is possible, in theory, to allow the coefficients of the stochastic equation (3.3.19) to vary and

to explore numerically the behaviour of solutions.
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IV EXPERIMENTS

Four different experimental data sets were used to compare with the theoretical results of chap-

ter III. Two of them have previously been published [Böhm et al., 2004; Roseberry et al., 2012].
The two others come from experimental setups specially built during the thesis to observe

spatial and temporal fluctuations of bed load at the same time [Heyman et al., 2014, 2013]. All

these experimental studies provide high resolution measurements of particle transport.

Hereafter, all Böhm et al. [2004] experiments are denoted by the prefix B, Roseberry et al. [2012]
experiment by R, Heyman et al. [2013] experiments by H and Heyman et al. [2014] experiments

by J. The numbers following the prefix specify experimental slope and solid discharge. For

instance B10-5 stands for a Böhm et al. [2004] experiment conducted using a 10% sloping

flume with a mean solid discharge of 5 particles/s. A summary of the available data is provided

in Table 4.1.
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Chapter IV. Experiments

B d 50 τs Fr Re tanθ v̄ h̄ q̄s /νs γ̄ L T
B10-5 0.6 6 0.11 1.42 4 ·103 10.0 0.41 1.0 4.9 28.9 0.25 60
R0-79 - 0.5 0.06 0.35 - - 0.31∗ 12.5 78.7 1711.0 0.08 0.4
H7-1 8.0 7 0.08 1.44 7 ·103 7.0 0.53 1.4 1.1 - 0 2 ·105

H7-6 8.0 7 0.09 1.48 1 ·104 7.0 0.60 1.7 5.9 - 0 4 ·104

H7-13 8.0 7 0.09 1.50 1 ·104 7.0 0.62 1.8 13.4 - 0 7 ·103

J3-1 3.5 7 0.14∗∗ 1.30 3 ·104 3.5 0.80 3.8 1.4 4.6 1 150
J4-1 3.5 7 0.17∗∗ 1.39 3 ·104 4.5 0.86 3.9 1.2 3.9 1 150
J5-1 3.5 7 0.14∗∗ 1.47 2 ·104 4.7 0.80 3.1 0.9 2.8 1 150

Table 4.1: Experimental parameters. B [cm], channel width; d 50 [mm], mean particle diameter;
τs [-], Shields stress; Fr [-], Froude number; Re [-], Reynolds number; tan(θ ) [%], slope angle; v̄
[m.s−1], mean flow velocity; h̄ [cm], mean water depth; q̄s /νs [particles/s], mean output solid
discharge; γ̄ [particles/m], mean activity;L [m], measurement length; ∗: T [s], measurement
duration. ∗: In this experiment, v̄ is the average flow velocity 1 cm above the bed. ∗∗:The
Shields stress could not be determined exactly in these experiments, the channel walls bearing
an important but unknown fraction of the total stress.

1 Setups

1.1 B experiment

This experiment was carried out in a narrow steep flume where sediment consisted of glass

beads of equal size (6 mm). Particle transport was completely two-dimensional; this allowed

Böhm et al. [2004] to take pictures through the side wall and detect and track individual

particles via image processing. Camera resolution was 640×192 pixels with a frame rate of

129.2 frame per seconds (fps). Each sequence comprised 8000 images corresponding to a

duration of approximately 1 min. The acquisition length was 22.5 cm, for a resolution of

0.3 mm/pixel. Thus this imaging technique covers about 2 orders of magnitude in space. For

further information on the experimental conditions, the reader is referred to [Ancey et al.,

2006, 2008; Böhm et al., 2004].

Fig. 4.1 shows an example of a recorded image and the corresponding reconstruction of

particle positions and velocities using image processing.

1.2 R experiment

Roseberry et al. [2012] presented a set of experiments where particle trajectories were sam-

pled in a two-dimensional window of the bed viewed from the top. High-speed imaging at

250 fps over a 7.57 cm (streamwise) by 6.05 cm (cross-stream) bed-surface domain, and with

1280×1024 pixels resolution, provided the basis for tracking particle motions (with a precision

of 0.06 mm/pixel). Bed material consisted of relatively uniform coarse sand with an average

40



1. Setups

Figure 4.1: Image recorded during B experiment and visualization of particles trajectories after
image processing. Units are in meters.

diameter of d 50 = 0.5 mm.

The data set involved one experiment with a total duration of 0.4 seconds, i.e., 100 frames

(Fig. 4.2). In contrast with the three other data sets, the R experiment concerns relatively small

particles (sand) over shallow slope (the slope is not given in [Roseberry et al., 2012] but one

can guess it because the Froude number is much lower than unity).

1.3 J experiments

Experiments were carried out in a 2.5-m-long flume. The erodible bed was made of natural

sediment particles with mean diameter of 8 mm. The flume was 3.5 cm wide and the water

depth was ranging from 3 to 4 cm during experiments. The channel slope ranged between

3% and 5%. The flow was fully supercritical. Small antidunes were occasionally growing and

propagated upstream, but the bed remained nearly flat in all experiments. As the channel

width to flow depth ratio was relatively small (B/h ∼ 1), the fraction of the shear stress taken

by the bed was certainly reduced, because of the increased side wall friction. Experimental

studies [Knight, 1981] report a drop of about 40 to 60% of the bed shear stress for such aspect

ratio. It is thus hard to determine precisely the experimental Shield stress without any direct

flow velocity measurements.

The originality of this data set compared to the two others lies in its high temporal and spatial

resolutions. Two cameras of 1280×200 pixels resolution, placed side by side, took pictures

from the transparent side wall at a rate of 200 fps. The length of the observation window was

slightly less than 1 m (with a precision of about 0.4 mm/pixel) while the duration of a sequence

was 150 seconds (30 000 images). For each experiment, four film sequences were repetitively

taken to ensure good statistical results.

Image processing and automatic particle tracking were then performed on these images. The

processing steps from raw images to particle trajectories were the following:
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Chapter IV. Experiments

Figure 4.2: Map view of R experiments showing particle motions occurring during the 0.4 sec
time series; note the clustering of motions, partly reflecting effects of the turbulent sweeps.
(Reproduced from [Roseberry et al., 2012]with the authorization of the authors and AGU.)

50 cm

Figure 4.3: Preview of the first camera in the J experiments, and particle tracking.
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Accelerometer

Metallic porous plateChannel outlet

Link to acquisition board

Figure 4.4: Particle counting technique at the outlet of the H experiments flume.

1. First I treated the raw images using the powerful yet simple method of median back-

ground subtraction [Radice et al., 2006; Yilmaz et al., 2006]. This allows a distinction

between an immobile background (made up of particle resting on the bed) and a moving

foreground (the moving particles).

2. An algorithm was then used to detect the centroid position of each moving particle in

the foreground images. This was achieved after thresholding the foreground image and

computing properties of connected regions (such as area, barycentre, eccentricity...)

3. Moving particles between two consecutive images were then associated into trajectories.

The Hungarian algorithm was used here to obtain the best combinations [Kuhn, 1955].
In case of conflict (for instance, if two particles are assigned to the same particle in the

following frame), the trajectory was supposed to end and a new trajectory was built.

4. Finally, to reconstruct broken trajectories, a Kalman filter was applied to each missing

measurement and overlapping trajectories were merged.

1.4 H experiments

H experiments were carried out in a 2.5 m long, 8 cm wide steep slope flume. The erodible

bed was made of uni-sized natural sediment particles of mean diameter 8±1.5 mm. The water

depth ranged from 1 to 3 cm during experiments. This setup was able to reproduce the fully

turbulent (Re≥ 8000) and supercritical flow of natural steep rivers, while avoiding complex

3-dimensional patterns like meanders and bars owing to the high water depth to channel

width ratio. Moreover, the extremely narrow grain size distribution limited fluctuations due to

size segregation and other related phenomena [Frey & Church, 2009].

Three experiments of increasing Shields stress are presented here. In each experiment, the

slope was kept constant and the water discharge was adjusted to reach the intended bed

shear stress. In addition, the sediment input was controlled to guarantee a global equilibrium
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between erosion and deposition and to maintain the mean slope value.

As a consequence of the fairly high Froude number (Fr ∼ 1.4), antidunes, scaling with the

water depth, formed in all experiments and propagated upstream along the channel. Their lee

face angle ranged from 10 to 20◦, close to the angle of repose of a slope sheared by a fluid flow

[Loiseleux et al., 2005].

Sediment fluxes were measured both at the entrance and at the output of the flume by a new

technique developed by a former PhD student (Francois Mettra) and detailed as follows. Upon

leaving the channel, each particle hits a metallic plate and the impact is recorded by a small

accelerometer tied to the plate. A peak-over-threshold method is then applied to detect the

times of the consecutive particle impacts (Fig. 4.4). If sufficient damping is provided to avoid

spurious vibrations of the plate, this method ensures an extremely good time resolution in

bed load discharge rates. As the grain size distribution is narrow, little error is made when

converting the number of particles to a sediment weight. Finally, the time series covered at

least 6 orders of magnitude (from ∼ 10−1 to 105 s). To validate the method, the output weight

of sediment was systematically measured during experiments.

1.5 Turbulence characteristics and particle dynamics

Flow turbulence is of great importance for the sediment transport process, particularly when

the flow strength is close to the threshold of incipient motion. Even if the flow Reynolds

number varies for each experiment presented here, all of them concern fully turbulent flows.

In spite of this, the characteristics of turbulence may diverge from one experiment to another

owing to the presence of the lateral channel walls. Indeed, experiment B took place in an

extremely narrow channel so that the size of turbulent structures was strongly limited by

the wall. In contrast, experiments J and H were carried out in a channel whose width was

larger or comparable to the water depth so that the limiting factor for the size of the turbulent

structures was the water depth rather than the channel width—as it is often the case in steep

mountain rivers. At the far opposite, the flow of experiment R was sub-critical and both water

depth and channel width were very large compared to the grain size. In this case, turbulence

was only governed by the boundary layer that forms at the surface of the granular bed.

Another major difference existing between experiments B, J, H and R arises from the diameters

of particles transported. The particle diameters of experiments B, J and H are about 10

times larger than the particle diameter of experiment R, so that the particle response to

the flow velocity is likely to be different. The Stokes number quantifies such a response. It

is defined as the ratio of the characteristic time of the particle to a characteristic time of

the flow: St= ρv̄ d 50/(9µ f ), with ρ is the particle density and µ f the dynamic viscosity. For

experiments B, J and H, it is always greater than 100, while in experiment R, it is about 3

(Table 4.2). Thus, particles of experiment B, J and H respond much slower to the flow than

particles of experiment R. As will be shown in the following, the statistical characteristics of
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their trajectories will thus be fundamentally different.

2 Experimental data

2.1 Experiments B, R and J

In these motion-picture experiments, a typical data set consists in a set of k particle trajectories

(x i , yi , t i ) in the camera’s plane (~x ,~y ). No information was gathered about shape and size of

particles; I focused only on the position of the centres of mass (x i , yi ). In all experiments, the

~y axis is perpendicular to the mean transport direction of particles. I will mostly be interested

in the pair of trajectory coordinates (x i , t i ), leaving the third dimension aside.

Those trajectories are measured during a given (limited) time period T and spatial window

L (see Table 4.1). They can be represented in a time-space plane, as shown in Fig. 4.5 and in

appendix B.2.

Trajectories consist in one-dimensional continuous segments in the time-space plane. Instan-

taneous particle velocity is obtained by finite difference,

u k (t i ) =
x i −x i−1

∆t
, (4.2.1)

where∆t is the reciprocal of the frame rate of the camera.

In order to discriminate between moving and resting particles, a threshold must be defined.

This threshold is arbitrary in the sense that a particle is never totally resting on the bed, but its

position oscillates slightly due to the turbulent flow drag. It is worth noting that the choice

of the threshold is likely to influence the results. Indeed, by including the slowest particles

into the group of moving particles, more importance will be given to transport by rolling or

sliding. On the contrary, by ignoring them, saltation will be the dominant mode of transport.

In appendix B.1, a sensitivity analysis of the effect of the velocity threshold is provided. In

the following, we chose (arbitrarily) ‖u ‖> 0.05,0.0,0.003 m.s−1 for experiments B 1, R and J

respectively, where the magnitude of particle velocity ‖u ‖ has been previously smoothed by a

moving average time filter of length 0.038, 0, and 0.035 s for experiments B, R and J respectively.

1. The relatively high velocity threshold on experiment B (about 30% of 〈u 〉) is required to discard the particles
creeping inside the bed. Moreover, as the definition of experiment B is fairly low (640 pixels for about 25cm), the
minimum observable change in velocity is 0.05039 m.s−1
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Figure 4.5: Sample of particle trajectories in the time-space plane (experiment J). The colours
encode particle velocities (m/s). A close up of the black rectangle is shown in the upper left
corner.
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Figure 4.6: Time series of solid discharge in H experiment.

