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Abstract—Information and communication technology infras-
tructures play an important role to realize the full potential of
Smart Grid (SG) applications. Several architectures proposed in
the literature usually focus on communication requirement or
data storage. However, it is still not clear which architecture
best satisfies energy, storage, processing and communication
requirements. The lack of understanding of key parameters, such
as energy required, communication bandwidth, storage space,
processing power, etc., has hindered the large scale SG deploy-
ments. In this paper, we investigate different data processing
architectures for hierarchical power distribution networks. We
introduce several key cost indicators to analyze hierarchical
data processing architectures for the SG. In our evaluation,
we consider realistic deployments in both dense and sparse
environments and provide a detailed performance analysis of the
proposed architectures. The results reported here are significant
for SG designers, who can use them to discern the architecture
that best fits the system requirements.

I. INTRODUCTION
Smart Grid (SG) is an intelligent power distribution system

that uses information and communication technology (ICT)
to enhance efficiency, reliability and sustainability of power
generation and distribution network [1]. SG can be consid-
ered as an ensemble of several applications such as demand
response, demand forecast, emergency management, anomaly
detection and adaptive pricing, built upon an Advanced Me-
tering Infrastructure (AMI) - a system that measures, collects
and analyzes data about energy usage [2]. An estimate from a
utility provider indicates 22 gigabytes of data being generated
every day from its 2 million customers [3]. The overwhelming
data generated by Smart Meters (SM) requires information
management mechanisms for large scale data storage and
processing. While there have been deployments of SG (e.g.,
Grid4EU1 and SmartWatts2) with few participants, the design
of suitable architecture to support envisaged SG applications
on a large scale is an important research topic to be ad-
dressed [4].
In this paper we provide some comprehensive insights about

certain key aspects, such as the energy usage to operate the
architecture, the communication and storage requirements for
large scale deployments, as well as the required processing
capabilities. In particular, (i) we model different data process-
ing architectures (centralized, decentralized, distributed and
hybrid) for hierarchical power distribution networks; (ii) we

1 http://www.grid4eu.eu/ 2 http://www.smartwatts.de/

consider realistic SG deployments in both dense (i.e., urban)
and sparse (i.e., rural) environments; (iii) we propose a generic
approach to model and analyze several key cost indicators,
such as energy consumption, processing power, storage re-
quirements and communication bandwidth.
The remainder of the paper is organized as follows. Re-

lated literature is in Section II and different data processing
architectures proposed are in Section III. Section IV describes
various key cost indicators considered for evaluation. Sec-
tion V presents our evaluation setup and simulation parameters
considered. We describe the performance results of each
architecture in Section VI and our conclusions are presented
in Section VII.

II. RELATED WORK
In recent smart grid system deployments, smart meters

collect data at an interval of 5 to 15 minutes, as compared
to the traditional way that only records the meter data once
a month [2]. Data values obtained as an average over a
15 minute interval may not be suitable to realize advanced
applications such as distribution network automation and asset
management, or disaggregation of appliance energy consump-
tion data [5]. Thus smart meters in the near future will be
required to measure values every 30 s, posing a significant
challenge for the operation of data processing architecture.
A secure decentralized data-centric information infrastruc-

ture for SG is proposed in [6] describing the challenges in
low latency communication protocols, security and publish-
subscribe data mechanisms for SG. A cloud-based SG in-
formation management model is proposed in [7] and [8],
along with a discussion on key challenges. In contrast with
the above works, we not only propose and analyze several
architectures, but we also model important key cost indicators
such as energy, communication, storage and processing based
on the physical topology of the grid. Another cloud-based
architecture for demand response (CDR) is proposed in [10].
CDR uses data-centric and publish/subscribe based communi-
cation for secure, scalable and reliable DR systems. Scalability
aspects of data storage and monthly bill processing in SG is in-
vestigated in [4] and [9]. Several data storage mechanisms like
centralized relational database, distributed relational database
and file systems are compared and evaluated, as well as how
communication cost scales with the number of smart meters
and sampling frequency.



