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ABSTRACT: Hydropeaking, resulting from rapid starting and shut-down of turbines, is 

one of the major hydrological alterations in Alpine streams. The upper Aare River basin 

in Switzerland comprises a complex high-head storage hydropower scheme. The significant 

turbine capacities of the two downstream powerhouses produce severe hydropeaking in the 

Aare River. To reduce the negative impact of the foreseen increase of the turbine discharge, 

a compensation basin combined with an extended tailrace tunnel downstream of the pow-

erhouses has been designed and is under construction now to facilitate lower flow ramping 

increasing time for aquatic species to react. The design of the basin and its overall operation 

had to be defined to reach best ecological as well as economic performance. The retention 

volume and the operation rules of the basin have been optimized to avoid dewatering of 

juvenile brown trout. Further, flow ramping has to be limited in order to reduce drifting of 

macroinvertebrates. The paper presents a consistent approach of a target-oriented process 

management, including modelling, simulation and comparison of future flow regime with-

out and with mitigation measure. Finally, rules for decision-making as well as the prototype’s 

final design are addressed.

1 INTRODUCTION

Since 1950, a large number of  high-head storage Hydropower Plants (HPPs) in the Alps 

have supplied peak load energy to the European power grid (Schleiss 2007). In Switzerland, 

for example, 32% of the total electricity in 2010 was produced by storage hydropower plants. 

Water retention in large reservoirs and concentrated turbine operations allow electricity to 

be produced on demand. The sudden opening and closing of  the turbines produces highly 

unsteady flow in the river downstream of the powerhouse (Moog 1993). This so-called 

hydropeaking is the major hydrological alteration in Alpine regions (Petts 1984, Poff  et al. 

1997). Due to the unpredictability and intensity of  flow change, sub-daily hydropeaking 

events disturb the natural discharge regime, a key factor in ecological quality and the natural 

abiotic structure of  ecosystems (Parasiewicz et al. 1998, Bunn and Arthington 2002). These 

disturbances directly affect riverine biological communities (Young et al. 2011). Frequent 

and rapid fluctuations change hydraulic parameters, such as flow depth, velocity and bed 

shear stress (Petts and Amoros 1996), and thus influence habitat availability, stability and 

quality.
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After decades of the extensive use of water resources, with severe consequences for aquatic 

and riverine biota, governments have begun to recognise the need for a water protection 

policy, e.g. the European Union Water Framework Directive. In Switzerland, Parliament 

adopted the Law on Water Protection in 2011 to improve the quality of Swiss waters, includ-

ing hydropeaking mitigation.

In a first step and according to an upgrading programme of the hydropower scheme of the 

Kraftwerke Oberhasli (KWO), the flow regime of the upper Aare River in Switzerland should 

be improved and thus the hydrological deficit reduced. Several studies (Schweizer et al. 2010, 

2012, 2013a, b, c, d) have analysed the aquatic habitat conditions regarding the recently pub-

lished guidelines of the Swiss Confederation (Baumann et al. 2012). Ecological conditions 

are supposed to get significantly improved by a reduction of up- and down-ramping rates 

respectively. A comparison of several mitigation alternatives (Person et al. 2014) revealed a 

compensation volume between the turbine releases of the Innertkirchen 1 and 2 HPPs and 

the Aare River as ecologically and economically most effective. The goal of the herein pre-

sented study is, on the one hand, to define needed retention volume as well as the operation 

rules by an optimization algorithm and, on the other hand, the detailed layout of the mitiga-

tion measure, consisting of a retention basin combined with an extended tailrace tunnel of 

the Innertkirchen 1 HPP. Simplified conditions had to be re-evaluated for prototype’s design 

and implementation. The following chapters mainly focus on the challenging step from the 

preliminary modelling to final design of the first hydropeaking retention basin in Switzer-

land, assessed according to the new hydropeaking guidelines of the Swiss Confederation.