2.2 Experiments H

Experiment H contrasts from experiments B, R and J as no spatial information is gathered

about particle trajectories. Instead, it was built to record the arrival time of moving particles

at a precise location during long time periods. Thus, the data consists of consecutive times

t1 < t2 < t3... representing each passage of a particle (Fig. 4.7(c)). This experiment has the

advantage of providing extremely long time series (tens of hours), and thus allows for precise

statistical treatment (Fig 4.6).

2.3 Averages

We have seen in chapter II section 2 that the definition of the bed load transport flux depends

greatly on the chosen averaging method. Although ensemble averaging is the best procedure to

characterize a stochastic process, it has little value for experimentalists. Indeed, measurement

techniques allow only the sampling of spatial and temporal averages. Spatial averaging is

mainly related to motion-picture experiments (such as particle image velocimetry or particle

tracking, in experiments B, R and J for instance), where the information about bed load

particle locations can be obtain at a given time over a spatial region. On the contrary, temporal

averaging relates to more classical measurement devices, which sample bed load at a given

position in time as in experiment H for instance. Relating both averages is not trivial in the

majority of cases.

In the following, I highlight some of the relationships between surface, volume and time

averages of the experimental bed load flux. For simplicity, I assume that particle motion

occurs only in one direction ~x , but the results are also valid for more complex cases. I assume

also that all the particles have the same volume νs [m3].
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Figure 4.7: Surface flux. (a) Geometrical configuration (b) Surface flux through time. (c)
Particle arrival times.

Surface average

The natural definition of the instantaneous solid flux through a surface perpendicular to ~x

(Fig. 4.7(a))

qs (t ) =S(t )u (t ), [m3s−1] (4.2.2)

where S(t ) is the portion of surface occupied by a particle and u (t ) the speed of that particle.

Eq. (4.2.2) differs slightly from Eq. (2.2.1) in that it is assumed that particles cross one at a time

the surface. The flux between time t1 before the particle crossed the surface and time t2 after

the passage of the particle is plotted in Fig. 4.7(b).

Now, take the cumulative flux between t1 and t2:

[Qs ]t2
t1
=

∫ t2

t1

S(t )u (t )dt = νs [m3]. (4.2.3)

Unsurprisingly, the time integral of the surface flux is equal to the volume of the particle.

Time average

In many experiments, only time series of bed load rates are available (for instance experiment

H). If the measurement device is precise enough, all the particle arrival times may be recorded.

This is the case for the acoustic sensors developed in [Heyman et al., 2013]. A typical output of

such measurement is represented in Fig. 4.7(c).

The instantaneous flux is zero almost everywhere except at the precise time a particle passes.
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Figure 4.8: Volume average.

The cumulative flux between t1 and t2 can be expressed by

[Qs ]t2
t1
= νs

∫ t2

t1

∑

i

δ(t − t i )dt , (4.2.4)

where t i are the arrival times of particles. If only one particle passes through the plane between

t1 and t2, [Qs ]t2
t1
= νs and the cumulative flux obtained with the surface-based definition is

retrieved.

Although trivial, this result highlights the equivalence between the continuous surface based

flux, and the discrete time series of particle passages. The bell shape of the flux obtained with

the surface based definition (Fig. 4.7(b)) is approximated by Dirac delta functions in the case

of bed load time series (Fig. 4.7(c)). When integrated over a sufficiently long time interval (of

the order of d 50/ 〈u 〉), the cumulative flux obtained by each method is equal.

Volume average

I now consider volume averaging, which is particularly relevant in motion-picture experiments.

In general, volume averaging does not relate easily to time averages, except in the case of

an infinitely small volume. To prove this, consider a cloud of moving particles located in x i

(Fig. 4.9). I assume that the particles are points (their mass is concentrated at their gravity

centres). The volume average flux over a window of length∆x centred at x can be expressed

as [Ancey et al., 2008]

qs (x ,∆x ) =
νs

∆x

∫

∆x

∑

i

δ(x −x i )u i dx ≡
νs

∆x

N (t )
∑

i=1

u i , (4.2.5)

where N (t ) is number of moving particles in the volume. As before, I consider the cumulative

flux between two times t1 and t2,

[Qs (x ,∆x )]t2
t1
=
νs

∆x

∫ t2

t1

∫

∆x

∑

i

δ(x −x i )u i dx dt . (4.2.6)
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Figure 4.9: Instantaneous volume average flux through time depending on the volume size
∆x .

For any∆x , there is no evident relationship between Eq. (4.2.5) and Eq. (4.2.4).

However, by letting∆x → 0, there will be a limit when the volume contains only one or zero

particles. Setting t1 to be the time the particle enters the volume, and t2 the time it leaves the

volume, and assuming that the particle velocity does not change much during this short time

interval:

[Qs (x ,∆x → 0)]t2
t1
=
νs

∆x
u i (t2− t1) = νs . (4.2.7)

In a similar fashion as the cumulative surface solid flux equals the cumulative time average

solid flux, the cumulative volume average flux tends to the cumulative time average flux for

sufficiently small volumes (∆x → 0). Fig. 4.9 shows the effect of the volume size on the mea-

sured flux. For large volumes, the temporal flux appears mostly continuous, as many particles

are included in the average. As the volume is reduced, the flux is more and more intermittent

(discontinuous), alternating between periods of zero values and periods of positive values

(when a particle enters the volume). When decreasing∆x , the number of particles present in

the volume has an increasing importance on the value of the instantaneous volume averaged

solid flux. At the limit of an infinitely small volume, the flux is zero everywhere except at some

discrete time where it takes an infinite value. In this limit, the flux is completely equivalent

to the passage time of particles described previously while the velocities of particles are not

involved in the expression of the solid flux.
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3. Particle transport and deposition

B10-5 R0-79 J3-1 J4-1 J5-1

d 50 6 0.5 7 7 7
ū 0.170±0.001 0.046±0.001 0.310±0.001 0.300±0.001 0.320±0.001

Rep 1 ·103 1 ·101 2 ·103 2 ·103 2 ·103

St 3 ·102 3 ·100 6 ·102 6 ·102 6 ·102

σu 0.11 0.04 0.22 0.23 0.23

tσ 0.37±0.01 0.54±0.01 1.93±0.10 1.99±0.12 1.78±0.12

σ 2.72±0.09 1.85±0.09 0.52±0.03 0.50±0.03 0.56±0.03

t S
r 3.00 0.02 4.08 4.08 4.08

tr 0.14±0.02 0.12±0.03 0.34±0.01 0.45±0.01 0.18±0.03

k B T /ζ 15±2 1.5±0.3 59±2 89±2 55±3

σ2
u tr 17±3 2±0.5 164±5 238±5 95±16

Table 4.2: Transport and deposition of particles: parameter estimates and 95% confidence
interval. ū [m.s−1], average particle velocity; Rep [-] Particle Reynolds number; St [-], Stokes
number; σu [m.s−1], standard deviation of particle velocity; tσ [s], mean deposition time;
t S

r = m/(3πµd ) [s] Stokes relaxation time; ζ [10−6N.s.m−1] drag coefficient; tr [s] particle
velocity relaxation time; k B T /ζ [cm2.s−1], particle diffusivity (also denoted D);σ2

u tr [cm2.s−1],
particle diffusivity (other definition).

3 Particle transport and deposition
In this section, I show how the deposition rateσ, the diffusivity D and the relaxation time tr

may be estimated independently with the experimental particle trajectories. The estimates

are summarized in Table 4.2.

3.1 Deposition rate

The deposition time scale could be easily obtained if the jump duration of particles (the

time between entrainment and deposition) was available. However, most motion-picture

experiments are limited in space, so that part of the trajectories entering and leaving the

observation window are lost. Alternatively, the mean deposition rate can be obtained by

dividing the mean number of deposition events in the observation window per unit time by

the mean number of moving particles:

σ=
Nσ
T N̄

, (4.3.1)

with Nσ the number of particle depositions during the period T. However, this method does

not give information on the confidence interval of the estimatedσ.

Another possible way of estimating the deposition rate relies on the fact that, according to the
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Figure 4.10: (a) Deposition process in real and rescaled time for experiment J3-1. (b) Empirical
cumulative distribution of the inter-arrival time of deposition events and fitted exponential
cumulative distribution for experiment J3-1.

memoryless property of Markov process, the probability of observing a particle deposition in

a window∆x in a small time interval∆t is constant and equal toσN (t )∆t , where N (t ) is the

number of moving particle in that window. Thus, the deposition process can be envisioned

as an inhomogeneous Poisson process with rateσN (t ), where N is a function of time which

can be measured experimentally. By rescaling time t according to N (t ), we can transform the

inhomogeneous Poisson process into an homogeneous Poisson process [Cox & Isham, 1980]

T (t ) =

∫ t

0

N (y )dy . (4.3.2)

In this new time space T (t ), the deposition process is homogeneous and has a rate equal toσ,

and the time between deposition events is exponentially distributed with a mean arrival time

tσ =σ−1 (Fig. 4.10).

Finally, we estimate tσ and its 95% confidence interval by maximizing the likelihood function

of the exponential. Values of tσ =σ−1are reported in Table 4.2 for experiments B, R and J.

3.2 Particle transport

The probability density functions of particle velocities are presented in Fig. 4.11 for exper-

iments B, R and J. Eq. (3.3.4) seems to fit experiments J and B relatively well. In these ex-

periments, negative velocities occurred less frequently than predicted by Eq. (3.3.4) 2. The

exponential distribution describes the behaviour of particle velocities in experiments J and

B poorly, but seems more appropriate for experiment R. These results are confirmed by the

2. A truncated Gaussian distribution, as used by Ancey & Heyman [2014], may improve the fit. In this case, a
reflecting boundary condition has to be set for u = 0 in Eq. (3.3.2).

52



3. Particle transport and deposition

10−3

10−2

10−1

100

101

0 0.5 1

Probability

J4-1

0 0.2 0.4 0.6

Probability

B10-5

0 0.1 0.2 0.3

Probability

R0-1

Emp.
Norm.

Exp.

Emp.
Norm.

Exp.

Emp.
Norm.

Exp.
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Figure 4.12: P-P plots for normal and exponentially distributed particle velocities.

P-P plots presented in Fig. 4.12. Meanwhile, experiments J and B concern relatively large

particles (large Stokes number) while experiment R involves sand (low Stokes number). This

may explain the difference in behaviour during particle flights: large particles have a slow

response time to turbulent flow perturbations while small particles instantaneously adapt

their velocity to flow velocity fluctuations. I compare the theoretical MSD against experiments

in Fig. 4.13. In all experiments, the dependence on t 2 at short time is retrieved, confirming the

ballistic limit of particle trajectories. At long time scales, there are not long enough trajectories

to compute a correct average and the MSD diverges. Despite this, a diffusive limit is observed

in most experiments at intermediate times. At these scales, the MSD increases as 2Dt . By

adjusting the two parameters (ζ, k B T ) of expression (3.3.5) to match the experimental data,

the diffusivity D = k B T /ζ and the relaxation time tr =m/ζ can be obtained (see Table 4.2).

The relaxation time takes values between 0.1 and 0.5 s, while diffusivity ranges from 1.89 cm2.s−1
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Figure 4.13: Mean squared displacement of particles as a function of time (points) and theo-
retical prediction (line).

for experiment R up to 90 cm2.s−1 for experiment J. This indicates that diffusivity may be a

function of particle size and velocity.

For each experiment, I also reported the equivalent Stokes relaxation time (i.e., t S
r =m/(3πµ f d 50).

In experiments B and J, the latter is of the order of a few seconds. The experimental MSD

suggests that the relaxation time of particles tr is ten times smaller than the Stokes relaxation

time. This suggests that, in addition to the flow drag, other forces modifies strongly the particle

trajectory (collisions, for instance) on shorter time scales. Conversely, for experiment R, the

Stokes relaxation time is one order of magnitude smaller than the measured tr . In this case, we

could argue that the role of turbulence is predominant. Indeed, as particles of experiment R

reach extremely quickly the velocity of the flow region where they are located, their relaxation

time is conditioned by the life time of turbulent eddies.

Another interesting comparison can be made between k B T /ζ, obtained from the asymptotic

tangent to the MSD curve, andσ2
u tr . We found that, theoretically, k B T /ζ=σ2

u tr
3. In most

3. This result states the fluctuation-dissipation argument of Brownian motion, e.g. the viscous dissipation by
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4. Statistics of the bed load flux

experiments, σ2
u tr appears to be 2 to 4 times bigger than the value obtained for k B T /ζ.

Nevertheless, they are of the same order of magnitude, so that, as a first approximation, the

Langevin model (3.3.1)–(3.3.2) may be considered to be a rough approximation of the particle

transport process.

Recall that three independent phases of bed load particle motions—namely entrainment,

deposition, and transport—are distinguished in the models presented in chapter III. All

of these phases are envisioned as simple random processes acting on specific time scales.

Among them, the transport and deposition of particles could be independently quantified

with the particle trajectory samples. The only processes that can not be estimated directly

with the particle trajectory samples are the entrainment and the collective entrainment rates

(respectively λ and µ). Indeed, the two processes are not strictly differentiable physically,

so it is not possible to determine their rates independently. The entrainment and collective

entrainment rates are thus left as free parameters for the moment. The stochastic models

presented previously can provide a way to estimate them.

