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ABSTRACT
The increasing volume of time-based generated data and the shift
in storage technologies suggest that we might need to reconsider
indexing. Several workloads - like social and service monitoring
- often include attributes with implicit clustering because of their
time-dependent nature. In addition, solid state disks (SSD) (using
flash or other low-level technologies) emerge as viable competitors
of hard disk drives (HDD). Capacity and access times of storage
devices create a trade-off between SSD and HDD. Slow random
accesses in HDD have been replaced by efficient random accesses
in SSD, but their available capacity is one or more orders of mag-
nitude more expensive than the one of HDD. Indexing, however,
is designed assuming HDD as secondary storage, thus minimizing
random accesses at the expense of capacity. Indexing data using
SSD as secondary storage requires treating capacity as a scarce re-
source.

To this end, we introduce approximate tree indexing, which em-
ploys probabilistic data structures (Bloom filters) to trade accuracy
for size and produce smaller, yet powerful, tree indexes, which we
name Bloom filter trees (BF-Trees). BF-Trees exploit pre-existing
data ordering or partitioning to offer competitive search perfor-
mance. We demonstrate, both by an analytical study and by ex-
perimental results, that by using workload knowledge and reduc-
ing indexing accuracy up to some extent, we can save substantially
on capacity when indexing on ordered or partitioned attributes. In
particular, in experiments with a synthetic workload, approximate
indexing offers 2.22x-48x smaller index footprint with competitive
response times, and in experiments with TPCH and a monitoring
real-life dataset from an energy company, it offers 1.6x-4x smaller
index footprint with competitive search times as well.

1. INTRODUCTION
Database Management Systems (DBMS) have been traditionally

designed with the assumption that the underlying storage is com-
prised of hard disks (HDD). This assumption impacts most of the
design choices of DBMS and in particular the ones of the storage
and the indexing subsystems. Data stored on the secondary storage
of a DBMS can be accessed either by a sequential scan or by using
an index for randomly located searches. The most common types
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(a) TPCH (shipdate, commitdate, and receiptdate)

(b) Smart home dataset (timestamp, aggregate energy)

Figure 1: Implicit clustering

of indexes in modern database systems are B+-Trees and hash in-
dexes [37]. Other types of indexing include bitmap indexes [33].

Tree structures like B+-Trees are widely used because they are
optimized for the common storage technology - HDD - and they
offer efficient indexing and accessing for both sorted and unsorted
data (e.g., in heap files). Tree structures offer logarithmic, to the
size of the data, number of random accesses (and, as a result, lookup
time) and support ordered range scans. Hash tables are very effi-
cient for point queries, i.e., for a single value probe, because, once
hashing is completed the search cost is constant. Indexing in to-
day’s systems is particularly important because it needs only a few
random accesses to locate any value, which is sublinear to the size
of the data (e.g., logarithmic for trees, constant for hash indexes).

1.1 Implicit Clustering
Big data analysis - often performed in a real-time manner - is

becoming increasingly more popular and crucial to business op-
eration. New datasets including data from scientists (e.g., simu-
lations, large-scale experiments and measurements, sensor data),
social data (e.g., social status updates, tweets) and, monitoring,
archival and historical data (managed by data warehousing sys-
tems), all have a time dimension, leading to implicit, time-based
clusters of data, often resulting in storing data based on the creation
timestamp. The property of implicit clustering [30] characterizes
data warehousing datasets, which are often naturally partitioned
for the attributes that are correlated with time. For example, in
a typical data warehousing benchmark (TPCH [44]) for every pur-
chase we have three dates (ship date, commit date and receipt date).



While these three dates do not have the same order for different
products, the variations are small and the three values are typically
close. Figure 1(a) shows the dates of the first 10000 tuples of the
lineitem table of the TPCH benchmark when data is ordered using
the creation time. A second example is smart home dataset (SHD)
taken from electricity monitoring data1 which keeps timestamped
information about the current energy consumption, the aggregate
energy consumption, and other sensor measurements like temper-
ature. Figure 1(b) shows the first 100000 entries containing the
timestamp and the aggregate energy of several clients. The times-
tamps are in increasing order and the aggregate consumed energy
has also implicit clustering2.

Today, real-time applications like monitoring sensors [23] and
Facebook [9] have a constant ingest of timestamped data. In ad-
dition to the real-time nature of such applications, immutable files
with historical time-generated data are stored and the goal is to of-
fer cheap yet efficient storage and searching. For example, Face-
book has announced projects to offer cold storage [43] using flash
or shingled disks [22]. When cold data are stored on low-end flash
chips as immutable files, they can be ordered or partitioned antici-
pating future access patterns, offering explicit clustering.

Datasets with either implicit or explicit clustering are ordered
or partitioned, typically, on a time dimension. In this paper, we
design an index that is able to exploit such data organization to
offer competitive search performance with smaller index size.

1.2 The capacity-performance trade-off
Solid-state disks (SSD) use technologies like flash and Phase

Change Memory (PCM) [16] that do not suffer from mechanical
limitations like rotational delay and seek time. They have virtu-
ally the same random and sequential read throughput and several
orders of magnitudes smaller read latency when compared to hard
disks [10, 41]. The capacity of SSD, however, is a scarce resource
compared with the capacity of HDD. Typically, SSD capacity is
one order of magnitude more expensive than HDD capacity. The
contrast between capacity and performance creates a storage trade-
off. Figure 2 shows how several SSD and HDD devices (as of
end 2013) are characterized in the trade-off according to their ca-
pacity (GB per $) on the x-axis and the advertised random read
performance (IOPS) on the y-axis. We show two enterprise-level
and two consumer-level HDD (E- and C-HDD respectively) and,
four enterprise-level and two consumer-level SSD (E- and C-SSD
respectively). The two technologies create two distinct clusters.
HDD are on the lower right part of the figure offering cheap capac-
ity (and in all cases cheaper than SSD) and inferior performance -
in terms of random read I/O per second (IOPS) - varying from one
to four orders of magnitude. Hence, instead of designing indexes
for storage with cheap capacity and expensive random accesses (for
HDD), today we need to design indexes for storage with fast ran-
dom accesses with expensive capacity (for SSD).

1.3 Indexing for modern storage
Systems and applications requirements are heavily impacted by

the emergence of SSD and there has been a plethora of research
aiming at integrating and exploiting such devices with existing DBMS.
These efforts include flash-only DBMS [41, 45], flash-HDD hybrid
DBMS [25], using flash in a specialized way [5, 13] and optimiz-
ing internal structures of the DBMS for flash (e.g., flash-aware B-
Trees and write-ahead-logging [1, 13, 18, 26, 38]). Additionally,

1The dataset was made available through the EU project BigFoot:
http://www.bigfootproject.eu.
2The aggregate energy of every client is increasing throughout ev-
ery the billing cycle, but not always with the same pace.

Figure 2: The capacity/performance storage trade-off.

the trends of increasing capacity and performance of SSD lead to
higher adoption of hybrid or flash-only storage sub-systems [9].
Thus, more and more data resides on SSD and we need to access
them in an efficient way.

SSD-aware indexes are not enough. Prior approaches for flash-
aware B+-Tree, however, focus on addressing the slow writes on
flash and the limited device lifetime (see Section 2). These tech-
niques do not address the aforementioned storage trade-off - be-
tween storage capacity and performance - since they follow the
same principles that B+-Trees are built with: minimize the number
of slow random accesses by having a wide (and potentially large)
tree structure. Instead of decreasing the index size at the expense
of more random reads, traditional tree indexing uses larger size in
order to reduce random reads.