To the best of our knowledge, there is no comprehensive
analysis of different data processing architectures for SG that
considers several key cost indicators like energy, communi-
cation, storage and processing. In this work, we provide a
holistic approach to model and analyze all key cost indicators
in urban and rural environments. The models developed in this
work are generic and can be applied to any SG deployment.

III. DATA PROCESSING ARCHITECTURES

The current topology of the power distribution network is
arranged according to the voltage. The distribution network is
organized into multiple subgrids and consequently forming a
hierarchical topology. In this paper, our architectural model
adopts the hierarchical topology of the power distribution
networks as described in [11]. The key elements of our
architectural model are: (1) Home Area Nodes (HANs) - a node
at the consumer premises that receives energy consumption
information from all appliances in the household; (2) Neigh-
borhood Area Nodes (NANs) - acts as an intermediate node
between consumers and utility providers, and it serves a small
geographical area (i.e., a neighborhood consisting of several
houses). NAN receives information from the HANs within the
neighborhood and multiple NANs are deployed to cover the
utility’s territory; (3) Utility Control Unit (UCU) - represents
the central control entity of a utility company. This node is re-
sponsible for billing, maintaining data, determining electricity
price and carrying out demand response management. UCU
acts as the root node in our architectural model.

A. Design Choices
In our architectural model, HANs at each household pe-

riodically senses energy consumption and transmits it to the
respective NAN, which acts as an intermediate node for the
UCU. The interconnection between NANs and UCU is based
on IEEE 802.16 (WiMAX) which supports a maximum data
rate upto 1 Gbps [4]. Communication between NANs and
HANs is based on sub − 1GHz transceivers which are best
suited for both indoor and outdoor environments [12]. It should
be noted that, the modeling and analysis in this paper can be
further applied to any communication technology.
Data aggregation at the nodes can minimize the overall

data communicated and also help in preserving sensitive
information of customers. In this work, we consider time-
wise energy data aggregation (where consecutive time-stamped
energy consumption readings are aggregated to reduce the
granularity of the data collected) with different granularity.
UCU can acquire information from the households by ini-
tiating a query. Nodes can respond to the query depending
on their roles. By default, all nodes can send and receive a
message, which is the minimum capability assumed at each
node. The storage and processing icons in the Fig. 1, shows
the additional capability available at each node depending on
the architecture.

B. Centralized Architecture
In centralized architectures (Fig. 1a), only the UCU has data

processing and storage capability. HANs periodically sense

and transmit the energy consumption values to UCU via NANs
making information flow uni-directional. No data aggregation
is applied in centralized architectures.
C. Decentralized Architecture
In this architecture, only NANs have data processing and

storage capabilities as shown in Fig. 1b. HANs transmit data
periodically to the respective NAN, but instead of forwarding
the data, the NAN stores and processes this data locally. In
decentralized architectures, since complete data is available at
the NANs, data aggregation is possible. For instance, NANs
can aggregate hourly energy consumption while reporting to
the UCU. UCU generates queries to retrieve information from
NANs only when required. Thus, NANs act as central entities
in this architecture.
D. Distributed Architecture
In distributed architectures, all HANs have data processing

and storage capabilities. HANs periodically sense and store
the energy consumption values locally. UCU initiates a query
to fetch the data, which is forwarded to the NAN and in turn
to the HANs. HANs process the query and send the reply to
UCU via NAN. Thus, making the architecture distributed as
illustrated in Fig. 1c. HANs are assumed to have sufficient
data storage and processing capability and communicate only
upon the reception of a query.
E. Hybrid Architecture
In hybrid architectures, HANs and NANs both have data

processing and storage capabilities as shown in Fig. 1d. Hybrid
architectures are extension of distributed architectures, where
HANs not only sense and store but also transmits aggregated
energy values to NANs. For instance, HANs can sense and
store energy values periodically and at the end of the day
send an aggregate energy consumption reading to the NAN.
The data aggregation granularity may vary depending upon
the application considered.
In the following section, we describe and model the key cost

indicators used to evaluate the performance of architectures
proposed.