4 Statistics of the bed load flux
In this section, we compare the experimental time series of volume and surface average bed

load fluxes to Ancey et al.’s [2008] original model.

4.1 Volume average bed load flux

Theoretical predictions

In the following, I show how the distribution of the volume average particle flux can be derived

from Ancey et al.’s [2008]model together with the particle transport process hypothesised in

chapter III section 3.1. The probability distribution of the volume average particle flux was

defined as

qs (t ;V ) =
νs

∆x

N (t )
∑

i=1

u i , (4.4.1)

where both N (t ) and u i are random variables.

Recall that in the steady state limit t →∞, the model that was proposed for particle transport

leads to particle velocities normally distributed with mean 〈u 〉 and standard deviation σu .

The probability density function of the sum of k independent 4 random variables drawn from

the drag and the random collisions are linked to the velocity fluctuations of particles.
4. Independence is a reasonable assumption when transport rates are low. It is more questionable for interme-
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the normal distribution is also normally distributed:

k
∑

i=1

u i ∼N (k 〈u 〉 , kσ2
u ). (4.4.2)

Thus, the probability density function of the volume average solid flux is

Pqs (qs ) = Ps (0)δ(qs )+
∞
∑

k=1

Ps (k )
1

σu
p

2kπ
exp

�

−
(qs∆x/νs −k 〈u 〉)2

2kσ2
u

�

, (4.4.3)

where Ps (k ) is given by (3.2.5) if µ> 0 and (3.2.8) if µ= 0.

Note that the probability density function of qs is discontinuous at qs = 0: there is a finite

probability density Ps (0) that no particle moves in the observation window, and thus that the

volume average particle flux is zero. In the case where there is at least one moving particle

in the observation window, Pqs jumps to another finite value. Note that, as I did not exclude

the probability for particles to move backward, the flux may occasionally take negative values

(Fig. 4.14(a)).

Different solutions are found for Pqs when considering a different particle transport model. For

instance, u i is sometimes found to follow an exponential distribution of mean 〈u 〉 [Lajeunesse

et al., 2010; Roseberry et al., 2012]. In that case, the sum of k exponential distribution is the

Erlang distribution with parameter (k , 〈u 〉) so that:

Pqs (qs ) = Ps (0)δ(qs )+
∞
∑

k=1

Ps (k )
〈u 〉k (qs∆x/νs )k−1e−〈u 〉qs∆x/νs

Γ(k )
. (4.4.4)

Hamamori [1962] is credited with the first attempt to derive the probability distribution for

the sediment transport rate. He considered that bed load transport rate fluctuations arise

from the migration of bedforms. He found that the probability density function of the bed

load flux is

P(qs ) =
1

4〈qs 〉
log

�

4
〈qs 〉
qs

�

, (4.4.5)

which implies that the fluctuations are bounded (0 < qs < 4〈qs 〉). More recently, Turowski

[2010] used a two-parameter distribution derived from the normal distribution and called the

diate transport rates, for which interactions between moving particles and disturbance of flow velocity profile are
not negligible and create correlations between particle velocities.
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Figure 4.14: (a) Theoretical probability density function of the bed load flux for various
parameters. Constant parameters are ∆x = 0.1 m, 〈u 〉 = 0.3 m.s−1, λ = 1 particles.m−1s−1.
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in the case of P1 parameters to equations (4.4.5) (




qs /νs
�

= 1.5 particles.s−1) and (4.4.6)
(α= 1.5 particles.s−1 and 1/β = 1 particles.s−1).

Birnbaum-Saunders distribution

P(qs ) =
qs +α

2βqs

p

2παqs

exp

�

−
(qs −α)2

2αβ2qs

�

, (4.4.6)

with α and β two parameters. Figure 4.14(b) shows a comparison between probability distri-

butions (4.4.3), (4.4.4), (4.4.5), (4.4.6) for a particular case. As the fluctuations are bounded,

Hamamori’s relation is unable to capture the exponential tail of the distribution and tends

to overestimate the bed load transport rate significantly compared to (4.4.3) in the limit of

qs → 0. This latter shortcoming is also observed for the Birnbaum-Saunders distribution, but

the tail behaviour is consistent with the macroscopic model predictions (Eq. (4.4.3)).

The average and the variance of a random sum of random variables is well-known [Ross, 2006].
The former is

Mean[qs (∆x )] =
νs

∆x
〈N 〉 〈u 〉= νs

λ

σ−µ
〈u 〉 . (4.4.7)

It is interesting to compare Eq. (4.4.7) to the entrainment form of the solid flux (2.2.3). Indeed,

λ has been defined as the mean entrainment rate of particles per meter of length while

1/σ= tσ is the mean particle flight time. Thus tσ 〈u 〉 is the mean particle flight distance and

Eq. (4.4.7) and Eq. (2.2.3) are equivalent when µ= 0. Indeed, Einstein [1937] did not consider

the importance of collective entrainment in his early results.
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The variance is

Var[qs (∆x )] =
ν2

s

∆x 2

�

〈N 〉Var[u ]+ 〈u 〉2 Var[N ]
�

(4.4.8)

=
ν2

s

∆x

λ

σ−µ

�

σ2
u + 〈u 〉

2 σ

σ−µ

�

. (4.4.9)

The latter expression shows that the fluctuations of the bed load flux are due to fluctuations

both in particle velocity and in particle number.

Comparison with experiments J

In the following, I compare the theoretical expression (4.4.3) to experiments J 5. To that end,

the parameters r and p of a negative binomial distribution are estimated from the data of the

number of moving particles in a window of length∆x = 0.3 m. According to the stochastic

model, the parameters r and p are respectively λ∆x/µ and 1−µ/σ (Eq. (3.2.5)). As σ has

been measured independently (see section 3), λ and µ can also be defined uniquely. Once the

probability distribution of N (t ) as well as the average and the variance of particle velocity are

known (see table 4.2), the computation of (4.4.3) is possible.

The theoretical probability density function is found to describe fairly well the experimental

data (Fig. 4.15) for small to moderate solid flux. This shows that the assumption of statistical

independence between u i and N , that allowed us to derive (3.2.5), is realistic enough in exper-

iments J for moderate fluxes. In contrast, for higher particle fluxes, eq. (4.4.3) overestimates

the empirical frequency. This can be explained by the fact that when a lot of particles move

together, their velocities decrease because of mutual energy dissipation. In this case, the

number of moving particles and their velocities are not independent and expression (4.4.3)

does not hold anymore.

In both experiments and theory, the value qs /νs = 0 stands out from the probability density

function. In other words, there is a unusually large probability that the bed load flux is null.

This suggests that, close to incipient motion conditions, the bed load flux is highly intermittent.

4.2 Surface average bed load flux

In section 4.1, the distribution function of the volume average bed load flux was computed.

Moreover, in section 2.3, I have shown that the volume average flux is equivalent to the surface

average flux when the size of the observation window tends to zero. However, Ancey et al.’s

[2008]macroscopic model assumes that V is large enough for the flux at its boundaries to be

ignored. Thus, the limit∆x → 0 is proscribed and the macroscopic model cannot be compared

5. The comparison to experiments B and R is doomed to failure because of the very low data resolution.
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with experiments which only measure bed load transport in time, such as experiments H.

To overcome this limitation, I suppose that another exchange modifying the number of moving

particle in the window exists. This new event is meant to represent the flux of particle in and

out of the window and is called a migration process 6. In a manner similar to the other

exchanges, the migration process is supposed memoryless with an average rate ε [s−1]. In

other words, the probability that a particle emigrates out of the observation window in a small

time interval∆t is

P(n→ n −1,∆t |t ) = εN (t )∆t +o(∆t ). (4.4.10)

Equivalently, the probability that a particle immigrates into the window in a small time interval

∆t is

P(n→ n +1,∆t |t ) = ε 〈N 〉∆t +o(∆t ). (4.4.11)

The major statistical difference between the immigration process and the emigration process

is that the former is supposed to be independent of N (t ) while the latter has a rate that

explicitly depends on the instantaneous value of N (t ). Note that the immigration and the

emigration process cancel on average, so that the average flux across window boundaries is

null [Ancey et al., 2008].

A rough estimate gives ε ∝ 〈u 〉/∆x . Indeed, the larger the particle velocity and the smaller the

6. Note that in the original Ancey et al.’s [2008]model, migration events were also considered though their
statistics were not studied
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window size, the higher the probability that a moving particle emigrates out of the window.

The corresponding migration time scale is thus tε = ε−1 ∝∆x/ 〈u 〉.

The emigration process defines a discrete point process comparable to that represented

in Fig. 4.7(c). This type of process is also called a renewal process and is found in many

situations, such as queuing, traffic, machine failure rates [Bhat, 2008]... One of the principal

characteristics of such process is the inter-arrival time T [s]; that is the waiting time between

two emigration events. An instantaneous measure of the bed load flux at the boundary can be

obtain by inverting the inter-arrival time:

qs ∼ νs
1

T
[m3s−1]. (4.4.12)

Probability distribution of particle arrival time

In appendix B.3, I show how to derive the probability density function fT of T based on the

macroscopic model, augmented by the migration process. For t > 0, it reads

fT (t ) = ε (z 1− z 2)λ
′/µ

�

α−µ
A(t )− B (t )

�λ′/µ+1

e−λ
′(1−z 2)t ×

�
�

λ′/µ+1
�

B (t )
A(t )− B (t )

�

(1− z 2)e−µ(z 1−z 2)t + z 1−1
�

+ e−µ(z 1−z 2)t −1

�

,(4.4.13)

where

A(t ) = z 2(µz 1−α)e−µ(z 1−z 2)t + z 1(α−µz 2)

B (t ) = (µz 1−α)e−µ(z 1−z 2)t +(α−µz 2) (4.4.14)

z 1 = (α+µ)
�

1+
p

1−ε
�

/2µ

z 2 = (α+µ)
�

1−
p

1−ε
�

/2µ,

with λ′ =λ∆x + ε 〈N 〉, ε= 4σµ/(α+µ)2 and α= ε+σ.

Equation (4.4.13) provides a fully theoretical link between the macroscopic Markov model

defined on an observation window and the experimental probability density function of the

inter-arrival time obtained at a precise location, such as in experiments H.

To check the validity of (4.4.13), Monte Carlo simulations of the birth-death process were

performed with the Stochastic Simulation Algorithm (SSA) described in Gillespie [1977]. This

algorithm is able to give exact realisations of any Markov processes. To do so, it ingeniously

uses the memoryless property of these processes. Below is shown an example of a Matlab
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implementation of Gillespie’s [1977] algorithm :

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % SSA Algorithm - Example of implementation %

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 Tlim =10; %Simulation time

6 lc =0.01; %Entrainment and immigration rate

7 mc=1.3; %Collective entrainment rate

8 sc=1.0; % Deposition rate

9 vout =0.5; % Emigration rate

10

11 a=zeros(3,1); %Reaction rates

12 v=zeros(3,1); %Reaction vectors

13

14 %Initialisation

15 N=0;

16 a(1)=lc+N*mc;

17 a(2)=sc*N;

18 a(3)=vout*N;

19 v(1)=1;

20 v(2)=-1;

21 v(3)=-1;

22 t=0;

23

24 while (t<Tlim) % SSA loop

25 asum=sum(a);

26 j=find(cumsum(a)>rand*asum); % Choose next reaction

27 k=j(1);

28 dt=log(1/rand)/asum; %Sample reaction time

29 N=N+v(k); %Update particle number

30 t=t+dt; %Update time

31 % Update reaction rates according to new value of N

32 a(1)=lc+N*mc;

33 a(2)=sc*N;

34 a(3)=vout*N;

35 end

36

37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Simulations show perfect agreement with equation (4.4.13), as can be seen in Fig. 4.16(a).

As seen on the same figure, the theoretical probability density function of T shows, under

certain conditions, a bimodal shape that differs considerably from exponential 7. This bimodal

distribution comes from the difference of time scales between the (slow) entrainment of

particles and (fast) collective entrainment.

To clarify this, I plotted in Fig. 4.16(a) the effect of the parameter λ′ (e.g., entrainment rate

and immigration rate) on the shape of the probability density function of T . When λ′→ 0,

with other parameters held constant, the time scales clearly separate. On the contrary, when

λ′ increases, no further significant scale separation can be seen and the probability density

function of T has a simpler exponential behaviour.

The presence of collective entrainment is also a necessary condition to observe a separation of

7. A memoryless renewal process has inter-arrival time of events exponentially distributed.
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Figure 4.16: Theoretical probability density function (Eq. (4.4.13)) for the waiting time between
particle arrivals. Constant parameters are σ = 1.0 s−1 and ε = 0.5 s−1. (a) Effect of the
entrainment rateλ′ [particles.s−1]withµ= 1.3 s−1. Comparison with a Monte Carlo simulation
(for λ′ = 10−2 particles.s−1). (b) Effect of the collective entrainment rate µ [s−1] with λ′ =
10−2 particles.s−1.

time scales in the probability density function of T . Indeed, even if the emigration rate is large

compared to the entrainment rate, so that two distinct time scales exist (the fast transport of

particles against the slow entrainment process), no separation is observed on the probability

density function of T when µ→ 0 (Fig. 4.16(b)). This can be explained by the fact that the

emigration process is governed entirely by the slow entrainment (no particle leaves if no

particle moves). In the case µ= 0, the probability density function of T becomes exponential

with parameter α/(λ′ε). However, when collective entrainment is considered (µ > 0), the

separation of time scales is possible due to the occurrence of fast and intense collective bursts

in particle entrainment which occur together with the relatively slow entrainment of particles.