1.4 Approximate Tree Indexing
We propose a novel form of sparse indexing, using an approxi-

mate indexing technique which leverages efficient random reads to
offer performance competitive with traditional tree indexes, reduc-
ing drastically the index size. The smaller size enables fast rebuilds
if needed. We achieve this by indexing in a lossy manner and ex-
ploiting natural partitioning of the data in a Bloom filter tree (BF-
Tree). In the context of BF-Trees, Bloom filters are used to store
the information whether a key exists in a specific range of pages.
BF-Trees can be used to index attributes that are ordered or natu-
rally partitioned within the data file. Similarly to a B+-Tree, a BF-
Tree has two types of nodes: internal and leaf nodes. The internal
nodes resemble the ones of a B+-Tree but the leaf nodes are radi-
cally different. A leaf node of a BF-tree (BF-leaf) consists of one or
more Bloom filters which store the information whether a key for
the indexed attribute exists in a particular range of data pages. The
choice of Bloom filters as the building block of a BF-Tree allows
accuracy parametrization based on (i) the indexing granularity (data
pages per Bloom filter) and (ii) the indexing accuracy (false posi-
tive probability of the Bloom filters). The former is useful when
the data is not strictly ordered and the latter can be used to vary the
overall size of the tree.

Contributions. This paper makes the following contributions:
• We identify the capacity-performance storage trade-off.
• We introduce approximate tree indexing using probabilistic data

structures, which can be parametrized to favor either accuracy
or capacity. We present such an index, the BF-Tree, which
is designed for workloads with implicit clustering tailored for
emerging storage technologies.

• We model the behavior of BF-Trees and present an analytical
study of their performance, comparing them with B+-Trees.

• We show in our experimental analysis that BF-Trees offer com-
petitive performance with 2.22x to 48x smaller index size when
compared with B+-Trees and hash indexes.



Paper Organization. In Section 2 we discuss background about
SSD-aware indexing and Bloom filters. In Section 3 we present a
key insight which makes BF-Trees viable, in Section 4 we present
the internals of a BF-Tree. Section 5 presents an analytical model
predicting BF-Trees behavior and Section 6 presents the evaluation
of BF-Trees. In Section 7 we further discuss BF-tree as a general
index, and in Section 8 we discuss possible optimizations. In Sec-
tion 9 we discuss related work, and in Section 10 we conclude.

2. BACKGROUND
SSD-aware indexing. We find that approximate indexing is suit-
able for modern storage devices (e.g., flash or PCM-based) because
of their principal difference compared to traditional disks: ran-
dom accesses perform virtually the same as sequential accesses3.
Since the rise of flash as an important competitor of disks for non-
volatile storage [21] there have been several efforts in creating a
flash-friendly indexing structure (often a flash-aware version of a
B+-Tree). LA-Tree [1] uses lazy updates, adaptive buffering and
memory optimizations to minimize the overhead of updating flash.
FD-Tree [26] addresses the performance asymmetry between ran-
dom read and writes in SSD using the logarithmic method and frac-
tional cascading techniques. In µ-Tree [24] the nodes along the path
from the root to the leaf are stored in a single flash memory page
in order to minimize the number of flash write operations during
the update of a leaf node. IPLB+-tree [32] avoids costly erase op-
erations - often caused by small random write requests common in
database applications - in order to improve the overall write per-
formance. SILT [27] is a flash-based memory-efficient key-value
store based on cuckoo hashing and tries, which offers fast search
performance using minimal amount of main memory.

What SSD-aware indexing does not do. Related work focuses,
mostly, on optimizing for specific flash characteristics (read/write
asymmetry, lifetime) maintaining the same high-level indexing struc-
ture and does not address the shifting trade-off in terms of capacity.
BF-trees propose, orthogonally to flash optimizations, trading off
capacity for indexing accuracy.

Bloom Filters’ applications in data management. A Bloom filter
(BF) [8] is a space-efficient probabilistic data structure supporting
membership tests with non-zero probability for false positives (and
zero probability for false negatives). Typically in a BF one can only
add new elements and never remove elements. A deletable BF has
been discussed [39] but it is not generally adopted. BFs have been
extensively used as auxiliary data structures in database systems
[3, 12, 14, 15, 31]. Modern database systems utilize BFs while im-
plementing several algorithms, like semijoins [31], where BFs help
in implementing faster the join algorithm. Google’s Bigtable [12]
uses BFs to reduce the number of accesses to internal storage com-
ponents and a study [3] shows that Oracle systems use BFs for tuple
pruning, to reduce data communication between slave processes in
parallel joins and to support result caches.

BFs have been used for changing workloads and different storage
technologies. Scalable Bloom Filters [2] study how a BF can adapt
dynamically to the numbers of elements stored while assuring max-
imum false positive probability. Buffered Bloom filters [11] use
flash, as well, as a cheaper alternative to main memory. The forest-
structured Bloom filter [29] aims at designing an efficient flash-
based BF by using the memory to capture the frequent updates.
Bender et al. [7] propose three variations of BFs: the quotient fil-
ter, the buffered quotient filter and the cascade filter. The first uses

3Early flash devices had one order of magnitude faster random
reads than random writes [10, 41]; later devices are more balanced.

more space than traditional BF but shows better insert/lookup per-
formance and supports deletes. The last two variations are designed
on top of quotient filter supporting larger workloads, serving, as
well, as alternatives of BF for SSD.

We extend the usage of BFs in DBMS by proposing, BF-Tree,
an indexing tree structure which uses BFs to trade off capacity for
indexing accuracy by applying approximate indexing. BF-Tree is
orthogonal to the optimizations described above. In fact, a BF-Tree
can take advantage of such optimizations in order to fine-tune its
performance.

3. SPLITTING BLOOM FILTERS
Bloom proposed [8] BF as a space-efficient probabilistic data

structure which supports membership tests, with a false positive
probability. On the other hand, the small size of a BF allows for its
re-computation when needed. Thus, in BF-Trees we do not employ
a BF for the entire relation. We use BF to perform a membership
test for a specific range, keeping the range of values for a single BF
small in order to be feasible to recompute it.

A BF is comprised of m bits, and it stores membership informa-
tion for n elements with false positive probability p. An empty BF
is an array of m bits all set to 0. We need, as well, k different hash
functions to be used to map an element to k different bits during the
process of adding an element or checking for membership. When
an element is added, the k hash functions are used in order to com-
pute which k out of m bits have to be set to 1. If a bit is already
1 it maintains this value. To test an element for membership the
same k bits are read and, if any of the k bits is equal to 0, then the
element is not in the set. If all k bits are equal to 1 then the element
belongs to the set with probability 1− p. Assuming optimal num-
ber of k hash functions the connection between the BF parameters
is approximated by the formula4 [42]:

n =−m · ln2(2)
ln(p)

(1)

From this formula we can derive two useful properties:

1. If a BF with size M bits can store the membership informa-
tion of N elements with false positive p, then S BFs with
size M

S bits each can store the membership information of N
S

elements each with the same p.

2. Decreasing the probability of false positives has a logarith-
mic effect on the number of elements we can index using a
given space budget (i.e., number of bits).

Property (1) allows to divide the index into smaller BFs that in-
corporate location information. This process is done hierarchically
and is presented in Section 4. We present a tree structure with a
large BF per leaf, which contains membership information, and in-
ternal nodes which help navigating to the desired range before we
do the membership test. Each leaf node corresponds to a number
of data pages and upon positive membership test we have to search
these data pages for the desired values.

4. BLOOM FILTER TREE (BF-TREE)
In this section we describe in detail the structure of a BF-tree,

highlighting its differences from a typical B+-Tree.

