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Introduction

The Verification and Validation (V&V) proce-
dure assesses the reliability of numerical simulation
codes by:

I Ensuring that the model equations are correctly
implemented (code verification)

I Estimating the numerical error affecting
simulations (solution verification)

I Assessing the consistency of the code results
with experimentals (validation)

These procedures have been applied to GBS
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Code verification methodology

Five different approaches
have been developed
for code verification pro-
cedure [Oberkampf et al.]:

I Simple tests
I Code-to-code comparisons

(benchmarking)
I Discretization error

quantification
I Convergence tests
I Order of accuracy tests

The order of accuracy tests ensure both the correct coding of
the model equations and the correct implementation of the chosen
numerical scheme:
I Numerical error εh:

εh = ‖fh − f‖ = Cphp + O(hp+1)

where h represents the degree of refinement of the mesh, fh the
numerical solution and f the exact solution

I Observed order of accuracy p̂:

p̂ =
ln (εrh/εh)

ln (r )

I The code is verified if p̂ → p when the grid is refined (i.e., for
h→ 0)

Method of manufactured solution (MMS): a
systematic approach to perform order of accuracy
test in absence of a known exact solution [Roache,
Fluids Eng. 2001]:
I Choose an arbitrary analytical function g
I Compute the source term S(g) = M(g) and

subtract it from the numerical model
I Solve the modified model Mh(gh)− S = 0
I Estimate the numerical error εh = ‖gh − g‖
I Analyze the behavior of p̂ for h→ 0

The manufactured solution g should:
I Be general
I Be smooth enough and not singular
I Satisfy code constraints
I Avoid a term to overshade the value of

another

No physical constraints on the choice of g

Solution verification methodology

I An estimate of the exact solution f can be obtained by computing the Richardson extrapolation f̄
[Richardson, Philos. Trans. R. Soc. 1911]:

f̄ = fh +
fh − frh
rp − 1

∥∥f̄ − f
∥∥ = Dphp+1 + O(hp+2)

I An approximation of the discretization error εh affecting the simulation results fh is obtained:

εh ' ‖fh − f̄‖ =

∥∥∥∥frh − fh
rp − 1

∥∥∥∥
Some constraints apply:
I Uniform mesh spacing
I Numerical solutions in the asymptotic regime
I No singularities or discontinuities

Moreover, it is required p̂ → p for h→ 0,
where

p̂ =
ln[(fr2h − frh)/(frh − fh)]

ln(r )

I A more rigorous estimate of the relative discretization error is obtained by computing the Grid
Convergence Index (GCI) [Roache, Fluids Eng. 1994]:

GCI =
Fs

r p̃ − 1

∣∣∣∣frh − fh
fh

∣∣∣∣
 Fs = 1.25 p̃ = p if |(p − p̂)/p| ≤ 10%

Fs = 3 p̃ = min[max(0.5, p̂),p] if |(p − p̂)/p| > 10%
Fs = 3 p̃ = p if p̂ is unknown

The Global Braginskii Solver (GBS) code

I Two-fluid Drift-reduced Braginskii equations, k2
⊥� k2
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I These equations are implemented in GBS, a 3D, flux-driven, global turbulence code with circular
geometry, and the system is closed by the Poisson’s equation ω = ∇2

⊥φ [Ricci et al., PPCF 2012]

I System is completed with a set of first-principles boundary conditions applicable at the magnetic
pre-sheath entrance where the magnetic field lines intersect the limiter [Loizu et al., PoP 2012]:

v‖i =± cs v‖e =± cs exp (Λ− φ/Te)

∂yTe =κT ∂yφ ∂yn =∓ n
cs
∂yv‖i

ω =− cos2α

[(
∂yv‖i

)2
± cs∂

2
yv‖i

]
∂yφ =∓ cs∂yv‖i

I Equations are discretized using a second second-order finite difference scheme in the spatial
dimensions and the Arakawa scheme for Poissons brackets, time is advanced using a standard
fourth-order Runge-Kutta scheme

I Note: normalized units used: L⊥→ ρs, L‖→ R, t → R/cs, ν = ne2R/(miσ‖cs)

GBS verification results

I The correct implementation of the discretized equations is verified using MMS [Riva et al., PoP 2014]:
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I The estimate of the numerical error affecting GBS results for standard mesh size (288,120,36)
shows [Riva et al., PoP 2014]:
I Negligible numerical error for the pressure scale length
I Relative error for absolute value of n and Te of the order of 20%− 25%

Development and achievements of GBS

I Understanding turbulent regimes
in TORPEX and LAPD

I SOL width scaling as a function
of dimensionless / engineering
plasma parameters

I Origin and nature of intrinsic
toroidal plasma rotation in the
SOL

I Non-linear turbulent regimes in
the SOL

I Mechanism regulating the
equilibrium electrostatic
potential in the SOL

GBS validation results

I The validation procedure requires [Terry et al., PoP 2008; Greenwald, PoP 2010]:
I Identifying quantities we use for validation
I Estimating the uncertainties affecting measured and simulation data
I Evaluating the level of agreement for one observable, within its uncertainties
I Assessing how directly an observable can be extracted from simulation and experimental data
I Evaluating the global agreement

I GBS 2D and 3D model have been validated against TORPEX experimental data [Ricci et al., PoP
2011]:

I low N
I k‖ = 0
I Ideal interchange turbulence
I 2D model appropriated

I High N
I k‖ 6= 0
I Resistive interchange

turbulence
I 2D model not appropriated

I The validation procedure enable us to:
I Compare different models
I Reveal physical phenomena
I Assess the predictive capability of a code

Conclusion

I Introduced in the plasma physics community a rigorous methodology for code and solution
verification

I Verified the correct implementation of the model equations in GBS
I Estimated the numerical error affecting GBS results
I Validated the GBS results against TORPEX experimental data
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