
Pattern-Based FPGA Logic Block and Clustering
Algorithm

Xifan Tang, Pierre-Emmanuel Gaillardon and Giovanni De Micheli
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Email: xifan.tang@epfl.ch

Abstract—In classical FPGA, LUTs and DFFs are pre-packed
into BLEs and then BLEs are grouped into logic blocks. We
propose a novel logic block architecture with fast combinational
paths between LUTs, called pattern-based logic blocks. A new
clustering algorithm is developed to release the potential of
pattern-based logic blocks. Experimental results show that the
novel architecture and the associated clustering algorithm lead
to a 14% performance gain and a 8% wirelength reduction with
a 3% area overhead compared to conventional architecture in
large control-instensive benchmarks.

I. INTRODUCTION
Field Programmable Gate Arrays (FPGAs) use cluster-

based logic blocks that consist of a number of Basic Logic
Elements (BLEs) [1]. Inside the logic blocks, BLEs are fully
connected by the local routing multiplexers. To increase the
efficiency of logic blocks, previous works [2]–[4] focused
on improving the local routing multiplexers. However, very
limited works investigate the efficiency of the BLEs.

A Basic Logic Element (BLE) consists of a Look-Up Table
(LUT), a D Flip-Flop (DFF), and a 2:1 multiplexer. It can work
in either combinational or sequential mode. FPGA clustering
algorithms group LUTs and DFFs into BLEs (pre-packing
step) and then cluster BLEs into logic blocks (packing step)
[1]. A BLE has only one fanout, which forces combinational
output of LUTs to pass through the 2:1 multiplexer before
reaching the local routing. This imposes strong limitations on
the clustering algorithm during the pre-packing. In circuits
with short critical paths, e.g., control-intensive circuits, the
BLE architecture prolongs the critical path and reduces the
performances significantly.

In this paper, we propose (i) a novel scalable logic block
organization called pattern-based logic block. Investigating
the different interconnection patterns that may exist between
LUTs, we create groups of LUTs with fast combinational
shortcuts. To fully unlock the performances of the new logic
block structure, we introduce (ii) a pattern-based clustering al-
gorithm, able to efficiently take advantage of the fast combina-
tional paths. The combination of pattern-based logic block and
clustering algorithm contribute to a 16% performance gain and
a 8% wirelength reduction with a 3% area overhead compared
to a conventional FPGA architecture at 40-nm technology node
for a set of large control-intensive benchmarks.

The rest of the paper is organized as follows. Section II
reviews the background of this work including conventional
FPGA logic block architecture and associated clustering al-
gorithms. Section III introduces the pattern-based logic block
design, while Section IV describes the ad-hoc pattern-based
clustering algorithm. Section V presents the experimental
results and compares the approach to conventional architecture.
Section VI concludes the paper.

II. BACKGROUND
A. Classical Cluster-Based Logic Block

Modern FPGAs use an island-style architecture, where
logic blocks are surrounded by pre-fabricated routing re-
sources. The logic block themselves consist of Basic Logic

Elements (BLEs) and a fully interconnected local routing [1].
Fig. 1 illustrates the architecture of a classical cluster-based
logic block. A cluster-based logic block consists of a number
N of BLEs. Each BLE contains a k-input LUT, a DFF and
a 2:1 multiplexer. A BLE realizes fine-grain combinational or
sequential operations. Its mode of operation (combinational or
sequential) is controlled by the 2:1 multiplexer. Local routing,
consisting of a large set of multiplexers, can route any output
of BLEs to their inputs, enhancing the inner logic block
routability. The logic block features I inputs that come from
the global routing. Given k and N, setting I = k(N+1)

2 ensures
that 98% BLEs are utilized on average [5]. To efficiently
pack LUTs and DFFs into cluster-based logic block, clustering
algorithms are of fundamental importance.

K LUT DFF

BLE1

LUT DFF

BLE2

...

