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Abstract

Software robustness is an ever-challenging problem in the face of today's evolving software

and hardware that has undergone recent shifts. The increase in computational power has been

accompanied by an unprecedented increase in the occurrence of software bugs and vulnerabilities

that not only leads to breaches in privacy or financial loss, but may eventually cause catastrophic

failures.

Instruction-grain program monitoring is a powerful technique to detect and mitigate bugs.

Instruction-grain monitors track the execution of individual instructions to identify anomalous

behavior. Tracking instruction execution at speed requires custom hardware which can only detect

a particular bug or class of bugs. Firmware allows for flexibility to detect a variety of bugs but

comes with a 10x slowdown in execution, while without hardware support the slowdown can be as

high as 100x. Although general monitoring tools with low runtime overhead would significantly

assist the debugging process, none of the techniques available today provide a flexible solution

with affordable performance degradation.

This thesis proposes architectural support for a flexible at-speed Filtering Accelerator for

Decoupled Event processing, or FADE. FADE is based on the observation that much of that

instruction-grain monitoring overhead can be virtually eliminated because either bugs are rare

(e.g., most application accesses go to an allocated memory region), or the applications have an

expected behavior that requires no monitoring action (e.g., applications mostly operate on non-

pointer data).
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Based on these observations, the monitoring activity in response to common application

activity can be filtered thereby significantly reducing the runtime overhead of software monitors

for a variety of memory, security, and concurrency bugs. To allow for flexibility, the unfiltered

application activity is delegated to software for further processing. Unlike prior work on architec-

tural support for monitoring that necessitated a dedicated core to run the monitors software, this

thesis shows that when filtering most of the monitor’s activity with complexity-effective hardware

structures, there is no need for a duplicate set of hardware resources. As parallel software consti-

tutes a large fraction of modern software, the thesis develops hardware extensions to support the

monitoring of single- and multi-threaded applications alike.

Keywords: software robustness, application monitoring, support for single- and multi-

threaded applications, architectural extensions, filtering accelerator, software bugs, debugging.



ix . 
Résumé

La robustesse du logiciel est un problème difficile due à la constante évolution des logiciels

et du matériel. L'augmentation de la puissance de calcul a été accompagnée par une augmentation

sans précédent du nombre de bugs logiciels et de failles qui non seulement conduisent à des viola-

tions de vie privée ou des pertes financières, mais peuvent également provoquer des défaillances

catastrophiques.

Le suivi des programmes par évaluation des instructions est une technique prometteuse per-

mettant de détecter et atténuer les bugs. Le suivit des programmes permet de suivre l'exécution des

instructions individuelles afin d’identifier un comportement anormal. Effectuer ce suivi sans alté-

rer la vitesse d’exécution des programmes nécessite un matériel sur mesure qui ne peut détecter

qu’un bug ou une catégorie de bugs. Les approches basées sur des hardwares généralistes per-

mettent de détecter une plus grande variété de bugs, mais sont accompagnés de ralentissement de

l’ordre d’un facteur 10. Cependant, sans support matériel, le ralentissement peut être de l’ordre

d’un facteur 100. Bien que des outils de suivi impactant faiblement le temps d’exécution aideraient

considérablement le processus de débogage, aucune des techniques disponibles aujourd'hui à un

prix abordable ne fournit une solution flexible sans dégrader les performances.

Cette thèse propose une extension architecturale pour un accélérateur de filtrage découplant

le traitement des évènements/instructions (FADE : Filtering Accelerator for Decoupled Event Pro-

cessing). FADE est basé sur l'observation que beaucoup de ralentissements liés au suivi des pro-

grammes peuvent être évités pour deux raisons : 1) Les bugs logiciels sont rares (ex. la plupart des

accès mémoires se font  dans des zones allouées préalablement. Les dépassements de mémoires
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sont donc relativement rares.), 2) Les programmes ont des comportements ne requérant qu’un

suivi basique (ex. Les programmes travaillent rarement avec des pointeurs).

Sur la base de ces observations, le suivi des programmes déclenché par la plupart des évène-

ments générés par l’application peuvent être filtrés afin de réduire de manière significative le ral-

entissement due au logiciel de suivi pour plusieurs types de bugs (bug de mémoire, bug de

sécurité, bug de concurrence). Dans un but de flexibilité, les évènements non filtrés sont délégués

à un logiciel. Contrairement aux approches précédentes d’extension architecturales permettant le

suivie des programmes qui accaparaient un cœur complet, cette thèse montre que le filtrage de la

plupart des évènements grâce à un hardware efficace, permet de s’affranchir du cœur dédié. Etant

donné que les applications multithread constituent une part importante des applications modernes,

cette thèse propose une extension matérielle pour supporter le suivit programmes mono et multi-

thread.

Mots-clefs: robustesse du logiciel, suivi des programmes mono et multithread, extension

architecturale, accélérateur de filtrage, bugs logiciels, débogage.
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1 CHAPTER 1. INTRODUCTION
Chapter 1

Introduction

Fabrication technology advancements have led to an unprecedented increase in computa-

tional power enabling the deployment of a wide range of services that have substantially improved

the quality of life. For over four decades, we have seen an exponential proliferation of digital com-

puting platforms penetrating all aspects of a modern life including government, commerce, enter-

tainment, health and social infrastructure. However, the growth of computational power is

accompanied by high software complexity and concerns about software robustness [26].

Bugs are prevalent in modern software, not only decreasing productivity, but also introduc-

ing vulnerabilities that can lead to security and privacy breaches and catastrophic system failures

[104]. The term bug originates back in 1946, when an actual moth was found trapped in the Mark

II Aiken Relay Calculator while the machine was being tested at Harvard University, on Septem-

ber 9th, 1945. The operators tapped the moth to the computer log and wrote the comment: “First

actual case of bug being found” (Figure 1) [78].

Over time, bugs have had severe consequences ranging from financial loss to loss of human

lives. The list of the infamous bugs is long including (1) Therac-25 radiation therapy machine,

which was directly responsible for patients deaths, in the 1980s; (2) Ariane 5 rocket, an $1 billion

prototype of the European Space Agency, which has been destroyed in less than one minute after

launch, in 1996; (3) Northeast Blackout, which has been associated with an immense financial

damage of 6$ billion, in 2003; (4) Knight Capital's computer bug, which cost over 440$ million, in

2012.
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Unfortunately, debugging (i.e., the art of diagnosing the source of a bug and fixing it) is a

difficult and time-consuming task. In the late 1940s, Maurice Wilkes, computer pioneer, described

his realization that much of the rest of his life would be spent finding mistakes in his own pro-

grams. To ease the debugging process and to assist the developers, academia and industry have

proposed a large body of debugging techniques.

1.1 The Multi-Core Era

For the past three decades Dennard scaling (1974) [34] along with Moore’s law (1965) [72]

have driven the development of computer systems. Moore’s law provided the processor designers

with a doubling number of transistors per unit area every 18 months. Most importantly, Dennard’s

scaling enabled designers to improve performance by increasing the frequency of a single core per

chip. Consequently, newer processor generations allowed single-threaded applications to run

faster, meeting the demand for additional computational power.

FIGURE 1: The first computer bug. Source: U.S. Naval Historical Center Online
Library Photograph.
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To meet the heat dissipation and cooling constraints, while improving the aggregate chip

performance, computer system designers turned to multicore architectures. As shown in Figure 2,

the number of cores per chip has been increasing as of 2004. Today, multicores have invaded all

segments of the processors market including servers, desktops, even mobile phones.

Multicore chips can be an attractive solution given that software can scale accordingly.

Unfortunately, the development of parallel software has not been commensurate with the prolifer-

ation of multicore chips. Both, writing parallel code from scratch and parallelizing a piece of serial

code are notoriously difficult tasks that require substantial manual effort. Although the efficient

(ideally automated) development of scalable parallel code remains an open research problem, pro-

viding robust and practical debugging tools is determinant towards this direction.

2004

FIGURE 2: End of Dennard scaling in 2004. Note that the number of cores per chip is
one until 2004. Source: NRC.
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1.2 How to Mitigate Bugs 

A number of complementary techniques have been proposed to assist developers in finding

software bugs. These can be broadly categorized into static tools, symbolic tools, post-mortem

tools and dynamic tools. Static tools (e.g., RacerX [38], CP-Miner [61], MUVI [63], RELAY

[113]) aim at identifying bugs before the application executes. Symbolic tools (e.g., Cloud9 [15],

KLEE [18], S2E [25], Bitblaze [101], ESD [123]) leverage symbolic values, instead of the actual

values, so as to analyze a program and enumerate possible execution paths. Post-mortem tools

(e.g., LXR [4], BugNet [77], FDR [118], RTR [120]) attempt to identify what went wrong after the

application crashes. Dynamic tools (e.g., Valgrind [81], Purify [51], Eraser [93], CCured [28], PIN

[69]) monitor the application as it executes so as to identify what went wrong during a specific run.

In this thesis, we study dynamic techniques that observe programs behavior at runtime and we

focus on application written in unmanaged languages (i.e., C, C++), while managed languages

(e.g., C#) are out of our scope.

Dynamic tools with the ability to monitor programs at the granularity of individual instruc-

tions1 possess a unique advantage stemming from their access to detailed runtime events, such as

memory references, control flow and runtime inputs. Instruction-grain monitoring tools allow for

the development of a wide range of bug-finding tools, and can effectively handle anomalous appli-

cation behavior ranging from memory bugs, such as memory leaks [71], to concurrency bugs, such

as atomicity violations [65]. Hereafter, we refer to these tools as monitors.

The monitors rely on metadata, which is per memory location and/or register information

related to the bug-finding task. The monitor performs metadata checks to ensure that certain

1.  Although dynamic tools commonly monitor fine-grain events (i.e., instructions), certain tools may monitor coarse-
grain events. For instance, Dimmunix [55] that allows programs to develop resistance against already observed dead-
locks, takes a monitoring action upon less frequent events, such as locks acquisition and release.
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invariants hold, for each application event of interest. In Chapter 3, we study a diverse set of mon-

itors (detailed in Section 2.3), and we show that commonly monitors take actions in response to

three categories of application events: (1) instruction events (e.g., add, load), (2) stack-update

events (i.e., events that modify the stack pointer, such as function calls and returns), and (3) other

events (e.g., memory allocation routines). For instance, a monitor that checks whether application

accesses go to an allocated memory region, as the one shown in Figure 3, keeps information about

the allocation status of each memory location when the application executes malloc-like and free-

like routines. As shown in the figure, when the application generates a memory instruction (i.e.,

load or store), the monitor obtains and checks the status of the associated memory location. In gen-

eral, monitoring belongs to tagged memory approaches, which rely on metadata to infer meta-

information about applications. Other tagged-memory use cases include but are not limited to

security [59], reliability [100], performance bugs [52], garbage collection [53], and transactional

memory [20].

Without loss of generality, we consider two design points: serial monitoring and parallel

monitoring. Under serial monitoring, a single-threaded monitor observes the behavior of a single-

threaded application. Under parallel monitoring, the application and the monitor are multithreaded

processes running on a CMP. Each monitoring thread is associated with an application thread.

Application Monitor

A = malloc
ld r2, A
free (A)
ld r3, A

mark memory as allocated
Is A allocated? Yes  correct 
mark memory as deallocated
Is A allocated? No  ERROR!

FIGURE 3: A simple memory checker.
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Parallel monitoring entails more challenges compared to serial monitoring due to its inher-

ent concurrency [112], but also allows for the development of a much broader class of monitors,

such as data race [41, 93] and atomicity violation [40, 65] detectors. Under serial monitoring, the

only requirement to guarantee correctness is to process application’s activity in program order,

which is trivially satisfied by processing the application’s dynamic instructions in commit order.

However, under parallel monitoring, this task is complicated because the monitoring threads have

to consider the relative order of concurrent application events. An additional requirement for par-

allel monitoring is to ensure synchronization and atomicity for monitor’s accesses at low cost. To

allow for wide adoption, a monitoring approach should support both serial and parallel monitoring.

1.3 Prior Work on Dynamic Instruction-Grain Monitoring

A number of projects have targeted effective instruction-grain monitoring. Here, we briefly

summarize the main attributes of software-only and hardware-assisted schemes; a comprehensive

discussion is provided in Chapter 7.

Software-only monitoring frameworks rely on Dynamic Binary Instrumentation (DBI) [79]

to implement the monitoring functionality dynamically. Specifically, DBI (discussed in more

detail in Section 7.1) rewrites the original application code and instruments it with the monitoring

code. These frameworks (e.g., Valgrind [81], PIN [69], DynamoRIO [13], DTrace [19]) enable the

development of flexible, programmable, and accurate monitoring tools to detect memory access

violations [51], atomicity violations [40, 65], etc. However, this flexibility comes at a steep perfor-

mance penalty of 10-100x [81], since for common application events, a software handler is

dispatched to check and/or update metadata. The overhead comes from (1) the instrumentation

(i.e., saving and restoring registers for the application and the monitor), (2) the resource sharing

between the application and the monitor, and (3) the execution of the monitoring handlers [24].
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Algorithm-specific optimizations that try to reduce the performance overhead, still incur substan-

tial slowdown (e.g., 8x for a race detector [41]). 

To mitigate the performance bottleneck, researchers have investigated hardware-assisted

solutions. General hardware-assisted schemes [24, 96, 112] provide hardware support for dis-

patching software handlers, thus eliminating the instrumentation overhead, but do not help in

mitigating the handler execution time, resulting in up to 10x slowdown versus unmonitored code

[23, 24]. An alternative general hardware-assisted scheme (to be studied in the future) is one that

combines Dynamic Binary Translation (DBT)2 [16, 8] with hardware support. In contrast to DBI,

which is a heavy-weighted process, DBT translates the original binary through a “thin” indirection

layer, but without the instrumentation overhead, thus resulting in marginal performance degrada-

tion. As a result, DBT could be used along with hardware support to lower the monitoring

slowdown while maintaining flexibility.

A number of proposals aimed to bring down the performance cost through specialized hard-

ware targeted at specific monitors (e.g., [35, 36, 46]). To avoid the shortcomings of monitor-

specific tools, prior work proposed hardware-based reconfigurable tools [33, 57]. Although these

tools offer flexibility, their wide adoption is limited because they are programmed in low-level

hardware languages that escape the comfort zone of most programmers.

Our goal is to provide a general hardware-assisted monitoring system that combines flexibil-

ity and low slowdown, the positive attributes of prior work, with resource efficiency. Specifically,

we would like to offer flexibility similar to software-only schemes [13, 19, 69, 81] and low slow-

down similar to systems relying on specialized hardware [32, 35, 36, 46, 108], while at the same

time reducing the amount of resources (i.e., a separate core [22, 32, 96]) dedicated to the monitor-

ing task.

2.  Popular dynamic binary translators include VMware binary translator [16], which supports x86-to-x86 binary transla-
tion, and QEMU [8], which supports cross-platform binary translation.



8 
1.4 Thesis Contributions

This thesis provides a practical and general monitoring system for both single- and multi-

threaded applications. The statement of the thesis reads as follows:

Thesis Statement

Identifying and filtering common monitoring activity with simple monitor-agnostic hard-

ware enables the design of fast, flexible and resource-efficient monitoring systems for single- and

multi-threaded applications.

By studying a set of monitors and through cycle-accurate simulations we demonstrate that:

• Instruction and stack-update events are the main contributors to the monitoring slowdown.

While instructions dominate the monitor’s execution profile, stack updates account for up to

17% of the execution time, thus representing an attractive acceleration target. Instruction events

require fine-grained accesses to monitor’s metadata, most of which can be filtered through (1)

hardware-executed checks of metadata state against an invariant, and (2) detection and elimina-

tion of redundant updates that leave the metadata state unmodified. Across a diverse set of

monitors targeting from memory bugs to atomicity violations, the filtering efficiency for

instruction events is 84-99%. Stack-update events perform bulk metadata initialization in

response to function calls and returns and can be efficiently handled with a simple state

machine in hardware. Although the thesis focuses on SPARC ISA, our prior study (BugSifter

[43]) shows that our observations also hold for x86 ISA.
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• While 84-99% of the monitored events can be filtered in hardware, the rest of the events are

delegated to software thus allowing for full flexibility and generality. Unlike prior work that

dedicated a whole core to the monitoring task, we show that a dual-threaded core provides suf-

ficient resources for the application and the monitor. In doing so, we show that 59-96% of the

time one of the two cores is idle in a two-core monitoring system with filtering support.

• By studying a broad range of bug-finding functionality and applications, we make the follow-

ing observations: (1) The monitoring load rarely exceeds one event per cycle even with an

aggressive OoO core producing events. (2) Both filterable and unfilterable events arrive in

bursts that must be buffered to reduce stalls due to backpressure. (3) Shallow queues of 16 to 32

events are sufficient for this purpose and allow for decoupling of the filtering accelerator from

the core running the application. 

• To maintain a high filtering rate, filtering has to happen concurrently with the processing of

unfiltered events, a task that is complicated due to data dependencies between unfilterable and

subsequent filterable events. To decouple filtering and the processing of the unfiltered events,

we observe that there is only minimal state that is critical for deciding if a dependent event is

filterable. We show that this state can be updated for unfilterable events directly in the acceler-

ator with simple hardware extensions. We name our technique Non-Blocking Filtering.

• Building on our observations, listed above, we develop an architecture, along with full microar-

chitectural support, for a flexible at-speed Filtering Accelerator for Decoupled Event process-

ing, or FADE. FADE is fully programmable and can support a broad range of monitoring tasks

with high filtering coverage and low hardware overhead. FADE supports Non-Blocking Filter-

ing that dynamically resolves dependencies between unfilterable events and subsequent events,

eliminating data-dependent stalls and maximizing accelerator’s performance. Using full-system

cycle-accurate simulation, we show that FADE is highly efficient, filtering out 84-99% of
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events that would otherwise be handled in software, thereby reducing the application slowdown

to only 1.2-1.8x (versus 1.6-7.4x for unaccelerated execution). In the 40nm technology, an

instance of FADE requires 0.12mm2 of area and 273mW of power at peak per core.

• We present Parallel FADE a parallel monitoring accelerator that allows for the design of flexi-

ble, fast and resource-efficient parallel monitoring systems. Parallel FADE combines Non-

Blocking Filtering, the state-of-the-art hardware filtering technique to accelerate monitoring,

with the necessary hardware extensions to handle the inherent concurrency of parallel applica-

tions, overall reducing the design complexity over prior parallel monitoring accelerators.

• To showcase the applicability of FADE (including Non-Blocking Filtering support) in the con-

text of parallel monitoring, we provide a formal proof and we perform an experimental study.

Our study of a suite of diverse monitors and a number of multi-threaded benchmarks shows that

Parallel FADE filters 81-99% of events that would otherwise be handled in software and

reduces the slowdown to an average of only 1.1-1.8x (versus 1.9-11.5x for unaccelerated exe-

cution), thus making monitoring practical. 