Comparison with experiments H

Experiments H were specially designed to record each particle arrival time. Thus, the experi-

mental density probability function of inter-arrival times is available in these experiment.

Expression (4.4.13) can be used to fit the set of parameters (λ′,γ,σ,µ) to the experimental

probability density function (Fig. 4.17). The value of λ′ governs the long time scales and a

decrease in λ′ shifts the probability density function tail to the right. The α−µ value controls

the short time scales, so that a decrease shifts the left plateau of the probability density

function to shorter times.

I assumed that parametersσ and µ remained constant for all three H experiments, supposing

that only the entrainment rate λ′ increased significantly with the bottom shear stress. This is

justified by the fact that, according to traditional bed load formulas, λ′ is proportional to τ
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and ε to
p
τ, whileσ and µ have not been reported to change much with bottom shear stress

[Ancey et al., 2008]. Fitted values of λ′ are given in Fig. 4.17. Good agreement is found for

each of the three experimental probability density functions, both short- and long-time scales

being well described.

As predicted by the theory, when the Shields stress increases (and thus mainly the entrainment

rate λ′), the experimental probability density function tends to the exponential distribution.

In other words, the collective entrainment effect is “hidden” by the too frequent entrainment

of particles by the fluid flow.

Note that the temporal statistics derived above for the emigration process could be similarly

derived for other processes, for instance for the deposition process. The question would be

now: “What is the average time between two particle depositions ? What is the probability

distribution of such time?”. There is no doubt that the latter will have roughly the same

form as the probability function of T (eq. (4.4.13)), with the same phenomenon of time scale

separation.

It is worth recognising that the complexity of (4.4.13) makes it of little use in practice. Nev-

ertheless, the knowledge of the statistics of the particle arrival time has two advantages: (i)

it provides a link between spatially defined quantities (e.g., N (t )), often left undetermined

experimentally, and temporal measurements that are easier to obtained in practice, and (ii) it

proves that the emigration process has a complex behaviour and is not memoryless 8.

8. In a memoryless case, the inter arrival time would have been exponentially distributed.
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5 Fluctuations of the particle activity
The local model (3.3.19) allows us to study the behaviour of the spatio-temporal fluctuations

of particle activity. As shown in section 2.3, two types of averages can be used to study the

statistics of particle trajectories, namely volume average and time averages. Both of them are

compared to the theoretical predictions.

5.1 Spatial average

Let us consider the number of moving particles in a window of length L at a given time t :

N (L, t ) =

∫

L

γ(x , t )dx . (4.5.1)

The ensemble average of this number is 9

Mean[N (L, t )] =

®∫

L

γ(x , t )dx

¸

=

∫

L




γ(x , t )
�

dx =



γ
�

s L, (4.5.2)

while the expected variance of this number (e.g., the variance of the sample mean) is defined

by

Var[N (L, t )] =

®∫

L

γ(x , t )dx

∫

L

γ(x ′, t )dx ′
¸

−
®∫

L

γ(x , t )dx

¸2

=

∫

L

∫

L




γ(x , t ),γ(x ′, t )
�

dx dx ′. (4.5.3)

Introducing Eq. (3.3.33) into Eq. (4.5.3) and integrating it (see appendix B.4):

Var[N (L, t )] =



γ
�

s L+



γ
�

s `c
µ

σ−µ
�

L/`c +e−L/`c −1
�

. (4.5.4)

Eq. (4.5.4) shows the dependence of the variance of N (L, t ) on the length L of the sampling

window. Let us define the dispersion index I (L) as the ratio of the variance over the mean

I (L̃) =
Var[N (L̃, t )]

Mean[N (L̃, t )]
= 1+

µ

σ−µ

�

1+
e−L̃ −1

L̃

�

, (4.5.5)

9. Here, the ensemble average of a quantity summed over a volume is computed, which is equivalent to volume
averaging in experiments.
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L

I (L)< 1 I (L) = 1 I (L)> 1

Figure 4.18: Example of a realization of point positions in a two-dimensional space depending
on the value of the dispersion index I (x ). Here, x can be interpreted as the length of the box.

with L̃ = L/`c .

In a manner similar to the K -function introduced in section 3.5, the dispersion index charac-

terizes the relative positions of particles. Three classes are generally distinguished, depending

on the value of I : under-dispersed processes for I < 1; purely random processes (or Poisson

process) when I = 1; and over-dispersed or clustered processes when I > 1 (Fig. 4.18).

In our model, the dispersion index is shown to grow from 1, when the window is small, to the

constant value 1+µ/(σ−µ), as the window length tends to infinity (Fig. 4.19). In other words,

depending on the observation scale, the process exhibits a different statistical behaviour.

When L tends to 0, I (L) tends to one, so that the variance and the mean of N (L, t ) are equal.

Thus, in the small scale limit, N (L, t ) tends to a Poisson process. This is mathematically

explained by the presence of the Dirac delta function in the spatial correlation function (3.3.33).

For decreasing values of L, a limit will be reached when most of the sampling windows usually

contain no particles, or rarely one particle. This limiting behaviour of N (L, t ) can be seen as

representative of a Bernoulli process (e.g., N (L, t ) = 1 with probability



γ
�

s L and N (L, t ) = 0

with probability 1−



γ
�

s L). Within the limit of a small probability of occurrence (



γ
�

s L→ 0),

this approximates a Poisson process.

On the contrary, when L→∞, I reaches a constant value I (∞). Note that I (∞)> 1 if µ > 0,

so that the variance of N (L, t ) is now greater than its mean. Thus, for larger scales, when

µ> 0, N (L, t ) cannot be described by a Poisson process. Moving particles are expected to form

clusters during their motion when collective entrainment is considered (Fig. 4.18).

The experimental dispersion indices are presented in Fig. 4.20. As expected, the dispersion

index changes through spatial scales. From a Poisson type process (the mean of N (L̃, t )
equals its variance) at small scales (L̃→ 0), I (L̃) continuously increases with increasing scales

(Fig. 4.20(a)–(d)). The dispersion index of experiment R (Fig. 4.20(e)) follows a slightly different

evolution, since it drops at scales greater than 5 cm.

The peculiar behaviour of experiment R might be explained by the relatively short mea-

surement window (∼ 8 cm) and the relatively short acquisition time (0.4 s, 100 frames) of
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Figure 4.19: Spatial fluctuations in the number of moving particles. (a) Dispersion index
(Eq. (4.5.5)) for different µ/(σ−µ) values. (b) K -function (Eq. (4.5.5)) for different µ/(σ−µ)
values with




γ
�

s = 5 particles.m −1 and `c = 2 m hold constant.

experiment R which are likely to yield biased estimates of the dispersion index.

One striking feature of the experimental dispersion index that appears only in experiment B is

the slight decrease below unity for observation windows of the order of the particle diameter

(detail of Fig. 4.20(d)). This phenomenon results from negative values in the correlation

function at those scales and cannot be described by the local model. Indeed the theoretical

spatial correlation function (3.3.33) is strictly greater than zero so that the variance is expected

to grow monotonically. The presence of negative values in the experimental correlation

function is explained by the finite particle diameter. Recall that B experiments took place

in a one-dimensional channel whose width equals the particle diameter. Thus, there is

less probability 10 of finding two particles separated by a distance smaller than the particle

diameter. This results in anti-correlation at scales close to the particle diameter (L ∼ d 50). This

effect does not appear in J and R experiments, as moving particles are summed also over the

perpendicular direction ~y and thus the distances between particles centroids are not bounded

by d 50.

The dispersion index of experiment R indicates that spatial correlations occur even for a

gently sloping bed under subcritical flow conditions. Recall that collective entrainment is

the only cause of spatial correlation in the local model. In experiment R, that is for small

particle diameters and gentle slopes, correlations are likely to originate from entrainment

by coherent turbulent structures rather than from direct particle-particle interactions as the

Stokes number of particles is fairly low (see the discussion about the role played by the particle

Stokes number during viscous particle collisions in chapter II). This may also explain the

fact that the dispersion index drops for scales larger than `c = 5.3 cm: the turbulent sweeps

10. I used the term “less probability” and not “zero probability” since the moving particles in an observation
window are summed over the whole water depth (z direction), so that it is still possible that the distance separating
two moving particles (in the x direction) may be less than the particle diameter.
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Figure 4.20: Experimental dispersion index for experiments B,R and J and comparison with
theoretical predictions (Eq. (4.5.5))

involved in particle entrainment have a characteristic length and occur between turbulent

ejections in a pseudo-periodical way. Thus, particles may appear under-dispersed at scales

equal to the eddies lengths.

Another noteworthy feature of experiment R is the relative magnitude of the fluctuations:

up to 15 times the mean particle activity. Although the B experiments were carried out on a

steeper bed, their fluctuations did not exceed 3 times the mean particle activity. A reasonable

explanation might be that particle diameters in the R experiment were much smaller than in

B or J experiments. As a consequence, turbulent eddies entrain more particles at the same

time, making thus collective effects appear stronger.

Equation (4.5.5) may be adjusted to match the experimental data by varying the collective

entrainment rate (µ). It is worth noting that D andσ have been calibrated independently (see

section 3), so that only µ has to be tuned artificially. Despite this, (4.5.5) agrees extremely well

with the experimental points. The values of µ are reported in table 4.3.
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Unfortunately, the limiting value of the dispersion index I (∞) is reached for the maximum

observation windowL in none of the experiments presented (see table 4.1). Even experiments

J —designed specially to achieve this purpose and by far the longest motion-picture data

available (L ∼ 1 m)— are unable to reach the final plateau. It is still possible to extrapolate

the theoretical expression (4.5.5) to predict the behaviour of fluctuations at larger scales and

to obtain I (∞).

Once µ has been obtained, the theoretical K -function can be compared to each experiment.

From Fig. 4.21, we can see that the theoretical K -function describes experimental data less ac-

curately than the dispersion index does. This could be explained by the fact that an additional

parameter,



γ
�

s , is required in Eq. (3.3.35). Thus, if the measure of



γ
�

s is biased (as it can be

the case for short trajectory samples), the theoretical K -function may also be biased.
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Figure 4.21: Experimental K -function for experiments B,R and J and comparison with theoret-
ical predictions (Eq. (3.3.35)). x units are in meters. The dashed line stands for the Poisson
process case K (x ) = x .

`c can be calculated from the values of µ, σ and D (Tables 4.2 and 4.3). It takes value from

the centimetre (experiments R and B) to the tenth of centimetres (experiment J). Looking
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5. Fluctuations of the particle activity

at equations (3.3.33) and (4.5.5), `c defines the scale where approximately 11 36.8% of the

maximum fluctuations above the mean are observed. In other words, to observe at least 95%

of the overall fluctuations, scales of the order of 20`c should be observed experimentally, that

is about 1 m for experiment B and R, and 3 m for experiments J. This length may be considered

as the minimum size of the volume for the macroscopic model of Ancey et al. [2008] to hold.

In addition to the technological challenge such a long measuring length involves, the ex-

perimental flume might need to be even longer to avoid effects from the input and output

boundary conditions. The saturation length `s a t (see Eq. (3.3.26)) is a good estimator of the

length needed for perturbations induced at the boundary to vanish. It is clear that the bound-

ary conditions of experiments B and J, carried out on relatively short flumes (between 0.5

and 10`s a t ), may give biased results. Moreover, for experimental scales of the order of 20`c ,

it is often impossible to insure the spatial homogeneity of the sediment transport. Indeed,

the instability of the bed-water interface leads inexorably to the development of bedforms

of various wavelengths (from centimetres to hundreds of meters) and thus precludes the

assumption of homogeneity in theory.

The local Péclet number can also be calculated with the experimental values of parameters.

Pe is observed to range from 4 (experiment B) to 14 (experiments J), proving the variety of

modes of transport in bed load transport. Bed load occurring in experiment B is still strongly

diffusive at the correlation length scale while in experiments J, it is mostly advective at this

scale.

5.2 Temporal average

Most bed load measurement devices sample bed load temporally [Bunte & Abt, 2005]. For

instance, weighting bins [Singh et al., 2009] or geophone sensors [Rickenmann et al., 2012]
monitor bed load discharge at a given location over time. In this case, Eq. (4.5.5) cannot be

used to test stochastic predictions. Instead, the fluctuations of the mean number of particles

that pass through a given location during a time period T is sought:

N (x , T ) = 〈u 〉
∫

T

γ(x , t )dt .