LUT DFF

BLE[N]

Local
Routing

OPIN

OPIN

OPIN

IPIN

IPIN

IPIN

IPIN

Logic Block

Fig. 1. Classical Cluster-based Logic Block Architecture

B. Clustering Algorithm
Modern FPGA clustering algorithms can be grouped into

two categories: seed-based and partition-based. Seed-based
clustering algorithms [6]–[9] select a seed BLE with the
highest criticality, pack it into a logic block and continue to
absorb BLEs until the logic block cannot accommodate any
more. Partition-based clustering algorithms [10] [11] depend
on a graph partitioner [12] to cut the circuits into small parts
and then modify the results to fit CLB capacity. AA-Pack [13]
adapts optimizing techniques of seed-based packers [6]–[9] to
pack heterogeneous logic blocks and supports flexible local
routing architectures. AA-Pack brings novel opportunities to
study the inner logic block routing. We use similar techniques
in this paper, therefore we focus on introducing AA-Pack. AA-
Pack [13] groups LUTs and DFFs into logic blocks in two
steps. In the first step, called pre-pack, LUTs and DFFs are
packed into BLEs, as shown in Fig. 2. Note that in Fig. 2(b),
an additional BLE has to be created due to the limited fanout
of the BLE architecture [1]. After pre-pack, timing analysis

is carried out and timing slacks are marked for each BLE,
preparing for timing-driven clustering. In the second step, AA-
Pack pack BLEs into logic blocks. It starts by initializing an
empty logic block, then chooses a seed and uses an attraction
function to select the candidate block to fill in. When two
candidates blocks have the same attraction, AA-Pack selects
the one with largest number of critical/near critical paths,
called PathAffects [1], passing through. If the two candidates
have the same PathAffects, AA-Pack selects the one with
largest depth from critical path source, called Dsource [1]. In
AA-Pack, each time the most “attractive” candidate is chosen,
a local router is speculatively called to determine whether the
candidate can be accepted. When the logic block is full, AA-
Pack starts another iteration until all BLEs are packed.

LUT DFF

BLE

LUT DFF =>

(a)

LUT LUT
(BUF)

LUT

DFF

BLE 0 BLE 1

LUT DFF

LUT

=>

(b)

Before Pre-pack After Pre-pack

Fig. 2. Classical pre-pack

III. PATTERN-BASED FPGA LOGIC BLOCK
In this section, we introduce our novel pattern-based FPGA

logic block architecture. Patterns are defined as groups of
LUTs, among which there exist fast combinational intercon-
nections.

A. Combinational Interconnection Patterns
To improve the routing of combinational paths, we study

the different interconnection possibilities between LUTs. We
first formulate the following characteristics of LUTs:

C1) All the inputs of a LUT are logic equivalent, and thus
are swappable.

C2) LUTs (actually any combinational logic gate) cannot
have combinational loops, which means that the interconnec-
tions among LUTs are acyclic.

C3) Any two inputs of a LUT (actually any combinational
logic gate) cannot share the output of a same LUT, otherwise
these shared inputs can be reduced to one.

C4) Combining C2 with C3, there should be only one
combinational connection between two LUTs.

Thanks to the above characteristics, the number of com-
binational interconnection patterns between LUTs is limited.
We define X as the size of the pattern. It corresponds to the
number of LUTs involved in the pattern. Note that we limit
our study to k ≥ X − 1. In the following, we study the cases
of pattern-2 and pattern-3, then we generalize to pattern-X.

1) Pattern-2: Fig. 3 illustrates all possible interconnection
cases between two k-LUTs and demonstrates the pattern cov-
ering all possibilities. Given two k-LUTs (tagged 1 and 2),
only two cases can be identified for their interconnections.
First, a direct connection may exist between the output of
one LUT and one of the inputs of the second LUT. In Fig.
3(a), the output of LUT1 is connected to an input of LUT2.
From C4, there should be only one interconnection between
LUT1 and LUT2, and by applying C1, we can always keep the
output of LUT1 connected to the input in0 of LUT2. Note that
when using local routing in cluster-based logic block, LUT1
and LUT2 are swappable. Thus, Fig. 3(b) can be regarded as
equivalent to Fig. 3(a). Second, inputs of LUT1 and LUT2 can

1 2

1 2

(a)

(c)

1 2...