IV. COST INDICATORS
We propose a generic approach to model the key cost indi-

cators such as energy consumption, processing power, storage
and communication requirements to evaluate the performance
of the proposed architectures.

A. Energy consumption
The energy required for the operation of the entire network

(in Joules, J) includes the various activities the nodes can
perform, such as reading from and writing into the storage,
communicating, processing, etc. Energy consumption is cal-
culated for the duration of one month. The energy consumed
by HANs is,

EHAN = EH→N
t +EH

r/w + EH
p , (1)

where EH→N
t is the energy consumed for communication

from HAN to NAN, EH
r/w is the energy consumed for reading
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Fig. 1: Data processing architectures for the smart grids.

from and writing into the storage, and EH
p is the energy

consumed for processing.
The energy consumption for communication is,

EH→N
t = eH→N

tx ℓH→N
tx + eH→N

rx ℓH→N
rx , (2)

where eH→N
tx (resp. eH→N

rx ) is the energy required for trans-
mission (resp. reception) of one byte of information between
HAN and NAN, and ℓH→N

tx (resp. ℓH→N
rx ) is the length in bytes

of the messages that have been transmitted (resp. received)
by the HAN in one month. The energy consumption due to
storage is defined as,

EH
r/w = eHr ℓHr + eHw ℓHw , (3)

where eHr (resp. eHw ) is the energy required to read (resp.
write) one byte of information, and ℓHr (resp. ℓHw ) is the length
in bytes of the messages that have been read from (resp.
written into) the storage in one month. Finally, the energy
consumption of processing is defined as,

EH
p = eHp nH

p , (4)

where eHp represents the energy required for processing a byte
at HAN, and nH

p is the number of processed bytes.
Similarly, energy consumption for a NAN is given by,

ENAN = EH→N
t + EN→U

t + EN
r/w + EN

p , (5)

where EH→N
t is the energy consumed for communication

between HANs and NANs, EN→U
t is the energy consumed for

communication between NANs and UCU, EN
r/w is the energy

consumed for reading from and writing into the storage, and
EN

p is the energy consumed for processing. These terms are
defined as,

EH→N
t = eH→N

tx ℓH→N
tx + eH→N

rx ℓH→N
rx

EN→U
t = eN→U

tx ℓN→U
tx + eN→U

rx ℓN→U
rx

EN
r/w = eNr ℓNr + eNw ℓNw ; EN

p = eNp nN
p .

(6)

Finally, for the UCU we have,

EUCU = EN→U
t + EU

r/w + EU
p . (7)

The terms EN→U
t (energy consumption for communication),

EU
r/w (energy consumption for storage reading/writing) and

EU
p (energy consumption for processing) are defined as,

EN→U
t = eN→U

tx ℓN→U
tx + eN→U

rx ℓN→U
rx

EU
r/w = eUr ℓ

U
r + eUwℓ

U
w ; EU

p = eUp n
U
p .

(8)

Thus, the total energy consumption for the entire network in
a month is,

Etotal = EUCU +
∑

i∈N

ENAN(i) +
∑

j∈M

EHAN(j), (9)

where N is the set of NANs and M is the set of HANs in
the network. The total energy cost CO is the cost incurred for
the operation of the entire network for one month period.

CO = Etotal · fE , (10)

where Etotal is the average energy (in Joules) required by all
nodes to be operational for a period of one month, and fE is
the price of energy (in $/Joule).