2 CASE STUDY

Figure 1 shows the upper Aare River basin located upstream of Lake Brienz in the centre 

of the Swiss Alps. The surface area is 554 km2, of which about 20% is glaciated. The natural 

hydrological regime of the Aare River, with a mean annual discharge of 35 m3/s, shows low 

discharge in winter and high runoff in summer due to snow and glacier melt. The mean 

catchment altitude is 2150 m a.s.l. The Aare River, also called the Hasliaare at its headwaters, 

has its source in the Unteraar and Oberaar glaciers (Schweizer et al. 2008).

Since the early 20th century, a hydropower scheme of nine powerhouses and several reser-

voirs and intakes has been constructed. The Kraftwerke Oberhasli (KWO) Company utilises 

60% of the catchment area for hydropower. KWO has a total installed capacity of 650 MW 

Figure 1. Aare River reach downstream of tailrace tunnels of Innertkirchen 1 and 2 hydropower plants 

and its location in the upper Aare River catchment upstream of Lake Brienz and in Switzerland.
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and generated 1750 GWh (without pump-storage) in 2010, corresponding to approximately 

10% of the Swiss hydropower output. The water from the Aare catchment flows through the 

artificial reservoirs of Oberaar, Grimsel, Räterichsboden and Handeck. In Innertkirchen, the 

water is returned to the Aare River by the Innertkirchen 1 HPP. The River Gadmerwasser 

drains the eastern part of the basin (Susten). After driving the turbines, the water is released 

from the tailrace of Innertkirchen 2 HPP to the Hasliaare River. The substantial turbine 

capacities of the Innertkirchen 1 and 2 HPPs of 39 and 29 m3/s respectively produce severe 

hydropeaking in the downstream river. An upgrading programme for the entire scheme, 

called KWOplus, comprises a large number of technical, economic and ecological improve-

ments to the scheme. To compensate for the turbine capacity increase of Innertkirchen 1 

HPP by 25 m3/s, a compensation basin downstream of the powerhouse outflow is planned 

for reduction of flow up- and down-ramping rates.

In the 19th century, the dynamic braided river network of the Hasliaare River was drained 

for agricultural use and flood control. A mostly straight channel resulted from the pristine 

braided network because of the successive river channelisation. Based on the three param-

eters of variability of water surface width, bank slope and mesohabitat, the reach down-

stream of the powerhouse outlets can be divided into four reference morphologies: a reach 

with artificial groynes (650 m), the Aareschlucht Canyon (1.4 km), a reach with alternating 

gravel bars (1.3 km) and a monotonous and straight channel reach (11 km). The dewatered 

reach upstream of Innertkirchen, which carries residual flow, has in its upstream part a natu-

ral morphology. Mainly the gravel bars still show natural morphology with varying instream 

structure.

The condition and type of habitat influence species diversity, growth rates and abundance 

of aquatic fauna and flora. Several studies have been performed for analysis and understand-

ing of the ecosystem of the Hasliaare River (Schweizer et al. 2010, 2012, 2013a, b). Fish as 

well as benthos are especially relevant regarding hydropeaking. The quality of the aquatic 

habitat of the Hasliaare River has decreased during the last 150 years. The dynamic braided 

river network with various mesohabitats gave way to a mainly straight and monotonous 

channel without any instream structure. Since the 1930s, the natural flow regime of the river 

network in the upper Aare River catchment has been altered by high-head storage schemes. 

Seasonal water transfer from summer to winter and an increased frequency of daily peak 

discharge events result. Abundance and biomass of fish and benthos have decreased due to 

the negative influences. Despite today’s situation of aquatic biota, the potential for biological 

development of the Hasliaare River has been highlighted. Investigations to improve the river 

morphology and the flow regime have been therefore recommended.

3 METHODS

Figure 2 shows the main steps of the procedure of the evaluation and implementation of a 

hydropeaking mitigation measure. The analysis of the Hasliaare River highlighted beside 

the morphological deficits a hydrological mitigation potential. Thus, the retention volume 

between the tailwater of the Innertkirchen 1 and 2 HPPs and the stream, consisting of a 

basin and a tunnel, should allow (1) minimizing up-ramping and thus macroinvertebrates’ 

drifting and (2) dampening of down-ramping, avoiding dewatering of juvenile brown trout 

in the gravel bars reach for low flows ( 8.1 m3/s).