4.1 BF-Tree architecture
A BF-tree consists of nodes of two different types. The root and

the internal nodes have the same morphology as a typical B+-Tree
4Hereafter, when modeling the behavior of a BF we use Equation 1.



Figure 3: BF-tree

node: they contain a list of keys with pointers to other nodes be-
tween each pair of keys. If the referenced node is internal then it
has exactly the same structure. The leaf nodes (BF-leaves), how-
ever, are different. They contain membership information of in-
dexed keys in ranges of pages.

BF-leaf. Each leaf node corresponds to a page range (min pid -
max pid) and to a key range (min key - max key), and it consists
of a number, S, of BFs, each of which stores the key membership
for each page of the range (or a group of consecutive pages). A
pointer to the next leaf is created during bulk loading and is main-
tained throughout the lifetime of the index to facilitate range scans.
Finally, each leaf contains the number of indexes keys (#keys) in
order to guarantee the desired false positive probability. The con-
nection between the page range and the key range does not imply
sorted data, which is only one way to sustain it. In addition, if the
dataset is partitioned using the index key the same connection is
still valid. In cases of composite indexing keys, or for attributes
that have values correlated with the order of the data, such an as-
sumption can hold for more than one index.

For simplicity and compatibility with the existing framework, the
root, the internal nodes and the leaf nodes have the same size (typi-
cally either 4KB or 8KB). The number of BFs in a BF-leaf can vary
between 1 (where a single BF stores the membership information
of the entire range) up to the number of pages comprising the range
in question, which gives the best results because an index probe
will be directed only to the pages containing the key in question.
As shown in Section 3, using property (1), we can guarantee that
creating a BF per page of the range will not alter the false positive
probability, because dividing a BF with #keys elements into S BFs
for #keys

S elements each, results in the same false positive probabil-
ity. This property guarantees stable false positive probability for
every BF, as long as the distribution of keys is not highly skewed.
The search time of a BF-tree depends on three parameters: (i) the
height of the tree, (ii) the false positive probability ( f pp), and, (iii)
the number of data pages that each BF corresponds.

4.2 BF-Tree algorithms
Searching for a tuple. As shown in Algorithm 1, once we have
retrieved the desired BF-leaf, we perform a membership test for
every BF. This test decides whether the key we search for exists in
each BF, with probability for false positive answer f pp. The av-
erage search cost includes the overhead of false positives, which is
negligible when f pp is low as we show in Sections 5 and 6. During
a BF-Tree index probe, the system reads the BF-leaf which corre-
sponds to the search key and then probes all BFs (one for each data

page). When a BF matches the searched key then its correspond-
ing page contains the key with false positive probability f pp. The
page id is calculating by adding the the index within the leaf of the
matching BF to the min pid. All such pages are sequentially re-
trieved from the disk and searched for the search key. In case of a
primary key search, as soon as the tuple is found the search ends
and the tuple is presented to the user. If the indexed attribute is not
unique then each page is read entirely.

Search key k using BF-Tree
1: Binary search of root node; read the appropriate child node.
2: Recursive search the values of the internal node, read the appropriate child

node until a leaf is reached.
3: Read min key and max key from the leaf node.
4: if key k ∈ [min key, max key] then
5: Probe all BFs with key k.
6: for ∀ BF within current leaf with index bid that matches do
7: Load page min pid +bid (false positive with f pp).
8: end for
9: else

10: Key k does not exist.
11: end if

Algorithm 1: Search using BF-Tree

Creating and Updating a BF-Tree. For creating and updating a
BF-Tree, the high-level B+-Tree algorithms are still relevant. One
important difference, however, is that, apart from maintaining the
desired node occupancy, we have to respect the desired values for
the BFs accuracy.

Split a BF-Tree node N to N1, N2
1: Create new nodes N1 and N2.
2: Node split may need to propagate.

3: N1 keys ∈
[
N.min key, N.min key+N.max key

2

)
4: N1 pids ∈ [N.min pid,N.min pid]

5: N2 keys ∈
(

N.min key+N.max key
2 ,N.max key

]
6: N2 pids ∈ [N.max pid,N.max pid]
7: for k = min key to max key do
8: if key k exists in N then
9: if k ∈ N1 keys then

10: Update N1.max pid with max(pid : k ∈ pid)
11: Update N1.#keys
12: else
13: Update N2.min pid with min(pid : k ∈ pid)
14: Update N2.#keys
15: end if
16: end if
17: end for
18: Allocate (N1.max pid−N1.min pid) BFs for N1
19: Allocate (N2.max pid−N2.min pid) BFs for N2
20: for ∀k ∈ N1 keys do
21: if key k exists in N in pids then
22: Insert k in BFs corresponding to all pids
23: end if
24: end for
25: for ∀k ∈ N2 keys do
26: if key k exists in N in pids then
27: Insert k in BFs corresponding to all pids
28: end if
29: end for

Algorithm 2: Split a BF-Tree node

Let us assume that we have a relation R which is empty and we
start inserting values and the corresponding index entries on index
key k. The initial node of the BF-Tree is a BF node, as discussed.
For each new entry we need to update i) the BF, ii) #keys, iii) possi-
bly min key or max key and in some cases iv) the page range. When
the indexed elements exceed the maximum number of elements that
maintains the desired false positive probability f pp we have to per-
form a node split. Bulk load of an entire index can minimize cre-
ation overhead since we can precompute the values of BF-Tree’s
parameters and allocate the appropriate number of nodes more ef-
ficiently. If the tree is in update-intensive mode, each node can



maintain a list of inserted/deleted/updated keys (along with their
page information) in order to accumulate enough number of such
operations to amortize the cost of updating the BF.

The lossy way to keep indexing information for a BF-Tree in-
creases the cost of splitting a BF-leaf. Algorithm 2 shows that in
order to split a BF- leaf we need to probe the initial node for all
indexed values. Thus, splitting a leaf node is computationally ex-
pensive, but it can be accelerated because it is heavily paralleliz-
able. During a node split several threads can probe the BFs of the
old node in order to create the BFs of the new node.

Algorithm 3 shows how to perform an insert in a BF-Tree. After
navigating towards the BF-leaf in question, we check the BF-leaf
size. If this leaf has already indexed the maximum number of val-
ues then we perform a node split as described above. After this
step, the values of the BF-leaf variables are updated. First, we in-
crease the number of keys (#keys). Second, we may need to update
the min key or max key accordingly. Third, the new key value is
added to the corresponding BF.

Insert key k (stored on page p)
1: if #keys+1≤ max node size then
2: if k /∈ [min key, max key] then
3: Extend range (update min key or max key).
4: end if
5: Increase #keys.
6: Insert k into BF with index p−min pid within current leaf.
7: else
8: Split Node.
9: Run insert routine for the newly created node.

10: end if

Algorithm 3: Insert a key in a BF-Tree

Partitioning. A BF-Tree works under the assumption that data is
organized (ordered or partitioned) based on the indexing key. We
can take advantage of the order of the data if it follows the indexing
key, or an implicit order. For example, data like orders of a shop,
social status updates or other historical data is usually ordered by
date. Thus, any index on the date can use this information. Note,
that we do not apply a specific order, we rather simply use the na-
ture of the data for more efficient indexing.

Bulk loading BF-Trees. Similarly to other tree indexes, the build
time of a BF-Tree can be aggressively minimized using bulk load-
ing. In order to bulk load a BF-Tree the system creates packed
BF-leaves with BFs and builds the remaining of the tree on top of
the leaves level during a new scan of the leaves. Hence, bulk load-
ing requires one pass over the data and one pass over the leaves of
the BF-Tree.