(d)

in0 in[1..k]

1 2
<=>

(b)

<=>

1 2

(e)

= k-LUT, k ≥ 1

in0

in[1..k]

in0

in[1..k]in0in[1..k]

in0 in[1..k-1] in0 in[1..k-1] in0 in[1..k]

in0

in[1..k-1]

in0 in[1..k-1]

in0

in[1..k-1]

Fig. 3. All possible combinational interconnections between
2 k-LUTs.
(a) and (b): 2 k-LUTs are directly connected.
(c): 2 k-LUTs are independent.
(d): 2 k-LUTs are indirectly connected.
(e): interconnection pattern covering (a)(b)(c)(d)

be fully independent as shown in Fig. 3(c). For instance, all the
LUT inputs are connected to different primary inputs, LUTs
or DFFs. Fig. 3(d) presents a possibility where the output of
LUT1 is connected to the input of LUT2 through other LUTs.
Fig. 3(c) and (d) can be regarded as equivalent because they are
all connected through the local routing. Therefore, when two
LUTs are considered, only two cases (Fig. 3(a) and (c)) should
be considered. Hence, we can create a universal structure able
to map these different configurations by adding one multiplexer
as shown in Fig. 3(e). This structure is called pattern-2, and
can realize all the interconnection patterns between 2 LUTs.

(a)

3

(b)

3

(e)

= k-LUT, k ≥2

1 2
in0

in[1..k]in0 in[1..k]

in0 in1

in[2..k] 3

in0 in1

in[2..k]

1 2
in0

in[1..k]in0 in[1..k]

(c)

3

in0 in1

in[2..k-1]

1 2
in0

in[1..k]in0 in[1..k]

1 2
in0

in[1..k]in0 in[1..k]

in0 in1

in[2..k-1]

(d)

3

in0 in1

in[2..k-1]

1 2
in0

in[1..k]in0 in[1..k]

x
in0

...
inx-2

LUTs Pattern-(X-1)

...

= k-LUT, k ≥X-1

(f)

in[x-1..k-1]

Fig. 4. All possible combinational interconnections between
3 k-LUTs.
(a) and (b): 3rd k-LUT is independent.
(c): one example of 3rd k-LUT connected to one of the other
LUTs.
(d): 3rd k-LUT is connected to all the other LUTs.
(e): interconnection pattern covering (a)(b)(c)(d).
(f): interconnection pattern of M LUTs

2) Pattern-3 to Pattern-M: Based on the pattern-2 organi-
zation, we can extend the structure to three k-LUTs (tagged
1, 2 and 3). First, Fig. 4(a) shows the case where the inputs
of LUT3 are fully independent from LUT1 and LUT2. Then,
we can repeat the same reasoning than previously for direct
connections between LUTs. Fig. 4(b)(c)(d) list all the possible
cases where the inputs of LUT3 are connected to the outputs
of LUT1 and LUT2. The cases where the output of LUT3 is
connected to the inputs of LUT1 and LUT2 are not listed but
can be regarded as equivalent to Fig. 4(b)(c)(d) by swapping
LUT3 with LUT1 or LUT2. Considering all the cases in Fig.
4(a)(b)(c)(d), pattern-3 is proposed in Fig. 4(e).

On a general basis, we can extend the pattern size from 3
to X. Since pattern-(X-1) covers all possible interconnections
among (X-1) LUTs, pattern-X can be achieved by considering
an additional LUT (tagged x). The number of inputs of LUTx
connected to pattern-(X-1) ranges from 0 to (X-1). Hence, (X-
1) 2:1 multiplexers can be added to each input of LUTx as
depicted in Fig. 4(f). In a pattern-X, the number of additional
2:1 multiplexers is X(X − 1)/2.