4 HYDROLOGICAL SIMULATION

4.1 Flow up- and down-ramping

Hydropeaking is mainly critical in winter due to generally low runoff from the catchment area. 

Thus, the study focused on winter periods between mid-November and mid-March from 2009 

to 2012. For the four winter periods, 15-minutes data series of Innertkirchen 1 and 2 turbine 

release in addition to the runoff from the non-operated catchment have been considered. 
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As the turbine capacity of the Innertkirchen 1 HPP of 39 m3/s is increased by 25 m3/s in the 

framework of the upgrading programme KWOplus, data series of future operation had to be 

generated. When the sum of the Innertkirchen 1 and 2 release was greater than 55 m3/s, full 

25 m3/s were added. For values smaller than 35 m3/s, no additional release was considered. In 

between, proportional addition was applied.

The goal of dampening of flow ramping is not to reduce peak discharge Qmax or increase 

off-peak discharge Qmin, but to achieve flow change over a longer time lap and thus to reduce 

the flow gradients. The flow ramping rate Q(t) [m3/s/min] indicates the discharge increase 

or decrease respectively over a given time step, whereas up-ramping generates positive values 

and down-ramping negative ones:
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where Q(t)  discharge at moment t; Q(t t)  discharge at moment t t; and t  time 

step.

The flow level ramping rate H(t) [cm/min] indicates the change of flow level:
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where H(t)  flow level at moment t; H(t t)  flow level at moment t t; and t  time 

step.

In the given case, up- and down-ramping had to be distinguished, as involved in different 

biological phenomena. Further, a comparison of the hydrographs immediately downstream 

of the powerhouses and at the gravel bars reach allowed the definition of the morphology 

induced damping effect of the corresponding river reaches. Ramping rates of the generated 

flow series could be correlated to the downstream ones.

Down-ramping is only crucial for the gravel bars reach, as only there dewatering of brown 

trout is a risk. 2D hydrodynamic simulations allowed the definition of flow level down-ram-

ping rates from the generated flow series for the two cross-sections. As a result dewatering is 

thus only a problem between 8.1 and 3.1 m3/s. The guidelines (Baumann et al. 2011) define a 

maximum flow level down-ramping of 0.5 cm/min.

Figure 2. Methodology of definition, design, realisation and monitoring of hydropeaking mitigation 

measures as applied for the upper Aare River catchment.
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4.2 Operation

Today’s as well as future’s flow regime should be compared to flow regime influenced by 

retention volumes. For the parameter study volumes of 50’000, 60’000, 80’000 as well as 

100’000 m3 have been modelled, operated and compared. The whole turbine release from 

the Innertkirchen 1 and 2 HPPs is given to the compensation volume, which has to be oper-

ated reducing up- as well as down-ramping and guarantee a minimum discharge of 3.1 m3/s. 

To reduce down-ramping, water should be retained in the basin and released as slowly as 

 possible. Doing this too slowly, only little volume would be available in case of starting tur-

bines and up-ramping could be reduced less efficiently. Turbine release was just given for one 

time step of 15 minutes. Two scenarios have been set up and assessed:

– Scenario A minimises the up-ramping rate by respecting today’s down-ramping rates.

– Scenario B optimises firstly the down-ramping for low flows and secondly the up-ramping 

rate. To guarantee enough retention volume for down-ramping for low flows, a volume of 

12’000 m3 is retained.

The comparison between the different alternatives has been undertaken with the 95%-

percentile of daily maximum values.

4.3 Results

For today’s scheme and for winter conditions of 2009 to 2012, the flow up-ramping rate is 

1.36 m3/s/min (Fig. 3a). The flow level down-ramping rate for discharges below 8.1 m3/s of 

2.5 cm/min for the gravel bars reach (Fig. 3c) is much higher than the recommended limit 

value of 0.5 cm/min in the guidelines (Baumann et al. 2012).