The rest of this thesis is organized as follows. In Chapter 2, we give background on instruc-

tion-grain monitoring and the debugging tools used in this study. In Chapter 3, we show why filter-

ing enables the design of a fast, flexible and resource-efficient monitoring system. In Chapter 4,

we study the event management in monitoring systems with filtering support. In Chapter 5, we

introduce FADE’s micro-architecture, along with Non-Blocking Filtering. In Chapter 6, we present

Parallel FADE. Finally, we discuss related work in Chapter 7, and we conclude in Chapter 8.

The material in Chapter 4 and Chapter 5 was previously presented in the 20th IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA 2014): “Sotiria Fytraki,

Evangelos Vlachos, Onur Kocberber, Babak Falsafi and Boris Grot. FADE: A Programmable Fil-

tering Accelerator for Instruction-Grain Monitoring”.
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Chapter 2

Background

2.1 Instruction-Grain Monitoring

A number of tools have been proposed to assist developers in finding bugs. These can be

grouped into five general categories: (1) static tools (e.g., RacerX [38], CP-Miner [61], MUVI

[63], RELAY [113]), (2) post-mortem tools (e.g., LXR [4], BugNet [77], FDR [118], RTR [120]),

(3) dynamic tools (e.g., Valgrind [81], Purify [51], CCured [28], PIN [69]), (4) symbolic tools

(e.g., Cloud9 [15], KLEE [18], S2E [25], Bitblaze [101], ESD [123]), and (5) model checking

tools (e.g., BLAST [9], CHESS [74], Java Pathfinder [110]). While these tool categories can be

considered complementary, dynamic tools with the ability to monitor at the granularity of individ-

ual instructions possess a unique advantage stemming from their access to detailed runtime events,

such as memory references and information flow. This capability affords a wide range of powerful

bug-finding tools, generally referred to as monitors, that span the spectrum from frequently occur-

ring memory bugs to hard-to-reproduce concurrency bugs. In addition to facilitating bug finding at

development time, instruction-grain monitors may be useful in the field by enabling on-the-fly

recovery from errors, reducing susceptibility to security exploits, and improving damage confine-

ment.

In general, instruction-grain monitors work by maintaining certain invariants and checking

that these invariants hold for each application event of interest. Invariants might specify that every

accessed memory location has been allocated and initialized, or that the value used as a jump tar-

get is not suspicious. Monitors take actions in response to three categories3 of application events:
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(1) instruction events (e.g., add, load), (2) stack-update events (i.e., events that modify the stack

pointer, such as function calls and returns), and (3) other events (e.g., memory allocation routines).

To assist analysis, monitors maintain bookkeeping information, or metadata, about application

memory and registers. Depending on the event, the relevant metadata are checked against the

invariant and/or updated with a new value.

A code snippet for a representative monitor, along with a slice of monitored application

code, is shown in Figure 4. The monitor performs propagation-based analysis used by a number of

bug-finding tools (e.g., MemCheck [81], which checks whether every referenced memory location

has been initialized). In the example, each application instruction triggers a software handler asso-

ciated with the monitor. For each of the instruction’s source operands, the handler accesses and

checks the metadata. If the metadata value differs from the invariant (e.g., a referenced memory

location has not been allocated or initialized), an action is taken to inform the user and/or the run-

3.  Although this thesis focuses on SPARC ISA, our prior study (BugSifter [43]) shows that these categorization also
holds for x86 ISA.

Application code
//function call
call foo 
//function return

foo:
...
add %l7, 4,%l7
st %l7, [A]
ld [A+4], %l7
...

Handler for stack frame allocation /deallocation

Handlers for instructions
reg_op_reg_imm (UINT src_reg, UINT dst_reg){

reg_to_mem(UINT src_reg, UINT dst_mem){ 

stack_update (UINT Addr, UINT L){ 
//set metadata for stack frame of size L

for (int i=0; i<L; i+=4)
set_mem_metadata (Addr+i, VALUE);

}

mem_to_reg (UINT src_mem, UINT dst_reg){
UCHAR src_value = get_mem_metadata(src_mem);

if (src_value != INVARIANT){ 
//Bug! record, inform runtime , etc.

}
set_reg_metadata(dst_reg, src_value);

}

FIGURE 4: A simple instruction-grain monitor.
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time. The handler also updates the metadata for destination operands based on the metadata state

of the source operands.

2.2 Metadata Organization

Prior monitoring (software and hardware) frameworks organize metadata either in an one-

level metadata map [107, 108], as shown in Figure 5(b)-left, or in a two-level metadata map [22, 

81], as shown in Figure 5(b)-right. The two metadata organizations are also discussed in the LBA

paper [23].

The one-level design uses a contiguous memory region, which is allocated when the moni-

tor is initialized. This design allows for simple metadata lookups, because the metadata can be

obtained directly through a simple pointer arithmetic operation, given an application address.

Although this design point simplifies metadata addressing, it allocates a significant amount of vir-

tual memory for the metadata unnecessarily. The two-level design resembles page tables and

requires an intermediate translation step before obtaining the metadata address given an applica-

stack

unused

mmaped

heap

global data

code

(a) Application 
address space layout

(b) Metadata organizations

One-level 
metadata map

Two-level 
metadata map

FIGURE 5: (a) Application address space layout. (b) Metadata organized in an one-
level metadata map (on the left), and a two-level metadata map (on the right). The
figure has been initially presented in the LBA paper [23].
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tion address. However, this design only allocates the metadata being accessed by the monitor, thus

being more efficient.

2.3 Studied Monitors

We use a suite of five diverse monitors. These monitors effectively cover a broad range of

memory, security, and concurrency bugs.

AddrCheck [81] checks whether every memory access is to an allocated memory region.

AddrCheck monitors non-stack memory accesses. It maintains one bit of metadata per application

byte to encode the two possible states: allocated or unallocated. The tool keeps track of the calls to

allocation routines (e.g., malloc(), free()) and update the associated metadata. For instance, when

processing a malloc (free), AddrCheck sets the metadata corresponding to the malloced (freed)

memory to allocated (unallocated).

MemCheck [81] extends AddrCheck to detect the use of uninitialized values. MemCheck

maintains two bits per application byte; one bit to encode the accessibility status of a memory loca-

tion, similar to AddrCheck, and one bit to encode the initialization status of a memory location.

These two bits encode three metadata states (i.e., unallocated, uninitialized, and initialized). 

The accessibility bits are updated as in AddrCheck. The initialization bits are cleared after

free function calls and they are set when a constant is written to a memory location. When process-

ing an instruction, MemCheck propagates metadata values from the source operand(s) to its desti-

nation operand. The destination operand becomes uninitialized, if at least one of the source

operands is uninitialized.

MemCheck performs metadata checks to ensure correctness. When loading an uninitialized

value, MemCheck does not issue an error (e.g., copying a partially initialized structure). However,
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MemCheck detects an error when an uninitialized value is used in critical ways — i.e., being deref-

erenced as a pointer, used in conditional tests, or passed into system calls. 

TaintCheck [82] is a security monitoring tool that checks for overwrite-related security

exploits (e.g., due to buffer overruns, format string vulnerabilities). It performs propagation track-

ing to monitor the use of spurious data throughout the program execution. Program input data,

such as data from the network, are marked as suspect or tainted. TaintCheck intercepts the neces-

sary library calls (e.g., read, write) so as to mark the associated metadata as tainted. An error is

raised, if tainted data are used in critical ways, such as in jump target addresses, or system call

arguments. Although TaintCheck has two metadata states (untainted and tainted), we use one byte

of metadata per application word, in order to avoid sub-byte access cost for common four-byte

application operations.

MemLeak [71] uses a reference counting algorithm to identify leaked heap objects (i.e.,

objects that are no more reachable through an application pointer). MemLeak maintains one meta-

data word per application word, which is a pointer to the context of the corresponding malloc and

a null value otherwise. The context includes an allocation ID, the PC, and a reference counter. The

allocation ID is a unique identifier assigned to an object at the time of allocation.

MemLeak performs propagation tracking of pointer values throughout program’s execution.

Loading a pointer to a register and using the pointer to generate a new address, propagates a

pointer status to the destination register. When a pointer is written back to memory (on the heap) a

new reference is created, thus increasing the corresponding reference counter. When this action

overwrites the pointer to a another object, the reference counter of this object is decreased. Point-

ers stored in the stack do not require reference counting, as they get overwritten when the stack

frame is popped. A memory leak is identified if an object’s reference counter reaches the zero

value, while the object is not deallocated.
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AtomCheck [65] detects atomicity violations by checking access interleavings. For this pur-

pose, AtomCheck keeps information for the last access by each thread to each memory location,

maintaining one piece of metadata per application word. The main structures are (1) a global table

to keep the status bit (Private/Shared) and the id of the thread that last referenced each memory

location, and (2) local per-thread tables to keep the type (Read/Write) of the last access by each

thread. Implementation-wise, AtomCheck encodes the thread status bit and the thread id in one

byte.

Table 1: Eight cases of access interleavings. All accesses are to the same shared variable.
Subscript r denotes remote interleaving access; superscript i and p denotes one access
and its preceding access from the same thread. The table has been presented in the AVIO
paper [65].

# Interleaving Description Serializability
Equivalent 

Serial 
Access

Problem

0 readp

readi
readr

two reads 
interleaved by a read YES

readp

readi

readr

N/A

1 writep

readi
readr

read after write 
interleaved by a read YES

writep

readi

readr

N/A

2
readp

readi
writer

two reads 
interleaved by a write NO N/A

The interleaving write makes the 
two reads have different views of 

the same memory location

3
writep

readi
writer

read after write 
interleaved by a write NO N/A The local read does not get the 

local result it expects

4
readp

writei
readr

write after read 
interleaved by a read YES readp

writei

readr
N/A

5
writep

writei
readr

two writes
interleaved by a read NO N/A

Intermediate result assumed to be 
invisible to other threads is read 

by a remote thread

6
readp

writei
writer

write after read 
interleaved by a write NO N/A

The local write relies on a value 
from the preceding local read that 
is then overwritten by the remote 

write

7
writep

writei
writer

two writes
interleaved by a write YES writep

writei
writer N/A
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For each memory access, AtomCheck performs one of the following actions: (1) If the sta-

tus bit indicates that the data are thread-private, no further action is required. (2) If the status bit

indicates that the data are shared, AtomCheck first checks the global table and the current thread

id. If they match (i.e., the memory location was previously referenced by the same thread), which

happens in the common case, a simple software handler is dispatched to update the metadata of the

local table for the current thread with the type of the last access (Read/Write). (3) Otherwise, a

complex handler is dispatched to check if there is a potential atomicity violation. In the last case,

where there are consecutive accessed to a memory location by two different threads, there are eight

possible interleavings, shown in Table 1. If the interleaving is unserializable, a potential atomicity

violation is identified and the program counter of the instruction is reported.

In AtomCheck, the metadata are initially marked as uninitialized. Upon their first access,

they are marked as thread-private. Any consequent access by a different thread, sets the metadata

to the shared state.
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Chapter 3

Why Filter?

In this Chapter, we motivate our design choices that lead to a fully generalized monitoring

accelerator allowing for low runtime and resource overhead. First, we identify common high-level

functionality inherent in a wide range of monitors, targeting memory, security and concurrency

bugs. Next, we provide intuition on how filtering can eliminate much of the run-time overhead

associated with commonly occurring monitoring activities. Finally, we discuss the implications of

filtering on the design of monitoring systems.

3.1 Generalized Monitor Functionality

The existence of different bug types dictates that monitors should be specialized for each

particular type of a bug. Moreover, for a given bug type, several bug-finding algorithms may exist

that differ in their coverage guarantees, resource requirements, implementation complexity, etc.

Despite the resulting diversity of bug-finding tools and algorithms, we find that virtually all moni-

tors have functionally-similar characteristics at a high level. These can be summarized as follows,

with Figure 6 serving as an illustrative example.

Simple checks and updates for instruction events: The bulk of monitoring activity in

response to individual application instructions involves some combination of metadata accesses,

metadata checks against an invariant, and metadata updates. As most instructions in ISAs of con-

temporary general-purpose processors operate on one or two source operands and update one des-

tination operand, the per-instruction handlers typically manipulate three small pieces of metadata
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or less (for their source and destination operands), with each metadata item associated with a given

application register or memory location. Figure 6(a) shows a representative software handler for a

load instruction.

Bulk updates for stack-update events: Software engineering practices call for abstraction

and encapsulation of functionality, leading to software with many short functions and frequent

function invocations at execution time. When the stack pointer of the application is adjusted, a

frame is allocated/deallocated on the application stack (upon a function call/return). We refer to

both types of activity as stack updates. Stack updates must be shadowed by the monitor to properly

track what memory has been allocated to an application. As a result, each function call and return

event in the application triggers a handler in the monitor that sets a region of metadata memory to

a known value (e.g., allocated+uninitialized upon a call, unallocated upon a return). Figure 6(b)

shows a software handler for a stack update instruction.

Handler for a stack frame allocation /deallocation

stack_update (UINT Addr, UINT L)
{

//set metadata for the stack frame
//the stack frame’s size is L
for (int i=0; i<L; i+=4)
set_mem_metadata (Addr+i, VALUE);

}

(b)

Handler for a load instruction (e.g., ld [A+4], %l7)

mem_to_reg (UINT src_mem, UINT dst_reg){
UCHAR src_value = get_mem_metadata(src_mem);
if (src_value != INVARIANT){ 

//Bug! record, inform runtime, etc.
}
set_reg_metadata(dst_reg, src_value);

}

(a)

FIGURE 6: (a) A SW handler for a load instruction event. (b) A SW handler for a stack-
update event.
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Complex or uncommon functionality for other events: Occasionally, monitors invoke

functionality that differs from the two cases above. This happens whenever the application per-

forms a high-level event of interest (e.g., malloc or free), initializes the metadata, or when a bug is

found. 

Figure 7 breaks down the monitors’ execution time into (1) simple metadata checks and

updates for application instruction events, and (2) metadata bulk updates in response to applica-

tions’ stack frame allocations and deallocations. In this graph, we do not show complex events as

they account for less than 5% of the run time for all monitors. The five studied monitors, described

in Section 2.3, cover a broad spectrum of bugs. The benchmarks along with our methodology4 can

be found in Section 5.3. 

As the figure shows, monitoring of instructions dominates the execution profile; however,

stack updates consume up to 17% of the execution time in two out of five monitors due to a large

number of instructions (over 100, on average) committed by the stack update handlers iterating

through a memory region.

4.  The monitors run on the baseline Log-Based Architectures system [22], also shown in Figure 8(a).

0

20

40

60

80

100

Addr
Check

Atom
Check

Mem
Check

Mem
Leak

Taint
Check

E
xe

cu
ti

o
n

 T
im

e 
(%

)

Stack updates Instructions

FIGURE 7: The sources of instruction-grain monitoring slowdown for instruction and
stack-update events.



22 
3.2 Filtering Common Application Events

In this Section, we analyze the monitors behavior in response to the two common applica-

tion events types: instructions and the stack updates. We show that the majority of the common

application events can be filtered.

Instruction events: For instruction events, we make two observations: First, most of the

time applications behave as expected and the metadata match the expected invariant (e.g., memory

accesses reference memory that has been allocated and initialized). We refer to these events as

clean checks. The associated handlers do not affect the outcome of the monitoring algorithm, as

they just confirm that the application behaves as expected. Second, propagation event handlers that

copy metadata values from source to destination operands commonly update the metadata with the

same value, because metadata are stable (e.g., memory that has been initialized remains initialized

while the actual value in application memory may change). We call these events redundant

updates, as they do not affect the metadata state. As the instruction events that fall into either clean

checks or redundant updates do not change the monitoring outcome and the monitor’s state, they

can be filtered. 

Table 2 shows the percentage of instruction event handlers that fall into either the clean

check or redundant update category. The benchmarks along with our methodology can be found in

Section 5.3. For AddrCheck, almost all instruction events result in clean checks, because applica-

tions access allocated memory. For MemCheck the vast majority of instruction events (98%) are

either clean checks or redundant updates as most application data are initialized. For MemLeak

87% of the events are clean checks because most of the applications data are not pointers. In con-

AddrCheck AtomCheck MemCheck MemLeak TaintCheck

99.5% 85.5% 98.0% 87.0% 84.0%

Table 2: Filtered instruction events.
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trast, TaintCheck’s rate is lower (84%) than that of MemLeak, as TaintCheck performs value prop-

agation that results in long propagation chains with a higher frequency of metadata updates. For

AtomCheck, over 85% of events are clean checks as most application data are consecutively

accessed by the same thread and do not risk an atomicity violation. Overall, we show that 84-99%

of instruction event handlers result in either clean checks or redundant updates. In Table 3, we

present examples of clean checks and redundant updates for the five studied monitors.

Stack update events: Stack update events, namely function calls and returns, contribute up

to 17% of the monitoring execution time, as shown in Figure 7. We observe that these handlers set

a range of metadata to a predefined value and do not check for bugs directly. Our proposal is to

Table 3: Monitors functionality and the associated clean checks and redundant updates. M
stands for metadata of memory and registers. The events are based on the SPARC ISA.

Monitor functionality Clean Checks/Redundant Updates

AddrCheck

The metadata values are checked to detect unallo-
cated memory accesses.

Example: ld %rd, mem(saddr)
clean check if (M[saddr] == allocated )

AtomCheck

The metadata values are checked to detect poten-
tial atomicity violations through access interleav-
ings.

Example: ld %rd, mem(saddr)
clean check if (M[saddr] == thread-private)

TaintCheck 

1) The metadata values are propagated through 
instructions, such as ld.
2) An error occurs when tainted data are used in 
critical ways, such as jump targets.

1) Example: ld %rd, mem(saddr)
redundant update if (M[saddr] == M[rd])
2) Example: jne %rs
clean check if (M[rs] == untainted )

MemCheck

1) The metadata values are propagated through 
instructions, such as add.
2) An error occurs when uninitialized data are 
used in critical ways, such as library call argu-
ments.

1) Example: add %rd,%rs1,%rs2
redundant update if (M[rd] == (M[rs1] & M[rs2]))
2) Example: ld %rd, mem(saddr)
clean check if (M[rd] == M[saddr] == initialized )

MemLeak

1) The metadata values (allocation ID/pointer sta-
tus) are propagated through instructions, such as 
ld.

1) Example: ld %rd, mem(saddr)
clean check if (M[rd] == M[saddr] == non-pointer)
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accommodates stack update events in a dedicated hardware unit that updates metadata in bulk,

thereby filtering the associated software handler dispatch. 

Prior work proposing architectural support for monitoring has largely ignored the accelera-

tion of stack-update events; Prior work either assumes a hardwired policy for all stack accesses

(e.g., all memory references to the stack access initialized data) [96], or does not provide accelera-

tion for bulk updates, thus suffering from the associated runtime overhead [23, 48]. In our prior

study, BugSifter [43], we show the runtime overhead due to the lack of hardware support for bulk

updates for the five studied monitors running on the LBA framework [23].

3.3 Implications of Filtering on Monitoring Systems’ Design

In the previous sections, we identified common high-level functionality inherent in a wide

range of monitors, and we showed that the majority of the monitored events can be filtered without

affecting the monitors coverage. In this Section, we explain why filtering allows for the design of a

monitoring system with three key characteristics: (1) fast, (2) flexible, and (3) resource-efficient.