The variance of this number is

Var[N (x , T )] = 〈u 〉2
∫

T

∫

T




γ(x , t ),γ(x , t ′)
�

dt dt ′,

= 〈u 〉2
∫

T

∫

T

G (0, t − t ′)dt dt ′. (4.5.6)

11. More exactly, (I (`c )−1)/(I (∞)−1) = e−1 = 36.8%
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Chapter IV. Experiments

B10-5 R0-79 J3-1 J4-1 J5-1
γ̄ 26.9±0.6 1713±51 4.56±0.7 3.87±0.4 2.84± 0.5

ū 0.170±0.001 0.046±0.001 0.310±0.001 0.300±0.001 0.320±0.001

σ 2.72±0.09 1.85±0.09 0.52±0.03 0.50±0.03 0.56±0.03

D 15±2 1.5±0.3 59±2 89± 2 55± 3

µ 1.825±0.020 1.754±0.006 0.447±0.001 0.403±0.002 0.470±0.001

λ 24±3 171±415 0.33±0.06 0.39±0.05 0.27±0.05

`c 4.1±0.3 3.8±0.5 28.7±0.6 29.8±0.7 24.3±0.9

Pe 4.6±1.1 12.2±5 15.1±0.8 10.1±0.5 14.1±1.3

I (∞) 3.0±0.2 18.6±5 7.2±0.5 5.0±0.4 6.0±0.5

`s a t 20±6 47±23 434±33 303±22 345±45

tc 0.24±0.02 0.82±0.2 0.92±0.02 0.99±0.03 0.76±0.03

Table 4.3: Estimates of local model parameters and 95% confidence intervals. γ̄ [particle.m−1],
average particle activity; ū [m.s−1], average particle velocity; σ [s−1], deposition rate; D
[cm2.s−1], particle diffusivity; tr [s] particle velocity relaxation time; λ [particle.m−1.s−1],
particle entrainment rate per meter length; µ [s−1], collective entrainment; `c [cm], correlation
length (`c =

p

D/(σ−µ));Pe [-] local Péclet number (Pe = `c ū /D); I (∞) [-], limiting value of
the dispersion index; `s a t [cm] saturation length (Eq. (3.3.26)); tc [s], correlation time in the
frozen flow hypothesis.

Unfortunately, this integral is too complex to be calculated analytically. Still, estimates can

readily be obtained at largePe (for high average particle velocity). In this case, it can be shown

that the spatial correlation function of the particle activity is projected on the temporal axis

without deformation (the proof is given in appendix A.7). The equivalence between time and

space is then given by t ∼ x/ 〈u 〉. This approximation can be compared to Taylor’s frozen-flow

hypothesis in turbulent flows with a dominant velocity [Moin, 2009]. This hypothesis relies on

the existence of a large mean particle flow which “transport” the spatial particle structures so

quickly that they do not change much during their transport. In this hypothesis, the relative

particle positions in space would correspond exactly to their relative arrival time at given

location, the correlated structures being “frozen”.

Thus, the same statistical behaviour should be found for both temporal and spatial measure-

ments. This should notably be the case for the dispersion index. From eq. (4.5.5), the frozen

flow hypothesis leads to

I (T̃ ) =
Var[N (x , T̃ )]

Mean[N (x , T̃ )]
= 1+

µ

σ−µ

�

1+
e−T̃ −1

T̃

�

, (4.5.7)

with T̃ = T /tc . We introduced tc = `c/ 〈u 〉 as the correlation time that is related to the frozen-

flow hypothesis. Thus, at the high particle velocity limit, the variance of the sampled solid

discharge at a given location has the same dependence on the acquisition duration as the
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Figure 4.22: The frozen particle flow hypothesis, or the link between temporal and spatial
dispersion indices. (Eq. (4.5.5) and Eq. (4.5.7)). (a) experiment B and (b) experiments J.

variance of the number of moving particles has on the observation window length.

In Fig. 4.22, I reported both dispersion indices (spatial and temporal) on the same graph for

experiments B and J. As experiment R is relatively short (0.4 s), it was not used here.

The equivalence between spatial and temporal fluctuations via the Taylor hypothesis is severely

called into question by Fig 4.22. The fluctuations of N (x , T̃ ) are Poissonnian at small time scales

similarly to the fluctuations of N (L̃, t ) . However, the behaviour of both spatial and temporal

dispersion index diverges at larger scales. Indeed, at large time scales, the temporal dispersion

index greatly exceeds the limiting value of the spatial dispersion index in all experiments. For

intermediate time scales, experiments B and J behave differently. The temporal dispersion

index of experiment B increases first slower than its spatial counterpart, but rejoins and

exceeds the latter for scales of the order of 100tc , that is about 22 s. On the other hand, the

temporal dispersion indices of experiments J closely follows the spatial dispersion index for

time scales smaller than 10tc (about 10 s), but beyond that, a net departure between the two

indices is observed.

There may be several explanations of the departure between the two indices. First, the frozen

flow hypothesis might not be valid in the context of sediment transport. Indeed, correlated

structures may change rapidly during their advective motion so that an observer at a precise

location would get a deformed picture of their shape. This explanation is confirmed by looking

at the Péclet number of experiments B and J: the Péclet number of experiment B is rather

small compared to the Péclet number of experiment J while we have shown that the the Taylor

frozen flow hypothesis was valid in the case ofPe →∞. Indeed, at small scales, the temporal

dispersion index of experiment J is closer to the spatial one than in experiment B (Fig. 4.22).

However, this alone does not explain the fact that both indices have not the same limiting

value I (∞). Two reasons may be put forward. First, the apparent plateau of the spatial
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Figure 4.23: I (L), in the frozen flow hypothesis as given by the accelerometer input and output
signals as well as by the particle trajectories. I also reported the correlation length `c , the
experiment length l e x p , the maximum observation window length L and the saturation
length `s a t for comparison.

dispersion index might be closely related to the maximum length of the observation window,

so that a larger observation window, or even a larger experimental flume, would result in a

higher plateau of the dispersion index. The second reason may be related to the apparent

intermittent behaviour of the sediment transport in those experiments. Looking at Fig. 4.5, it is

clear that particles travel by “clusters" that do not change a lot during their passage through the

observation window. These clusters originate upstream of the observation window, and may be

the hallmark of the sediment feeding system. Especially in experiments J, the relaxation length

`s a t is longer than the flume length so that, the influence of the inlet boundary conditions

may affect the results.

The latter supposition can be checked quite easily since the sediment flux at the inlet and

the outlet of the flume were simultaneously monitored with the same technique used for

experiments H (i.e., accelerometers sensors). The temporal dispersion index computed from

particle trajectories and that obtained from the accelerometers are shown in Fig. 4.23, and

follow the same curve. The accelerometer time series being longer than a video sequence,

the limiting value of the dispersion index can be computed for larger time scales (up to

200`c ). On the other hand, the dispersion index of the input flux remains very low at all times,

proving that no spurious correlations were introduced at the inlet by the sediment distribution

system. Thus, the effect of the boundary conditions can be excluded in the explanation of the

anomalously high values of the temporal dispersion index.

The last possible explanation is that the exchange rates, assumed to be constant in order to

derive the theoretical dispersion index, may change with time and space. Indeed, even if the

bed remained nearly flat in all experiments, small changes in bed slope and flow velocity may

severely impact the sediment transport conditions and thus, the correlations observed.
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Figure 4.24: A summary of the time scales involved.

To go further, experimental or numerical studies of bed load transport involving longer spatial

and temporal scales have certainly to be carried out.

6 Summary
In this chapter, a few experimental results were compared to theoretical predictions based on

the models of Ancey et al. [2008] and Ancey & Heyman [2014]. In particular, two experiments (H

and J) were developed during the thesis to obtain high quality samples of particle trajectories

and long time series of bed load flux that allowed precise statistical analysis.

Experimental data agrees relatively well with the birth-death stochastic theory. Indeed, both

Ancey et al.’s [2008]macroscopic model and Ancey & Heyman’s [2014] local picture of the trans-

port process give results comparable to what is observed experimentally (Figs. 4.15,4.17,4.20).

Besides these good results, there are some evidences that the stochastic models are only rough

approximations of the reality of the transport process. For instance, theory poorly describes

the high solid discharge region of the particle flux density function (Fig. 4.15), and also the

K -function (Fig. 4.21). This can be explained by the fact that strong assumptions were made

in order to obtain analytical results. For instance, to separate the transport of particles from

the particles exchanges with the bed, it was assumed that the particle velocity relaxation time

was much smaller than any other time scales of the problem. This approximation is somewhat

called into question by looking at Fig. 4.24, where time scale estimates for all experiments are

shown. In spite of this, the model has been found to perform well even in the small scales (∆x ,

∆t → 0) where the assumption is expected to fail (see for instance, the spatial dispersion index

of Fig. 4.20).
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V CONCLUSION

1 Summary of results
This thesis has provided an experimental study of the fluctuations arising in bed load transport.

Based on the study of individual particle motions, namely entrainment, transport and deposi-

tion, stochastic equations governing the particle activity at various scales were compared to

various experimental data sets.

In the first stage of the thesis, a macroscopic picture of the fluctuations was studied using

a simple birth-death model recently published [Ancey et al., 2008]. Two applications were

proposed. First, the probability density function of the volume averaged bed load flux was

compared to experimental data [Ancey & Heyman, 2014]. The probability density is the sum

of two contributing terms: a Dirac Delta function, encoding the relatively frequent periods

without any solid flux, and an infinite sum of weighted Gaussian distributions, describing

the relative probabilities of finding n moving particles in the volume with velocities u i . This

result assumes that the number of particles and their velocities are independent variables

[Böhm et al., 2004]. The second result is related to the time average solid flux or, equivalently,

the flux measured at a precise location in time. By slightly modifying the original model, the

probability density function of the inter-arrival time of particles could be derived [Heyman

et al., 2013]. The latter has a rather specific form due to the presence of collective entrainment,

since two distinct time scales clearly appear in the probability density. This effect was referred

to as “separation of time scales” and was shown to provide an additional evidence of the

importance of collective dynamics in bed load transport.

In the second stage of the thesis, we studied the applications of Ancey & Heyman’s [2014]
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stochastic model, which itself is based on the birth-death model of Ancey et al. [2008]. We

showed that this model is able to describe the average transport process as well as spatio-

temporal fluctuations in particle activity. These fluctuations, taking the shape of coherent

structures of particle positions, were found to originate from the coupled action of the particle

exchanges with the bed and the transport of particles by the flow [Heyman et al., 2014].
Coherent structures were found to develop and to propagate only when collective entrainment

was considered (µ > 0). They can be related to experimental evidence of clustering during

particle transport [Ancey et al., 2006; Drake et al., 1988].

The local model is based on five parameters, each of which has a physical meaning: the en-

trainment rate λ, the collective entrainment rate µ, the deposition rateσ, the average particle

velocity 〈u 〉 and the particle diffusivity D. The first two can be estimated via the method of

moments (with Eqs. (3.3.22) and (4.5.3)) while the last three can be calibrated independently.

Two characteristic lengths emerge from the model: a saturation length `s a t (Eq. (3.3.26))

quantifying the length needed for particle activity to recover its average equilibrium value,

and a correlation length `c =
p

D/(σ−µ) which describes the typical size of fluctuations

in particle activity. We also defined a local Péclet number Pe = 〈u 〉 l c/D that describes the

relative importance of advection against diffusion of particles at the correlation length. This

number plays an important role in the shape of the spatio-temporal correlation function

(Eq. (3.3.38)).

The stochastic model was tested against various experimental data of particle trajectories, and

showed good overall agreement, notably in the description of the spatial dispersion index. The

model also provides interesting guidelines for researchers studying the fluctuations of bed load

transport rates. To capture 95% of the fluctuations of particle activity, an experiment should

be designed such that it provides a measurement window larger than 20`c . The difficulty lies

in the fact that `c is not known a priori, but has to be computed from parameter estimates or

obtained experimentally. Another issue arises since, at scales of the order of 20`c , it is generally

difficult to ensure experimentally the homogeneity of the bed load transport process. Indeed,

bedforms inexorably develop and migrate, locally modifying the flow and in turn the sediment

transport [Best, 2005]. Their wavelengths range from centimetres (ripples) to hundreds of

meters (bars). Model parameters may thus vary in time and space, precluding the use of the

results derived in the case of stationary and homogeneous transport conditions.

This leads us to question the use of average equations to describe bed load transport. As

fluctuations were shown to span scales often larger than the ones at which bed load can

be considered stationary and homogeneous —or even at scales larger than the experiment

size— average equations (such as Eq. (3.3.21)) may fail to describe the non-linear interactions

between the bed load fluctuations and the system boundaries. Consequently, a correct

description of bed load transport cannot avoid the modelling of local fluctuations and their

interactions with the system boundaries. These particular systems are sometime called “far

from equilibrium” to express their tendency to exhibit locally large fluctuations compared to

their mean behaviour [Nicolis & Prigogine, 1977].
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2 Perspectives
The parameter estimation of stochastic models, such as the local model presented in this

thesis, is fraught with difficulties. Indeed, it is likely that no bed load transport system could be

found, in the laboratory or in nature, over scales small enough to be assumed in a stationary

and homogeneous state, but large enough to measure the largest fluctuations of particle

activity. We need thus to find other ways than the method of moments to estimate the model

parameters. A general method, such as maximising a likelihood function —that would depend

explicitly on the boundary conditions— may be more suitable [Iacus, 2008]. To construct such

a space-time dependent function, a numerical solution of the Fokker–Planck equation (3.3.15)

constrained by the experimental boundary conditions (such as the particle feeding system,

the flume length, ...) might be of particular interest. Alternatively, Monte Carlo simulations

of the stochastic equation (3.3.19) may also be envisioned, but at a greater computational

cost. As model parameters are also expected to change with local modifications of the bed

slope or the fluid flow, a similar likelihood function, inhomogeneous and unsteady, may be

useful to estimate the dependence of parameters on such variables, overcoming the restrictive

(and erroneous) assumption of a system evolving around a stationary and homogeneous

equilibrium.