Figure 3. Flow regime characteristics for today’s and the enhanced Innertkirchen 1 HPP (KWOplus) with-

out and with retention volumes for scenarios A and B for winter conditions from 2009 to 2012: 95%-percen-

tile of (a) flow up-ramping rate and (b) down-ramping rate immediately downstream of the outlet of the 

retention volume; and (c) flow level down-ramping rate for flows below 8.1 m3/s for the gravel bars reach.
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Increasing the discharge capacity of Innertkirchen 1 HPP by 25 m3/s, flow up-ramping 

rates would slightly increase compared to today’s values (Fig. 3a). The down-ramping rate 

as well as the flow level down-ramping value for discharges below 8.1 m3/s remain the same 

(Fig. 3b and c).

Scenario A shows the reduction ability of flow up-ramping of increasing retention vol-

ume, from 1.36 (today) and 1.43 m3/s/min (KWOplus) to values of 0.70 and 0.51 m3/s/min 

for 50’000 and 100’000 m3 retention capacity respectively (Fig. 3a). The down-ramping rates 

generally decrease (Fig. 3b). The compensation volume allows also to reduce extreme values 

(100%-percentile). The smallest volume of 50’000 m3 would decrease the flow up-ramping 

rate from today 2.43 to 1.06 m3/s/min and increase the down-ramping rate from 2.82 to 

1.49 m3/s/min.

Scenario B is able to reduce flow level down-ramping for flows below 8.1 m3/s for the 

gravel bars reach in any case to 0.5 cm/min, achieving the implemented threshold value 

(Fig. 3c). It reduces flow up-ramping rates to values of 0.90 and 0.52 m3/s/min for 50’000 

and 100’000 m3 retention capacity (Fig. 3a). Extreme values are also affected. The order or 

magnitude is slightly lower than for scenario A, as 12’000 m3 of the volume are used for low 

flow down-ramping.

Based on the generated data and the construction cost estimates, an expert panel of envi-

ronmental specialists, engineers, representatives of cantonal and federal authorities as well as 

the owner assessed the alternatives by a cost-benefit-analysis. Finally, the 80’000 m3 alterna-

tive has been selected as the most convenient compromise, acceptable for all of the involved 

partners.

5 DETAILED DESIGN

The enhancement of the existing Innertkirchen 1 HPP in the framework of KWOplus con-

sists of an additional headrace tunnel and powerhouse, called Innertkirchen 1E, which is 

actually under construction. From the surge tank, a second pressurised shaft guides water 

toward the new Innertkirchen 1E powerhouse (Fig. 4). The existing tailrace tunnel will be 

connected to the new one and will be closed by a bulkhead gate at its downstream end. Thus, 

Figure 4. Sketch of the hydraulic system of the compensation basin and the new tailrace tunnel of the 

enhanced Innertkirchen 1 HPP (Inn 1 and Inn 1E) and the Innertkirchen 2 HPP (Inn 2).
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the released water of the enhanced HPP will flow through the new tailrace tunnel into the 

compensation basin.

Based on the results of the hydrological simulation and in the framework of the realisation 

of the HPP enhancement, the IUB Engineering Ltd. has studied several alternative concepts 

for the compensation basin. As the on-site conditions do not allow the construction of a sur-

face basin of the required volume of 80’000 m3, the new 2.1 km-long tailrace tunnel between 

the Innertkirchen 1E powerhouse and the basin is extended to provide extra volume and to 

actively contribute to compensation of flow variations from the turbines. Two sector gates at 

the downstream end of the tailrace tunnel as well as a flap gate and a sector gate at the outlet 

of the compensation basin allow operation of the two storage volumes.

5.1 Regulation strategy

In addition to the preliminary simulations, which basically considered the ecological require-

ments and one homogenous volume for flow regulation, the detailed design had to deal with 

system and operation constraints given by the plant operator KWO. Based on instantaneous 

Qin(t0) as well as predicted Qin (t1)  Qin (t0  15’) turbine discharge of Innertkirchen 1, 1E and 

2 HPPs, the instantaneous discharge released to the Aare River by the compensation basin 

Qout(t0) and the stored volume V(t0), the regulation algorithm calculates the discharge Qout(t1) 

which has to be released during the next time step, taking into account:

– Priority 1—System reliability and safety: Released outflow Qout(t1) would neither empty 

the basin nor lead to its overflow within the next time step. As the tailrace tunnel is long, 

routing effect leads to flow propagation time of 7 minutes. When high inflow is predicted, 

the control gates of the basin have to be opened for preliminary water release in order to 

ensure the up-ramping rates. However, during the period of pre-up-ramping, the basin 

itself  should not be emptied.