3.3.1  Fast Monitoring

We envision a Filtering Accelerator, with monitor-agnostic hardware, that filters the appli-

cation event stream for diverse monitors based on our observations in Section 3.2. The accelerator

handles instructions and stack updates, as they are the main contributors to the monitoring slow-

down.

To handle instruction events, the Filtering Accelerator includes a simple event filtering

mechanism in hardware that elides the execution of costly SW handlers for clean checks (i.e.,

when the metadata match an invariant), and redundant updates (i.e., when the metadata of the

source and destination operands are the same). To accommodates stack-update events, the Filter-
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ing Accelerator includes a dedicated hardware unit that performs multi-block writes. Our observa-

tion is that stack update handlers set a large range of metadata to a predefined value, but do not

check for bugs directly. 

Overall, the proposed accelerator can filter 84-99% of the common monitoring activity in

hardware, thus eliminating most of the runtime overhead and allowing for fast instruction-grain

monitoring.

3.3.2  Flexible Monitoring

While the Filtering Accelerator can handle the common case in hardware, the unfiltered

events require further processing. We identify two possible options for the processing of the unfil-

tered events: (1) to implement the monitoring functionality on reconfigurable fabric, and (2) to

implement the monitoring functionality in software, which executes on a general-purpose core. 

Reconfigurability offers flexibility, but limits wide adoption because it requires program-

ming in a low-level hardware language that escapes the comfort zone of most programmers. An

additional limitation is that a reconfigurable fabric, with an internal clock rate that is typically well

under a gigahertz, may struggle to keep up [33] with today’s processors commonly running at

multi-gigahertz frequencies. 

Our preferred approach is to write the monitor on mainstream programming languages and

development tools. This guarantees maximum monitoring flexibility through software execution

for any unfiltered event, and accessibility to a broad range of developers.

3.3.3  Resource-Efficient Monitoring

To allow for full flexibility, the SW handlers for the unfiltered events are executed on a gen-

eral-purpose core, in contrast to other approaches that implement the monitor on specialized HW.
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To guarantee isolation and containment, the monitor and the application execute in a separate pro-

cess We consider two possible integration options for the Filtering Accelerator, as shown in

Figure 8.

The two-core monitoring system (Figure 8(a)) executes the application and the monitor on

separate cores, with an intermediate buffer to communicate the application activity to the monitor

[23]. In this system, the Filtering Accelerator inspects the application events and decides whether

an event requires further processing. Once the event queue is full, the application core stalls.

Upon an unfiltered event, a software handler is executed on the monitor’s core. Because the

handler updates metadata state potentially read by subsequent events, filtering stops during the

software handler execution. When the handler execution completes, filtering resumes, draining the

event queue and allowing the application to make progress. In Chapter 5, we propose Non-Block-

ing Filtering, a technique that overcomes this restriction and allows for the overlapped execution

of the filtering process and the SW handlers for unfiltered events.

Figure 9 shows the execution time breakdown in the two-core system for our five monitor-

ing tools (our methodology is detailed in Section 5.3). The execution time is broken down into

three categories: cycles in which (1) the application core is idle due to a full event queue; (2) the
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m
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FIGURE 8: (a) A two-core monitoring system, and (b) a single-core monitoring system
with filtering support.
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monitor core is idle because events are filtered by the Filtering Accelerator; and (3) both, the appli-

cation and monitor cores are not idle. 

As the figure shows, 59% to 96% of the time one of the two cores is idle, because the two-

core accelerated system is either effectively filtering the incoming event stream (idling the monitor

core) or spends a significant amount of time in handler execution (stalling the application core).

With both cores utilized just 16% of the time, on average, the benefit of the second core is clearly

limited.

In order to reduce the resource overhead of the dedicated monitoring core, we propose a sin-

gle-core monitoring system (Figure 8(b)) based on a dual-threaded core. In this system, the appli-

cation runs on one hardware thread and the monitor on another. The hardware cost of a second

hardware thread is low, especially with a simple hardware threading model (i.e., fine-grain thread

interleaving instead of simultaneous issue/execute from both threads). Most importantly, perfor-

mance can approach that of a two-core system, because the execution time is typically dominated

by either the application (when the filtering rate is high) or the monitor (when unfiltered events are

frequent), as shown in Figure 9.
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3.4 Summary

In this chapter, we showed that the majority of the monitoring slowdown is due to instruc-

tion and stack-update events. For frequently occurring instruction events, we make two observa-

tions: (1) most of the time applications behave as expected (i.e., invariant checks succeed), and (2)

the monitor’s metadata do not need to be updated (i.e., most updates are redundant). These obser-

vations allow the vast majority of the costly software handlers invoked in response to instruction

events to be filtered out. For stack updates, we show that they constitute up to 17% of the moni-

tor’s execution time. To handle these events, we propose a HW mechanism that can update meta-

data in bulk.

While 84-99% of the monitored events can be filtered in HW, the rest of the events require

further processing. To allow for full flexibility, we choose to delegate the unfiltered events to SW.

Unlike prior work that dedicated a whole core to the monitoring task, we show that a dual-threaded

core provides sufficient resources for the application and the monitor.



29 CHAPTER 4. EVENT MANAGEMENT
Chapter 4

Event Management

In Chapter 3, we showed that the majority of the application events can be filtered, as they

change neither the monitor’s state nor the monitoring outcome, thus allowing for the design of a

fast, flexible and resource-efficient monitoring system. In this chapter, we discuss the event man-

agement in such a monitoring system.

To motivate our analysis, we start with a discussion of the most closely related work (Log-

Based Architectures) that reveals three important implications on the design of monitoring sys-

tems. Then, taking these implications into consideration, we study the event management in the

proposed monitoring system. In doing so, we analyze the monitored and the unfiltered event gen-

eration rates in order to estimate the queueing requirements and the filtering rate requirements.

4.1 Motivation

Log-Based Architectures (LBA) [22, 23, 24] is an event-based monitoring system that cap-

tures application events in hardware and communicates them to a neighboring core on a CMP plat-

form to perform monitoring. LBA includes three monitoring acceleration mechanisms: two

accelerators to filter the event stream (a discussion of the differences between these two accelera-

tors and our work can be found in Section 7.2.6), and one accelerator to reduce the length of soft-

ware handlers executed for unfiltered events. Although, LBA is a good starting point towards

generalized hardware for monitoring systems, it comes with certain shortcomings regarding event

management, as we explain in the rest of this section.
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Figure 10 shows an overview of Log-Based Architectures. The application generates events

and enqueues the events of interest in the event queue. The accelerators dequeue and examine the

events from the queue. If the events can be filtered, no further action is required. Upon an unfil-

tered event, the filtering process has to stall until the processing of the event by the monitor’s soft-

ware completes. As inter-event dependencies mandate in-order processing, this system fully

exposes the slowdown due to unfiltered events. 

Implication 1 (decoupling): To hide the monitoring slowdown due to unfiltered events, the

filtering process should be decoupled from the processing of unfiltered events, so that the two can

overlap in time. We revisit this implication in Section 5.2 and we show performance results in

Section 5.4.4.

LBA proposes two monitoring accelerators that process event streams generated by in-order

cores. However, the event generation rate is expected to be higher, when the application is running

on more aggressive cores. To quantify the effect of the core type, we measure the event generation

rate of an in-order and a 4-way OoO core. We find that the aggressive core produces 2x more

events compared to the in-order core (the complete analysis follows in Section 4.2.2). 

Implication 2 (accelerators design): The pressure on the accelerators increases when

aggressive cores produce the event stream. Thus, aggressive cores should be studied, so as to

ensure the wide applicability of an acceleration technique.

L2

MonitorApplication
Core Core

event queue

accelerators

FIGURE 10: Log-Based Architectures (LBA) overview.
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LBA employs a large queue that can accommodate up to 64K events. However, the queue

can assist with the monitoring slowdown, only when the event generation rate is lower than the

event consumption rate. 

For this discussion, we consider two systems: (1) the baseline LBA system without acceler-

ation [24], and (2) the LBA system including the three accelerators [22, 23]. In both systems, the

consumption rate is limited by the frequency of software handlers invocation, as the filtering pro-

cess has to stall upon an unfiltered event. In the baseline LBA, the consumption rate is always

lower than the event generation rate, because a software handler is dispatched for each monitored

event. The accelerated LBA system increases the consumption rate due to the filtering support.

However, the consumption rate is still lower than the event generation rate, with the exact ratio

depending on the filtering ratio and the cost of processing an unfiltered event. 

Implication 3 (queueing): Queueing cannot hide the monitoring slowdown due to unfil-

tered events, if the filtering process has to stall upon each unfiltered event.

4.2 A Quantitative Analysis

4.2.1  System Description

Taken into consideration the implications of our analysis in Section 4.1, we propose a mon-

itoring system for decoupled event processing. In Figure 11, we show the main entities involved in

the event processing flow. The application generates events as instructions retire and enqueues the

events of interest (i.e., monitored events) in the event queue. The rest of the events (i.e., unmoni-

tored events) do not require further processing. The filtering accelerator (FA) dequeues events

from the head of the event queue and checks whether the filtering condition is satisfied. If so,

events are filtered and no further action is required. As further processing is necessary for the rest

of the events (i.e., unfiltered events), the filtering accelerator places them into the unfiltered event
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queue. Finally, the unfiltered event consumer dequeues and handles the unfiltered events complet-

ing the monitoring analysis. 

4.2.2  Event Producer

As the application instructions retire, they generate events. However, monitoring analyses

do not require all application events to be processed. As a result, software [81] and hardware [23, 

33] monitoring frameworks include support to eliminate5 the unmonitored events. We define mon-

itoring load as the ratio of monitored events to all committed instructions. 

Based on the types of the monitored instruction events, monitoring analyses can be broadly

categorized into two types: memory tracking, which process only memory instructions, and propa-

gation tracking, which may track any instructions types and propagate a metadata value from the

source operand(s) to the destination operand. The exact instruction types being monitored depend

on the monitor’s task. For instance, MemLeak [71], which identifies memory leaks, monitors

instructions that may propagate a pointer value, such as arithmetic and load/store instructions, but

eliminates floating-point instructions. 

5.  The term filtering has been used in prior work [33] to refer to elimination of unmonitored events. We do not use the 
term filtering in this context because no monitoring task is associated with unmonitored events.
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FIGURE 11: A monitoring system with filtering support.
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To quantify the load on different monitors, we measure the applications’ monitored IPC on

an in-order core (Figure 12(a)) and an aggressive 4-way OoO core (Figure 12(b)). We detail the

benchmarks and monitors in Section 5.3. Figure 12 shows per-monitor results averaged across

benchmarks. For instance, for AddrCheck in Figure 12(b), the average application IPC (including

both monitored and unmonitored instructions per cycle) is 1.1, out of which 0.4 (monitored

instructions per cycle) require a monitoring action to be taken. We find that the applications pro-

duce 2x more events when running on the aggressive core compared to the in-order core. There-

fore, we focus our analysis on applications running on the aggressive core (Figure 12(b)), as they

stress the accelerator with a higher event generation rate.

In general, the monitoring load of memory-tracking monitors is lower compared to the mon-

itoring load of propagation-tracking monitors, because propagation-tracking monitors tend to pro-

cess more events. As a result, the former have a low monitored IPC (up to 0.4 event per cycle),

while the opposite holds for the latter (up to 0.68 event per cycle). 
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FIGURE 12: Breakdown of application IPC to monitored and unmonitored, averaged 
across benchmarks for each monitor (a) for an in-order core, and (b) for a 4-way OoO 
core.



34 
Figure 13(a), shows the per-benchmark results for AddrCheck, a memory tracking monitor,

which checks whether an access goes to allocated memory [81]. For all benchmarks, the monitored

IPC is significantly below 1.0, with an average of 0.24. In contrast, Figure 13(b) shows the per-

benchmark results for MemLeak, a propagation tracking monitor. While most benchmarks also

have a monitored IPC of below 1.0, with an average of 0.68, the monitored IPC of MemLeak is

2.8x higher than AddrCheck, underscoring the differences in monitoring load.

The monitored IPC indicates the event generation rate of the applications and dictates the

rate at which events must be consumed by the filtering accelerator. The presented analysis shows

that the monitored IPC is below 1.0 for a range of monitors, even when the event stream is pro-

duced by an aggressive OoO core. We thus conclude that a filtering accelerator with a processing

capability of one event per cycle can keep up with the event producer. 

4.2.3  Event Queue

We next examine the buffering requirements between the event producer and the filtering

accelerator. For the purpose of our study, we assume a filtering accelerator that processes one

event per cycle and has an infinite event queue. In Figure 14(a, b), we present the cumulative dis-
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FIGURE 13: Breakdown of application IPC to monitored and unmonitored per-
benchmark for (a) AddrCheck and (b) MemLeak.
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tribution of the event queue’s occupancy for (a) AddrCheck, a memory-tracking monitor, and (b)

MemLeak, a propagation-tracking monitor, on an aggressive 4-way OoO core.

For memory-tracking monitors (Figure 14(a)), the monitored IPC is low, resulting in small

bursts of events that can be captured in an 8-entry queue. For propagation-tracking monitors

(Figure 14(b)), the monitored IPC is considerably higher, resulting in longer bursts. Depending on

the benchmark’s monitored IPC, the queueing requirements range from 128 entries (mcf – low

monitored IPC) to 8K entries (omnetpp – higher monitored IPC). For benchmarks with a moni-

tored IPC greater than one, such as bzip, queueing cannot help, as the filtering rate (1.0 event per

cycle) is below the event generation rate (1.2 events per cycle). 

We next compare the performance loss stemming from finite queues over an infinite event

queue. We evaluate two queue sizes: (1) 32K entries, which can accommodate the bursts based on

our analysis, and (2) 32 entries, which is a practical-sized queue. In Figure 15, we present results

for MemLeak, a monitor that exerts the greatest pressure on the queue due to its high monitored

IPC. We observe that the 32K-entry queue can fully accommodate the bursts (resulting in no slow-

down) for all benchmarks but bzip and gcc, corroborating the burstiness analysis in Figure 14(b).
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FIGURE 14: The occupancy of an infinite event queue for (a) AddrCheck and (b)
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Meanwhile, a much smaller queue of only 32 entries results in a slowdown that ranges from none

(mcf, astar, libq.), to 1.17x (gombk). Queueing can only provide negligible performance improve-

ment for bzip (monitored IPC over 1.0) resulting in a 1.33x slowdown for a 32K-entry queue and a

1.36x slowdown for a 32-entry queue. For gcc, queueing reduces the slowdown from 1.1x (32-

entry queue) to 1.04x (32K-entry queue). We conclude that a small (e.g., 32-entry) event queue

allows for insignificant slowdown caused by bursts.

4.2.4  Filtering Accelerator

The filtering accelerator aims at reducing the overhead of common monitoring activities

(discussed in Chapter 3), which mainly happen in response to two categories of application events:

(1) instructions, (2) function calls and returns. The monitors also process high-level events (e.g.,

malloc, fopen, mmap). The filtering accelerator does not target high-level events, as they are infre-

quent and require complex handling. 

The vast majority of monitoring activity is due to instruction events requiring accesses,

checks, and updates to the metadata of the instruction operands. Nearly all remaining monitoring

activity is due to the allocation (deallocation) of stack frames on the application stack upon func-
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FIGURE 15:  The effect of event queue size on performance for MemLeak. 
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tion calls (returns). Stack updates must be shadowed by the monitor to properly track which por-

tion of the application memory has been allocated. Therefore, the monitor sets a region of

metadata memory to a known value (e.g., allocated and uninitialized on a call, unallocated on a

return). 

While instructions dominate the execution profile, in two out of five studied monitors stack

updates consume up to 17% of the execution time and represent an attractive acceleration target

(Chapter 3). 

4.2.5  Unfiltered Event Queue and Consumer

Events that cannot be handled by the filtering accelerator (i.e., unfiltered events) require fur-

ther processing by the monitoring system. An ideal unfiltered event consumer should be able to

support a wide variety of monitoring tools for comprehensive bug coverage. As discussed in Chap-

ter 3, we employ a general-purpose core to process the unfiltered events.

Nearly all unfiltered events arise as a result of (1) memory allocation, deallocation, or ini-

tialization; and (2) traversals of tainted data structures or files in taint-tracking monitors. In gen-

eral, these actions involve multiple memory words and, as a result, trigger a burst of metadata

updates that cannot be filtered.

Figure 16(a) plots the distance, as a cumulative distribution, between unfiltered events for

MemLeak. Results are similar for other monitors. The distance is measured in events. We observe

that two unfiltered events are typically separated by up to 16 filterable events. Based on this analy-

sis, we define an unfiltered burst as a sequence of unfiltered events, each of which is separated by

at most 16 filterable events. Figure 16(b) shows the average burst size (measured in unfiltered

events) for each monitor and benchmark pair. We observe that the bursts are small, with an average
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size of 16 or fewer unfiltered events for the majority of benchmarks and monitors. We thus con-

clude that a small (e.g., 16-entry) unfiltered event queue is effective at accommodating the bursts.

4.3 Summary

In this chapter, we studied the event management in a monitoring system with filtering sup-

port. An important implication of our analysis in Section 4.1 is that performing filtering concur-
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rently with the processing of unfiltered events is essential to reduce the monitoring slowdown. We

revisit this topic in Section 5.2 and we show performance results in Section 5.4.4.

In Section 4.2, our study of a broad range of applications and monitors shows that the mon-

itoring load rarely exceeds one event per cycle even with an aggressive OoO core producing

events. Event production is bursty, mandating queueing for pending events; however, a small

queue is sufficient for good performance. Unfiltered events are also bursty and are sparsely spaced

within an otherwise filterable event stream.

Overall, these results point to a programmable filtering accelerator able to keep up with an

average monitoring load of one event per cycle, capable of filtering concurrently with unfiltered

event processing, and loosely coupled through shallow queues to both application and monitoring

systems.
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Chapter 5

FADE

Filtering has been a recurring theme in related work, done concurrently with this work, as a

way to reduce the monitoring slowdown. Related work has also identified the potential of filtering

and has introduced hardware-based mechanisms to achieve high monitoring performance [35, 96,

107]. However, related work treats filtering as a trade-off between flexibility and performance. Fil-

tering mechanisms that achieve high efficiency and low runtime overhead are focused on a narrow

set of monitoring analyses (e.g., only taint flow analysis [107], or only memory safety analysis

[35]). Filtering mechanisms that aim at high flexibility do not lower the slowdown uniformly

across monitors [23, 43]. Moreover, a number of existing filtering proposals either require intru-

sive modifications to the core microarchitecture (e.g., a new pipeline stage [107]) or have high

resource overheads, needing a dedicated core for the monitoring task [23, 96].

We make the observation that filtering does not have to trade flexibility for performance,

and can be effective at accelerating a wide range of monitoring tools. Furthermore, filtering can be

independent of the underlying system and monitoring architecture while accommodating different

design points in terms of the core microarchitecture and the execution substrate for processing of

unfilterable events.