B. Processing
The processing cost accounts for the number of operations

(ops) required to respond to a query received by a node. The
in-node operations required to respond to a query includes
mainly arithmetic and relational operations. Processing cost
depends on the number of messages to be processed and
number of operations to be performed based on the query.
The processing cost at node k, calculated for one month, is
expressed as,

Pk =
∑

q∈Q

nm · nq , (11)



where Q is the set of queries generated in the network, which
depends on the supported applications, nm is the number of
messages to be processed and nq represents the number of
operations to be performed for query q. Given P k, the resulting
monetary cost for processing at node k is,

CP (k) = Pk · fP (Pk), (12)

where fP (·) is a non-linear function with respect to the
number of operations to be performed that models the cost of
processing ($/ops) different from the cost of energy fE which
is a constant. Thus, total processing cost of the network for
one month is given as,

CP = CP (UCU) +
∑

i∈N

CP (i) +
∑

j∈M

CP (j). (13)

C. Communication
The communication cost accounts for the data rate (bits per

second, bps) needed to transmit data from a HAN to the UCU
through a NAN. Data rate for a HAN is expressed as,

THAN =
8 ℓH→N

m

tH→N
, (14)

where ℓH→N
m is the length of the message that has to be

transmitted from the HAN to NAN, and tH→N is the time
period within which a HAN needs to transmit its information
to the NAN. Given THAN, the resulting monetary cost for
communication at HAN j is,

CT (j) = THAN · fT (THAN), (15)

where fT (·) is a non-linear function that models the cost of
bandwidth ($/bps). Similarly, data rate and resulting monetary
cost for communication at NAN i is expressed as,

TNAN =
8 ℓN→U

m

tN→U
, CT (i) = TNAN · fT (TNAN). (16)

Therefore, the total communication cost required for transmis-
sion between HANs to NAN and NANs to UCU is expressed
as,

CT =
∑

i∈N

CT (i) +
∑

j∈M

CT (j). (17)

D. Storage
The storage cost accounts for the total amount of storage

capacity (in bytes) required by the node. The storage cost
depends on the sampling interval τ and the time duration ∆T
for which storage is needed. Thus, the storage requirement for
a node k is expressed as,

Sk = ∆T
ℓm
τ

, (18)

where ℓm indicate the length of a message. Given Sk, the
resulting monetary cost for storage at node k is,

CS(k) = Sk · fS(Sk), (19)

where fS(·) is a non-linear function that models the cost of
storage ($/byte). Thus, total storage cost of the network for
one month is given by,

CS = CS(UCU) +
∑

i∈N

CS(i) +
∑

j∈M

CS(j). (20)

TABLE I: E=energy consumption, τ=sampling interval

Queries generated (E/τ ) BAP DR DF EM
E / 10 seconds X X
E / 30 seconds X X
E / 15 minutes X X X
E / hour X X
E / day X X X X
E / month X X X

(Min, Max, Avg)E / day X X
(Min, Max, Avg)E / month X X

TABLE II: Energy consumption for different operations. [14]

Operations Energy consumption
Transmission @sub-1GHz 0.164 mJ/byte
Reception @sub-1GHz 0.08 mJ/byte

Transmission @IEEE 802.16 0.324 mJ/byte
Reception @IEEE 802.16 0.100 mJ/byte

Read from flash 0.09 µJ/byte
Write to flash 0.8 µJ/byte
Processing 0.14 µJ/byte

V. EVALUATION SETUP

Billing and adaptive pricing (BAP), Demand response (DR),
Demand forecast (DF) and Emergency Management (EM)
applications are considered in our analysis. These applications
have different data requirements, which imply different data
acquisition queries generated by the UCU. The queries and
the requirements for each application are described in Table I.

A. Environment

In our cost-benefit analysis we consider two environments:
urban and rural. Average total population in an urban environ-
ment is around 4.8M with 1.6M households and to provide
adequate coverage, 73 NANs are required as described in [13].
Rural environments have total population of 1.4M with 476K
households and 76 NANs operating at sub-1GHz are required
to provide full coverage [13].