5. MODELING BF-TREES
In this section we present an analytical model to capture the

behavior of BF-Trees and compare them with B+-Trees, and the
flash-aware indexing techniques FD-Tree [26] and SILT [27], re-
garding size and performance. Since data is ordered or partitioned
an alternative option for searching is to use interpolation search [36]
or binary search. Interpolation search can be very effective for
canonical datasets achieving log(log(N)) search time, in the spe-
cific case that the values are sorted and evenly distributed.5 B+-
Trees’ performance serves as a more general upper bound since
binary search average response time is log2(N) and B+-Trees av-
erage response time is logk(N), where N is the size of the dataset
and the k is the number of ¡key, pointer¿ pairs a B+-Tree page can
hold. In addition, B+-Trees serve as a baseline for comparing the
size of an index structure used to enhance search performance.

5A more widely applicable version of interpolation search has also
been discussed [19].

Table 1 presents the key parameters of the model. Most of the pa-
rameters are sufficiently explained in the table, however, a number
of parameters are further discussed. For a BF-Tree the average oc-
currence of a value of the indexed attribute (avgcard) plays an im-
portant role since no new information is stored in the index (effec-
tively reducing its size). Moreover, the desired false positive proba-
bility ( f pp) allows us to design BF-Trees with variable size and ac-
curacy for exactly the same dataset. Two more parameters charac-
terize BF-Trees: indexed values per leaf (BFkeysperpage) which is
a function of the f pp and data pages per leaf (BF pageslea f ) which
is a function of the first and it is related to performance since it is the
maximum amount of I/O needed when we want to retrieve a tuple
indexed in a BF-leaf. Finally, for the I/O cost there are three pa-
rameters, traversing the index (randomly), idxIO, random accesses
to the data (dataIO) and sequential access to the data (seqDtIO).
That way, we can alter the assumptions of the storage used for the
index and the data: either keep them in the same medium (e.g., both
on SSD) or store the index on the SSD and the data on HDD.

Table 1: Parameters of the model
Parametername Description

pagesize pagesize for both data and index
tuplesize (fixed) size of a tuple
notuples size of the relation in tuples
avgcard avg cardinality of each indexed value
keysize size of the indexed value (bytes)
ptrsize size of the pointers (bytes)
f anout fanout of the internal tree nodes

BPleaves number of leaves for the B+-Trees
BPh height of the B+-Trees

BPsize size of the B+-Trees
f pp false positive probability for BF-Trees

BFkeysperpage indexed keys per BF leaf
BF pageslea f data pages per leaf

BFleaves number of leaves for the BF-Tree
BFh height of the BF-Tree

BFsize size of the BF-Tree
mP number of matching pages per key

BPcost cost of probing a B+-Tree
BFcost cost of probing a BF-Tree
idxIO cost of a random traversal of the index

dataIO cost to access randomly data
seqDtIO cost to access sequentially data

Equation 2 is used to calculate the f anout of the internal nodes
of both BF-Trees and B+-Trees. In Equation 3 we calculate the
number of leaves of a B+-Tree needed based on the data and the
indexing details, while the height of the B+-Tree is calculated with
the Equation 4.

f anout =
pagesize

ptrsize+ keysize
(2)

BPleaves =
notuples · ( keysize

avgcard + ptrsize)

pagesize
(3)

BPh = dlog f anout(BPleaves)e+1 (4)

In order to calculate the leaves of a BF-Tree we first need to
calculate the different keys that a BF of a BF-leaf can index (solving
in Equation 5, Equation 1 assuming the bits available in a page) and
then plug in this number in Equation 6 where we make sure that we
correctly calculate the size of the BF-Tree by discarding multiple
entries of the same index key. Equation 7 calculates the height of
the BF-Tree, and Equation 8 uses the number of different indexed
values per BF-leaf to calculate the the number of data pages per
BF-leaf.

BFkeysperpage =−pagesize ·8 · ln2(2)
ln( f pp)

(5)



BFleaves =
notuples

avgcard ·BFkeysperpage
(6)

BFh = dlog f anout(BFleaves)e+1 (7)

BF pageslea f =
BFkeysperpage ·avgcard · tuplesize

pagesize
(8)

Next, Equations 9 and 10 estimate the sizes of the trees.

BPsize = pagesize · (BPleaves+
BPleaves

f anout
) (9)

BFsize = pagesize · (BFleaves+
BFleaves

f anout
) (10)

Equation 11 calculates the average number of pages to be re-
trieved after a probe with a match (mP). Equation 12 calculates the
cost of probing a B+-Tree and reading the tuple from its original
location. Note that for small avgcard the matching pages are equal
to 1. If there is no match, mP is equal to 0.

mP = davgcard · tuplsize
pagesize

e (11)

BPcost = BPh · idxIO+mP ·dataIO (12)

Finally, Equation 13 calculates the cost of searching with the
enhanced BF-Tree. In this equation we need to reintroduce the term
mP, which is the number of matching pages when there a positive
search on the index. We calculate the cost of a false positive as
the cost to retrieve sequentially the false positively attributes pages
since all these pages are calculated in search time and will be given
to the disk controller as a list of sorted disk accesses.

BFcost =BFh · idxIO+mP ·dataIO+

+ f pp ·BF pageslea f · seqDtIO⇒
BFcost =BFh · idxIO+mP ·dataIO+

+
8 ·avgcard · ln2(2) · f pp · seqDtIO

tuplesize · ln( f pp)
(13)

Figure 4 presents key comparisons between BF-Tree, B+-Tree,
compressed B+-Tree and two representative approaches for index-
ing over flash memory: FD-Tree [26] and SILT [27]. We assume
4KB pages of 256 bytes long tuples with the indexed attribute of
size 32 bytes and pointers of size 8 bytes. The relation in this
case has 1GB size, the index is stored on SSD and the main data
on HDD. The I/O cost is depicted by using the appropriate values
of idxIO, dataIO, and seqDtIO. In particular we use idxIO = 1,
dataIO = 50, and seqDtIO = 5, modeling an SSD which has ran-
dom accesses fifty times faster than random accesses on HDD and
five times faster than sequential accesses on HDD. For the com-
pressed B+-Tree we calculate the size assuming that key-prefix
compression [6, 20] is used, and for FD-Tree and SILT we use
the modeling tools provided in their respective analyses [26, 27] to
estimate size and performance for point queries.

On the x axes of Figures 4(a), (b) we vary the desired false pos-
itive probability, hence every line other than the one BF-Tree is
a straight line in order to show where are - if any - the crossover
points between BF-Tree and the other approaches. Figure 4(a)
plots the response time of BF-Tree, SILT, and FD-Tree normal-
ized with B+-Tree. We see that BF-Tree can offer better search

Figure 4: Analytical comparison of BF-Tree vs. B+-Tree.

time for f pp ≤ 0.001. Moreover, SILT can be 5% faster than B+-
Tree if the search cost of the trie is negligible (i.e., the trie is en-
tirely cached). If the trie has to be loaded the response time is
32% higher, while on average the response time will be between
the two values. SILT, however, is designed only for point queries
for key-value stores and it does not support other access patterns
(e.g., range scans) and systems (traditional DBMS). FD-Tree has
very similar performance with the BF-Tree if the optimal value for
k is chosen. Figure 4(b) shows the index size of the BF-Tree, the
compressed B+-Tree, SILT, and FD-Tree, normalized with the size
of B+-Tree. FD-Tree has the same size as vanilla B+-Tree, while
SILT has significant capacity savings, being 28% as large as the
B+-Tree. The compressed B+-Tree has size about 10% of the B+-
Tree, while BF-Tree, has the same size as the compressed B+-Tree
for f pp = 10−8. Hence, for the described workload if we main-
tain the f pp ∈ [10−8,10−3], BF-Tree offers the smallest size and
performance within 5% of the fastest configuration.