The main contribution of this chapter is in generalizing and extending prior point solutions

into a programmable filtering accelerator that can support a broad range of monitoring tasks with

high filtering coverage and low hardware overhead. To that extent, in this chapter, we develop an

architecture, along with full microarchitectural support, for a flexible at-speed Filtering Accelera-
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tor for Decoupled Event processing, or FADE. FADE is fully programmable and can support a

broad range of monitoring tasks with high filtering coverage and low hardware overhead.

FADE’s design is guided by our observations from the previous chapters that can be sum-

marized as follows:

• The average monitoring load rarely exceeds one event per cycle, indicating that a single-issue

filtering accelerator with a throughput of one event per cycle suffices. 

• Instruction and stack-update events dominate the monitoring load. Instruction events require

fine-grained accesses to monitor’s metadata, most of which can be filtered through (1) hard-

ware-executed checks of metadata state against an invariant, and (2) detection and elimination

of redundant updates that leave the metadata state unmodified. Stack-update events perform

bulk metadata initialization in response to function calls and returns and can be efficiently han-

dled with a simple state machine.

• Maintaining a high filtering rate requires that filtering takes place concurrently with the pro-

cessing of unfiltered events.

• Both filterable and unfilterable events arrive in bursts that must be buffered to reduce stalls due

to backpressure. Shallow queues of 16 to 32 events are sufficient for this purpose and allow for

decoupling of the filtering accelerator from the core running the application. 

Based on these observations, we propose a pipelined microarchitecture affording a peak fil-

tering rate of one application event per cycle (when all events are filtered). The latter suffices to

keep up with an aggressive OoO core running the monitored application.
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To maintain a high filtering rate, filtering has to happen concurrently with the processing of

unfiltered events, a task that is complicated due to dependencies between unfilterable and subse-

quent filterable events. To decouple filtering and the processing of the unfiltered events, we

observe that there is only minimal state that is critical for deciding if a dependent event is filter-

able. We show that this state can be updated for unfilterable events directly in the accelerator with

simple hardware extensions. We name our technique Non-Blocking Filtering and we described it

in detail in Section 5.2. FADE supports Non-Blocking Filtering that dynamically resolves depen-

dencies between unfilterable events and subsequent events, eliminating data-dependent stalls and

maximizing accelerator’s performance.

Using full-system cycle-accurate simulation, we show that FADE is highly efficient, filter-

ing out 84-99% of events that would otherwise be handled in software, thereby reducing the appli-

cation slowdown to only 1.2-1.8x (versus 1.6-7.4x for unaccelerated execution). In the 40nm

technology, FADE requires 0.12mm2 of area and 273mW of power at peak.

In the rest of this Chapter, we first present the baseline FADE design that stops or blocks

upon an unfiltered event (Section 5.1), and then extend it to support Non-Blocking Filtering

(Section 5.2) that allows for the overlapped execution of the filtering process and the handling of

unfiltered events in SW.

5.1 Baseline Filtering Accelerator

The baseline Filtering Accelerator is composed of two building blocks: (1) the Filtering

Unit, which filters instruction events (Section 5.1.1), and (2) the Stack-Update Unit, which accel-

erates stack-update events (Section 5.1.2). Without loss of generality, we assume that unfiltered

events are processed in software on a general-purpose core.
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5.1.1  Filtering Unit

To elide software execution, the Filtering Unit supports two filtering actions, clean checks

(CC) and redundant updates (RU). Clean checks are based on the observation that most of the time

applications behave as expected and the metadata match the expected invariant (e.g., memory ref-

erences are to initialized memory). Redundant updates are based on the observation that metadata

are stable as propagation handlers commonly update the metadata with the same value (e.g., ini-

tialized memory remains initialized even when the actual value in application memory changes).

We discussed clean checks and redundant updates in detail in Chapter 3.

The Filtering Unit handles an instruction event either as a clean check or as a redundant

update. To maximize flexibility and applicability, the Filtering Unit implements three modes of

operation: (1) Single-shot filtering either performs a clean check or identifies a redundant update,

(2) Multi-shot filtering chains multiple single checks together to determine whether an event is fil-

terable, (3) Partial filtering filters a part of the software handler functionality in hardware, thus

reducing the handler’s length.

FADE’s hardware is fully programmable and allows for per-event definition of the filtering

rules. In FADE, programmability is achieved by configuring two structures: (1) the event table,

which includes per-event filtering rules, and (2) the Invariant Register File (INV RF), which keeps

filtered?
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invariant values related to the monitoring task (e.g., unallocated, allocated, and initialized states

for MemCheck). These structures are memory-mapped and programmed on a per-application

basis.

Figure 17 shows the baseline filtering pipeline, which consists of four stages. Note that

striped structures, including the Metadata Write stage, are only for Non-Blocking Filtering as dis-

cussed in Section 5.2. The pipeline works as follows. First, the filtering rules are read from the

event table. Next, the control unit uses the event information and the filtering rules to produce the

control signals for subsequent stages, in Control stage. Then, the Filtering Unit accesses the meta-

data register file (MD RF) and a dedicated metadata cache (MD cache) to obtain metadata. The

Filtering Unit may also access the INV RF to obtain monitor-specific invariants, if necessary.

Finally, in the Filter stage, the filter logic checks whether the filtering condition is satisfied. 

Stage 1: Event Table Read. The filtering accelerator

dequeues an event (Figure 19) from the event queue

and accesses the event table with the event ID to

obtain the event’s filtering rules. An event table entry

(Figure 18) includes the following information for

each operand (i.e., s1, s2 and d): (1) the valid bit and

the mem bit to denote the evaluated operands and the

memory operands, respectively; (2) the number of MD bytes to be evaluated; (3) a mask to extract
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FIGURE 18: Event table entries. The size of an event table entry is 96 bits.
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the appropriate bits. Each entry also includes the PC of the software handler to be invoked for

unfiltered events.

Each entry includes the CC bit and the INV id for clean checks, and the RU field for redun-

dant updates. The INV id indicates the invariant registers (one for each operand) to be used upon a

clean check. The RU field encodes three options. In case of one source operand, the source meta-

data are directly compared to the destination metadata. In case of two source operands, the source

metadata are composed using either OR or AND and then compared to the destination metadata.

The rest of the fields are described later.

Stage 2: Control. The control unit processes the information obtained from the event table

and uses combinational logic to generate control signals for subsequent stages (e.g., filter logic

mux controls, selects and enables for MD RF). 

Stage 3: Metadata Read. The Filtering Unit accesses

the MD RF, the INV RF and the MD cache (shown in

Figure 20) to obtain metadata and invariants values. 

Metadata accesses (for memory operands) necessitate

a translation step from the application to the monitor

address space before accessing the MD cache. The

memory operands (due to loads, stores) include virtual

application addresses, because the event stream is gen-

erated at the application side, while the memory metadata are allocated in the monitor’s virtual

address space (a feature that enhances system security and reliability). In FADE, we fold the

address translation into the MD cache access. The TLB of the MD cache, similar to the M-TLB

[23], contains the translation from a virtual application page to the physical page that contains the

associated memory metadata. The TLB is software managed by the user-space monitor (same as

the M-TLB [23]). To enable the software handlers to leverage the metadata cache, we extend the

L1-D$

Core

fill path

to L2

MD$

FIGURE 20: The MD cache in the
cache hierarchy. 
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ISA with new Load Metadata and Store Metadata instructions. Conventional loads and stores

access the L1-D unaffected.

Stage 4: Filter. The Filtering Unit supports three modes of operation to filter events.

Single-shot Filtering. In a single cycle, the Filtering Unit compares up to three distinct oper-

and metadata to an invariant (clean check), or compares the operand metadata to each other

(redundant update).

Examples of single-shot filtering are shown in the first two entries of Figure 18. The first

event table entry corresponds to a load instruction for MemLeak. FADE handles the event as a

clean check (CC=1) and filters the event when both operands are not pointers. In doing so, the

metadata of the event operands (i.e., the memory operand s1 and the register operand d) are com-

pared to the non-pointer invariant, which is stored in the third entry of the INV RF (INV id=2).

The evaluated metadata are one byte (MD bytes=1). The second event table entry corresponds to a

load instruction that is handled as a redundant update.

Figure 21 details the filter logic, which is organized as three identical two-operand compar-

ison blocks (labeled f1, f2, and f3 in the figure). Each block can compare any one of three event

operands (i.e., s1, s2, and d) to another operand or to an invariant. Together, the three blocks allow

f3f2f1

masked s1
masked dst

masked INV

masked s2

MS

1

filtered

m
u
x

m
u
x

Mux select 
signals 

from Control 

?
=

FIGURE 21: The internals of filter logic.
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for a single-cycle evaluation of the most complex single-shot condition (i.e., comparing each of

the three operands – s1, s2, and d – to a different invariant). 

Multi-shot Filtering. To accommodate complex monitors that require multiple checks to

determine whether an event is filterable, FADE supports multi-shot filtering. The Filtering Unit

processes multi-shot events in multiple cycles by performing one check per cycle, and maintains

one entry in the event table per check, thus keeping each entry simple. To encode multi-check

events, each event table entry requires two additional fields (shown in Figure 18): (1) the next

entry field, which contains a pointer to the next entry in the event table; and (2) the multi-shot bit

(MS), which enables multiple checks to be chained by allowing the previous filtering outcome to

be considered in the final filtering outcome. As shown in Figure 21, the associated circuit (in bold)

includes a clocked register and a multiplexer, controlled by the MS bit.

Partial Filtering. Partial filtering affords a part of the handler functionality to be executed in

hardware, reducing the length of the software handler. A software handler may first perform a

check and based on the check’s outcome, executes either an update or a more complex routine

including multiple checks and updates. FADE accelerates such cases by performing the initial

check in hardware. To support partial filtering, each event table entry includes a partial bit (P)

(shown in Figure 18), which drives the selection of the handler PC.

An example of partial filtering appears in AtomCheck, where the filter logic checks whether

a shared memory location was last referenced by the same thread. Commonly, the check succeeds,

and a simple software handler is dispatched to update metadata. Otherwise, a complex handler

runs to check whether there is a potential atomicity violation. While both cases require software

execution, the hardware check eliminates the code associated with the check itself, control flow,

and register spills and fills.
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5.1.2  Stack-Update Unit

Stack-update events, which set consecutive metadata addresses to a predefined value in

response to allocation/deallocation of an application stack frame, are handled in FADE via a dedi-

cated Stack-Update Unit (SUU). The SUU implements a finite state machine that takes the stack

frame’s starting address and length as parameters to calculate the address(es) of the metadata

block(s) covered by the stack frame. The SUU issues writes to the MD cache to set the target range

of addresses to one of two predefined values (one value on function calls and another on function

returns), which are stored in the INV RF. 

The SUU can use either the block-wide or sub-block interface of the metadata cache to min-

imize the number of write operations; this interface is similar to that in contemporary processors

that support write combining to reduce write activity in L1-D. The number of metadata cache

block writes is dictated by the length of the stack frame, encoded in the event descriptor. 

Overall, FADE handles stack-update events in hardware by (1) configuring the filter table to

recognize them, (2) forwarding them directly to the stack update unit, and (3) executing them

using the range update FSM, thus completely eliding software intervention.

5.2 Non-Blocking FADE

5.2.1  Observations

Due to true dependencies between monitored instructions, baseline FADE must stall filter-

ing when an unfiltered event is encountered. Filtering resumes when the monitoring system com-

pletes the unfiltered event processing and the updated metadata become available. This

organization penalizes performance because filtering and execution of unfiltered event handlers

cannot overlap.
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To overcome the serial processing of unfiltered events and subsequent dependent events, we

make a critical observation: while monitors often maintain detailed metadata to support complex

monitoring analyses, there is a subset of metadata, which we call critical, that includes sufficient

information to decide whether a subsequent dependent event is filterable. Importantly, this critical

state can be updated for unfilterable events directly in hardware in the Filtering Unit. These

updates are non-speculative and are based on predefined rules that can be implemented in simple

hardware.

For instance, for MemLeak, which performs reference counting to identify memory leaks,

an event is filterable when its operands are not pointers. Therefore, just checking the pointer/non-

pointer status of a memory location or a register suffices to make the filtering decision. For exam-

ple, in case of a load instruction, if the source memory location has a pointer status, the destination

register obtains a pointer status as well. However, to perform reference counting, MemLeak main-

tains additional metadata per register and memory location, which consist of a pointer to the con-

text (explained in Section 2.3) of the corresponding malloc. While fundamental to MemLeak’s

monitoring algorithm, these additional metadata are non-critical from the perspective of the filter-

ing task. A detailed description of critical/non-critical metadata for the studied monitor is provided

in Section 5.3.

Overall, we observe that (1) there is critical (minimal) state that can be checked to deter-

mine the filtering outcome in a non-speculative way, and (2) this state can be updated in simple

hardware based on simple pre-defined rules. Based on these observations, the filtering decision

and the handling of unfiltered event can be decoupled, thus enabling the design of a Non-Blocking

filtering unit that can continue filtering past an unfiltered event.
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5.2.2  Extensions to the Baseline Pipeline

Figure 17 shows the pipeline extensions (striped) to support Non-Blocking Filtering. We

introduce two new structures; the metadata (MD) update logic, which performs updates to the fil-

tering-critical metadata for unfilterable events, and the filter store queue (FSQ), which stores the

updated memory metadata. We also introduce a new pipeline stage, Metadata Write, where

updates to metadata take place.

Processing of instruction events. Consider an unfilterable event that just enters the pipe-

line. The processing in the first three stages (Event Table Read, Control, and Metadata Read) is the

same as in the baseline pipeline. In the Filter Stage, while the filtering condition is evaluated, the

MD update logic computes the new value for the filtering-critical metadata. The new metadata

value is subsequently used only if the filtering condition evaluates to false, indicating an unfilter-

able event. Otherwise, the new metadata value is discarded. 

To determine the logic for critical metadata updates, we observed that critical metadata have

minimal state and their propagation follows simple rules. Based on the studied monitors, we pro-

vide support for the following rules: (1) propagating the source metadata (s1 or s2) to the destina-

tion; (2) composing the new destination metadata from the two source metadata using OR or

AND; (3) setting the destination metadata to a constant value, which is stored in an INV register

denoted by the Non-Blocking/INV id field in the event table (see Figure 18); and (4) conditionally

performing one of the above actions after comparing the source operands to each other, to the des-

tination, or to a constant.

In the Metadata Write stage, the Filter Unit commits updated metadata to the MD RF (for

register) or to the FSQ (for memory). Subsequent events with a true dependence on the updated

metadata can then obtain them from the MD RF or the FSQ in Metadata Read stage. For memory

metadata, the FSQ is searched in parallel with the MD cache. If a matching FSQ entry is found, it
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is used to satisfy the dependence; otherwise the metadata from the cache are used. To accommo-

date back-to-back dependencies, forwarding from the Metadata Write stage to the Filter stage is

supported. 

Eventually, the unfiltered event handler executes and updates both the critical and the non-

critical metadata for registers and memory. Once the handler completes, the MD cache contains

the updated value for the critical memory metadata (if any) and the corresponding FSQ entry is

discarded. Subsequent accesses to these metadata are served by the MD cache.

Processing of stack-update events. As stack updates change the metadata state, filtering

must stop upon a stack-update event to allow the SUU to set the stack frame metadata. Moreover,

as pending unfiltered events may reference stack frame-related metadata, the unfiltered event

queue must be drained by the consumer prior to stack-update processing. 

5.3 Methodology

Evaluated designs. We evaluate two FADE-enabled systems, shown in Figure 22. The two-

core monitoring system (Figure 22(a)) executes the application and monitor threads on separate

cores to maximize concurrency [23]. Filtering takes place next to the monitor core. The single-

core monitoring system (Figure 22(b)) is based on a fine-grained, dual-threaded core with a dedi-

Core 1 Core 2

App. Monitor

HW
thread 1

HW
thread 2

App. Monitor

(a) two-core, 
single-threaded

(b) single-core, 
dual-threaded

FADE

FIGURE 22: Evaluated systems.
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cated hardware thread for the application and monitor processes. This design point minimizes

resource requirements, but results in higher slowdown because the core resources are shared

between the application and monitor.

We also evaluate two unaccelerated systems, similar to the single- and two-core systems

presented in Figure 22 but without FADE. In these systems, the application and the monitor com-

municate through a single queue.

System configuration. Table 4 summarizes the configuration of the evaluated systems.

Additionally, FADE-enabled systems have a 4KB, two-way MD cache with one-cycle access

latency, and a 16-entry Metadata TLB. The event table has 128 entries, covering the heavily used

subset of the modeled ISA. The event queue and the unfiltered event queue is 32 and 16 entries,

respectively. Unless, otherwise specified, experiments use Non-Blocking FADE.

Simulation. We use Flexus [114] for cycle-accurate full-system simulation. Flexus extends

Simics with timing models of multithreaded cores, caches, and interconnect. For our evaluation,

we use the SMARTS sampling methodology [117]. Our samples are drawn over one billion

instructions of the monitored application. As our benchmarks are organized as a collection of

loops, we sample over an execution interval that covers multiple iterations. For the parallel bench-

marks, we follow the same approach to cover a representative part of the benchmark’s parallel sec-

tion. For each measurement, we launch simulations from checkpoints with warmed caches

Table 4: Simulation setup.

Parameter Value

in-order, 1-way

Core type lean OoO, 2-way/48-entry ROB

aggr. OoO, 4-way/96-entry ROB

ISA SPARC v9 [84]

L1 caches 32KB, 2-way, 64B block, 2-cycle latency

Shared L2 2MB, 16-way, 64B block, 10-cycle latency

DRAM 90-cycle latency
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(including the MD cache), and run 100K cycles to achieve a steady state of detailed cycle-accurate

simulation before collecting measurements for the next 50K cycles. For the two-core system

experiments with a 64K-entry event queue (in Chapter 3), we run for 1 million cycles to ensure

that the event queue has the correct state and we take measurements in the subsequent 500K

cycles.

Power and Area. To estimate FADE’s area and power, we synthesize our VHDL imple-

mentation with Synopsys Design Compiler. We use TSMC 45nm technology (core library:

TCBN45GSBWP, Vdd: 0.9V) scaled down to 40nm half node, and target a 2GHz clock frequency.

For the MD cache, we estimate area, power, and latency with Cacti 6.5 [73].

Monitors. We revisit the five studied monitors, introduced in Section 2.3, so as to discuss

the critical and non-critical metadata on a per-monitor basis.

AddrCheck [81] checks whether memory accesses are to an allocated region. The critical

metadata encode two states (allocated or unallocated) per memory location, while the non-critical

metadata include book-keeping information for bug reporting. 

MemCheck [81] extends AddrCheck to detect the use of uninitialized values, and Taint-

Check [82] detects overwrite-related security exploits. For critical metadata, MemCheck has three

metadata states (i.e., unallocated, uninitialized, and initialized) and TaintCheck has two metadata

states (i.e., untainted and tainted). Non-critical metadata may include information related to origin

tracking [11] or other bookkeeping information. 