Now, imagine that the local stochastic model is coupled with the Exner and the Saint-Venant

or Navier–Stokes equations. By a simultaneous and local description of the bed load transport

fluctuations, as well as the fluid flow and the bed surface evolution, we may now be able to

give a more accurate picture of the whole transport process. Interestingly, bedform growth

may be triggered by sufficiently high bed perturbations, even when linear stability analysis

predicts the stability of the bed-water interface. This may be the case with the growth of

antidunes as they were proved to follow from a sub-critical bifurcation [Balmforth & Vakil,

2012; Colombini & Stocchino, 2008]. Thus, a coupled model may allow for a better description

of the development of these particular bedforms.

The proposed model may also be generalized to a second spatial dimension. Indeed, the

motion of particles is only rarely unidirectional, as particle impacts and turbulent flow velocity

tend to modify particle trajectory. Thus, a dispersion of particles in the direction normal to

the mean velocity vector may also occur [Seizilles et al., 2014]. The corresponding transverse

diffusivity is expected to be different than the diffusivity found in the mean particle flow

direction, so that the overall dispersion process is anisotropic. Despite this and thanks to the

overall linearity of the stochastic equation (3.3.19), the addition of a transverse diffusive flux is

feasible.
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A.1 Poisson representation
In this appendix, we show that the master equation (3.2.4) governing the evolution of P(n , t )
(the probability of observing n moving particles in an observation window) greatly simplifies

by a transformation called Poisson representation [Gardiner & Chaturvedi, 1977].

A.1.1 Principle

Let us assume that P(n , t ) can be written as a superposition of Poisson distributions with rates

a

P(n , t ) =

∫

R+

e−a a n

n !
f (a , t )da , (A.1.1)

where f (a ) is a positive real-valued function characterizing the relative probability of observing

the Poisson rate a .

This representation can be seen as a Laplace-like transformation that allows us to pass from

a discrete probability space, referred to as the n-space, to a continuous probability space,

hereafter called the a -space. In general, it cannot be taken for granted that the function f

is a genuine probability density function. Indeed, the existence and uniqueness of f can be

shown, the constraint
∫

R+ f (a )da = 1 is satisfied, but it cannot be demonstrated that f is

always positive [Gardiner & Chaturvedi, 1977].
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In the present case, it will be shown that such a condition is systematically fulfilled and so,

f is a genuine probability density function. The Poisson representation is thus a technique,

which, similarly to generating functions, allows to transform a discrete probability space into

a continuous probability space, making analytical calculations much easier.

Moreover, the Poisson representation enjoys many interesting properties, the most important

being that the forward master equations (3.2.4) in the n-space are represented by a Fokker–

Planck equation in the a -space. Another interesting feature is that the moments in the n-

and a -spaces are related. Indeed, it can be easily checked that the p -factorial moment of n is

equal to the p -moment of a :

〈n (n −1)(n −2) . . . (n −p +1)〉 =
∞
∑

n=0

n (n −1) . . . (n −p +1)P(n , t )

=

∫

R+

∞
∑

n=0

n (n −1) . . . (n −p +1)
e−a a n

n !
f (a )da

=

∫

R+

e−a a n−p

(n −p )!
a p f (a )da (A.1.2)

=

∫

R+
a p f (a )da

=
¬

a p

¶

.

This implies that 〈n〉 = 〈a 〉 and 〈n 2〉 = 〈a 2〉+ 〈a 〉. This property will be quite useful in the

following when mapping the a - and n-spaces.

A.1.2 Derivation of a Fokker–Planck equation for f (a , t )

We first express the generating function in the Poisson representation,

G (z , t ) =
∞
∑

n=0

z n

∫

C

e−a a n

n !
f (a , t )da =

∫

C
e a (z−1) f (a , t )da , (A.1.3)

where the identitye x =
∑∞

k=0 x k /k ! was used and where the integration domain C will be

defined later. In a functional form, Eq. (A.1.3) reads

G (z , t ) =
�

K , f
	

, (A.1.4)

where the braces and K are respectively

�

f , g
	

=

∫

C
f (x )g (x )dx , K (z , a ) = e a (z−1). (A.1.5)
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Replacing the generating function into the master equation (3.2.4) gives

∂

∂ t
G (z , t ) = L z [G ], L z [G ] =λ∆x (z −1)+

¦

σ+µz 2− (µ+σ)z
© ∂G

∂ z
. (A.1.6)

Note that

∂

∂ t
G (z , t ) =

�

K ,
∂ f

∂ t

�

, (A.1.7)

such that if we find an operator M ∗
a such that L z [G ] =

¦

K , M ∗
a [ f ]

©

, we would have an equation

for f :

�

K ,
∂ f

∂ t

�

=
¦

K , M ∗
a [ f ]

©

⇐⇒
∂ f

∂ t
=M ∗

a [ f ]. (A.1.8)

Keeping this objective in mind, we first expand L z [G ] using (A.1.4). Noting that ∂G /∂ z =
�

a K , f
	

,

L z [G ] =
��

λ∆x (z −1)+a (z −1)(µz −σ)
�

K , f
	

. (A.1.9)

Further noticing that ∂ K /∂ a = (z −1)K and ∂ 2K /∂ a 2 = (z −1)2K , the last equation reads

L z [G ] =
��

(λ∆x −a (µ−σ))
∂

∂ a
+aµ

∂ 2

∂ a 2

�

K , f

�

=
�

M a [K ], f
	

. (A.1.10)

The task now consists in finding the adjoint operator M ∗
a [ f ] such that

�

M a [K ], f
	

=
¦

K , M ∗
a [ f ]

©

.

This can be achieved by integrating
�

M a [K ], f
	

by parts, and cancelling boundary terms:

�

M a [K ], f
	

=

∫

C
M a [K ] f (a )da

=

∫

C
(λ∆x −a (µ−σ)) f (a )

∂ K

∂ a
da +

∫

C
aµ f (a )

∂ 2K

∂ a 2 da

=
�

K (λ∆x +a (µ−σ)) f +µa f
∂ K

∂ a
−µK

∂ a f

∂ a

�

∂C
(A.1.11)

+

∫

C
K

�

µ
∂ 2

∂ a 2 (a f )−
∂

∂ a

�

(λ∆x +a (µ−σ)) f
�

�

da .

Assuming that f is a probability density function, it must tend to zero in+∞ to be normalizable.

Furthermore, since a is the parameter of a Poisson distribution, it is strictly positive. Thus

f (a ) = 0 if a < 0. As a consequence, the boundary terms of Eq.(A.1.12) must vanish for
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C = [0,+∞[. Thus:

�

M a [K ], f
	

=
¦

K , M ∗
a [ f ]

©

, M ∗
a [ f ] =µ

∂ 2

∂ a 2 (a f )−
∂

∂ a

�

(λ∆x +a (µ−σ)) f
�

. (A.1.12)

The governing equation for f is then

∂ f

∂ t
=µ

∂ 2a f

∂ a 2 −
∂

∂ a
[(λ∆x −a (σ−µ)) f ]. (A.1.13)

This is a second-order nonlinear parabolic diffusion equation, which has the structure of a

Fokker–Plank equation.

This opens up interesting avenues for further use and interpretation (see §A.1.4). Solutions

to (A.1.13) have been studied by Feller [1951] and Sacerdote [1990]. Note that (A.1.13) is

singular at a = 0 (transformation from a parabolic to a hyperbolic problem). In all cases

encountered here (σ−µ > 0 and λ∆x > 0), the solution is a genuine probability density

function (a noncentral chi-square distribution) [Cox et al., 1985].

A.1.3 Steady state solution

When µ= 0 (no collective entrainment), the diffusive term in (A.1.13) cancels out, and (A.1.13)

becomes hyperbolic:

∂ f

∂ t
+
∂

∂ a
[(λ∆x −a (σ−µ)) f ] = 0. (A.1.14)

A stochastic process whose Fokker–Planck equation contains only a drift term is called a

Liouville process, and is purely deterministic [Gillespie, 1991]. Thus, for µ= 0, the stochastic

process governing the Poisson rate variable a is deterministic. One can solve the initial-value

problem (A.1.14) with the method of characteristics:

D f

Dt
= f σ along a (t )with

da

dt
=λ∆x −a (t )σ, (A.1.15)

a (0) = a 0, f (a (0)) = f 0. (A.1.16)

A continuous solution of (A.1.16) is

f (a (t )) = f 0eσt , a (t ) =
λ∆x

σ
+
�

a 0−
λ∆x

σ

�

e−σt . (A.1.17)
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Figure A.1: Time evolution of f (a , t ) (Eq (A.1.14)) for various t . λ∆x = 5, σ = 1 and f 0 a
Gaussian density function of mean 2 and standard deviation 0.5.

When t →∞, for any initial conditions f (a 0), all characteristics tend to λ∆x/σ. Meanwhile

f (a (t ))→∞ when t →∞, so that any initial density function f 0 will concentrate its mass

around the value a∞ =λ∆x/σ (Fig. A.1). Thus, in the case µ= 0, the steady state distribution

is the Dirac Delta function:

f s (a ) =δ (a −a∞) . (A.1.18)

Consequently, in the n-space, the stationary distribution of the number of moving particles

when µ= 0 is:

Ps (n ) =

∫

R+

e−a a n

n !
δ (a −a∞)da =

e−a∞a n
∞

n !
, (A.1.19)

which is the Poisson distribution with mean a∞ =λ∆x/σ, in agreement with equation (3.2.8).

Put in other words, any non-Poissonian initial condition for P(n , t = 0)will always relax to the

Poisson distribution when µ= 0 because the Poisson rate a tends to the sure value a∞.

I now consider the case whereµ> 0. In the steady state (when ∂t f = 0), integrating Eq. (A.1.13)

reads :

µ
∂ a f

∂ a
= (λ∆x −a (σ−µ)) f + c1. (A.1.20)

For a →∞, f → 0 and a f → 0 providing that the first moment of f exists. Thus ∂ a f /∂ a → 0
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and the constant of integration c1 must be null. Integrating once again:

f (a ) = c2aλ∆x/µ−1 exp

�

−
σ−µ
µ

a

�

(A.1.21)

where c2 can be determined with the normalization condition
∫

R+ f da = 1. Finally, the gamma

distribution Ga(α,β ) is recovered:

f (a ) =G a (a ;α,β ) =
aα−1 exp(−a/β )

Γ[α]βα
, (A.1.22)

with α=λ∆x and β =µ/(σ−µ).

Coming back to the n-space, the distribution of moving particle in the observation window is:

Ps (n ) =

∫

R+

e−a a n

n !
Ga(a :α,β )da =NegBin(n , r, p ) =

Γ(r +n )
Γ(r )

p r (1−p )n , (A.1.23)

with r =α=λ∆x/µ and p = 1/(1+β ) = 1−µ/σ. The solution (3.2.5), obtained with generating

function, is retrieved within the Poisson representation framework.

A.1.4 Langevin representation

As (A.1.13) takes the form of a Fokker–Planck equation with the following drift and diffusion

functions A(a ) = λ∆x +a (µ−σ) and D(a ) = 2µa , the process could also be interpreted in

terms of a Langevin stochastic equation for a (t ):

da = A(a )dt +
p

D(a )dW (t ) = (λ∆x −a (σ−µ))dt +
p

2µa dW (t ), (A.1.24)

where dW (t ) represents the time derivative of a Wiener process W (t ) (e.g., a Brownian random

walk). dW (t ) is also called “white noise” since it is uncorrelated in time. Note that the

amplitude of the noise term is modulated by the collective entrainment parameter µ. In

that case, the noise is said to be multiplicative (in contrast with an additive noise which is

independent of the state of the process, as it was assumed in Jerolmack & Mohrig [2005] for

instance).

In the absence of collective entrainment (µ = 0), the process is purely deterministic in the
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a -space:

da

dt
=λ∆x −a (σ−µ)⇒ a (t ) =

λ∆x

σ
+
�

a 0−
λ∆x

σ

�

exp[−σt ], (A.1.25)

which is equivalent to Eq. (A.1.17).