6. EXPERIMENTAL EVALUATION
We implement a prototype BF-Tree and we compare against a

traditional B+-Tree and an in-memory hash index. The BF-Trees
are parametrized according to the false positive probability for each
BF, which affects the number of leaf nodes needed for indexing
an entire relation and, consequently, the height of the tree. The
BF-Tree can be built and maintained entirely in main memory or
on secondary storage. The size of a BF-Tree is typically one or
more orders of magnitude smaller than the size of a B+-Tree, so
we examine cases where the BF-Tree is entirely in main memory
and cases where the tree is read from secondary storage. We use
stand-alone prototype implementations for both B+-Trees and hash
indexes. The code-base of the B+-Tree with minor modifications
serves as the part of the BF-Tree above the leaves. BF-Trees can
be implemented in every DBMS with minimal overhead since they
require to add support for BF-leaves, and build their methods as
extensions of the typical B+-Tree methods.

6.1 Experimental Methodology
In our experiments we use a server running Red-Hat Linux with

2.6.32 64-bit kernel. The server is equipped with 2 6-Core 2.67GHz
Intel Xeon CPU X5650 and 48GB of main memory. Secondary
storage for the data and indexes is either a Seagate 10KRPM HDD
- offering 106MB/s maximum sequential throughput for 4KB pages
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Figure 5: BF-Tree and B+-Tree performance for the PK index for five storage configurations for storing the index and the main data.

- or a OCZ Deneva 2C Series SATA 3.0 SSD - with advertised per-
formance 550MB/s (offering as much as 80kIO/s of random reads).
Data on secondary storage (either HDD or SSD) are accessed with
the flags O DIRECT and O SYNC enabled, hence without using
the file system cache.

We experiment with a synthetic workload comprised of a single
relation R and with TPCH data. For the synthetic workload, the size
of each tuple is 256 bytes, the primary (PK) key is 8 bytes and the
second attribute we index (ATT1) has size 8 bytes as well, having,
however, each value repeated 11 times on average. Both attributes
are ordered because they are correlated with the creation time. For
the TPCH data, we use the three date columns of the lineitem table
with scale factor 1. The tuple size is 200 bytes and the indexed
attribute is shipdate on which the tuples are ordered. Each date of
the shipdate is repeated 2400 times on average. Every experiment
is the average of a thousand index searches with a random key. The
same set of search keys is used in each different configuration. In
the experiment we vary the (i) the false positive probability ( f pp)
to understand how the BF-Tree is affected by different values and
(ii) the indexed attribute in order to show how BF-Tree indexing
behaves for a PK and for a sorted attribute. The BFs are created
using 3 hash functions, typically enough to have hashing close to
ideal. Throughout the experiments the page size is fixed to 4KB.
Hence, in order to vary the f pp, the maximum number of keys per
BF-leaf is limited accordingly using Equation 1.

When the B+-Tree or the hash index is used during an index
probe, the corresponding page is read and, consequently, the tuple
in question is retrieved using the tuple id. For the BF-Tree probes,
the index is used as described in Section 4.2.

6.2 BF-Tree for primary key
We first experiment with indexing the primary key (PK) of R

having size 1GB. Each index key exists only once and the data
pages are ordered based on it. All index probes in the experiment
match a tuple, hence every probe retrieves data from the main file.

Build Time and size. The build time of the BF-Tree is one order
of magnitude smaller than the build time of the corresponding B+-
Tree following roughly the difference in size between the two trees
shown in Table 2. The bulk creation of the BF-Tree first creates the
leaves of the tree in an efficient sequential manner and then builds
on top the remainder of the tree (which is 2-3 orders of magnitude
smaller) to navigate towards the desired leaf. The principal goal of
the BF-Tree, however, is to minimize the required space. Varying
the f pp from 0.2 to 10−15 the size of a BF-Tree is 48x to 2.25x
time smaller than the corresponding B+-Tree. Both grow linearly
with the number of data pages indexed in terms of the total num-

ber of nodes. The capacity gain as a percentage of the size of the
corresponding B+-Tree remains the same for any file size.

Response time. Figure 5(a) shows on the y-axis the average re-
sponse time for probing the BF-Tree index of a 1GB relation using
the PK index. Every probe reads a page from the main file and
returns the corresponding tuple. On the x-axis we vary the f pp
from 0.2 to 10−15. As the f pp decreases (from the left-to-right on
the graph) the BF-Tree is getting larger but it offers more accurate
indexing. The five lines correspond to different storage configura-
tions. The lines with the solid color represent experiments where
data are stored on the HDD and the index either in memory (black),
on the SSD (red) or on the HDD (blue). The dotted lines show the
experiments where data are stored on SSD and the index either in
memory (black) or on SSD (red). In order to compare the perfor-
mance of BF-Tree with that of a B+-Tree and a hash index we show
in Figure 5(b) the response time of a B+-Tree using the same stor-
age configurations and the hash index when index resides in mem-
ory. Note that in this experiment the B+-Tree and every BF-Tree
has height equal to 3.

Table 2: B+-Tree & BF-Tree size (pages) for 1GB relation
Variation f pp Size for PK Size for ATT1
B+-Tree 19296 1748
BF-Tree 0.2 406 38
BF-Tree 0.1 578 54
BF-Tree 1.5 ·10−7 3928 358
BF-Tree 10−15 8565 786

Table 3: False reads/search for the experiments with 1GB data
f pp False reads for PK False reads for ATT1
0.2 13.58 701.15
0.1 1.23 80.93

1.9∗10−2 0.11 4.75
1.8∗10−3 0 0.36

1.72∗10−4 0.01 0.04

Data on SSD. When the index resides in memory and data reside
on SSD BF-Tree manages to match the B+-Tree performance for
f pp ≤ 1.8 · 10−3, leading to capacity gain 12x. This is connected
with the number of falsely read pages per search (see Table 3),
which are virtually zero for f pp≤ 1.8 ·10−3. We observe, as well,
a very slow degradation of performance as f pp is getting close
to 10−15, which is attributed the larger index size (see Table 2);
for every positive search we have to read more leaves. We com-
pare the in-memory search time with a hash index which performs
similarly to the memory-resident B+-Tree and hence the optimal



Figure 6: The break-even points when indexing PK

BF-Tree. When index is on SSD as well, increased f pp can be
tolerated leading to capacity gain 33x with a low performance gain
(1.08x), while we can still observe significant capacity gain (12x)
with 1.77x lower response time, for f pp = 0.002. In the latter case
we observe that a higher number of falsely read pages is tolerated
because their I/O cost is faster amortized by of the I/O cost to re-
trieve the index.

Data on HDD. If the index is stored in memory and data on HDD,
the PK BF-Tree can still provide significant capacity gains. The
BF-Tree matches the B+-Tree for f pp≤ 1.56 ·10−6, offering sim-
ilar indexing performance while requiring 6x less space, but it is
already competitive for f pp = 0.02 providing capacity gain 19x.
The in-memory hash index search shows similar performance to
the memory-resident B+-Tree and hence the optimal BF-Tree. If
the index is stored on SSD, the BF-Tree outperforms B+-Tree for
f pp ≤ 10−3 offering 12x smaller index size. Finally, if the index
is stored on HDD as well then the height of trees dominate perfor-
mance. Having to read from disk the pages of the two trees (starting
from the root) leads to a BF-Tree which can outperform the corre-
sponding B+-Tree even for f pp = 0.1 (leading to more than 33x
smaller indexing tree). This case however is not likely to be re-
alistic because the nodes of the higher levels of a B+-Tree reside
always in memory.