MemLeak [71] identifies memory leaks through reference counting. The critical metadata

consist of the pointer/non-pointer status of each register and memory word. Non-critical metadata

consist of a pointer to the corresponding malloc’s context and a null value otherwise. The context

includes a unique ID, PC, and a reference counter. 
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AtomCheck [65] detects atomicity violations by checking access interleavings. For this pur-

pose, it keeps track of the last access by each thread to each application memory location. Atom-

Check maintains one byte of critical metadata per application word with the thread status bit and

the thread id. Furthermore, it keeps non-critical metadata including the type (Read/Write) of the

last access by each thread in local per-thread tables. AtomCheck is accommodated by Partial filter-

ing, as explained in Section 5.1.1. 

Benchmarks. For all monitors, except AtomCheck, we use the SPEC2006 integer bench-

marks with reference inputs. These CPU-intensive benchmarks stress the monitoring system with

a high event generation rate. For TaintCheck, we use the benchmarks (astar, bzip, mcf, omnetpp)

that have tainting propagation initiated by file reads and we exclude the rest. For AtomCheck, we

use five multithreaded benchmarks: water and ocean from the SPLASH suite [116]; and black-

scholes, streamcluster, and fluidanimate from the PARSEC suite [10]. Each benchmark has four

threads that run on one core in a time-sliced manner. All benchmarks use 32-bit binaries. 

5.4 Evaluation

5.4.1  FADE versus Unaccelerated System

Figure 23 depicts the performance of FADE versus the unaccelerated monitoring system. In

both systems, application and monitor tasks execute in dedicated hardware threads of a dual-

threaded 4-way OoO core. Performance is normalized to an unmonitored (application-only) sys-

tem.

In general, for the unaccelerated systems, we observe an average slowdown of 4.1x, across

monitors. For memory-tracking monitors (AddrCheck, AtomCheck), the average slowdown is

2.5x, while for propagation-tracking monitors (MemCheck, MemLeak, TaintCheck), the slow-
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down is 5.8x. FADE reduces the slowdown significantly for all monitors, with an average slow-

down of 1.5x. FADE’s slowdown is 1.3x and 1.6x for memory- and propagation-tracking

monitors, respectively.

Figure 23(a) shows AddrCheck’s performance, which is generally good on both systems as

the monitor just processes non-stack memory instructions. In the unaccelerated system, Addr-

Check’s slowdown ranges from 1.2x to 2.9x, with an average of 1.6x. FADE reduces the slow-

down to an average of 1.2x by filtering out nearly all monitored events.

Figure 23(b) presents results for AtomCheck. Although AtomCheck is a memory-tracking

monitor with a low event generation rate, it has an average slowdown of 3.9x (8.2x max) in the

unaccelerated system because the events are costly due to numerous monitoring actions. In con-

trast, FADE benefits from a high filtering ratio, resulting in an average slowdown of 1.6x (1.9x

max). 

Figure 23(d) shows the results for MemLeak, a heavy-weight propagation-tracking monitor.

In the unaccelerated system, we observe slowdown ranging from 3.4 to 11.5x, with an average of

7.4x. We note that the benchmarks with a high monitored IPC (e.g., 1.2 for bzip) generate events

faster than those with a low monitored IPC (e.g., 0.2 for mcf), resulting in higher slowdown due to

the increased pressure on the monitor. FADE significantly reduces the slowdown to an average of

1.8x, thanks to its high filtering ratio and the hardware-accelerated stack-update unit. The highest

slowdown is observed on astar (2.2x) and gcc (3.3x), which are characterized by a low filtering

ratio (70%) and must frequently drain the unfiltered event queue at function call/return boundaries

(Section 5.2.2).

Finally, FADE reduces the slowdown to an average of 1.4x for MemCheck, Figure 23(c),

(similar to MemLeak) and 1.6x for TaintCheck, Figure 23(e), (similar to AtomCheck). Across the

five evaluated monitors, FADE reduces the monitoring slowdown to an average of 1.5x, versus

4.1x for the unaccelerated system.
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5.4.2  Performance for Different Core Types

To better understand the effects of core microarchitecture on monitoring performance, we

evaluate the unaccelerated and FADE-enabled systems with different core types. Figure 24 sum-

marizes the performance for three core microarchitectures; in-order, 2-way OoO, and 4-way OoO

averaged across all benchmarks. 

For the unaccelerated monitoring systems (dashed bars), we observe a reduction in perfor-

mance ranging from 7% to 51% for simpler core microarchitectures as compared to the 4-way

design. Although the applications generate up to 2x fewer events per cycle on the in-order core

than on the 4-way OoO core, each event handler executes up to 3x faster on 4-way OoO because

event handlers consist of instruction sequences with high cache locality, resulting in high IPC on

aggressive cores. Thus, we conclude that monitors are sensitive to the core micro-architecture. 

In the FADE-enabled system (solid bars), performance is less dependent on the core type.

For example, MemCheck performs marginally better on the simple microarchitecture (average
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slowdown of 1.2x on in-order versus 1.4x on 4-way OoO), showing that filtering leaves little work

for the monitor core and the core microarchitecture is less important.

5.4.3  Single-Core versus Two-Core System 

Prior work [23, 112] suggested utilizing otherwise idle cores to accelerate the monitoring

task. However, our analysis in Chapter 3 shows that when the majority of the events can be fil-

tered, the second core is most of the time underutilized. In this Section, we evaluate the perfor-

mance of the single- and two-core monitoring systems, so as to show that the performance benefits

of the second core are limited, as expected, and that a multithreaded core provides sufficient

resources for both the application and the monitor.

Figure 25(a) compares the performance of single-core (dual-threaded) and two-core moni-

toring systems. Both are FADE-enabled and feature a 4-way OoO microarchitecture. Indeed, the

results indicate that the two-core design outperforms the single-core option by only 15% on aver-

age (28% max) by eliminating resource contention between monitor and application threads. 

For clarity, we show the break-down of the two-core system utilization in Figure 25(b) (sim-

ilar to Figure 9 from Chapter 3). The execution time is broken down into three categories: cycles in

which (1) the application core is idle because the event queue is full, (2) the monitor core is idle

because FADE filters all events, and (3) both application and monitor cores are utilized. As the fig-

ure shows, 48% to 97% of the time, one of the two cores is idle, as either FADE filters the incom-

ing event stream (idling the monitor core), or the monitor core processes unfiltered events

(backpressuring the application core). With both cores utilized only 22% of the time, on average,

the benefit of the second core is clearly limited.
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5.4.4  Benefits of Non-Blocking Filtering

To show the benefits provided by Non-Blocking Filtering, Figure 25(c) compares the per-

formance of Non-Blocking FADE (used in the studies above) to the baseline FADE that stalls on

each unfiltered event. 

We observe that Non-Blocking Filtering improves the performance by 2x for AtomCheck,

MemLeak and TaintCheck, which have relatively low filtering ratios (<87%), and by 1.1x for

AddrCheck and MemCheck, whose filtering ratio is high (>98%). The benefit of Non-Blocking

FADE comes from overlapping the filtering actions with the unfiltered events processing.

5.4.5  Area and Energy Efficiency

To model FADE’s area and power costs, we synthesized our RTL design in TSMC 40nm

technology, targeting a clock frequency of 2GHz. Our design includes a 128-entry event table, a

32-entry event queue, and a 16-entry unfiltered event queue. Synthesis results show a peak power

consumption of 122mW and an area of 0.09mm2 with 20% of the area dedicated to logic and the

rest to memory and latches. Filter Store Queue (FSQ) is in the critical path of our design. To esti-

mate the area and power requirements of the 4KB MD cache, we use CACTI. We find the area cost

of the cache to be 0.03mm2, peak power of 151mW, and an access latency of 0.3ns. 

5.5 Summary

This chapter introduced FADE, a Filtering Accelerator for Decoupled Event monitoring.

The proposed design exploits common behavior across monitors to provide simple, programmable

hardware for handling common application events while delegating infrequent complex events to

software for maximum flexibility. To maximize throughput and avoid stalls in the presence of

unfiltered events, FADE employs Non-Blocking Filtering — a hardware-assisted mechanism for
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concurrent processing of filterable and unfiltered events. Our results showed that FADE can

reduce the slowdown to an average of only 1.2-1.8x, thereby making instruction-grain monitoring

practical.
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Chapter 6

Parallel FADE

Efficient instruction-grain monitoring of parallel applications is a necessity for the develop-

ment of correct parallel code, which corresponds to a large fraction of today’s software. However,

solutions developed for single-threaded applications are not directly applicable to parallel applica-

tions, because the inherent concurrency of the latter introduces additional complexity. In addition

to the tasks performed by sequential monitoring frameworks, parallel monitoring frameworks have

to faithfully replay the inter-thread application order, so as to maintain the correct view of the

application execution.

Our goal is to provide flexible parallel monitoring at low runtime and resource overhead by

parallelizing our FADE design, which has significant advantages over prior monitoring accelera-

tors (Chapter 5). However, related work [112] in this direction showed that parallelizing hardware

monitoring accelerators is a difficult task because (1) the initial sequential accelerators require

extensive modifications, and (2) the accelerators integration to the rest of the system is compli-

cated. Unlike prior work, we show that the adoption of FADE to parallel monitoring is straightfor-

ward, thus simplifying the design of the proposed monitoring system.

We propose Parallel FADE a CMP-based monitoring system where each core is equipped

with a parallelized instance of FADE. Parallel FADE is an end-to-end monitoring system, unique

in offering all of the following features; Parallel FADE: (1) supports parallel applications running

on a CMP, (2) targets a wide range of monitoring tasks, (3) supports Non-Blocking Filtering, (4)

reduces the resources dedicated to the monitoring task from a core to just a hardware thread per



64 
monitored application thread (effectively doubling chip’s throughput), and (5) supports aggressive

OoO cores that stress the accelerator with a high monitoring load.

Parallel FADE combines the techniques proposed in this thesis to reduce the resource- and

runtime-overhead of instruction-grain monitoring, along with mechanisms proposed in prior work

[112], and enhances them as necessary to ensure correctness. To that extent Parallel FADE relies

on (1) application coherence activity [56, 112, 118, 120] to infer inter-thread dependences, and (2)

synchronization-free fast paths [112] to access shared metadata at low runtime overhead.

In this chapter, we make the following contributions:

• We propose a parallel monitoring accelerator that not only has significant performance benefits

over prior accelerators, but also allows for the design of less complex parallel monitoring sys-

tems. 

• We provide a formal proof showing the applicability of FADE with Non-Blocking Filtering

support in the context of parallel monitoring.

• We propose a storage-efficient structure for keeping the dependences (i.e., metadata indicating

the happens-before relationship between application events) in the accelerator. 

• Using a suite of diverse monitors and a number of multi-threaded benchmarks, we show that

Parallel FADE filters 81-99% of events that would otherwise be handled in software and

reduces the slowdown to an average of only 1.1-1.8x (versus 1.9-11.5x for unaccelerated exe-

cution), thus making parallel monitoring practical.

6.1 Background: Event Order

Instruction-grain monitoring checks application instructions in program order, and ensures

that a program invariant holds (e.g., the application does not access unallocated memory). For sin-

gle-threaded applications, the program order is the same as the commit order of the application
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instructions. However, the commit order alone is not sufficient for shared memory multi-threaded

applications, because the parallel monitor has not only to process the events of each application

thread in commit order, but also to follow the happens-before relationship (or dependence order)

of instructions from different threads. Dependences between application instructions from differ-

ent threads are created, as the application threads communicate by reading and writing values to a

common shared address space. 

Using TaintCheck as an example, Figure 26 shows a dependence (or a happens-before rela-

tionship) between two threads due to a load and a store to the same address. In this example, the

store instruction writes a tainted value to memory location A at time T, and subsequently, the load

instruction reads this tainted value at local time T’. To maintain the correct application view, the

monitor has to process the load instruction after the store instruction. Otherwise, the monitor will

observe an untainted value, leading to a wrong monitoring outcome.

6.2 Baseline Parallel Monitoring System

In this section, we present a formal definition of our baseline parallel monitoring system.

Our baseline is similar to the unaccelerated system presented in ParaLog [112].

st A, r5

ld r6, A

App. 
thread 1

App. 
thread 2

FIGURE 26: Event order under parallel monitoring. To maintain correctness, the
monitoring process has to follow the commit and dependence order of the
application instructions.



66 
Definition 1 (baseline system). The application and the monitor are multithreaded processes

running on a CMP under Sequential Consistency (we discuss accesses to shared metadata in

Section 6.5). Each monitoring thread processes the event stream generated by an application thread.

Together, these two threads form a monitoring pair and communicate through an event queue. In

Figure 27, we present our baseline system focusing on one of the system’s tiles. The monitoring

system is equipped with a dependence recorder (Definition 5), a dependence checker (Definition 6)

and a progress publisher (Definition 7) per monitoring pair.

Definition 2 (commit order). The commit order is the per-thread commit order of the application

dynamic events.

Definition 3 (dependence order). The dependence order is the happens-before relationship of

concurrent application events from different threads.

Definition 4 (correctness). To maintain the correct view of the application state, the monitor has to

maintain the event program order while processing application events – i.e., the monitor has to

process the application events in an order that reflects the commit order (Definition 2) and the

dependence order (Definition 3).

Definition 5 (dependence recorder). For each pair, the dependence recorder observes the coherence

activity of the application thread so as to infer the event dependence order (Definition 3), and

records the dependences in the dependence queue. The exact mechanisms are described in

Section 6.4.

Definition 6 (dependence checker). For each pair, the dependence checker processes the event

stream (stored in the event queue) and the dependences (stored in the dependence queue) in commit

order. The dependence checker ensures that the dependence order is maintained — i.e., if there is a

dependence from event i (thread t) to event i’ (thread t’), this component ensures that the event i’ is

delivered to the monitor thread t’, only after the monitor thread t has completed the processing of
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the event i. Once the event dependences (if any) have been satisfied, the event is delivered to the

monitor.

Definition 7 (progress publisher). For each pair, the progress publisher keeps track of the events

processed by the monitor, and commits the completion time of the last completed event to the

system’s global state. After this point, there are no further updates associated with this event.

Lemma 1. The baseline parallel monitoring system (Definition 1) can faithfully replay the

application event order, thus guaranteeing correctness (Definition 4).

Proof: The baseline system processes the events of each thread in their commit order, thus

satisfying the commit order requirement (Definition 2). Regarding dependence order, the monitor

has to process the event A of thread t, before the event B of thread t’, if A happened before B in the

application space. As under sequential consistency, the associated memory references cannot be

reordered, the coherence activity should indicate that A happened before B. Otherwise, either the

memory consistency or the coherence implementation is faulty. Thus, the baseline system

guarantees the dependence order requirement (Definition 3), overall ensuring correctness

(Definition 4).

FIGURE 27: The baseline monitoring system. The striped structures allow the
monitoring process to follow the application dependence order.
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6.3 Accelerating Parallel Monitoring

In this section, we present Parallel FADE, a parallel monitoring system with FADE exten-

sions. Parallel FADE supports Non-Blocking Filtering, a novel filtering technique that reduces the

overall monitoring slowdown by up to 2x (Chapter 5). Non-Blocking Filtering decouples the filter-

ing process and the processing of unfiltered events in SW, thus allowing for their overlapped exe-

cution in time.

As the inherent concurrency of parallel monitoring introduces additional complexity, in this

section, we provide a formal proof that shows the applicability of Non-Blocking Filtering to Paral-

lel FADE. In doing so, we show that monitors execution in Parallel FADE is equivalent to the

monitors execution in the baseline system (Section 6.2). Then, we discuss prior work showing that

Parallel FADE allows for the design of less complex monitoring systems.

6.3.1  Parallel FADE

Definition 8 (Parallel FADE). Parallel FADE extends the baseline parallel monitoring system

(Definition 1) with FADE including Non-Blocking Filtering support. Figure 28 presents Parallel

FADE focusing on one of the system tiles. The figure shows the original FADE system (Figure 11)

enhanced with the extensions (striped) to support parallel monitoring. 

Definition 9 (progress publisher++). As Parallel FADE supports Non-Blocking Filtering, event

processing may complete out of order. The progress publisher (Definition 7) is extended to take into

account the out-of-order event completion. Therefore, the completion of an event is committed to

the system’s global state iff there is no older event being processed in the monitoring pair.

Definition 10 (Metadata manipulation under Non-Blocking Filtering). Parallel FADE operates on
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critical metadata (as defined in Section 5.2). Parallel FADE reads and writes register metadata

from/to its local structures. Parallel FADE loads memory metadata from the system’s global state.

Parallel FADE writes the updated memory metadata in a local queue.

Corollary 1: Parallel FADE with Non-Blocking Filtering support does not update system’s global

state.

Definition 11 (Metadata manipulation in SW) The system’s global state is updated iff a SW handler

for an unfiltered event is executed.

Lemma 2: Given that (1) the events are issued to the filtering accelerator in commit and dependence

order, and (2) the system is equipped with progress publisher++, monitors execution in Parallel

FADE is equivalent to monitors execution in the baseline system.

Proof: When the events are processed out of order in Parallel FADE due to Non-Blocking Filtering,

the progress publisher++ ensures that their completion is advertised in order, the same as in the

baseline system.

As the filtering accelerator is placed right after the dependence checker, the events are guaranteed

to be delivered to the accelerator in commit and dependence order. Therefore, event order is

FIGURE 28: Numbered the two requirements to ensure correctness of the monitors
execution with Parallel FADE (including Non-Blocking Filtering support): (1) The
events are delivered to the filtering accelerator in commit and dependence order. (2)
The event progress is advertised in commit order.
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followed as in the baseline system.

Once program order has been satisfied, the filtering accelerator processes the event stream and

creates ordered (according to Definition 2 and 3) batches of unfiltered events, without modifying

the global state (Corollary 1). Then, the unfiltered events are processed in monitor’s SW, updating

the system’s global state (Definition 11) in commit and dependence order, as in the baseline system.

Therefore, monitors execution in Parallel FADE is equivalent to the baseline system. 

6.3.2  Comparison to Prior Work

ParaLog [112] is the most closely related work, because it studies the parallelization of

sequential hardware monitoring accelerators. These sequential accelerators (i.e., Unary Inheritance

Tracking, Idempotent Filter and Metadata-TLB) were initially introduced in Log-Based Architec-

tures (LBA) [23]. We focus this discussion on Unary Inheritance Tracking (Unary IT), a represen-

tative accelerator from the LBA paper. 

Unary IT maintains a metadata register file that associates each architectural register with

the address from which it inherits its value. An FSM evaluates an incoming event and either

updates the inherits-from metadata in the register file of Unary IT, or delegates the event to the

monitor’s software. As Unary IT keeps addresses instead of values, the consumption of the actual

metadata value can be delayed compared to the time that the accelerator processed the event. Thus,

when an instruction event carries a dependence, the dependence is effectively propagated to subse-

quent instruction events that inherit from this event.

To maximize the benefits of Unary IT, ParaLog has to advertise the completion of an event,

only after the processing of all events that inherit from this event has been completed. As this pol-

icy may deadlock the system, ParaLog needs to include mechanisms for deadlock detection and

avoidance. Clearly, dependence propagation greatly complicates the design of this system. In con-
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trast, the parallelization of FADE (discussed in the previous Section) does not require any of these

mechanisms, thus allowing for the design of a much simpler parallel monitoring system.

6.4 Parallel FADE’s Design

6.4.1  Dependence Recorder

To support dependence recording, we employ a design similar to ParaLog [112]. Each core

maintains a local instruction counter of the last dynamic instruction committed at this processor.