When collective entrainment occurs (µ> 0), the process is random, with a multiplicative noise

term. In that case, the solution to (A.1.24) subject to a (0) = a 0 is

a (t ) = a∞+(a 0−a∞)e−(σ−µ)t +
p

2µe−(σ−µ)t
∫ t

0

e(σ−µ)t
′
p

a (t ′)dW (t ′), (A.1.26)

where a∞ = 〈a 〉s =λ∆x/(σ−µ) denotes the average stationary solution of a when t →∞.

A.1.5 Advantage of the Poisson representation

Let us summarize the approach. We started with a counting problem, in which we were inter-

ested in characterizing the evolution of N particles in a control volume, knowing that particles

could be entrained (through individual or collective entrainment mechanisms controlled by

λ∆x and µ, respectively) or deposited (at a rateσ). The governing equation for N is the master

equation (3.2.4).

Instead of working in the discrete probability space of the random variable N , it is possible

to work in a continuous probability space, with the random variable a . The Fokker–Planck

equation governing the probability function of a is obtained without any approximation,

unlike Kramers-Moyal or system-size expansions, as used by Ancey [2010]. The resulting

representation is strictly equivalent to the original master equation (3.2.4) and thus its validity

does not depend on the system size.

This absolute equivalence is a great advantage compared to system size expansions: it allows

us to study stochastic systems that are not in the thermodynamic equilibrium limit. Indeed,

the Poisson representation is particularly suited for finite size systems where only a few

particles are reacting. In this representation, the limit V → 0, or N (t )→ 0, is perfectly tractable.

Thus, the Poisson representation allows for the development of a local stochastic theory for

bed load. This is the topic of chapter 3.

It is worth noting that, any uni-molecular birth of death event—an event involving only one

particle (e.g., entrainment and deposition)— does not induce stochastic component in the

Poisson representation. Indeed, the Fokker–Planck equation (A.1.13) has only a drift term

whenµ= 0. In other words, a stochastic process involving only reactions of individual particles

can be treated as a purely deterministic process in the Poisson representation. In fact, this
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shows that such simple stochastic processes are always Poisonnian. Again, this will appear

very helpful in chapter 3 where I will consider local exchanges between observation windows.

These exchanges will be easily handled in the Poisson representation as they involve only

individual particles.

A.2 Link to the BCRE model
The BCRE model presented by Bouchaud et al. [1995] gives the density of rolling grainsR as

the solution of

∂tR +∇ (VR) =∇2 (DR)−Rα∇h, (A.2.1)

where∇h stands for the bed slope variations close to the angle of repose and α is a constant.

Thus, in their model, when the slope is bigger than the angle of repose (∇h < 0) the second

term on the left-hand side acts as a source in the equation. In that case, the number of rolling

grains increases exponentially, leading to a local avalanche. On the contrary, when the slope

is less than the angle of repose (∇h > 0), grains are mainly deposited, causing the avalanche

to stop (R = 0). The resemblance with Eq. (3.3.19) is striking. In the latter, an exponential

increase in the number of moving particles occurs when the collective entrainment rate is

greater than or equal to the deposition rate (µ≥σ). In contrast with (A.2.1), when deposition

is greater than collective entrainment, a non trivial steady-state solution exists, due to the

uncorrelated particle entrainment process (with rate λ).

Our model could thus be seen as a “BCRE” model that includes an additional random pertur-

bation. Though the present work concerns bed load transport, and we restrict ourselves to the

steady-state case (µ <σ), the limit µ→σmight be of particular interest for other granular

flows. In particular, (3.3.19) may also be applicable to certain dry and dilute granular flows,

and thus may allow for their statistical description.
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A.3 Point process
It is possible to draw an analogy between the Poisson representation and the point process

framework. Point processes are discrete processes in time or space. They consist in an

ensemble of singular events, or objects (points) distributed in the continuum space. For

instance, the locations of pine trees in a forest, the failure times of a light bulb, or even the

arrival times of particles (chapter IV section 4.2) can all be appreciated through the point

process framework [Cox & Isham, 1980].

Point processes are generally described with their rate function η, defined as the expected

number of points per unit space [Cox & Isham, 1980]. The simplest case is when the rate

function is constant in time and space. In that case, counting the points in a given area S

results in a Poisson distributed random variable of rate ηS. Those processes are called Poisson

point processes. When the rate function is a function of space and/or time, η= η(x , t ), the

process is called an inhomogeneous Poisson point process. Eventually, when the rate function

is also a random variable, the process is called a doubly stochastic point process, or Cox

process [Cox & Isham, 1980].

Now, consider an instantaneous picture of the transport process, for instance by looking

at Fig. 4.5 at fixed time. Moving particles are spread on the real line and thus also define

a point process. We saw that, in the Poisson represention, the Poisson activity η(x , t ) was

a random variable following (3.3.19). Thus, the process I described previously is a doubly

stochastic point process for µ> 0 and a Poisson process for µ= 0. To summarize, starting from

a multivariate Markov process defined on a lattice and described by a multivariate master

equation, I ended up with a model belonging to a general class of point processes, called

doubly stochastic processes, when collective entrainment is considered.

The two approaches are related through the Poisson representation. The advantage of using

the birth-death framework lies in the facility it offers to derive a multivariate master equation.

However, it does not describe the individual location of particles (they are summed in a lattice

cell). On the other hand, viewing particle transport as a spatial point process allows to study

relationships existing among individual particles, such as the mean particle distance, the

two-particles density function... Those can then be used as closure equations of statistical

models [Herczynski & Pienkowska, 1980].

To prove the pertinence of the preceding comparison between the two approaches, I show

how it is possible to compute a probable realization of particle positions from Eq. (3.3.19).

As noted earlier, by means of the Poisson representation, η(x , t ) can be interpreted as the

random rate of a Poisson distribution. First, Eq. (3.3.19) needs to be numerically solved to

get a realization of η(x ) at a given time t . This can be achieved using standard methods for

stochastic differential equations (for instance an Euler–Maruyama scheme [Kloeden & Platen,

2011]). Once a realization of η(x ) has been obtained, I proceed as follows. A constant C >η(x )
is chosen and then a realization of point positions according to a Poisson process with rate C is

87



Appendix A. Theory

0

5

10

0 2 4 6 8 Distance (m)

η(x , t ) Modelled Pr. Poisson Pr.

Figure A.2: Simulation of the Poisson rate process (Eq. (3.3.19)) and corresponding possible
realization of particle positions. The Poissonian case (with the same mean rate) is also plotted
for the sake of comparison. Model parameters are λ = 0.05 particles/m, µ = 9.99 s−1, σ =
10 s−1, 〈u 〉= 0.1 m s−1 and D = 0.008 m2s−1

computed. This can be achieved by taking the distance between points to be an exponentially

distributed random variable with parameter 1/C , for instance. Then, a point k is randomly

selected or discarded according to the criteria:

if r < η(xk )/C , keep point;

if r > η(xk )/C , delete point;

where r is drawn from a uniform distribution in [0, 1]. The remaining points form a possible

observation of particle positions according to the model. In Fig. A.2, it is possible to observe

the clustering of particles around the region of high η(x ) values, while for the Poisson process,

particles positions are purely random so that no clustering appears. The clustering of particles

is a special feature of the local model (when µ > 0) and can be quantified by the study of

second moments.

A.4 Average behavior
In the following, I denote the Fourier transform of a function f by its capital letter F . Using

the Fourier transform in the space variable,




γ∗(x̃ , t̃ )
�

=
1

2π

∫ +∞

−∞
Γ(ω, t̃ )e iωx̃ dω, (A.4.1)

eq. (3.3.27) can be written as

dΓ(ω, t̃ ) =−
�

ω2+ iωPe +1
�

Γ(ω, t )dt̃ . (A.4.2)
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Given the initial condition

Γ(ω, 0) =

∫ +∞

−∞
γ0δ(x̃ )e−iωx̃ dω= γ0, (A.4.3)

we can solve (A.4.2):

Γ(ω, t̃ ) = γ0 exp
�

−
�

ω2+ iωPe +1
�

t̃
�

. (A.4.4)

The inverse Fourier transform of (A.4.4) is




γ(x̃ , t̃ )∗
�

=
γ0

p

4πt̃
exp

�

−
(x̃ −Pe t̃ )2

4t̃
− t̃

�

. (A.4.5)

A.5 Spatial correlation function
Let g (x ,x ′, t ) denote the spatial correlation function of the Poisson density variable η(x , t ). By

definition:

g (x ,x ′, t ) =



η(x , t ),η(x ′, t )
�

≡



η(x , t )η(x ′, t )
�

−



η(x , t )
�2 . (A.5.1)

Taking the differential of g and using Itō’s lemma 1,

dg (x ,x ′, t ) = d



η(x , t )η(x ′, t )
�

−d
�




η(x , t )
�2
�

=



dη(x , t )η(x ′, t )
�

+



η(x , t )dη(x ′, t )
�

+



dη(x , t )dη(x ′, t )
�

,

where the last term in the right hand side of the previous equation is an additional quadratic co-

variation term arising in the integration by parts of stochastic integrals. Note that d
�




η(x , t )
�2
�

is zero by definition of the average. Using Eq. (3.3.18) and Eq. (3.3.22), Eq. (A.5.2) becomes

dg (x ,x ′, t ) = D
�

∂ 2/∂ x 2+ ∂ 2/∂ x ′2
�




η(x , t )η(x ′, t )
�

dt

− 〈u 〉
�

∂ /∂ x + ∂ /∂ x ′
�


η(x , t )η(x ′, t )
�

dt (A.5.2)

− 2(σ−µ)



η(x , t )η(x ′, t )
�

dt +2



η
�

s

�

λ+µδ(x −x ′)
�

dt .

1. Itō’s lemma is the stochastic equivalent to the chain rule (differentiation of functions of continuous variables).
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In a spatially homogeneous situation, g (x ,x ′, t ) is a function of r = |x − x ′| only, which is

denoted by g (r, t ). Thus, substituting Eq. (A.5.1) into Eq. (A.5.3), we obtain:

D
∂ 2 g s (r )
∂ r 2 − (σ−µ)g s (r )+µ




γ
�

s δ(r ) = 0, (A.5.3)

with r = |x −x ′|. One can simplify Eq. (A.5.3) by rescaling the variable r by r̃ = r /`c ,

∂ 2 g s (r̃ )
∂ r̃ 2 − g s (r̃ )+




γ
�

s

`c

µ

σ−µ
δ(r̃ ) = 0, (A.5.4)

with `c =
p

D/(σ−µ). Taking the Fourier transform of (A.5.4), we obtain the algebraic equa-

tion

G (ω) =



γ
�

s

`c

µ

σ−µ
1

ω2+1
, (A.5.5)

with G the Fourier transform of g s andω the angular frequency. The Fourier inverse of Eq.

(A.5.5) is given by

g s (r̃ ) =



γ
�

s

2`c

µ

σ−µ
exp (−|r̃ |). (A.5.6)

Hence




η(x ),η(x ′)
�

s =



γ
�

s

2`c

µ

σ−µ
exp

�

−
|x −x ′|
`c

�

. (A.5.7)

A.6 Spatio-temporal correlation function
We want to solve the equation

∂G (x , t )
∂ t

=D
∂ 2G (x , t )
∂ x 2 −〈u 〉

∂G (x , t )
∂ x

− (σ−µ)G (x , t ), (A.6.1)

with initial condition G (x , 0) given by the solution of the stationary spatial correlation function,

Eq. (3.3.33). Taking the dimensionless variables t̃ = (σ−µ)t and x̃ = x/`c one can simplify Eq.

(A.6.1),

∂G (x̃ , t̃ )
∂ t̃

=
∂ 2G (x̃ , t̃ )
∂ x̃ 2 −Pe

∂G (x̃ , t̃ )
∂ x̃

−G (x̃ , t̃ ), (A.6.2)

withPe = 〈u 〉`c/D. The Fourier transform of Eq. (A.6.2) reads

∂ G (ω, t̃ )
∂ t̃

=−(ω2+Pe iω+1)G (ω, t̃ ), (A.6.3)
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with G the Fourier transform of G andω the angular frequency. The Fourier representation of

the initial condition Eq. (3.3.33) is

G (ω, 0) =



γ
�

s

`c

�

1+
�

µ

σ−µ

�

1

ω2+1

�

, (A.6.4)

so that the solution of Eq. (A.6.3) is

G (ω, t̃ ) =Gd (ω, t̃ )+Gr (ω, t̃ ), (A.6.5)

with

Gd (ω, t̃ ) =



γ
�

s

`c
exp

�

−(ω2+Pe iω+1)t̃
�

,

Gr (ω, t̃ ) =



γ
�

s

`c

µ

σ−µ
exp

�

−(ω2+Pe iω+1)t̃
�

ω2+1
. (A.6.6)

The inverse Fourier transform of Eq. Gd (ω, t̃ ) is

Gd (x̃ , t̃ ) =



γ
�

s

2`c

p

πt̃
exp

�

(x̃ −Pe t̃ )2

4t̃
− t̃

�

. (A.6.7)

Computing the inverse of Gr (ω, t̃ ) is a more difficult task. The convolution property of Fourier

transforms gives

F−1 {F1× F2}= f 1 ∗ f 2, (A.6.8)

where Fi is the Fourier transform of f i and ∗ the convolution operator. Gr (ω, t̃ ) is the product

of two functions whose Fourier inverses are

F−1
�

1

ω2+1

�

=
exp(−|x |)

2
, (A.6.9)

F−1
¦

exp
�

−ω2t̃
�©

=
exp

�

−x 2/(4t )
�

p

4πt̃
, (A.6.10)

so that the Fourier inverse of Gr (ω, t̃ ) is given by

Gr (x̃ +Pe t̃ , t̃ ) =



γ
�

s

`c

µ

σ−µ
exp

�

−t̃
�

2
p

4πt̃

∫ +∞

−∞
exp

�

−|x̃ − y |
�

exp

�

−y 2

4t̃

�

dy .
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Knowing the value of the integrals

∫ x

−∞
exp(y )exp

�

−y 2

4t

�

dy =
p
πt exp(t )erfc

�

2t −x

2
p

t

�

,

and

∫ ∞

x

exp(−y )exp

�

−y 2

4t

�

dy =
p
πt exp(t )erfc

�

2t +x

2
p

t

�

,

where erfc is the complementary error function (e.g. erfc(x )=1-erf(x )), we can obtain a general

solution for Eq. (A.6.11),

Gr (x̃ , t̃ ) =



γ
�

s

4`c

µ

σ−µ

§

exp
�

x̃ −Pe t̃
�

erfc
�

(1−Pe /2)
p

t̃ + x̃/(2
p

t̃ )
�

+ exp
�

Pe t̃ − x̃
�

erfc
�

(1+Pe /2)
p

t̃ − x̃/(2
p

t̃ )
�ª

.