B. Simulation parameters

In this work, a standard wireless sensor node (WSN) is
considered as HAN and its configuration depends on the
architecture. Each HAN samples data by default every 5
minutes, which can be programmed based on the requirement
or upon reception of the query. Each HAN is associated with
a sub-1GHz transceiver to communicate with the NAN. Sim-
ilarly, NANs are equipped with both sub-1GHz and WiMAX
transceivers to communicate with HANs and UCU. Table II
shows the energy consumption for different operations per-
formed by the HAN. Message size of data, query, query-reply,
aggregated messages are considered to be 50, 5, 10 and 10
bytes respectively.



TABLE III: Energy consumption (urban, 1.6M HANs).

Architectures Storage Proc. Comm. Total Energy
Centralized 4% 12.6% 83.4% 554.0 MJ
Decentralized 2.3% 16.2% 81.5% 213.5 MJ
Distributed 15.9% 20.4% 63.7% 19.8 MJ
Hybrid 7.1% 3% 89.9% 9.6 MJ

VI. PERFORMANCE RESULTS
A. Energy consumption
Energy consumption cost per architecture for a urban envi-

ronment3 is described in Table III. It is evident that centralized
architecture consumes significant amount of energy as all data
needs to be relayed to the UCU. Distributed and hybrid archi-
tectures consume much less energy compared to centralized
and decentralized architectures. The significant energy savings
in distributed approaches is due to the reduced number of
transmissions. Energy consumption of the hybrid architecture
is the lowest compared to all other architectures. This energy
saving is achieved by sending aggregated data to NANs as
compared to storing data only at HANs, as in distributed
architecture.
In general, the total energy consumption increases rapidly

as the number of houses increases for centralized and de-
centralized architectures. In case of distributed and hybrid
architectures, the increase in energy consumption is very
gradual, thus increasing their scalability. Similar trends are
obtained for rural environments. We remark that the energy
consumption considers only communication, processing and
storage operations, although other factors could be considered,
such as cooling, lights, etc. It is evident that the most signif-
icant energy factor in all the architectures is communication.
Hence, reducing communication can in turn reduce overall
energy consumption, as can be seen in distributed and hybrid
architectures.

B. Processing
Processing accounts for the number of operations performed

to respond to a query as described in Section IV-B. Processing
requirements depend on the number of messages the node
has to process before replying. In this work, only arithmetic
and relational operations are considered for processing cost
at HANs and NANs. The results for one month duration
in an urban environment with 1.6M HANs is shown in
Table IV. Processing is performed only at UCU in a centralized
architecture, only at NANs in a decentralized architecture, only
at HANs in a distributed architecture and at both HANs and
NANs in a hybrid architecture.
In centralized architectures, since UCU performs all pro-

cessing, the processing requirements increase with the number
of houses. In a decentralized architecture, processing is per-
formed at each NAN and it’s three order of magnitude lower
3 In our experimental evaluation we considered two cases: (i) each NAN
has the same number of HANs & (ii) each NAN has a uniformly distributed
random number of HANs. We found that there is not much difference in
energy consumption between the two cases. Thus, for simplicity we consider
equal number of HANs being allocated to each NAN.

TABLE IV: Processing operations (urban, 1.6M HANs).

Architectures Number of operations
Centralized 5400 M-ops
Decentralized 1800 M-ops
Distributed 0.36 M-ops
Hybrid - NAN 31.5 M-ops
Hybrid - HAN 0.008 M-ops

TABLE V: Bandwidth required for various architectures.