Additionally, each L1-D cache block is enhanced with a field that records the timestamp corre-

sponding to the last block access. A timestamp is a tuple consisting of the thread id and the counter

associated with an application instruction, {tid, counter}. The timestamp uniquely identifies each

instruction of the multi-threaded application. Finally, the L2 cache blocks are enhanced to carry

timestamp information upon an L1-D block eviction. When an instruction carries dependences to

instructions from other application threads, the dependence recorder captures and records the time-

stamps to the dependence queue.

Figure 29 shows the happens-before relationship between the instructions I1 and I2 of two

application threads and how the coherence activity can be leveraged to infer this dependence. As

the figure shows, the timestamp of the cache block for address A is updated with the value {1, T},

when the store instruction is executed, and is carried along with the coherence messages. Finally,

the dependence recorder obtains and appends the timestamp in the dependence queue.

6.4.2  Dependence Checker & Progress Publisher++

Parallel FADE has to ensure that the dependences of an event have been satisfied before

delivering the event to the filtering accelerator. In other words, Parallel FADE has to ensure that I1
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(thread t) is processed before I2 (thread t’), when there is a happens-before relationship between I1

and I2. To support this functionality, we extend the hardware coordination mechanism proposed in

ParaLog [112]. Similar to ParaLog, the monitor threads share a memory-mapped table of progress

identifiers, indexed by the thread identifiers. The progress identifier of a monitoring thread is the

timestamp value of the last application event (of this thread), whose processing has been com-

pleted in the monitoring system.

Progress Publisher++. The progress publisher updates the progress identifier of a monitor-

ing thread as the events processing completes. To design the progress publisher correctly, we need

to take into account that Parallel FADE supports Non-Blocking Filtering. 

Non-Blocking Filtering decouples the filtering process and the execution of SW handlers

for unfiltered events, thus allowing for their overlapped execution and out-of-order completion.

Although, the events processing may complete out of order, the events progress has to be pub-

lished in (commit) order.

I1: st A, r5

I2 : ld r6, A

App. 
thread 1

App. 
thread 2

L1-D of the core where 
App. thread 1 runs

local counter: T

{1, T}
block (A)

L1-D of the core where 
App. thread 2 runs

cache miss

block (A)

dependence: 
{1, T}

FIGURE 29: Leveraging coherence activity to infer inter-thread dependences.
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To advertise the events progress in (commit) order, we extend the baseline progress pub-

lisher with the progress queue and the timestamp of the last filtered event. The progress queue is a

hardware structure that keeps the timestamps of the unfiltered events whose SW handlers are cur-

rently under execution. The size of the progress queue is determined by the size of the core’s reor-

der buffer and the length of the SW handler in instructions. We find that the smallest SW handlers

are 10 instructions long. Therefore, a progress queue with 10 entries suffices to keep the unfiltered

events’ timestamps for a 100-entry reorder buffer, typical in aggressive OoO cores. Figure 30

shows an example of the published progress given a snapshot of the progress queue and the time-

stamp of the last filtered event. 

Dependence Checker. The dependence checker ensures that event dependences are satis-

fied before delivering the events to the filtering accelerator. When the dependence checker pro-

cesses a dependence, such as {tid, T}, it uses the tid to index the hardware table with the progress

identifiers and extract the thread’s progress. If the progress is greater than T, the event is delivered

to the filtering accelerator. Otherwise, the filtering process has to stall. In this case, the dependence

checker periodically re-reads the progress, until the desired value is reached. To access the prog-

ress identifiers, each core maintains a hardware pointer to the progress identifier table (the prog-

ress base register).

26

progress queue

timestamp of the 
last filtered event

25 5

published progress     5, 24, 25, 26

time

FIGURE 30: A snapshot of the progress queue and the timestamp of the last filtered
event, along with published progress.
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6.4.3  Dependence Queue

After capturing the dependences in the dependence recorder and before processing them in

the dependence checker, the dependences have to be buffered. In this section, we present our

observations that lead to the design of a practical storage-efficient structure for storing the depen-

dences.

The single-core FADE design (Chapter 5) keeps per event information (e.g., event operands,

the effective memory address) in the event queue. A naive approach would be to extend the event

queue entries to accommodate the dependences. However, we observe that the number of instruc-

tions that carry dependences is dictated by the application L1-D misses. As a result, the majority of

instructions do not carry dependences. 

In Figure 31, we show the percentage of the event queue entries that carry dependences for

MemLeak, a representative monitor. Indeed, our results show that the majority of the time, the

event queue keeps events without dependences. Even when the queue keeps events with depen-

dences, the latter correspond to a small fraction of the total queue entries (up to 6%).
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FIGURE 31: The event queue entries that carry dependences. The graph shows
ranges (e.g., 6% means >3% and up to 6%)
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Based on this observation, we introduce a separate structure, the dependence queue, to store

the dependences (Figure 32). Each entry of the dependence queue has fixed size and includes (1) a

header with the timestamp of the instruction associated with the dependence, and (2) a list consist-

ing of one timestamp per monitored application thread. 

6.5 Accesses to Shared Metadata

As the monitor is a parallel process itself, the monitor’s threads access shared metadata

while performing the monitoring task. In this section, we discuss two important aspects of Parallel

FADE related to shared metadata: (1) metadata coherence, and (2) concurrent metadata accesses.

6.5.1  Metadata Coherence

Parallel FADE introduces a metadata caching structure per core, for which coherence has to

be preserved. The metadata caches can be naturally integrated to the cache hierarchy and are

backed up by the L2 cache similar to the L1-D.

dependence 
queue

T3 T2 T1T4

header
t1t2t3t4

timestamps

FIGURE 32: The dependence queue design for four monitored threads.
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6.5.2  Racing Metadata Accesses

Parallel FADE has to ensure that concurrently executing monitoring threads do not corrupt

their metadata due to improper synchronization. Under Sequential Consistency, synchronized

access to shared metadata is guaranteed, given that application reads translate to metadata reads

[112]. When this condition holds, the read-after-write (RAW), write-after-read (WAR), and write-

after-write (WAW) dependences for the metadata accesses are already handled properly because

Parallel FADE enforces the inter-thread event order. Although this condition holds for most moni-

tors, in certain cases, such as AtomCheck, an application read may translate to a metadata write.

As inter-event ordering is enforced by tracking coherence activities, it cannot capture read-after-

read (RAR) dependences.

When an application read translates to a metadata write, there are racing metadata updates

due to concurrent reads. As this scenario is not handled by the monitoring hardware, we need to

study the monitor’s algorithm and ensure that the monitor produces an equivalent result when pro-

cessing concurrent application reads in any order. For instance, while monitoring an application,

AtomCheck may encounter any of the eight accesses interleavings shown in Table 1. We observe

that in case of concurrent application reads, the order in which the reads are processed by the mon-

itor does not change the monitoring outcome.

In addition to algorithm-level guaranties, Parallel FADE has to preserve metadata atomicity

in case of RAR dependences for monitors such as AtomCheck. Atomicity is necessary to prevent

metadata corruption, when events with RAR dependences are processed concurrently by the mon-

itoring threads. There are two case that we need to consider: (1) metadata updates in SW, and (2)

metadata updates in Parallel FADE. In the first case, explicit synchronization is required in the SW

handler, as the monitor may execute a number of instructions while updating metadata. Please note

that the update of filtering critical metadata in the SW handlers is performed by a single instruction

(atomically). Otherwise, Parallel FADE would have to be synchronized with the execution of the
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critical section in the SW handlers. In the second case, we observe that the metadata update is per-

formed by a single memory access, in which case atomicity is trivially guaranteed.

6.6 Evaluated Systems

We evaluate two FADE-enabled parallel monitoring systems that afford high flexibility by

handling unfiltered events on a general purpose CMP. Each application thread is monitored by a

monitor thread. Together, these two threads form a monitoring pair (Figure 33, Figure 34). To

guarantee isolation, we execute the application and the monitor in separate processes. To guarantee

error containment the monitor synchronizes with the application at system call boundaries.

Parallel
FADE

monitoring pair

Core 1 Core 2

App t1 Monitor t1

Core 1 Core 2

App tn Monitor tn

Core 1 Core 2

App t1 Monitor t2

FIGURE 33: Evaluated System I: The monitor runs on a dedicated monitoring core.

HW
thread 1

HW
thread 2

App t2 Monitor t2

Parallel
FADEHW

thread 1
HW

thread 2

App t1 Monitor t1

HW
thread 1

HW
thread 2

App tn Monitor tn

monitoring pair

FIGURE 34: Evaluated System II: The monitor runs on a dedicated HW thread.
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The first monitoring system (Figure 33) executes the application and monitor threads on

separate cores to maximize the concurrency, similar to ParaLog [112] and Resolve [111]. In this

system, filtering takes place next to the monitor (consumer) core. We model a dedicated event

queue separating the application (producer) core and the filtering accelerator; however, a memory-

mapped queue [23] is also a viable design point.

The second monitoring system (Figure 34) is based on a dual-threaded core with a dedicated

hardware thread for each of the application and the monitor processes. This design point mini-

mizes resource requirements, but exposes the slowdown due to unfiltered events as core resources

are shared between the application and the monitor. OS support is needed to ensure that each mon-

itoring pair is restricted to run on the same multi-threaded core.

The unaccelerated versions of these systems are similar but without FADE. In these sys-

tems, the application and the monitor communicate through a single queue, instead of two queues

(i.e., event queue and unfiltered event queue).

6.7 Methodology

System configuration. Table 5 summarizes the configuration of the evaluated systems.

Additionally, FADE-enabled systems have a 4KB, two-way metadata cache with one-cycle access

latency, and a 16-entry M-TLB. The event table has 128 entries, covering the heavily used subset

Table 5: System setup.

Parameter Value

Core type 4-way/96-entry ROB

ISA SPARC v9 [84]

L1 caches 32KB, 2-way, 64B block 2-cycle latency

Shared L2 2MB per core, 16-way, 64B block, 10-cycle latency

DRAM 90-cycle latency
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of the modeled ISA (SPARC). The event queue, the unfiltered event and the dependence queue is

32, 16 and 4 entries, respectively. For our experiments, we use Non-Blocking Filtering.

Unless otherwise specified, we evaluate two monitoring systems that execute the studied

benchmarks with four application threads: (1) an eight-core CMP with four application threads (as

in Figure 33), and (2) a four-core CMP with two-way multi-threaded cores (as in Figure 34).

Simulation. We use Flexus [114] for cycle-accurate full-system simulation. Flexus extends

Simics [109] with timing models of multi-threaded cores, caches, and interconnect. We extend

Flexus to model the parallel monitoring architecture described in this chapter.

For our evaluation, we follow the SMARTS sampling methodology [117], and the execution

samples are selected to cover a representative part of the application’s parallel section. In all

benchmarks studied, the parallel section dominates the application execution time. For parallel

sections organized as multiple iterations, we cover at least one iteration, and for some benchmarks

two iterations. For the rest of the benchmarks that are not organized in this fashion, we cover at

least 1 billion instructions. For each measurement, we launch simulations from checkpoints with

warmed caches (including the metadata cache), and run 100K cycles to achieve a steady state of

detailed cycle-accurate simulation before collecting measurements for the next 50K cycles.

Benchmarks. We include benchmarks from the SPLASH-2 [116] and PARSEC [10] bench-

mark suites. We use the following inputs: PARSEC (input: simlarge), FMM (input: 64K particles),

Ocean (input: 1026x1026 matrix), and water (input: 2197 mols).
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6.8 Evaluation

6.8.1  Monitoring Load

We measure the applications monitored IPC, so as to quantify the monitoring load of differ-

ent monitors. In Chapter 4, we defined the monitoring load as the ratio of monitored instructions to

all committed instructions. In Figure 35(a), we present the per-monitor results averaged across

benchmarks. For instance, for AddrCheck, the average application IPC (including both monitored

and unmonitored instructions per cycle) is 1.30, out of which 0.19 (monitored instructions per

cycle) require a monitoring action to be taken.

AddrCheck and AtomCheck are memory tracking monitors, which only process memory

instructions. AddrCheck has a lower average monitored IPC (0.19 event per cycle) compared to

AtomCheck (0.43 event per cycle), because AddrCheck does not monitor memory accesses to

stack. For both monitors, the monitored IPC is significantly below 1.0.

The rest of the monitors are propagation tracking monitors, which may track any instruction

type based on their monitoring analysis. Out of all studied monitors, MemCheck and TaintCheck

have the highest monitoring load (1.06 events per cycle on average). In Figure 35(b), we present

the per-benchmark results for TaintCheck. The results for MemCheck are similar. We observe that

for most of the benchmarks the monitored IPC is around 1.0 event per cycle, apart from two

benchmarks (fmm and streamcluster), which have a monitored IPC of 1.45 event per cycle.

Figure 35(c) shows the per-benchmark results for MemLeak. The monitoring load of Mem-

Leak is lower (0.47 event per cycle) compared to MemCheck and TaintCheck (1.06 event per

cycle), because MemLeak does not need to monitor most of the FP instructions in order to identify

memory leaks. Under MemLeak, FP arithmetic and FP load instructions do not need to be moni-
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FIGURE 35: Parallel FADE: Breakdown of application IPC to monitored and
unmonitored: (a) averaged across benchmarks for each monitor, and per-benchmark
for (b) TaintCheck and (c) MemLeak.
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tored at all, while FP store instructions are monitored so as to set the accessed memory location to

a clean (non-pointer) value. 

As expected, the monitored IPC of MemLeak is lower for floating point benchmarks (stud-

ied in this chapter), compared to integer benchmarks (studied in Chapter 4). For instance, the stud-

ied integer benchmarks have a monitored IPC of 0.68 event per cycle (with an overall IPC of 1.10

events per cycle), on average, while the studied FP benchmarks have a monitored IPC of 0.47

event per cycle (with an IPC of 1.25 events per cycle), on average.

In summary, our results show that, on average, the monitored IPC is significantly below 1.0

event per cycle for three out of the five monitors (AddrCheck, AtomCheck, and MemLeak) and

slightly higher than 1.0 event per cycle for the remaining two monitors (MemCheck and Taint-

Check). Our study in Chapter 4 showed that FADE can significantly reduce the slowdown of mon-

itors with such monitored IPCs, given a high filtering rate. Our performance results for Parallel

FADE, presented later in this Section, corroborate our previous study.

6.8.2  Filtering Efficiency

Table 6 shows that FADE filters 81-99% of all instruction event handlers. AddrCheck has

the highest filtering ratio because the vast majority of application accesses goes to allocated mem-

ory. MemLeak has the lowest filtering ratio, because the studied applications operate on big arrays

allocated through malloc, thus requiring frequent metadata updates.

Table 6: Filtering efficiency in Parallel FADE.

AddrCheck 99.8%

AtomCheck 90.0%

MemCheck 97.0%

MemLeak 81.0%

TaintCheck 95.0%
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6.8.3  Parallel FADE versus Unaccelerated System

Figure 36 depicts the performance of Parallel FADE versus the unaccelerated monitoring

system. In both systems, the application and monitor tasks execute on dedicated hardware threads

of a dual-threaded 4-way OoO core (similar to Figure 34). Performance is normalized to an

unmonitored (application-only) system.

In general, for the unaccelerated systems, we observe an average slowdown of 5.4x, across

monitors. For memory-tracking monitors (AddrCheck, AtomCheck), the average slowdown is

2.5x, while for propagation-tracking monitors (MemCheck, MemLeak, TaintCheck), the slow-

down is 8.9x. Parallel FADE reduces the slowdown significantly for all monitors, with an average

slowdown of 1.6x. Parallel FADE’s slowdown is 1.3x and 1.6x for memory- and propagation-

tracking monitors, respectively.

Figure 36(a) shows AddrCheck’s performance, which is generally good on both systems as

the monitor just processes non-stack memory instructions. In the unaccelerated system, Addr-

Check’s slowdown ranges from 1.5x to 3.1x, with an average of 1.9x. Parallel FADE reduces the

slowdown to an average of 1.05x by filtering out nearly all monitored events.

Figure 36(b) presents results for AtomCheck. Although AtomCheck is a memory-tracking

monitor with a low event generation rate, it has an average slowdown of 3.4x (5.5x max) in the

unaccelerated system because the events are costly due to numerous monitoring actions. In con-

trast, Parallel FADE reduces the slowdown to 1.8x, on average. The highest slowdown is observed

for fmm (2.5x) as it has the lowest filtering rate (78%).

Figure 36(c) shows the results for MemCheck, a heavy-weight propagation-tracking moni-

tor with an average monitored IPC of 1.06 event per cycle. In the unaccelerated system, the slow-

down ranges from 8 to 16x, with an average of 11.5x. The highest slowdown observed for: (1)
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barnes and blackscholes, which have frequent stack updates, and (2) for fmm which has the high-

est monitored IPC. Parallel FADE significantly reduces the slowdown across benchmarks to an

average of 1.7x thanks to the high filtering ratio and the stack update unit. The highest slowdown

is observed for barnes (2.3x) and fmm (2.1x). Barnes must frequently drain the unfiltered event

queue at function call/return boundaries (Section 5.2.2). Fmm has a high monitored IPC of 1.44

events per cycle, thus stressing Parallel FADE with a high monitoring load.

Figure 36(d) shows the results for MemLeak. The slowdown in the unaccelerated system

ranges from 3 to 17x, with an average of 8.1x. We note that the monitored IPC of MemLeak is dif-

ferent compared to the rest of the propagation tracking monitors (MemCheck and TaintCheck) and

is dictated by the percentage of floating point instructions in the instruction stream (Section 6.8.1).

As a result, the lowest slowdown is associated with ocean and fmm, which have the lowest moni-

tored IPC, 0.21 and 0.29 event per cycle, respectively. The highest slowdown is for barnes, which

has the highest monitored IPC (0.75 event per cycle) and frequent stack updates. 

Parallel FADE reduces the slowdown to an average of 1.66x, with the highest slowdown

observed for barnes (4.0x) and fluidanimate (2.46x). Barnes is characterized by the highest moni-

tored IPC (0.75 event per cycle), a low filtering ratio (78%), and frequent stack updates. Fluidani-

mate is characterized by the second higher monitored IPC (0.6 event per cycle) and a low filtering

ratio (75%). Streamcluster’s slowdown is high (8x) but can be reduced to 1.3x by taking a closer

look at the code. We include the improved results here, and we discuss streamcluster’s behavior in

detail in Section 6.8.6.

Figure 36(e) shows the results for TaintCheck. In the unaccelerated system, the slowdown

ranges from 5 to 10.5x, with an average of 8.6x. Although TaintCheck has the same monitored IPC

as MemCheck, TaintCheck’s monitoring algorithm does not require to process stack updates. As a

result, the slowdown in the unaccelerated system is lower, especially for benchmarks such as

barnes (10.5x) and blackscholes (7.6x) with frequent stack updates. The slowdown for fmm is sim-
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ilar for MemCheck (15.5x) and TaintCheck (14.5x), as the high slowdown stems from the high

monitored IPC (1.44 events per cycle), which is the same for both monitors. Parallel FADE

reduces the monitoring slowdown for all the benchmarks to an average of 1.7x due to the high fil-

tering ratio, which is 95% on average.