Break-even points. A common observation for all storage config-
urations is that there is a break-even point in the size of a BF-Tree
for which it performs as fast as a B+-Tree. Figure 6 shows on
the y-axis the normalized performance of BF-Trees compared with
B+-Trees. The x-axis shows the capacity gain: the ratio between
the size of the B+-Tree and the size of the BF-Tree for a given
f pp. For normalized performance higher than 1, the BF-Tree out-
performs the B+-Tree (it has lower response time), for lower than
1 the other way around, and for values equal to 1, the BF-Tree has
the same response time as the B+-Tree. The cross-sections between
the line with normalized performance equal to 1 and the five lines
for the various storage configuration give us the break-even points.
As the I/O cost increases (going from memory to SSD or from SSD
to HDD) the break-even point shifts towards larger capacity gains,
since less accuracy can be tolerated as long as it requires more CPU
time (for example probing more BFs, or scanning more tuples in
memory) instead of more random reads on the storage medium.

Warm caches. In order to see the efficacy of BF-Trees with warm
caches, in Figure 7 we summarize the response time of B+-Trees
and the best response time of the fastest BF-Tree for the available
storage configurations. Figure 7 has only three sets of bars because,
trivially, the first two sets of bars correspond to the data presented
in Figures 5(a) and (b). In the experiments with warm caches, only
accessing the leaf node would cause an I/O operation, hence, the
height of the tree is not a crucial factor for the response time any

Figure 7: BF-Tree and B+-Tree with warm caches

more. Moreover, since, typically, the B+-Tree is higher, its perfor-
mance improvement with warm caches is higher compared to the
BF-Tree performance improvement. Comparing the first set of bars
of Figure 7 with the third bar of Figure 5(b) and the third line of
Figure 5(a) – both corresponding to the storage configuration when
both index and data reside on SSD – we observe that having warm
caches results in 2x improvement for B+-Tree and only 25% im-
provement for BF-Tree, however, still leading to a 10% faster BF-
Tree. For the SSD/HDD configuration the improvement is small
for both indexes because the bottleneck is now the cost to retrieve
the main data. Last but not least, when both index and data reside
on HDD, the cost of traversing the index is significantly reduced by
almost 2x for B+-Tree and about 33% for BF-Tree, resulting in a
17% faster BF-Tree.

By having warm caches, the fundamental difference is that the
height of three plays a smaller part in the response time. Nev-
ertheless, the response time of BF-Tree is lower than the one of
B+-Tree in every storage configuration because of the lightweight
indexing. The gain in response time depends on the behavior of
the storage for the index and for the data. When index and data are
stored on the same medium (i.e., both on SSD, or both on HDD)
there is small room for improvement, however, when data reside in
a slower medium than index, having a lightweight index makes a
larger difference.

6.3 BF-Tree for non-unique attributes
In the next experiment we index a different attribute which does

not have unique values. In particular, in the synthetic relation R the
attribute ATT1 is a timestamp attribute. In this experiment 14% of
the index probes, on average, have a match.

Build time and Size. The build time of a BF-Tree is one order
of magnitude or more lower than the one of a B+-Tree. This is
attributed to the difference in size which for attribute ATT1 varies
between 46x and 2.22x, for f pp from 0.2 to 10−15, offering similar
gains with the PK index.

Response time. Figure 8(a) shows on the y-axis the average re-
sponse time for probing the BF-Tree using the index on ATT1, as
a function of the f pp. For the B+-Tree every probe with a posi-
tive match will read all the consecutive tuples that have the same
value as the search key. When the BF-Tree is used for the positive
matches (regardless whether they are false positives or actual posi-
tive matches) the corresponding page is fetched and every tuple of
that page has to be read and checked whether it matches the search
key (as long as the key of the current tuple is smaller than the search
key). The f pp varies from 0.2 to 10−15. Similarly to the previous
experiment, the five lines correspond to different storage configu-
rations. As in Section 6.2, the lines with the solid color represent
experiments where data are stored on the HDD and the index either
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Figure 8: BF-Tree and B+-Tree performance for ATT1 index for five storage configurations for storing the index and the main data.

in memory (black), on the SSD (red) or on the HDD (blue). The
dotted lines show the experiments where data are stored on SSD
and the index either in memory (black) or on SSD (red). We com-
pare the performance of BF-Tree with that of a B+-Tree and a hash
index (Figure 8(b)) using the same storage configurations (the hash
index always reside in memory). For this experiment the B+-Tree
has 3 levels while, the BF-Trees have 2 levels for f pp> 1.41 ·10−8

and 3 levels for f pp ≤ 1.41 · 10−8 Because of the difference in
height amongst the BF-Trees we observe a new trend. For all con-
figurations that the index probe is a big part of the overall response
time (i.e., the SSD/SSD and the HDD/HDD) we observe a clear
increase in response time when the height of the tree is increased
(Figure 8(a)). In other configurations this is not the case because
the index I/O cost is amortized by the data I/O cost. This behavior
exemplifies the trade-off between f pp and performance regarding
the height of the tree and is later depicted in Figure 9 when the best
case for BF-Tree gives 2.8x performance gain for HDD and 1.7x
performance gain for SSD while the capacity gain is 5x-7x.

Data on SSD. When the data reside on the SSD and the f pp is
high (0.3 to 10−3) there is very small difference between storing
the index on SSD or in memory. The reason behind that is that
the overhead of reading and discarding false positively retrieved
pages dominates the response time. Thus, in order to match the
response time of the B+-Tree when index is on SSD the f pp has to
be 2 ·10−3, giving capacity gain 12x, while the in memory BF-Tree
never matches the in-memory B+-Tree nor the hash index.

Data on HDD. The increased number of false positives per index
probe (Table 3) has increased impact when data are stored on HDD.
Every false positively retrieved page incurs an additional randomly
located disk I/O. As a result, in order to see any performance ben-
efits the false positively read pages have to be minimal. When the
index resides in memory, the BF-Tree outperforms the B+-Tree and
the hash index for f pp≤ 2 ·10−6. The break-even point when the
index resides on the SSD is shifted for higher f pp (2 · 10−3) be-
cause a small number of unnecessary page reads can be tolerated
as they are being amortized by the cost of accessing the index pages
on the SSD. This phenomenon has bigger impact when the index
is stored on the HDD. The break-even point is now further shifted
and for capacity gain 12x there is already a performance gain of 2x.

Break-even points. Similarly to the PK index, the ATT1 BF-Tree
indexes have break-even points, shown in Figure 9. Qualitatively,
the behavior of the BF-Tree for the five different storage configu-
rations is similar but the break-even points are now shifted towards
smaller capacity gains. The reason being mainly the increased
number of false positively read pages. In order for the BF-Tree

Figure 9: The break-even points when indexing ATT1

to be competitive it needs to minimize the false positives. On the
other hand, the impact of increasing the false positive (and thus,
reducing the tree height) is shown by the sudden increase in per-
formance gain particularly for the HDD/HDD (blue line) and the
SSD/SSD (dotted red line).

Benefits for HDD. Our experimentation shows that using BF-Trees
when data reside on HDD can lead to higher capacity gains before
performance starts decreasing. The symmetric way to see this, is
that with the same capacity requirements using BF-Trees on top
of HDD gives higher performance gains (in terms of normalized
performance). This is largely a result of the enhancement algorithm
of BF-Trees which minimizes the occurrence of random reads, the
main weak point of HDD.