– Priority 2—Maximum up- and down-ramping rates: Up-ramping rate is limited to 

2.5 m3/s/min and down-ramping rate to 2.5 m3/s/min for discharge higher than 8.1 m3/s 

and to 0.14 m3/s/min for low flows.

– Priority 3—Operation flexibility: The released discharge Qout(t1) is set, that is within the 

next two time steps of 15 minutes (t2) operation can either be stopped to Qin(t2)  0 m3/s or 

increased to full capacity Qin(t2)  Qmax  93 m3/s.

– Priority 4—Desired up- and down-ramping rates: Up- and down-ramping rates, which are 

ecologically desired but not crucial for species survival, are taken into account by the regu-

lation whenever possible.

Based on these regulation rules, the retention volume is managed. The boundary condi-

tions define a range of possible released discharges Qout(t1). Within this range, the regulation 

algorithm calculates the optimum discharge with respect to the inertia of the system as well 

as the upper and lower discharge limits, improving the regulation performance.

A regulation at high inertia leads to no or very small discharge variations as long as the 

operation flexibility and the system safety are not affected. Thus, the retention volumes are 

exploited to a maximum, as they are filling or emptying until the prioritised boundary condi-

tions become relevant. On a technical level, this results in less but bigger regulation move-

ments of the gates. However, when the system reaches its limits, i.e. the prioritised boundary 

conditions become relevant, flow changes between two time steps are big and thus up—or 

down-ramping rates are reaching values close to the maximum of 2.5 m3/s/min. Low iner-

tia requires a higher technical complexity of gate control but leads to faster adaptation of 

released discharge between two time steps. Thus, the operation and system safety boundary 

conditions are reached less often as the regulation reacts more rapidly on flow changes from 

the HPPs.

The upper and lower discharge limits are defined by maximum and minimum turbine 

discharges forecasted by the plant operator, by taking into account daily forecasts of power 

production. Thus, this discharge spectrum can be considered as an additional boundary con-

dition for the regulation algorithm, with the priority 5. The released discharge Qout(t1) is 
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defined within this predicted discharge spectrum whenever possible, i.e. as long as no other 

boundary condition becomes determinant.

5.2 Results

The regulation performance is again given as the 95%-percentile of daily maximum values. 

Results reveal that even under operation and reliability constraints, flow up- and down-ram-

ping rates can be considerably reduced compared to today’s values or the rates expected after 

the enhancement of the Innertkirchen 1 HPP (KWOplus).

By actively managing the two storage volumes of the basin and the tailrace tunnel, the up-

ramping rates can be reduced from 1.36 m3/s/min (today) and 1.43 m3/s/min (KWOplus) to 

0.50 m3/s/min under optimum regulation parameters. The down-ramping rates are decreased 

to 0.50 m3/s/min for flows above 8.1 m3/s (Fig. 5a). For discharges below 8.1 m3/s, flow level 

down-ramping in the gravel bars reach is reduced to 0.5 cm/min, achieving the implemented 

threshold value (Fig. 5b).

The trailrace tunnel regulation is most effective for low turbine discharges when the 

unregulated volume occupied by the normal water depth is low and a considerable additional 

 volume can be generated by closing the sector gates at the downstream end of the channel. 

This is especially important from an ecological point of view, as the flow level variations in 

the downstream gravel bars reach can be limited to ensure the conditions required for the 

brown trout during winter, when turbine discharges are generally low.

6 DISCUSSION

The increase of the turbine capacity of the Innertkirchen 1 HPP would increase the flow 

up- as well as down-ramping rates in the upper Aare River. A compensation volume, installed 

between the powerhouse and the release to the river, allows mitigation of these negative effects. 

To maximise its benefits, the operation rules have to focus on specific ecologically defined 

threshold values. In the given case, hydrological time series could have been produced for deci-

sion-making, taking into account different retention volumes and operation scenarios.