6.8.4  Dedicated Monitoring Core versus HW thread

In Section 5.4.3, we evaluated the performance of a single-core monitoring system (with a

dedicated HW thread) versus a two-core monitoring system (with a dedicated monitoring core),

both equipped with FADE, and we showed that the performance benefits of the second core are

limited thanks to the high filtering rates. In this section, we repeat this study for the equivalent par-

allel monitoring systems, which are shown in Figure 33 and Figure 34, respectively.

Figure 37(a) compares the performance of the two systems. The results indicate that the

dedicated-core design outperforms the dedicate-thread design by only 7% on average (19% max).

Figure 37(b) shows the break-down of the two-core system utilization. The execution time is bro-

ken down into four categories: cycles in which (1) the application core is idle because the event

queue is full, (2) the monitor core is idle because Parallel FADE filters all events, (3) both applica-

tion and monitor cores are utilized, and (4) the log is empty. The log can be found in an empty

state, when the application is scheduled off, due to backpressure from monitor. This happens for

the monitors having the lowest filtering rates (i.e., AtomCheck with 90% and MemLeak with

81%).

As the figure shows, both cores are utilized only 15% of the time, as either Parallel FADE

filters the incoming event stream (idling the monitor core), or the monitor core processes unfil-

tered events (backpressuring the application core). These results corroborate our prior study in

Chapter 5, showing that the benefit of the second core is limited. 
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6.8.5  Scalability Analysis

In this section, we show the performance of the unaccelerated system (Figure 38(a)) and

Parallel FADE (Figure 38(b)) for 2, 4 and 8 monitoring pairs, running on 2, 4 and 8 cores, respec-

tively. Both systems’ performance shows good scalability for all monitors, but AtomCheck.
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AtomCheck’s performance does not scale to 8 cores for the unaccelerated system and Paral-

lel FADE, because the number of AtomCheck’s SW structures increases with the number of the

monitored application threads, unlike the rest of the monitors. Specifically, AtomCheck maintains

one local per-thread table (more details on AtomCheck’s metadata structures can be found in

Section 2.3). Regarding Parallel FADE, although the filtering rate for 8 threads is the same as the

filtering rate for 4 and 2 threads, the slowdown is higher (by almost 2x), following the trends in the

baseline system.
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6.8.6  Discussion

While monitoring streamcluster with MemLeak, we observed that the benchmark has a high

ratio of unfiltered events (48%). As this ratio, significantly differs compared to the rest of the mon-

itors and benchmarks, we wanted to identify the source of this behavior.

Streamcluster frequently calculates the euclidean distance between two points. The corre-

sponding piece of code is shown in Figure 39. By observing the assembly of this function, we

found that most instructions cannot be filtered because they operate on pointer data. This happens

for three reasons; First, p1 and p2 are pointers. Thus, when calculating p1.coord[i] - p2.coord[i],

the code operates on pointer data. Second, although the outcome of the subtraction p1.coord[i] -

p2.coord[i] could be reused in the same iteration, it is calculated twice through a similar instruction

sequence that (again) operates on pointer data. Third, although p1.coord and p2.coord could be

reused across iterations, they are re-calculated on each iteration.

This code could have been improved in at least two ways in order to assist the filtering task:

(1) the outcome of the subtraction p1.coord[i] - p2.coord[i] could be reused in the same iteration,

from streamcluster benchmark: streamcluster.cpp
/* compute Euclidean distance squared between two points */
float dist(Point p1, Point p2, int dim)
{

int i;
float result=0.0;
for (i=0;i<dim;i++)

result += (p1.coord[i] - p2.coord[i])*(p1.coord[i] - p2.coord[i]);
return(result);

}

FIGURE 39: The function that calculates the Euclidean distance in streamcluster
benchmark.
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and (2) p1.coord and p2.coord could be reused across iterations (while now they are calculated

twice on each iteration).

Although, this low-level transformation of the code could have significantly reduced the

pointers manipulation, there are two higher level observations that can be leveraged to completely

filter the monitoring of the whole function. First, this function only generates temporary values

that do not update the monitor’s memory metadata. Second, this function does not propagate a

pointer status, when it returns.

With a filtering ratio of only 52%, streamcluster experiences a slowdown of 8x (with an ini-

tial slowdown of 16x). However, when filtering the instructions of the function shown in

Figure 39, without affecting the monitoring outcome, the slowdown is reduced to just 1.27x.

Although, our extensive study of a large number of benchmarks and monitors shows that low fil-

tering ratios are rare, our results for streamcluster show that programmer’s hints could further

reduce the monitoring slowdown.

6.9 Relaxed Memory Models

In this chapter, we discussed parallel monitoring under Sequential Consistency (SC). Under

SC, coherence activity is sufficient to replay the application event order (ParaLog [112], Kannan

[57]). However, coherence activity alone does not suffice to replay multi-threaded application exe-

cution under more relaxed memory models. As shown in prior work (ParaLog [112], Kannan [57],

Resolve [111]), dependence-cycle deadlocks can be generated because memory references can be

reordered in memory, with the exact reorderings being defined by the consistency model. For

instance, Total Store Order (TSO) allows loads to bypass stores to unrelated addresses and to

obtain their value from the memory or the store buffer.

ParaLog [112] and Kannan et al. [57] discuss monitoring under TSO and propose hardware

similar to the mis-speculation detection mechanisms in SC systems (e.g., MIPS R10000 [121]), so
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as to identify SC violating instructions. TSO violates SC semantics in two cases: (1) instruction

reorderings, and (2) store atomicity violations, as shown by Arvind and Maessen [5]. In these

cases, the monitoring frameworks handle SC-violating instructions properly, so as to avoid dead-

locks. 

The frameworks discussed so far (ParaLog [112], Kannan et al. [57]) can not handle more

relaxed memory models, such as SPARC Relaxed Memory Order (RMO) [84], because they allow

for additional memory reorderings. In contrast, Resolve [111], a recent monitoring framework, can

handle dependence cycles and avoid deadlocks under more relaxed memory models through a

software/hardware approach that relies on the application dataflow graph to identify and handle

dependence cycles.

To accelerate parallel monitoring under more relaxed memory models, Parallel FADE can

be extended with the mechanisms described in prior work (ParaLog [112], Resolve [111]). The

resulting monitoring system has to ensure that (1) the events are delivered to the filtering accelera-

tor in commit and dependence order (after handling potential dependence cycles), and (2) the

events progress are advertised in commit order. These two requirements were discussed in

Section 6.3 (also shown in Figure 28).

6.10 Summary

This chapter introduced Parallel FADE, a parallel monitoring accelerator that allows for the

design of fast, flexible and resource-efficient monitoring systems. Our framework combines Non-

Blocking Filtering, the state-of-the-art hardware filtering approach to accelerate monitoring, with

the necessary hardware extensions to handle the inherent concurrency of parallel applications,

overall reducing the complexity of prior parallel monitoring systems.

Using a suite of diverse monitors and a number of multi-threaded benchmarks, we showed

that Parallel FADE filters 81-99% of events that would otherwise be handled in software and
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reduces the slowdown to an average of only 1.1-1.8x (versus 1.9-11.5x for unaccelerated execu-

tion), thus making monitoring practical.



93 CHAPTER 7. RELATED WORK
Chapter 7

Related Work

There has been a large body of work on application monitoring aiming to assist program-

mers with software development. Due to the plethora and diversity of bugs in the increasingly

complex today’s software and the importance of robust software in modern societies, the monitor-

ing approaches differ in the degree of flexibility, speed and the proposed hardware modifications.

In this Chapter, we provide an overview of the related work by discussing software monitoring

systems in Section 7.1, and hardware monitoring systems in Section 7.2. Then, in Section 7.3, we

discuss monitoring systems that provide support for parallel applications.

7.1 Software Monitoring Systems

In this section, we discuss Dynamic Binary Instrumentation approaches (Section 7.1.1), and

then, we provide an overview of software-only tools for sequential bugs (Section 7.1.2) and con-

currency bugs (Section 7.1.3).

7.1.1  Dynamic Binary Instrumentation Approaches

Software monitoring frameworks rely on Dynamic Binary Instrumentation (DBI) [13], a

technique that inserts additional code into an application, so as to monitor its behavior. There are

two approaches [69] to DBI: probe-based and jit-based. The probe-based approach dynamically

replaces the original application instructions with new instruction sequences (i.e., trampolines)
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that branch to the instrumentation code. Example systems include Dyninst [14], Vulcan [102] and

DTrace [19].

The jit-based systems perform just-in-time compilation to translate the original application

code and save the resulting code, so at to re-use it in the future (i.e., code caching). In literature,

this process is also referred to as process virtualization [12]. To implement the monitoring func-

tionality, these systems instrument the binary as necessary after the translation step and before

saving the (translated and instrumented) instruction sequence in the code cache. Example systems

include Valgrind [81], PIN [69], Strata [94], DynamoRIO [13] and DIOTA [70].

Each framework supports a number of platforms and operating systems. For instance, PIN,

developed and distributed by Intel, can monitor applications running on Linux or Windows on x86

machines, while Valgrind targets more platforms including x86, AMD64, ARM, PPC, MIPS.

Additionally, these frameworks may come with a number of monitoring tools. For instance, Val-

grind’s current distribution (Valgrind 3.9.0) includes a number of production quality tools, such as

a memory error detector and a cache profiler. Although the associated monitoring slowdown can

be as high as 100x [1], software frameworks have been widely adopted because they provide flex-

ible, programmable and accurate monitoring, thus showcasing the need for general-purpose moni-

toring support.

7.1.2  Software Monitoring Tools for Sequential Bugs

In this Section, we discuss representative tools that target a wide range of sequential bugs

(e.g., memory safety violations, memory access violations). 

Memory safety tools are based on one of the three following approaches [35]: (1) the red-

zone approach, (2) the object lookup approach, and (3) the fat-pointer approach. Tools based on

the red-zone approach, such as Purify [51] and Valgrind’s MemCheck [81], surround an array with

red-zone blocks that indicate invalid memory blocks. Accesses to the red zones flag a violation.
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However, this heuristic can only identify invalid accesses close to the object. Tools based on the

fat-pointer approach, such as CCured [28], SafeC [6] and Annelid [80], enhance pointers with

additional information (i.e., their bounds). These metadata are updated during execution (e.g.,

pointer arithmetic) and checked when a pointer is dereferenced. Finally, tools based on the object

lookup approach, such as Jones and Kelly tool [54] and the tool proposed by Ruwase et al. [92],

track the size of each object (e.g., using a splay tree), and perform out-of-bound checks upon

pointer dereferences.

Type-safety tools can assist programmers to debug applications written in low-level lan-

guages that do not provide type safety guarantees. For instance, Loginov et al. propose a tool [62]

that enforces type safety upon a memory access, through checks inserted at compile time. Hobbes

[17] dynamically tracks the type of each variable (based on operations performed on the value) and

detects subsequent operations that are incompatible with the inferred type. DynCompB [49] is a

related tool that dynamically infers abstract types so as to assist program comprehension and

derive invariants.

Memory access errors were among the first bugs to be studied by the debugging experts

leading to the development of well-known tools, such as Purify [2, 51] and Valgrind’s MemCheck

[81]. Purify inserts the checks statically, while Valgrind’s MemCheck instruments the binary with

checks dynamically. Although, the implementation details may differ, both tools rely on a similar

algorithm that has been described in Section 2.3.

A number of tools target overwrite-related security exploits. Certain tools, such as Stack-

Guard [30] and LibSafe [7] target specific exploits. While others, such as LIFT [89] and Taint-

Check [82], are based on dynamic information flow tracking [103] and can detect overwrite-

related security attacks independent of the specific vulnerability being exploited.

Finally, there are tools that infer invariants for program’s variables, thus assisting program-

mers to better understand their code and identify buggy behavior. Daikon [39] is an early system
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that stores all the values taken by program variables throughout its execution, and analyzes them

off line to extract a set of invariants. DIDUCE [50] is another software tool that dynamically mon-

itors the range of values taken by an application variable, thus inferring one invariant per memory

instruction.

7.1.3  Software Monitoring Tools for Concurrency Bugs

In this section, we discuss tools that target the three main categories [64] of concurrency

bugs: data races, atomicity violations and order violations.

Data race detection has received a lot of attention from the research community in the past

years. In general, race detectors are categorized to precise, when they do not report false alarms,

and to imprecise otherwise. Typically, precise detectors, such as DJIT+ [86], rely on vector clocks

(VCs) to infer the happens-before relationship [60] of memory accesses. However, a precise race

detector may employ a different algorithm. For instance, GoldiLocks maintain a set of “synchroni-

zation devices” per memory location [37]. 

To tackle the runtime and memory overhead of precise datarace detectors researchers pro-

posed imprecise algorithms. Eraser (also referred to as LockSet) [93] is a well-known imprecise

race detection algorithm that issues a warning, if there is no lock consistently held when accessing

a particular memory location. To optimize for precision, performance or both, researchers pro-

posed hybrid schemes that combine lockset and VC algorithms. Race detectors in this category

include MultiRace [87] and RaceTrack [122].

FastTrack (2009) [41] has been a milestone in datarace detection, allowing for precise

detection similar to VCs but without the associated overheads. FastTrack is based on the observa-

tion that the full expressiveness of vector clocks is infrequently necessary. To further reduce the

runtime overhead of race detection other approaches are necessary, such as hardware support (e.g.,

Radish [36]), or crowdsourcing (e.g., RaceMob [58]).
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Atomicity violations are an important class of concurrency bugs that can manifest even in

data race-free programs. Atomicity, also referred to as serializability, is a property that holds for

several concurrently executed actions, when their data manipulation effect is equivalent to that of a

serial execution of them [65]. Here, we discuss dynamic detectors that do not require code annota-

tion.

Atomizer [40] leverages the lockset algorithm [93] to infer synchronization between threads

and relies on simple heuristics to identify atomic blocks. As a result, its synchronization knowl-

edge is limited by the lockset algorithm. SVD [119] is a subsequent detector that automatically

infers atomic regions based on data and control dependencies. SVD reports bugs when such

regions are interleaved by unserializable writes. However, SVD is limited to a specific set of unse-

rializable interleavings. A subsequent work, AVIO [65], defines the complete set of unserializable

access interleavings to shared variables, and proposes a tool that can identify all possible interleav-

ings, thus extending SVD’s accuracy. Although, the tools discussed so far do not miss a true atom-

icity violation, they may produce long warning reports, thus placing a large burden upon the

programmer. Veldrome [42] reduces the false positives generated by others detector, but may miss

a real violation (false negative).

Order violations are the third category of concurrency bugs. An order violation occurs when

a programming assumption on the order of certain events is not guaranteed during the implementa-

tion. For instance, a thread accesses an object, before the object’s creation by another thread. Order

violation bugs can manifest even in a program without atomicity violations. So far, there has been

only a few proposals targeting order violations, such as Bugaboo [66] and DefUse [98].

Bugaboo [66] proposes context-aware communication graphs to detect a number of concur-

rency bugs including order violations. Specifically, Bugaboo collects communication graphs from

multiple executions and uses invariant-based techniques to detect anomalies. DefUse [98] is

another invariant-based bug detection tool, which targets a number of sequential and concurrency
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bugs including order violations. DefUse automatically extracts invariants during a training phase

and then uses them to detect bugs. For instance, DefUse leverages the Local/Remote (LR) invari-

ant that indicates whether a read uses a value produced by the local or by a remote thread. DefUse

detects a bug when the inferred invariant is violated.

7.2 Hardware-Based Monitoring Systems

A number of proposals have sought to provide hardware support for a variety of monitoring

tools. To ease description, we group prior work into categories, and then we discuss individual

solutions.

7.2.1  Hardware Support for Dynamic Information Flow Tracking

Early hardware-only proposals implement the monitor directly in hardware and hardwire

the monitoring policy. Examples include data race detection [125], and propagation tracking [31, 

103]. HARD [125] implements the lockset algorithm in hardware so as to enable data race detec-

tion at low overhead. HARD extends each L1 and L2 cacheline with bloom filters to store lock sets

and performs the necessary set operations with specialized bitwise logic. Minos [31] is a propaga-

tion tracking monitoring system that protects the integrity of control flow data. Control flow data

are any data loaded into the program counter upon a control transfer. In doing so, Minos extends

all critical pipeline structures (e.g., register file, reorder buffer), and the on-chip caches with one

metadata bit per 32-bit application word. In Minos, a separate monitoring pipeline processes the

metadata transparently to the application execution on the main pipeline. In parallel with Minos,

Suh et al. [103] developed a similar monitoring system. Their work mainly focuses on the size of

the metadata footprint.

RIFLE [106] provides architectural support for information flow tracking similar to Minos

[31] and the work by Suh et al., but focuses on preventing the illegitimate use of privileged data. In
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doing so RIFLE, maintains labels (metadata) for all program’s data, and a set of legitimate flows

(pairs of labels), that determine how information can flow. To ensure security, RIFLE verifies that

a program only contains legitimate flows. For instance, a store with its source operand and its des-

tination memory location associated with the labels l1 and l2, respectively, is legitimate, only if the

flow l1 -> l2 is a legitimate flow.

MemTracker [108] and FlexiTaint [107] append an in-order monitoring pipeline to the pro-

cessor’s out-of-order pipeline. The monitoring pipelines support up to four bits of metadata per

application word. While MemTracker [108] checks only memory accesses, similar to HeapMon

[96], FlexiTaint also includes support to track taint propagation. Specifically, FlexiTaint employs

rule-based filtering to determine whether taint propagation can be performed in dedicated logic

delegating only uncommon functionality to software. 

Another work, Raksha [32] proposes an architecture for software security based on dynamic

information flow tracking. Raksha includes a separate pipeline that propagates and checks the

metadata transparently to the main processor’s pipeline. Registers, caches, and memory are

extended with fixed 4-bit tags. Similar to FlexiTaint, Raksha can execute software handlers with-

out the overhead of operating system traps so as to complement the hardware-based analysis. The

authors showcase the system’s bug-finding capability through an FPGA prototype.

SIFT [85] proposes a monitoring system tailored for tainting propagation. The application

and the monitor run on an 8-way (POWER-like) core with SMT support. SIFT executes only one

(specialized) monitoring instruction per application instruction. Although, SIFT combines an

aggressive core with monitor-specific hardware the slowdown is still around 20%. 

Hardbound [35] provides spatial memory safety for C/C++ programs through architectural

support for bounded pointers. Upon application’s memory allocation, the metadata for pointers

bounds are initialized by software. Then, the metadata are propagated in hardware and checked

when a pointer is dereferenced, transparently to the application’s execution. Just instrumenting
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malloc-related library calls is sufficient to enforce spatial memory safety for heap objects. How-

ever, compiler support is needed for complete safety including arrays allocated in the stack. 

WatchDog [76] also aims at providing spatial memory safety for C/C++ programs. Upon

application’s memory allocation, WatchDog generates a unique identifier which is associated with

the pointer to the allocated memory region. On each memory access, the identifier’s validity is ver-

ified through the lock and key identifier technique, which implements the check with just a load

and a comparison operation. The identifier consists of two components: (1) a key (a 64-bit

unsigned integer) and (2) a lock (a 64-bit address which points to a location in memory). An iden-

tifier is valid, when the value contained in the lock location is equal to the key’s value.