Warm caches. Similarly to the PK experiments, we repeat the
ATT1 experiments and we present the results with warm caches in
Figure 10. As in the PK index case, the improvement for the B+-
Tree is higher than the improvement for BF-Tree. In addition, for
the storage configuration that both index and data reside on SSD,
B+-Tree is, in fact, faster than BF-Tree by 30% because the over-
head of the false positives overthrow the marginal benefits of the
lightweight indexing. For the other two configurations, however,
BF-Tree is faster (2.5x for SSD/HDD and 1.5x for HDD/HDD) be-
cause any additional work is hidden by the cost of retrieving the
main data, now residing on HDD.

6.4 BF-Tree for TPCH
Figure 11 shows the response time of the optimal BF-Tree nor-

malized with the response time of the B+-Tree for the TPCH ta-
ble lineitem for index probes on the shipdate attribute (on which
it is partitioned). Similarly to the five configurations previously
described, Figure 11 has five lines. The y-axis shows normalized
response time in a logarithmic scale. BF-Tree performance for dif-
ferent f pp has very low variation, because of the fact that the high



Figure 10: BF-Tree and B+-Tree for ATT1 with warm caches

Figure 11: BF-Tree for point queries on TPCH varying hit rate

cardinality of each date results in short trees. We observe, how-
ever, large differences in the behavior of BF-Trees vs. the one of
B+-Trees for different hit rates. When all index probes end up re-
questing data that do not exist (hit rate 0%), BF-Tree is 20x faster
than B+-Tree when the index is in memory. When the index is
stored on SSD, BF-in secondary storage a similar behavior is ob-
served. This effect is pronounced for HDD where each additional
level of the tree is adding a high overhead. As we increase the hit
rate to 5% BF-Tree is still faster but the benefit is much smaller
(13% - 40%) because the time to retrieve data starts dominating
the response time. For hit rate 10% or more B+-Tree in general
has faster response time than BF-Tree. If both data and index are
stored in the same medium (i.e., both on SSD or both on HDD) the
performance penalty is smaller. Hence, for hit rate 10%, using the
configuration SSD/SSD the best BF-Tree is 20% slower than the
B+-Tree and using the configuration SSD/SSD the best BF-Tree
is 10% faster than the B+-Tree (instead of 1.6 to 3x slower which
is the case for the other three configurations). The explanation is
that for these two configurations the cost of traversing the B+-Tree
dominates the overall response time and BF-Tree is competitive be-
cause of its shorter height. In the above experiments the BF-Trees
were 1.6x-4x smaller than the B+-Trees.

6.5 BF-Tree and FD-Tree for SHD
Figures 12(a) and (b) show the response time of the optimal

BF-Tree compared with B+-Tree and FD-Tree when indexing and
probing data from the smart home dataset. In these experiments
the index is built on the timestamp of the SHD, which has average
cardinality 52 keys for every timestamp (cardinality varies from 21
to 8295, with 99.7% of the timestamps having cardinality less or
equal to 126). The SHD dataset, which serves as motivation for
the synthetic datasets as well, presents the additional challenge of
having variable cardinality. The executed workload consists of in-
dex probes on randomly generated timestamps with 100% hit rate,
which is the hardest case for BF-Trees as discussed in the case for
the TPCH data in Section 6.4. Figure 12(a) shows the average re-

(a) Cold caches (b) Warm caches (also FD-Tree)

Figure 12: BF-Tree and B+-Tree for smart house workload.

sponse time of the optimal BF-Tree and B+-Tree with cold caches
for the five storage configurations, along with the corresponding
capacity gain. We observe that BF-Tree matches the performance
of B+-Tree offering capacity gain between 2x and 3x following the
trend that when index and data are stored on storage devices with
similar capabilities BF-Tree has better response time and higher
capacity gain than the B+-Tree. Figure 12(b) shows the average
response time of the optimal BF-Tree, B+-Tree and FD-Tree with
warm caches for the three storage configurations, along with the
corresponding capacity gain of BF-Tree vs. B+-Tree. Since we
are using the original FD-Tree code, we compare against both BF-
Tree and B+-Tree with warm caches (following the original code
approach). Further, we allow the FD-Tree to choose the optimal
parameters based on the prediction algorithm it uses and we make
sure that FD-Tree fetches the entire tuple for the index probe (sim-
ilarly to what an index probe with BF-Tree and B+-Tree does).
Corroborating the results from the analysis in Section 5, FD-Tree
has very similar performance than both BF-Tree and B+-Tree when
data resides on hard disk and is about 33% slower than BF-Tree and
50% slower than B+-Tree when both index and data reside on SSD.

6.6 Summary
In this section we compare BF-Trees with B+-Trees, hash in-

dexes and FD-Tree in order to understand whether BF-Trees can be
both space and performance competitive. We show that depending
on the indexed data and the storage configuration there is a BF-Tree
design that can be competitive with B+-Trees both in terms of size
and response time. Moreover, for the in-memory index configura-
tions, BF-Trees are competitive against hash indexes as well. The
number of false positively read pages has an impact in each and
every one of the five storage configurations. When data reside on
SSD the number of falsely read pages affect the performance only
when it dominates the response time. Random reads do not hurt
SSD performance, hence, the BF-Tree performance drops gradu-
ally with the number of false positives. When data are stored on
HDD the performance gains are high for no false positives but drop
drastically as soon as unnecessary reads are introduced. Finally,
corroborating the analysis FD-Tree offers very similar performance
with BF-Tree when data reside HDD and is slightly slower when
data reside on SSD.

7. BF-TREE AS A GENERAL INDEX
BF-Tree vs. interpolation search. The datasets used to experi-
mentally evaluate BF-Tree are either ordered or partitioned. For the
case that data are ordered a good alternative candidate would be to
use binary search or interpolation search [36]. Interpolation search
can be very effective for canonical datasets achieving log(log(N))
search time, in the specific case that the values are sorted and evenly
distributed.6 B+-Trees performance serves as a more general up-
per bound since binary search average response time is log2(N) and
B+-Trees average response time is logk(N), where N is the size of

6A more widely applicable version of interpolation search has also
been discussed [19].



Figure 13: IOs for range scans using BF-Trees vs. B+-Trees.
the dataset and the k is the number of <key, pointer> pairs a B+-
Tree page can hold. In addition, B+-Trees serve as a baseline for
comparing the size of an index structure used to enhance search
performance. BF-Trees can be used as a general index which is
further discussed in this section. Data do not need to be entirely
ordered (being partitioned is enough), hence, BF-Tree is a more
general access method than interpolation search.

Range scans. In addition to the evaluation with point queries here
we discuss how BF-Tree support range scans, showing that they
have competitive performance for range scans. The BF-leaf corre-
sponds to one partition of the main data. When a range scan span-
ning multiple BF-Tree partitions is evaluated, the partitions are ei-
ther entirely part of the range, being middle partitions, or part of the
boundaries of the range, being boundary partitions. The boundary
partitions, typically, are not part of the range in their entirety. In
this case, the range scan shows a read overhead. An optimization
is to enumerate the values corresponding to the boundary partitions
and probe the BFs in order to read only the useful pages. Note that
within the partition the pages do not need to be ordered on the key.
Such an optimization, however, is not practical when the values
have a theoretically indefinite domain, or even a domain with very
high cardinality. Figure 13 shows the number of I/O operations on
the main data when executing a range scan using a BF-Tree, nor-
malized with the number of I/O operations needed when a B+-Tree
is used. In the x-axis the f pp is varied from 0.3 to 10−12. The four
lines correspond to different ranges, varying from 1% to 20%. We
use the synthetic dataset described in Section 6, and the indexed
attribute is the primary key. A key observation is that as the f pp
decreases the partitions hold less values, hence, the overhead of
reading the boundary partitions decreases. Hence, we observe that
for f pp≤ 10−4 for ranges larger than 5% there is negligible over-
head. In the case of 1% range scan with f pp≤ 10−6, the overhead
is less than 20%, and for f pp ≤ 10−12 the overhead is negligible
for every size of the range scan.