B. Pattern-Based Logic Block Design
To build a logic block based on a pattern-X, the extra 2:1

multiplexers of the patterns can be included either (i) in an
independent layer between local routing and BLEs, providing
ultra-fast shortcuts at the cost of larger delays from logic
block inputs to LUTs; or (ii) merged into the local routing.
In this paper, we study the second case for simplicity. The
BLE architecture remains unchanged and we simply feedback
the outputs of LUTs to the local routing. Modern FPGA
architectures typically use 6-input LUTs in their logic blocks.
We therefore employ a pattern-7 organization. The schematic
of a pattern-7 logic block is given in Fig. 5. The use of
larger multiplexers leads to 0.45% area overhead. The fast
combinational interconnections between LUTs are highlighted
in red. Note that a pattern-based logic block can also contain
multiple pattern-X. In this paper, we focus only on single
pattern logic blocks to evaluate the efficiency of the approach.

6-LUT DFF

BLE1

6-LUT DFF

BLE2

...

6-LUT DFF

BLE7

Local
Routing

OPIN

OPIN

OPIN

IPIN

IPIN

IPIN

IPIN

Pattern-based Logic Block

Fig. 5. Pattern-Based CLB

IV. PATTERN-BASED CLUSTERING ALGORITHM
To support the introduced pattern-based architecture, we

developed a new clustering algorithm. While derived from AA-
Pack, it aims at attracting patterns rather than single BLEs. A
pattern candidate consists of a seed BLE and its unpacked
predecessors. The predecessor selections is bounded by the
maximum pattern size available in the cluster.

Our pattern-based algorithm adapts the attraction functions
as well as PathAffects identification of AA-Pack. Let lb denotes
the logic block, p a pattern and Bi the BLEs involved in the
pattern p. As each time we absorb a pattern including a number
of Bi BLE candidates, we define the attraction function as the
sum of the attraction of each candidate Bi:

attraction(lb, p) =
∑
i

attraction(lb, Bi)

=
∑
i

[α · timing criticality(lb, Bi)

+ (1− α) · area attraction(lb, Bi)]

(1)

The area attraction function is modified to increase the absorp-
tion of logic block outputs:

area attraction(p,Bi) =
1

num pins(lb)
[(1− β) · share input nets(lb, Bi)+

β · absorbed output nets(lb, Bi)]

(2)

where share input nets(lb, Bi) is the number of input nets
shared by lb and Bi, and absorbed output nets denotes
the number of output nets of lb absorbed by Bi. In our
experiments, parameters (α, β) = (0.75, 0.9) yield good per-
formance. Similarly, we define PathAffects(p) as the average
of the PathAffect of each candidate Bi:

PathAffects(p) =

∑
PathAffects(lb, Bi)

|p| (3)

and Dsource of a pattern as the average of the Dsource of each
candidate Bi:

Dsource(p) =

∑
Dsource(lb, Bi)

|p| (4)

V. ARCHITECTURAL-LEVEL SIMULATIONS
In this section, experimental results are presented. Exper-

imental methodology is first introduced, and followed by the
discussion of the results.

A. Methodology
Modern FPGAs use 6-input LUTs. Therefore, we consider

pattern-7 as a reasonable size to investigate the new logic
block architecture. Logic block architecture is set as k = 6,
N = 7, I = k(N+1)

2 = 24. As for routing architecture and
physical design parameters, we refer to the Altera Stratix IV
GX device at 40-nm technology, available from iFAR [15].
Routing architecture uses single-driver length-4 wires [16],
with Fc(In) = 0.15 and Fc(Out) = 0.10. Benchmark set
consists of some large OpenCores projects [17]. All bench-
marks pass through logic synthesis by ABC [18]. Then, they
are packed either by our pattern-based packer or AA-Pack, and
placed and routed by VPR 7 [19]. We evaluate the pattern-
based architecture and clustering algorithm by running 3 sets
of experiments: 1) the standard CAD flow shown, i.e., based
on AA-Pack in Fig. 6(a) with a standard baseline architecture
to serve as reference; 2) the same standard flow with the novel
pattern-based architecture to evaluate the promises of the novel
architecture; and 3) the pattern-based CAD flow shown in Fig.
6(b) with pattern-based architecture to evaluate the joint efforts
of architecture and clustering algorithm.