A.7 Equivalence between spatial and temporal
correlations at largePe

In this appendix, we prove that the temporal correlation function (at a given location) G (0, t̃ )
(Eq. (3.3.37)) tends to the spatial correlation function




γ(x̃ ),γ(0)
�

s (Eq. (3.3.33)) whenPe →∞)

with the correspondence between time and space given by x̃ ∼Pe t̃ . For x̃ = 0, Gr simplifies to

Gr (0, t̃ ) =



γ
�

s

4`c

µ

σ−µ

§

exp
�

−Pe t̃
�

erfc
�

(1−Pe /2)
p

t̃ )
�

+exp
�

Pe t̃
�

erfc
�

(1+Pe /2)
p

t̃ )
�ª

.(A.7.1)

The last expression can be further simplified in the limit ofPe →∞ by taking the asymptotic

expansions of complementary error function in ±∞,

lim
y→∞

erfc(y ) =
e−y 2

p
π

�

1

y
+O(y −3)

�

,

lim
y→−∞

erfc(y ) = 2−
e−y 2

p
π

�

1

y
+O(y −3)

�

.
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Introducing these limits into Eq. (A.7.1), and with a little algebra, we find that

lim
Pe→∞

Gr (0, t̃ ) '



γ
�

s

2`c

µ

σ−µ
exp

�

−Pe t̃
�

. (A.7.2)

To find the limit of Gd at largePe , we first consider the case of t̃ > 0. For x̃ = 0, Gd simplifies to

Gd (0, t̃ > 0) =



γ
�

s

2`c

p

πt̃
exp

�

−(Pe
2/4+1)t̃

�

, (A.7.3)

When t → 0, at fixedPe and x̃ , we have the limit

lim
t̃→0

Gd (x̃ , t̃ )'



γ
�

s

2`c

p

πt̃
exp

�

−(x̃ −Pe t̃ )2

4t̃

�

'



γ
�

s

`c
δ(x̃ ). (A.7.4)

Finally, to leading order, we have

lim
Pe→∞

G (x̃ , t̃ ) '



γ
�

s

`c
δ(x̃ )+




γ
�

s

2`c

µ

σ−µ
exp

�

−Pe t̃
�

. (A.7.5)

We can recognize in Eq. (A.7.5) the spatial correlation function (3.3.33) with Pe t̃ = x̃ . This

proves the equivalence between spatial and temporal correlations of particle activity at large

Pe .
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B EXPERIMENTS

B.1 Velocity threshold
The value of the velocity threshold discriminating moving from resting particles may have a

strong impact on the results. To show this, I consider the values of the deposition rateσ, the

relaxation time tr and the diffusivity D for different velocity thresholds applied to experiments

B10-5 and J3-1 (Fig. B.1).

It can be noted from Fig. B.1 that the velocity threshold has a strong influence on the esti-

mated value of parameters. It is strongly determinant in experiment B10-5 while slightly less

important in experiment J3-1. In experiment B, the transport of particles involved at least

three different mechanisms: (i) bed creeping at extremely low velocities, (ii) particle rolling

motion at low velocities and (iii) particle saltation at medium and high velocities. Changing

the threshold thus favours or penalizes one mode of motion against another. It is worth noting

the abrupt decrease in particle flux when the threshold increases in experiment B10-5, proving

that a lot of particles move rather slowly inside the bed layer.

In contrast, the bed load flux of experiment J3-1 is not that sensitive to the threshold value.

This can be explained by the fact that particles mainly move in saltation. Indeed, the rolling

motion is limited by the non-spherical shape of particles while bed creeping is absent due to

high friction contact between particles.

More generally, increasing the velocity threshold results in a decrease of the bed load flux

q̄s together with an increase of the mean sediment velocity ū and a decrease of its standard

deviationσu . It also results in a decrease of the velocity relaxation time tr and of the apparent
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Figure B.1: Sensibility of computed parameters depending on the values of the velocity
threshold for experiment B10-5 (black squares) and experiment J3-1 (orange circles).
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diffusivity rate D. This may be explained by the fact that fewer and fewer rolling and sliding

particles are counted as moving when the threshold is increased so that the bulk dynamics,

mainly constituted of saltating particles, appears more uniform.

The deposition rate σ has a more complex dependence on velocity threshold. On the one

hand, decreasing the velocity threshold favours long trajectories, that is, low deposition rates.

In the other hand, increasing the velocity threshold may also decrease deposition rates as slow

particles – more likely to deposit than fast particles– are not taken into account in the moving

phase. As pointed out previously, such a threshold is arbitrary and does not rely on physical

bases. To overcome this issue of sensibility, a full phase-space modelling of positions and

velocities may be considered. In this framework, no criteria separating resting from moving

particles would have to be postulated.

B.2 An album of particle motions
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Figure B.2: Particle trajectories in experiment J5-1. Colours encode velocity (in m/s).
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Figure B.3: Particle trajectories in experiment J3-1. Colours encode velocity (in m/s).

99



Appendix B. Experiments

11

12

13

14

15

16

0.2 0.4 0.6 0.8 1

T
im

e
(s

)

Distance (m)

0 0.2 0.4 0.6 0.8 1

Figure B.4: Particle trajectories in experiment J4-1 (second run). Colours encode velocity (in
m/s).
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Figure B.5: Particle trajectories in experiment J4-1 (fourth run). Colours encode velocity (in
m/s).
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B.3 Derivation of the probability function of
the inter-arrival time of particles

Let us define

Fn (t ) = Pr(T > t , N (t ) = n ), (B.3.1)

where t is the time since the last emigration event. Fn (t ) is the probability that N (t ) = n and

that no emigration event occurred during time t . Thus

F (t ) = Pr(T > t ) =
∞
∑

n=0

Fn (x ) = 〈Fn (t )〉n , (B.3.2)

where 〈•〉n represents ensemble averaging over all possible n . I now consider the transition

probabilities on the interval (t , t +∆t ]. Fn (t +∆t ) equals the probability that any other event

but no emigration occurs during∆t . For the state N (t +∆t ) = 0, thus:

F0(t +∆t ) = F0(t )
�

1−λ′∆t
�

+ F1(t )σ∆t +o(∆t ). (B.3.3)

The first term on the right hand side of Eq. (B.3.3) is the probability that nothing happened

during∆t (λ′ =λ∆x +ε 〈N 〉 denotes the (undifferentiated) effect of entrainment and immigra-

tion of particles). The second term on the right hand side of Eq. (B.3.3) is the probability that

a unique moving particle (N (t ) = 1) is deposited onto the bed so that N (t +∆t ) = 0. Similarly,

for any n ≥ 1:

Fn (t +∆t ) = Fn (t )
�

1− (λ′+n (σ+µ+γ))∆t
�

+ Fn+1(t )σ(n +1)∆t (B.3.4)

+ Fn−1(t )
�

λ′+µ(n −1)
�

∆t

+ o(∆t ).

Dividing by∆t and letting∆t → 0, we get

dF0

dt
= −λ′F0(t )+σF1(t ), (B.3.5)

dFn

dt
= −(λ′+n (σ+µ+ ε)Fn (t )+σ(n +1)Fn+1(t )+

�

λ′+µ(n −1)
�

Fn−1(t ), n ≥ 1.(B.3.6)
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The initial condition for (B.3.6) reads:

Fn (0) = Pr(T > 0, N (0) = n ) = Pr(N (0) = n ). (B.3.7)

The random variable N (0)must be understood as: “the state of the Markov process given that

an emigration event just occurred”, which is the same as

Pr(N (0) = n ) = K ε(n +1)Pr(N (t ) = n +1), (B.3.8)

where K is a normalization constant which will be determined later.

Summing all equations in (B.3.6) simplifies the system considerably since almost all terms

cancel out. Only the ε terms remain,

∞
∑

n=0

F ′n (t ) =
∞
∑

n=0

−εn Fn (t ). (B.3.9)

Calling fT the probability density function of T , (B.3.9) gives the simple relationship

fT (t ) =−F ′(t ) = ε 〈Fn (t )〉n . (B.3.10)

The general solution of (B.3.6) for all n can be obtained with the help of the generating function

G (z , t ) =
∞
∑

n=0

Fn (t )z n , (B.3.11)

with z ∈ [0, 1]. Introducing (B.3.11) into (B.3.6) yields the partial differential equation

∂G

∂ t
− (σ+µz 2− z (α+µ))

∂G

∂ z
= (z −1)λ′G , (B.3.12)

where the short hand notation α = ε +σ is used. Equation (B.3.12) can be solved with

the method of characteristics. The initial condition for (B.3.12) is the generating function

corresponding to (B.3.8). The latter is easily obtained by observing that it is the derivative of
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the steady state generating function of N , given in Ancey et al. [2008]:

G (z , 0) = K ε
∂

∂ z





�

α−µ
α−µz

�λ′/µ


=
�

α−µ
α−µz

�λ′/µ+1

,

where K has been replaced to fulfill the normalization condition G (1,0) = 1. The solution of

Eq. (B.3.12) is

G (z , t ) =
�

(z 1− z 2)e−µ(1−z 2)t
�λ′/µ

�

α−µ
A(t )− B (t )z

�λ′/µ+1
�

z 1− z + e−µ(z 1−z 2)t (z − z 2)
�

,(B.3.13)

where A(t ), B (t ), z 1, and z 2 are

A(t ) = z 2(µz 1−α)e−µ(z 1−z 2)t + z 1(α−µz 2),

B (t ) = (µz 1−α)e−µ(z 1−z 2)t +(α−µz 2), (B.3.14)

z 1 = (α+µ)
�

1+
p

1−ε
�

/2µ,

z 2 = (α+µ)
�

1−
p

1−ε
�

/2µ,

and ε= 4σµ/(α+µ)2. As seen in (B.3.10), the probability density function of T is related to

the first moment of Fn . A useful property of generating functions gives

∂G (z , t )
∂ z

�

�

�

�

z=1

= 〈Fn (t )〉n , (B.3.15)

so that finally for all t > 0,

fT (t ) = ε (z 1− z 2)λ
′/µ

�

α−µ
A(t )− B (t )

�λ′/µ+1

e−λ
′(1−z 2)t ×

�
�

λ′/µ+1
�

B (t )
A(t )− B (t )

�

(1− z 2)e−µ(z 1−z 2)t + z 1−1
�

+ e−µ(z 1−z 2)t −1

�

,(B.3.16)

where A(t ), B (t ), z 1 and z 2 have been defined in (B.3.15).
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B.4 Spatial fluctuations of the particle activity
We want to compute the integral

Var[N (L, t )] =

∫

L

∫

L




γ(x , t ),γ(x ′, t )
�

dx dx ′.

That is

Var[N (L, t )] =



γ
�

s L+



γ
�

s

2`c

µ

σ−µ

∫ L/2

−L/2

∫ L/2

−L/2

e−|x−x ′|/`c dx dx ′.

The value of the integral can be obtained by using

∫ L/2

−L/2

∫ L/2

−L/2

e|x−x ′|/`c dx dx ′ =

∫ L/2

−L/2





∫ x

−L/2

e(x−x ′)/`c dx +

∫ L/2

x

e−(x−x ′)/`c dx



dx ′

= `c

∫ L/2

−L/2

�

2−eL/(2`c )
�

e−x ′/`c +ex ′/`c
��

dx ′

= 2`2
c

�

L/`c +e−L/`c −1
�

.

Thus,

Var[N (L, t )] =



γ
�

s L+



γ
�

s `c
µ

σ−µ
�

L/`c +e−L/`c −1
�

.
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