In a first step, the effect of one homogeneous retention volume on flow compensation has 

been studied. Even a small volume of 50’000 m3 allows a reduction of the up-ramping rate 

from 1.43 with KWOplus to 0.9 m3/s/min as well as of the flow level down-ramping rate in 

the ecologically relevant gravel bars reach from 2.5 to 0.5 cm/min, fulfilling the targets of 

the guidelines. However, a retention volume of 80’000 m3 has been defined as most suitable. 

Figure 5. Flow regime characteristics for today’s and the enhanced (KWOplus) Innertkirchen 1 HPP 

without retention volume, with one homogeneous retention volume of 80’000 m3 (Scenario B) and with 

active volume management for both basin and tailrace tunnel for winter conditions from 2009 to 2012: 

95%-percentile of (a) flow up- and down-ramping rates immediately downstream of the outlet of the 

retention volume and (b) flow level down-ramping rate for flows below 8.1 m3/s for the gravel bars reach.
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According to the results of the preliminary study, this alternative results in up- and down-

ramping rates of 0.7 and 1.33 m3/s/min as well as in a down-ramping rate in the ecologically 

relevant gravel bars reach of 0.5 cm/min.

In a second step, corresponding to the design phase of the enhancement project, the site 

conditions as well as additional system and operation requirements have been considered. 

The flow regulation downstream of the powerhouses is guaranteed by two retention volumes, 

namely the tailrace tunnel and the compensation basin, which are actively managed by gates. 

Under optimum regulation control, up- and down-ramping rates of 0.5 and 0.5 m3/s/min as 

well as a down-ramping rate of 0.5 cm/min in the gravel bars reach could be achieved for the 

given discharge series for winter conditions from 2009 to 2012. Up- and down-ramping rates 

could be improved by the developed design and the corresponding operation rules.

The chosen approach is straight forward. It focuses on the implementation of the mitiga-

tion measure. Target species as well as specific hydrological and morphological conditions 

of the Hasliaare River have been addressed. Several assumptions had to be made during 

the final design of the retention basin and tunnel, generating uncertainty regarding results. 

Future turbine operation is related to past winter conditions of 2009 to 2012, which may 

not fully correspond to future production process. The applied operation flexibility defined 

during detailed design should be able to address future changes in the schedule. Further-

more, future river restoration projects should consider the modified flow regime, avoiding 

dewatering of fish and its spawning ground. The system, as defined by the herein presented 

approach, is under construction now (Fig. 6). A monitoring system will allow assessing the 

performance and optimising system operation accordingly. Re-evaluation of the operation 

schedule has to be done continuously by addressing hydrological, plant operation, morpho-

logical and habitat conditions.

Nevertheless, flow regime mitigation is only successful with suitable river morphology and 

vice versa. Habitat simulations show that hydropeaking impact is strongly dependent on river 

morphology. Similar to many rivers in mountainous catchment areas, the Hasliaare River 

has undergone considerable anthropogenic changes. Construction mitigation measures, such 

as the compensation basin, would even show higher ecological performance for a naturally 

braided morphology. Thus, several river widening projects as well as instream improvements 

are under evaluation in the framework of flood management projects and KWOplus.

7 CONCLUSION

The applied method for flow restoration in the upper Aare River in Switzerland is presented, 

containing the definition of river specific habitat criteria, hydrological simulations as well 

Figure 6. Construction site of the compensation basin in Innertkirchen (picture courtesy of KWO, 

January 2014).
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as the detailed design of the retention basin. Flow restoration in Alpine streams affected by 

hydropower operations ask for specific indices for an appropriate assessment of the hydro-

peaking impact on aquatic habitat. For effective flow regime mitigation, restoration of the 

altered morphology is essential. The study may help to support the application of the Law on 

Water Protection for river restoration projects at existing and newly developed hydropower 

facilities in Alpine areas, showing beside conceptual approaches also realisation focused 

engineering.

The applied approach allows operators of hydropower plants, authorities or researchers 

to analyse impacted river systems, to design and rate ecologically and economically retention 

measures. Thus hydropeaking can be addressed in an optimal manner, as shown for one of 

the first hydropeaking retention basins in Switzerland.
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