B. Experimental Results
Table I lists the results of the 3 sets of experiments. We

first compare the results obtained using the standard flow, then
we comment on the new flow.

TABLE I. Comparison between standard flow and pattern-based flow

Benchmarks Std. flow, Std. arch. Std. flow, Pattern arch. Pattern-based flow, Pattern arch.
Open
Cores

LUT
No.

DFF
No.

Area
(# of trans.)

Crit.
Delay (ns)

Wire-
length

Area
improv.

Crit. Delay
improv.

Wire-length
improv.

Area
improv.

Crit. Delay
improv.

Wire-length
improv.

ac97 ctrl 2790 2199 1.06E+07 3.21 27146 +51.01% -22.22% +33.54% -0.26% -18.83% -2.76%
pci conf cyc addr dec 26 0 1.31E+05 2.33 567 +11.57% -22.52% -24.87% +11.57% -23.69% -19.58%

pci spoci ctrl 243 60 9.23E+05 3.79 2427 +6.37% -5.50% +16.52% -1.25% -11.25% -0.08%
systemcdes 503 190 2.14E+06 4.08 7191 +10.46% -10.32% +2.03% +4.38% -11.65% +0.97%

usb phy 100 98 4.84E+05 1.84 828 +36.20% +3.89% +38.89% +5.07% -23.04% -21.50%
des perf 6099 8746 5.10E+07 4.13 154738 +33.42% -0.95% +7.57% -2.13% -8.32% -10.44%

Avg. 1.09E+07 3.23 32150 +24.84% -9.60% +12.28% +2.90% -13.83% -7.63%

ABC
(Logic Synthesis)

GenLib
(LUT area&delay)

FPGA Architecture
Description

(Std./Pattern)

Timing info
(HSPICE)

Area&Delay
Results

AA-Pack

Versatile
Place&Route

.genlib

.blif

.xml

VPR

ABC
(Logic Synthesis)

Pattern-Based
Packer

GenLib
(LUT area&delay)

Pattern-based CLB
Architecture

Pattern-based
FPGA Architecture

Timing info
(HSPICE) Area&Delay

Results

 Versatile
Place&Route

.blif
.genlib

.arch

.xml
.net

.xml

VPR

(a) (b)

Fig. 6. EDA flow comparison: (a) Standard EDA flow (b)
Pattern-based EDA flow

1) Standard Architecture - Standard Flow vs. Pattern Ar-
chitecture - Standard Flow: In this comparison, we evaluate
the potential of our novel architecture considering the area,
the critical path delay and the wirelength numbers between
a standard architecture and the novel pattern architecture
using the same CAD flow. In OpenCores projects, pattern
architecture obtains a 9.6% reduction in delay at a bigger
cost in area and wirelength. This implies that pattern archi-
tecture can instruct AA-Pack to produce better performance
even without utilizing the fast combinational paths. In some
benchmarks, such as ac 97ctrl and pci conf cyc addr dec,
pattern architecture produces very significant gain in delay and
wirelength.

2) Standard Architecture - Standard Flow vs. Pattern Ar-
chitecture - Pattern Flow: We evaluate the performance of
our pattern-based flow by comparing the area, the critical
path delay and the wirelength between the standard flow
with standard architecture and our pattern-based flow with
pattern-based architecture. Pattern-based flow increases area
by 3% and shrinks delay and wirelength by 14% and 8%
respectively on average. Compared to the results gathered
with the standard flow, the pattern-based packer reduces the
area overhead and increases further the gain in delay. Delay
improvements are accounted for the fast combinational paths
and for the reduction of additional LUTs to accommodate large
fanouts. Critical paths of the selected OpenCores projects are
short, which makes delay gain significant. The limited area
loss comes from the pattern-based candidate selection, which
tends to group LUTs that are intensively connected to each
other instead of simply greedily absorbing the nets. Wirelength
gains are accounted for (i) the novel logic block that can absorb
more nets, and for (ii) the pattern-based clustering algorithm
that packs the circuits with a global optimization instead of
local scope on optimality.