Urban Rural
Architectures HAN NAN HAN NAN

Centralized 480 bps 11 Mbps 480 bps 3 Mbps
Decentralized 480 bps 32 Mbps 480 bps 1 Mbps
Distributed 144 bps 3 Mbps 144 bps 1 Mbps
Hybrid 138 bps 2 Mbps 138 bps 0.5 Mbps

than in a centralized architecture. In distributed architectures,
the number of operations at each HAN is reduced by order
of four compared to decentralized architecture. In hybrid
architectures, processing effort is distributed at both HANs
and NANs and has the least processing cost at each HAN.
Similar trends are also observed for rural environments.
C. Communication
The communication cost as described in Section IV-C is the

average data rate required to support the SG applications. The
time of reference tH→N and tN→U in Eq. (14) and Eq. (16)
are considered to be 1 s. Table V shows the average bandwidth
requirement at each HAN and NAN for both urban and rural
environments with 1.6M HANs and 476K HANs respectively.
Data rate requirements for a HAN is same, irrespective of the
environment, as each HAN transmits the same data based on
the architecture selected. However, the data rate required at
NANs in urban environment is higher than rural environment,
since more HANs are associated with each NAN in an urban
environment. The needed bandwidth between HANs and NAN
is higher for centralized and decentralized architectures, since
HANs has no storage and all data messages are forwarded
to NAN. However, since distributed storage and processing is
adopted in distributed and hybrid architectures, the number
of transmissions performed at the HAN is reduced. Thus,
the bandwidth requirement is significantly reduced in these
architectures. Similar trends with scaled-down bandwidth re-
quirements are observed for rural environments.

D. Storage
Storage required by each node for different architectures in

urban environment, for a duration ∆T = 1 year is shown
in Fig. 2a. The default sampling interval of 5 minutes is
considered to determine the storage cost as described in
Eq. (18). As with other costs, storage cost for centralized
architecture is the highest compared to other architectures, as
all data is stored at the UCU. The storage required by other
architectures is much less than in a centralized architecture,
with distributed architecture having the lowest. As the number
of HANs increase, the required storage increases linearly
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Fig. 3: Cost distribution among various architectures.

in centralized architectures. On the other hand, since equal
number of HANs are allocated to each NAN, for all the other
architectures storage is constant, as seen in the Fig. 2a. Thus
distributed storage is more scalable with increase in number of
HANs compared to single point centralized storage. Finally,
the required storage as a function of sampling interval is shown
in Fig. 2b. Higher sampling intervals indicate less frequent
sensing of energy values. Storage cost decreases with increase
in sampling interval, regardless of the architecture.
E. Cost Distribution
Figure 3 shows the normalized cost distribution for the

key cost indicators across various architectures. Energy, pro-
cessing, communication and storage costs are calculated as
described in Eq. (10), (13), (17) and (20) respectively. Cost
indicators are normalized across each cost factor. Centralized
architectures has low cost for processing, communication and
storage elements (which accounts for one time deployment
cost) but with high operational energy cost. Since, all data is
stored and processed at one location it suffers from single
point of failure and is less scalable. However, distributed
architectures have low operational energy cost but with high
deployment cost due to distributed processing and storage.
Hybrid architectures have the least energy requirement but
with high deployment cost due to storage and processing
elements at both HANs and NANs. However, decentralized
architectures has higher energy cost compared to hybrid but

with low deployment cost since only NANs has storage and
processing elements.
Thus, the choice of architecture could be to have a more

energy efficient architecture or highly scalable distributed
architecture with high deployment cost or simple less scalable
centralized architecture and depends upon the objective of the
implementation.

VII. CONCLUSIONS
This paper introduced several key cost indicators to analyze

different ICT architectures for communication, storage and
processing of Smart Grid data. The proposed architectures
have been evaluated in urban and rural environments, based on
energy consumption, processing power, storage requirements
and communication bandwidth. The results showed that cen-
tralized architectures are the cheapest to deploy. Distributed
architectures on the other hand have a higher deployment cost
but are more energy efficient. In this paper we proposed two
alternative architectures that make use of data aggregation to
reduce deployment cost. This quantitative evaluation will help
Smart Grid designers to select the architecture that best fits
their system requirements and deployment scenarios.
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