Although, certain monitoring systems include programmable structures [32, 107, 108], the

supported monitors are limited by the implementation complexity. As the monitoring pipelines can

only accommodate fixed-sized metadata per application word, they cannot implement monitoring

algorithms with more complex metadata, such as AtomCheck, bounded pointers [35] and vector

clocks [95].

7.2.2  Specialized Hardware-Based Monitoring Systems

DISE [29] proposes hardware support for DBI. In doing so, DISE augments the processor

pipeline and injects microcode to implement the monitoring functionality for each application

instruction. Although this approach is flexible, it incurs high runtime overhead as each application

instruction results in a sequence of monitoring instructions inserted into the pipeline. AccMon

[124] proposes a heuristic to perform PC-based invariant detection. This system builds on the

observation that a given memory location is accessed by only a few instructions under normal exe-

cution. As a result outlier instructions can indicate memory corruption, buffer overflow, or other

memory-related bugs. Testudo [47] is a hardware approach for security analysis based on statisti-

cal sampling. Testudo distributes the monitoring load to multiple runs (users) by only analyzing a
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few tagged variables during any particular run. To gain high coverage, Testudo requires a suffi-

cient population of users sampling different (random) sets of variables. Radish [36] is a software/

hardware approach for vector-clock based race detection, that maintains metadata in L1-D caches

in order to reduce the number of data race checks in software. Radish requires specialized logic for

SIMD-style vector clock computations.

Atom-Aid [68] is inspired by prior work enforcing consistency at a coarse grain in order to

bridge the performance gap between strict and relaxed memory models (e.g., BulkSC [21]). Atom-

Aid leverages transactional memory to executes a chunk of instructions atomically. This way

Atom-Aid reduces the degree of memory interleavings thus guaranteeing atomicity implicitly.

ColorSafe [67] targets atomicity violations due to multiple variable, in contrast to AtomAid that

focuses only on single variables. First, ColorSafe assigns a color to a set of variables and treats

them as a single unit thereafter. Then, ColorSafe detects multi-variable violations through unserial-

izable access interleavings to data with the same color. Although this system is presented as a solu-

tion for debugging and deployment alike, its use with deployed code seems impractical as the

application data cannot be colored in an automated way.

Mondrian memory protection [115] is a fine-grain protection scheme allowing for multiple

protection domains. In contrast to earlier proposals, that enforce protection at the page level, Mon-

drian allows for permissions control at the granularity of individual words. Mondrian employs

compression to reduce the metadata space overhead, and two-level metadata caching to reduce the

runtime overhead. 

7.2.3  Monitoring Systems Using Hardware of Contemporary Processors

SafeMem [88] leverages Error Correction Code (ECC) available in off-the-shelf hardware

to develop a heuristic for the detection of memory leaks and memory corruptions. For instance, to

detect memory leaks, SafeMem builds on the observation that most objects have an expected life-
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time. Thus, objects significantly exceeding their expected lifetime are considered to be suspects

(i.e., potential memory leaks). SafeMem employs ECC to further monitor the suspect objects, so as

to prune false positives. A false positive is identified upon a subsequent access to a suspect object

(i.e., the object is still in use).

Greathouse et al. [46] propose a demand-driven race detection system that performs moni-

toring activity upon inter-thread sharing reflected in coherence events. To keep track of interesting

coherence events, this work leverages performance counters, available in contemporary modern

processors. Although this approach benefits applications with little sharing, it can result in inaccu-

racies (miss some races), and performance degradation due to false sharing.

PBI (a production-run failure diagnosis system) [3] samples hardware performance-counter

events at run time and uses statistical processing to discover instructions related to failures. To

detect concurrency bugs, such as atomicity and order violations, PBI leverages performance coun-

ters that indicate the cacheline state (i.e., Modified, Exclusive, Shared, Invalid) before a memory

access. To detect sequential bugs (i.e., deviations from the intended execution path), PBI leverages

performance counters indicating whether a branch is taken or not taken.

Another work by the same authors [4] makes the observation that often bugs have short

propagation distance, thus collecting information close to program’s failure can be sufficient to

diagnose the bugs root. To identify deviations from the intended execution path, this work lever-

ages existing hardware, named the Last Branch Record (LBR), and records the last few taken

branches. To help diagnosing concurrency bugs, this work proposes simple hardware extensions,

named Last Cache-coherence Record (LCR), that record the last few cache accesses with specified

coherence states. Although, these heuristics are effective for bugs causing program failures, they

are not generally applicable to other monitoring algorithms (e.g., memory leaks) or when the mon-

itored programs do not crash.
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7.2.4  Watchpoint-Based Monitoring Systems

iWatcher [126] checks memory accesses that belong to pre-specified (i.e., watched) memory

ranges but cannot support propagation tracking monitors, such as MemCheck. Unlimited Watch-

points [48] also trigger monitoring activity when a watched memory location is accessed. How-

ever, in contrast to iWatcher, this system allows for fine-grain manipulation of the watched

memory locations, by storing the associated metadata on a Range Cache [105]. As Range Caches

can summarize ranges of metadata having the same values, there are performance benefits when

the monitor’s metadata show good spatial locality. However, slowdown increases when byte-level

watchpoints are necessary, or when the monitor performs frequent range updates that may spawn

multiple ranges (e.g., stack updates). Sentry [99] proposes an accesses control mechanism based

on memory tagging that is employed either to enforce memory protection or to provide watch-

point-based debugging. 

7.2.5  Systems Implementing the Monitor on a Different HW Substrate

Prior work has proposed the use of on-chip reconfigurable fabric to implement the monitor-

ing functionality [33, 57]. These systems can accommodate multiple monitors but face two issues:

(1) they require low-latency access to metadata, which is challenging for large metadata (e.g., a

vector clock per word for FastTrack [41]) and (2) they require the reconfigurable fabric to be

clocked at frequency comparable to the monitored core. FADE can assist these monitors (1) by

identifying whether an event is filterable by accessing much less metadata kept in an auxiliary map

(common case is encoded with one-two bits), and (2) by filtering a large portion of application

events allowing the reconfigurable fabric to run at lower frequency. 

Introspective cores [75] advocate that although monitoring hardware can significantly

increase the developers’ productivity, the rest of the users should not pay the additional cost asso-

ciated with this hardware. Thus, this work proposes implementing the monitoring functionality on
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a separate logic die stacked vertically on the processor die using 3D IC technology. The focus is on

the impact of the monitoring layer to the chip’s design in terms of the area, power and temperature.

7.2.6  Hardware-Assisted Multi-Cores

INDRA [97], HeapMon [96] and Log-Based Architectures (LBA) [23] are monitoring

frameworks that capture application events in hardware and communicate them to a neighboring

core on a CMP to perform the monitoring task. LBA is the most related to our work as it also

includes three mechanisms aiming to accelerate a number of monitors. The first accelerator, unary

inheritance tracking (IT), targets the overhead of TaintCheck and MemCheck. Unary inheritance

tracking uses hardware to accelerate only instructions with one source operand, adding extra over-

head or sacrificing bug coverage for two-source operand instructions. The second accelerator,

idempotent filter (IF), stores addresses to filter redundant metadata checks, but requires frequent

storage flushing (upon stack-update, malloc, free, etc.). The third accelerator, a metadata TLB,

maps an application address to a memory metadata address in hardware. Although the combina-

tion of the three accelerators reduces the slowdown of the targeted monitors, it has the following

shortcomings compared to FADE: (1) may sacrifice bug coverage (unary inheritance tracking for

TaintCheck), (2) has lower filtering rate resulting in higher monitoring slowdown6, (3) does not

accelerate stack updates, and (4) does not consider aggressive OoO cores that stress the accelera-

tors with a high event generation rate. 

To reduce the overhead of serial propagation tracking tools for serial applications, Parallel

DIFT [90] executes a parallelized version of TaintCheck and MemCheck on the LBA framework.

In doing so, parallel DIFT divides the application’s log into segments and assigns each log seg-

ment to a worker core. Then, the worker cores produce monitoring summaries, which are pro-

6.  In our prior study, BugSifter [43], we evaluated LBA and a comparable version of Blocking FADE. We showed that 
the filtering rate of LBA is lower compared to FADE (25-78% vs. 80-98%), thus resulting in higher monitoring slow-
down.



105 CHAPTER 7. RELATED WORK
cessed and merged by a master core. To generate shorter summaries and simplify the

parallelization process, this system employs unary inheritance tracking, that tracks the information

flow through unary operands. When the actual value cannot be determined explicitly, Parallel

DIFT uses a symbolic value (e.g., a register id). Concurrently and independently, Nightingale et al.

[83] proposed a similar approach to parallelize DIFT on commodity CMPs. However, this work

does not employ unary inheritance tracking, thus the resulting slowdown can be significant (up to

9x for taint propagation).

Guardrail [91] is a monitoring framework for detecting bugs in device drivers at runtime,

and from preventing anomalous behavior from propagating to the rest of the system. In contrast to

previous proposals that focus on bug detection at the driver’s interface, Guardrail performs instruc-

tion-grain correctness checking as the driver executes. The monitored events are logged and sent

to another core for further processing similar to LBA [23]. Hardware support for logging is suffi-

cient to significantly lower the overhead (at most 10%) and to allow for practical deployment for

applications with low driver activity. However, the overhead is higher (60% drop in throughput for

network streaming), when the drivers activity is frequent. FADE’s approach could be employed to

lower the runtime overhead in these cases.

7.3 Support for Parallel Applications

In this section, we discuss monitoring systems that provide support for parallel applications.

Software and hardware approaches to dynamic monitoring are discussed in Section 7.3.1 and

Section 7.3.2, respectively, while Section 7.3.3 is about the most closely related work on determin-

istic record and replay systems.
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7.3.1  Software Approaches

DBI-based monitoring tools for parallel applications either time-slice the application execu-

tion and perform the monitoring analysis on a single core (e.g., Valgrind [81]), or require explicit

synchronization similar to any multi-threaded application (e.g., PIN [69]). In both cases, the result-

ing overhead is high, thus limiting practicality and potentially masking bugs (because applications

execution may be perturbed).

To allow for concurrent execution of translated multi-threaded programs, Chung et al. [27]

proposed the use of transactional memory along with Dynamic Binary Instrumentation. By using

memory transactions to enclose the data and the associated metadata in a single atomic block, this

approach detects and corrects potential races, thus ensuring correctness.

7.3.2  Hardware Approaches

Early proposal that extend the processors pipeline with a monitoring pipeline (as described

in Section 7.2.1), process the metadata along with the application data in the processor’s pipeline

[31, 32, 103]. As data and metadata updates happen atomically no support is required to order the

metadata accesses with respect to application accesses.

However, when the monitor is decoupled from the application’s pipeline, the atomicity of

the data and the associated metadata is broken. The decoupling degree differs as decoupled moni-

toring architectures range from FlexiTaint [107], where the monitor is implemented in a few extra

pipeline stages, to our work, where the monitor runs on a separate HW thread, and LBA [23],

where the monitor runs on a separate core.

In FlexiTaint, application instructions are not committed until the associated metadata

accesses are performed, thus executing the data and metadata accesses atomically. However, this

approach does not work for highly decoupled monitoring architectures, such as LBA [23], FADE
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[44], Decoupled Co-processor [57], that have to faithfully replay applications activity in order to

ensure correct monitoring.

ParaLog [112] is a CMP-based monitoring system where N application threads are being

monitored by an equal number of monitoring threads, occupying 2N cores in total. ParaLog lever-

ages coherence activity to recreate applications ordering at the monitor’s side under sequential

consistency and total-store-order. As memory references are further reorder under more relaxed

memory models, the monitoring process may deadlock without additional monitoring support.

Resolve [111] extends ParaLog to perform correct monitoring under more relaxed memory models

by proposing an algorithm that detects and resolves dependence cycles resulting from the non-SC

memory accesses.

Kannan [56] also leverages cache coherence to infer information related to the application

inter-thread order. However, in contrast to ParaLog that records the dependences at the cores run-

ning the application threads, this system records dependences at the cores running the monitor

threads. In doing so, it maintains two tables at each monitoring core: (1) a table recording the

misses of the monitored application core, and (2) a table recording the invalidations served by the

monitored application core. The tables record not only the address but also the application instruc-

tion associated with a coherence event. As this approach requires an associative search of the com-

munication queue (between the application and the monitor cores) to identify the instruction

associated with a coherence event, it cannot be applied to systems with large queues (e.g., 64K

entries in LBA [23]).

Butterfly [45] is a monitoring framework for dynamic analysis that does not require to

record inter-thread dependences, thus avoiding the associated hardware extensions and allowing

monitoring under any memory consistency model. Butterfly builds on the observation that instruc-

tions executed in the distant past by other threads must have been completed after a certain period

of time, given the finite buffering of instructions and memory accesses in modern pipelines. At the
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same time, the relative order of concurrent instructions (i.e., instructions in the near past or near

future) is considered unknown. As a result, Butterfly breaks down the monitored application into

epochs, where the events of adjacent epochs are conservatively considered to be concurrent, while

the events of any other epoch are considered to be properly ordered. This approach may result in

false positives (increasing in number with the epoch’s size) and incurs high slowdown.

7.3.3  Deterministic Record & Replay

Frameworks in this category record application or system-level activity over an execution

window so as to deterministically replay this window off line, if the application crashes. Although,

there has been a large body of work in this domain, we focus on the most closely related work.

Flight Data Recorder [118] (FDR) is a hardware-assisted debugging system for post-mor-

tem analysis (i.e., after an application crashes). FDR logs thread-ordering information continu-

ously to allows for full-system deterministic replay of multi-threaded applications running on

cache-coherent multi-processors under Sequential Consistency. To infer the order of concurrent

events, FDR piggybacks the necessary information on cache coherence messages. Regulated Tran-

sitive Reduction (RTR) [120] extends FDR (1) by reducing the hardware cost and the rate of the

log size growth, and (2) by supporting a more relaxed memory model (Total Store Order). 

BugNet [77] is another post-mortem analysis system that records information related to

applications and the linked libraries but does not allow for full-system replay, as FDR and RTR.

BugNet is based on the insight that checkpointing the register file contents at any point in time,

and then recording subsequent load values, allows for deterministic replay of programs execution. 
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Chapter 8

Conclusions

This thesis proposed FADE, a Filtering Accelerator for Decoupled Event monitoring, that

enables the design of efficient general monitoring systems. FADE comes to bridge the gap

between prior software-only and hardware-assisted approaches through monitor-agnostic exten-

sions that significantly reduce the monitoring slowdown for a wide spectrum of bug-finding tools,

ranging from memory bugs to atomicity violations.

In Chapter 3, we showed that FADE exploits common monitoring behavior to provide sim-

ple, programmable hardware logic to accelerate bug finding. For frequently occurring instruction

events, FADE takes advantage of the fact that most of the time applications behave as expected

(i.e., invariant checks succeed) and that the monitor’s metadata do not need to be updated (i.e.,

most updates are redundant). These observations allow the vast majority of the costly software

handlers that are invoked in response to instruction events to be filtered out. Unlike prior work that

does not monitor stack-update events, FADE performs bulk metadata updates in simple hardware

to accelerate these events, which constitute up to 17% of the monitors execution time. While

FADE filters 84-99% of software handlers, it maintains full flexibility and generality by support-

ing software handler execution for the rest of the events. Additionally, we showed that by execut-

ing software handlers for unfiltered events in a dedicated hardware context alongside the

application, our proposed design approaches the performance of a separate monitoring core (with

FADE extensions) without the associated resource overheads.

In Chapter 4, we discussed event management in a monitoring system with filtering support.

Our study of a broad range of applications and monitors showed that the monitoring load rarely
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exceeds one event per cycle even with an aggressive OoO core producing the event stream. Event

production is bursty, mandating queueing for pending events; however, a small queue is sufficient

for good performance. Unfiltered events are also bursty and are sparsely spaced within an other-

wise filterable event stream. These results pointed to a decoupled filtering accelerator able to keep

up with an average monitoring load of one event per cycle, capable of filtering concurrently with

unfiltered event processing, and loosely coupled through shallow queues to the application and the

monitor.

In Chapter 5, we proposed Non-Blocking Filtering a novel technique that enables filtering

to happen concurrently with the processing of unfiltered events, a task that is complicated due to

dependencies between unfilterable and subsequent filterable events. To decouple filtering and the

processing of the unfiltered events, we showed that there is only minimal state that is critical for

deciding whether a dependent event is filterable. Most importantly, this state can be updated for

unfilterable events directly in the accelerator with simple hardware extensions. 

Based on these observations, we proposed FADE’s pipelined microarchitecture with a peak

filtering rate of one application event per cycle. Our design supports Non-Blocking Filtering that

dynamically resolves dependencies between unfilterable events and subsequent events, eliminat-

ing data-dependent stalls and maximizing accelerator’s performance. Using full-system cycle-

accurate simulation, we showed that FADE is highly efficient, filtering out 84-99% of events that

would otherwise be handled in software, thereby reducing the application slowdown to only 1.2-

1.8x (versus 1.6-7.4x for unaccelerated execution). In the 40nm technology, FADE requires

0.12mm2 of area and 273mW of power at peak.

As parallel applications constitute a large fraction of modern software, in Chapter 6, we

introduced a parallel monitoring accelerator, Parallel FADE, that allows for the design of fast, flex-

ible and resource-efficient parallel monitoring systems. Specifically, we studied parallel applica-

tions running on multiple cores, on a CMP-based monitoring system, where each core is equipped
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with an instance of Parallel FADE. Our framework combines Non-Blocking Filtering, the state-of-

the-art hardware filtering approach to accelerate monitoring, with the necessary hardware exten-

sions to handle the inherent concurrency of parallel applications, proposed in prior work, so as to

reduce the complexity of prior parallel monitoring systems. Using a suite of diverse monitors and a

number of multi-threaded benchmarks, we showed that Parallel FADE filters 81-99% of the events

that would otherwise be handled in software and reduces the slowdown to an average of only 1.1-

1.8x (versus 1.9-11.5x for unaccelerated execution), thus making parallel monitoring practical.

Overall, FADE and Parallel FADE can assist developers to detect a wide range of bugs at

low resource and runtime overhead, while significantly reducing the associated design complexity.

8.1 Future Directions

While instruction-grain monitoring provides broad coverage by monitoring every instruc-

tion, the monitoring slowdown can be reduced by tailoring the monitoring process to the users’

needs with software assistance. Program developers usually have a good understanding of their

code, and can further assist monitoring by providing hints on what exactly needs to be monitored,

thus avoiding the monitoring overhead associated with the whole program. For instance, software

hints could be leveraged to narrow the focus of the monitoring analysis either to specific data

structures, or to specific functions. 

FADE is based on the observation that there is common behavior that (1) requires a minimal

set of actions, and (2) can be identified through minimal state. As these observations are general

enough, they could be applied to other tagged memory systems. Potential use cases include but are

not limited to security, reliability, performance bugs, garbage collection, and transactional mem-

ory.
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