Impact of inserts and deletes. Both inserts and deletes affect the
f pp of a BF. In particular, if every BF is allowed to store additional
entries for the values falling into their range the f pp is going to
gradually increase. If we assume M bits for the BF, and a given
initial f pp, then using Equation 1, we calculate that such a BF
indexes up to N = −M · ln2(2)/ln( f pp) elements. If we allow to
index more elements, i.e., increase N, the effective f pp will in turn
increase following a near linear trend for small changes of N (note
that the new N is the number of indexed elements after a number
of inserts, hence new N = N + inserts):

new f pp = e
−M·ln2(2)

new N , using Equation 1 we have,

new f pp = e
N

new N ln( f pp) = f pp
N

new N = f pp
N

N+inserts ⇒

new f pp = f pp
1

1+ inserts
N = f pp

1
1+insert ratio (14)

(a) Inserting up to 12% more keys (b) Inserting up to 10x more keys

Figure 14: f pp in the presence of inserts.
The new f pp depends on the number of inserts. Equation 14

does not depend on the BF size, nor on the number of elements. It
depends on the initial f pp and on the relative increase of indexed
elements (insert ratio = inserts

N ).
The behavior of a BF in the presence of inserts is depicted in

Figures 14(a) and (b). The x-axis is the insert ratio, i.e., the number
of inserts as a percentage of the initially indexed elements and the
y-axis is the resulting f pp. There are three lines corresponding to
initial f pp equal to 0.01% (black line), 0.1% (red dotted line), and
1% (blue dashed line) respectively. In the x-axis of Figure 14(a)
the insert ratio varies between 0% and 12%. The new f pp for ev-
ery initial f pp increases linearly for this range of insert ratio. For
higher insert ratio, new f pp eventually converges to 100%. We
observe that all three lines have a liner trend, and more impor-
tantly, the line corresponding to 0.01% has a small increase even
for 12% increase of the indexed elements. For example, starting
from f pp = 0.01%, for 1% more elements, new f pp ≈ 0.011%,
and for 10% more elements, new f pp ≈ 0.23%. In Figure 14(b)
the x-axis varies between 0% and 600% and we observe how the
f pp is affected in the long run. Figures 14(a) and (b) show that
BF-Tree can sustain a number insert without any updates as long as
they represent a fraction of up to 15%, while when more inserts or
updates are applied the index should be accordingly updated.

Similarly, for deletes the f pp increases because we artificially
introduce more false positives. In fact, the number of deletes af-
fects directly the f pp. If we remove 10% of the entries, new f pp=
f pp+ 10%. The above analysis assumes no space overhead. On
the other hand, we can maintain the desired f pp by splitting the
nodes when the maximum tolerable f pp is reached. That way in-
serts will not affect querying accuracy (as described in Section 4).
We can maintain a list of deleted keys in order to avoid increasing
the f pp, which are used to recalculate the BF from the beginning
when such a list has reached the maximum size. A different ap-
proach is to exploit variations of BFs that support deletes [7, 39]
after considering their space and performance characteristics.

8. OPTIMIZATIONS
Exploiting available parallelism. With the current approach the
BFs of a leaf node are probed sequentially. A BF-leaf may index
several hundreds data pages leading to an equal number of BFs to
probe. These probes can be parallelized if there are enough CPU
resources available. In the conducted experiments we do not see a
bottleneck in BF probing, however, for different applications, BF-
Trees may exhibit such a behavior.

Complex index operations with BF-Trees. In this paper, we cover
how the index building and the index probing are performed and we
briefly discuss how updates and deletes are handled. Traditional
indexes, however, offer additional functionality. BF-Trees support
index scans similarly to a range scan. Since data are partitioned,
with one index probe we find the starting point of the scan, and
then a sequential scan is performed. Index intersections are also
possible. In fact, the false positive probability for any key after the
intersection of two indexes will be the product of the probability
for each index, and hence, typically much smaller than both.



9. RELATED WORK
Specialized optimizations for tree indexing. SB-Tree [34] is de-
signed to support high-performance sequential disk access for long
range retrievals. It assumes an array of disks from which it retrieves
data or intermediate nodes should they not be in memory, by em-
ploying multi-page reads during sequential access to any node level
below the root. SB-Tree and B+-Tree have similar capacity re-
quirements. On the contrary, BF-Tree aims at indexing partitioned
data, at decreasing the size of the index, and at taking advantage
of the characteristics of SSD. Litwin and Lomet [28] introduce a
generic framework for index methods called the bounded disorder
access method. The method, similarly to BF-Trees, aims at increas-
ing the ratio of file size to index size (i.e., to decrease the size of
the index) by using hashing for distributing the keys in a multi-
bucket node. The bounded disorder access method does not de-
crease the index size aggressively for good reason, since by doing
that it would cause more random accesses on the storage medium
which is assumed to be traditional hard disks. On the contrary,
BF-Trees, propose aggressive reduction of the index size by utiliz-
ing a probabilistic membership-testing data structure as a form of
compression. The performance of such an approach is competitive
because the SSD can sustain several concurrent read requests with
zero or small penalty [4, 38] and the penalty of (randomly) reading
pages due to a false positive is lower on SSD compared with HDD.

Indexing for data warehousing. Efficiently indexing of ordered
data having small space requirements is recognized as a desired
feature by commercial systems. Typically data warehousing sys-
tems use some form of sparse indexes to fulfil this requirement.
The Netezza data warehousing appliance uses ZoneMap accelera-
tion [17], a lightweight method to maintain a coarse-index, to avoid
scanning rows that are irrelevant to the analytic workload, by ex-
ploiting the natural ordering of rows in a data warehouse. Netezza’s
ZoneMap indexing structure is based on the Small Materialized
Aggregates (SMA) earlier proposed by Moerkotte [30]. SMA is a
generalized version of a Projection Index [35]. A Projection Index
is an auxiliary data structure containing an entire column - similar
to how column-store systems (e.g., MonetDB, Vertica) today phys-
ically store data. Instead of saving the entire column, SMA store an
aggregate per group of contiguous rows or pages, thus, enhancing
queries calculating aggregates than can be inferred by the stored
aggregate. In addition to primary indexes or indexes on the order
attribute, secondary, hardware-conscious data warehouse indexes
have been designed to limit access to slow IO devices [40].

10. CONCLUSIONS
In this paper, we make a case for approximate tree indexing as

a viable competitor of traditional tree indexing. We propose the
Bloom filter tree (BF-Tree) which is able to index a relation with
sorted or partitioned attributes. BF-Trees parametrize the accuracy
of the indexing as a function of the size of the tree. Thus, B+-Trees
are the extreme where accuracy and size are maximum. BF-Trees
allow to decrease the accuracy and, hence, the size of the index
structure by introducing (i) a small number of unnecessary reads
and (ii) extra work to locate the desired tuple in a data page. We
show, however, through both an analytical model and experimenta-
tion with a prototype implementation, that the introduced overhead
can be amortized, hidden, or even superseded by reducing the I/O
accesses when a desired tuple is retrieved. Secondary storage is
moving from HDD - with slow random accesses and cheap capacity
- to the diametrically opposite SSD. BF-Trees achieve competitive
performance and minimize index size for SSD, and even when data
reside on HDD, BF-Trees index it efficiently as well.
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