VI. CONCLUSION
In this paper, we investigate the interconnection patterns of

LUTs inside standard cluster-based logic blocks and propose
a novel pattern-based logic block architecture. Providing fast
combinational path between LUTs, pattern-based logic block
generates 0.45% area overhead when LUT size is 6. To take the

advantage of fast combinational paths, a pattern-based cluster-
ing algorithm is proposed. Experimental results demonstrate
that for OpenCores project benchmarks, pattern-based logic
block architecture and clustering algorithm contribute to a 14%
reduction in critical delay and a 8% shrink in wirelength with
a limited 3% area overhead, on average, compared to standard
logic block architecture.

ACKNOWLEDGMENT
This work has been partly supported by the ERC se-

nior grant NanoSys ERC-2009-AdG-246810 and the Swiss
National Science Foundation under the project No. 200021-
146600.

REFERENCES
[1] V. Betz et al., Architecture and CAD for Deep-Submicron FPGAs,

Kluwer Academic Publishers, 1998.
[2] D. Lewis et al, The Stratix TM Routing and Logic Architecture, FPGAs

Tech. Dig., 2003, pp. 12-20.
[3] K. Wang et al.,, A Novel Packing Algorithm for Sparse Crossbar FPGA

Architectures, ICSICT, 2008, pp. 2345-2348.
[4] G. Ni et al., A New FPGA Packing Algorithm Based on the Modeling

Method for Logic Block, IEEE Int’l conf. on ASICs, 2005, pp. 877-880.
[5] E. Ahmed et al., The Effect of LUT and Cluster Size on Deep-Submicron

FPGA Performance and Density, IEEE TVLSI, Vol. 12, No. 3, 2004,
pp. 288-298.

[6] V. Betz et al., Cluster-Based Logic Blocks for FPGAs: Area-Efficiency
vs. Input Sharing and Size, IEEE CICC, 1997, pp. 551-554.

[7] A. Marquardt et al., Using Cluster-Based Logic Blocks and Timing-
Driven Packing to Improve FPGA Speed and Density, FPGAs Tech.
Dig., 1999, pp. 37-46.

[8] E. Bozorgzadeh et al., Routability-driven Packing: Metrics and Algo-
rithms for Cluster-Based FPGAs, Journal of Circuits Systems and
Computers, Vol. 13, No. 1, 2004, pp. 77-100.

[9] A. Singh et al., Efficient Circuit Clustering for Area and Power Reduction
in FPGAs, TODAES, Vol. 7, No. 4, 2002, pp. 643-663.

[10] W. Feng, K-way Partitioning Based Packing for FPGA Logic Blocks
without Input Bandwidth Constraint, ICFPT, 2012, pp. 8-15.

[11] D. Chen et al., Improving Timing-Driven FPGA Packing with Physical
Information, FPL, 2007, pp. 117-123.

[12] G. Karypis et al., Multilevel K-Way Hypergraph Partitioning, DAC,
1999, pp. 343-348.

[13] J. Luu et al., Towards Interconnect-Adaptive Packing for FPGAs,
FPGAs Tech. Dig., 2014, pp. 21-30.

[14] J. Luu et al., Architecture Description and Packing for Logic Blocks
with Hierarchy, Modes and Complex Interconnect, FPGAs Tech. Dig.,
2011, pp. 227-236.

[15] Univ. Toronto, Intelligent FPGA Architecture Repository, http://www.
eecg.toronto.edu/vpr/architectures/

[16] G. Lemieux, E. Lee, M. Tom, A. Yu, Directional amd Single-Driver
Wires in FPGA interconnect, ICFPT, 2004, pp. 41-48.

[17] http://www.opencores.org
[18] University of California in Berkeley, ABC: A System for Squential

Synthesis and Verification, Available online. http://www.eecs.berkeley.
edu/∼alanmi/abc/

[19] J. Rose et al., The VTR Project: Architecture and CAD for FPGAs from
Verilog to Routing, FPGAs Tech. Dig., Feb. 2012, pp. 77-86.

