
Neuroinform
DOI 10.1007/s12021-014-9242-5

SOFTWARE ORIGINAL ARTICLE

NeuroMorph: A Toolset for the Morphometric Analysis
and Visualization of 3D Models Derived from Electron
Microscopy Image Stacks

Anne Jorstad · Biagio Nigro · Corrado Cali ·
Marta Wawrzyniak · Pascal Fua · Graham Knott

© Springer Science+Business Media New York 2014

Abstract Serial electron microscopy imaging is crucial for
exploring the structure of cells and tissues. The develop-
ment of block face scanning electron microscopy methods
and their ability to capture large image stacks, some with
near isotropic voxels, is proving particularly useful for the
exploration of brain tissue. This has led to the creation of
numerous algorithms and software for segmenting out dif-
ferent features from the image stacks. However, there are
few tools available to view these results and make detailed
morphometric analyses on all, or part, of these 3D models.
We have addressed this issue by constructing a collection
of software tools, called NeuroMorph, with which users can
view the segmentation results, in conjunction with the orig-

A. Jorstad · P. Fua
Computer Vision Lab, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

A. Jorstad
e-mail: anne.jorstad@epfl.ch

P. Fua
e-mail: pascal.fua@epfl.ch

B. Nigro · C. Cali · G. Knott (�)
Centre for Electron Microscopy, Ecole Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland
e-mail: graham.knott@epfl.ch

B. Nigro
e-mail: biagio.nigro@epfl.ch

C. Cali
e-mail: corrado.cali@epfl.ch

M. Wawrzyniak
International Institute of Molecular and Cell Biology,
Warsaw, Poland
e-mail: marta-wawrzyniak@wp.pl

inal image stack, manipulate these objects in 3D, and make
measurements of any region. This approach to collecting
morphometric data provides a faster means of analysing the
geometry of structures, such as dendritic spines and axonal
boutons. This bridges the gap that currently exists between
rapid reconstruction techniques, offered by computer vision
research, and the need to collect measurements of shape and
form from segmented structures that is currently done using
manual segmentation methods.

Keywords Neuroimaging software · 3D mesh analysis ·
3D image segmentation analysis · Serial section electron
microscopy · Neuron · Dendrite · Axon · Synapse · Cell
morphology

Introduction

For many years neuroscientists have relied on electron mi-
croscopy (EM) to study the morphology of neurons and un-
derstand their connectivity within the brain’s circuits. This
high resolution imaging technique is the only method capa-
ble of seeing synaptic connections as well as all the other
elements with which they are associated. In recent years, the
appearance of block face scanning electron microscopy has
led to significant advances in the automated serial imaging
through volumes of tissue samples, giving the opportunity
to explore the structure of the brain’s circuitry in unprece-
dented detail (Denk and Horstmann 2004; Knott et al. 2008;
Briggman and Bock 2012). These 3D imaging methods are
able to produce aligned image stacks, with near isotropic
voxels, from which algorithms are able to segment features
such as neurites, synapses, and mitochondria (Merchán-
Pérez et al. 2009; Jain et al. 2010; Kreshuk et al. 2011;
Lucchi et al. 2011; Straehle et al. 2011; Vazquez-Reina et al.

mailto:anne.jorstad@epfl.ch
mailto:pascal.fua@epfl.ch
mailto:graham.knott@epfl.ch
mailto:biagio.nigro@epfl.ch
mailto:corrado.cali@epfl.ch
mailto:marta-wawrzyniak@wp.pl

Neuroinform

Fig. 1 The user interface. 1, The leftmost window shows the geom-
etry tools with which morphological measurements can be made of
whole, or parts of models. 2, The 3D view of the model shows all
the vertices that comprise a single dendrite segmented from a stack of
EM images. An individual dendritic spine protruding from the dendrite
has been selected (yellow vertices). 3, Use of the volume and surface

area measurement functions will create two new children (the meshes
yourname surf and yourname vol), and will be listed in the outliner
window. These new meshes will be exact copies of the highlighted
region and contain the correct surface area and volume properties, as
will be displayed in Geometry Properties field, 4

2011; Ciresan et al. 2012; Becker et al. 2013; Hu et al.
2013). This has significant implications as it allows large-
scale segmentations of complex structures, like brain tissue,
to be completed in a reasonable time frame. However this
creation of 3D models does not directly provide any mor-
phometric data, such as volume, surface area, or length of
any of the segmented features. In addition, important subre-
gions, such as synaptic boutons situated on axons, or spines
that protrude from dendrites, for which these types of mea-
surements are important, cannot be identified automatically
in these models and need to be delineated by hand. This is
time consuming, and to date can only be achieved by manu-
ally segmenting identified features directly from the image
stacks.

To address these issues, and capitalize on the effective-
ness with which algorithms can generate mesh models from
a stack of EM images, we have developed software with
which users can make measurements directly on these seg-
mentation results in a 3D workspace. Our software package,
NeuroMorph, integrates into the Blender open source mod-
eling software and allows the user to measure, annotate,
and manipulate features. A screen shot of the tool’s user
interface can be seen in Fig. 1.

Description of NeuroMorph

NeuroMorph is a set of tools to be used in the Blender1

3D modeling software for performing morphometric anal-
yses of mesh models. Blender is open source and used
extensively in the 3D modeling community. The Neuro-
Morph toolset is written primarily for the analysis of models
of neuronal elements, such as axons and dendrites derived
from serial EM image stacks. It is often important to under-
stand the size, shape, and connectivity of these complex
structures. Here, the segmentation reconstruction software
ilastik (Kreshuk et al. 2011) and TrakEM2 (Cardona et al.
2012) were used to reconstruct some axons, dendrites, and
synapses from a single series of images from the cere-
bral cortex of an adult rat, taken with a focussed ion beam
scanning electron microscope. However, mesh models from
any source can be used. The typical measurements sought
from these types of structures include volumes, surface
areas, and lengths, across different parts of the individual
models.

1www.blender.org

www.blender.org

Neuroinform

The toolset comprises three parts. A measurement tool
allows users to select any region of a model to calculate
its volume and surface area, and also measure distances.
Objects can also be labeled consistently to create new names
for the subregions measured, and these calculated measure-
ments can be exported. A second tool accesses the image
stacks from which the models were originally derived. Any
point on a model can be selected, and the corresponding
image in the stack displayed at this location. With this
tool the correspondence between the reconstructed model
and the original images are revealed, providing a means by
which structures can be identified and labeled. In the case
of dense reconstructions, where many models are recon-
structed from a single image stack, it is often necessary to
search for different structures. By pinpointing these in the
original image, the user can then display the corresponding
mesh. Also provided is an import tool with which .obj for-
matted models, obtained from segmentation software, can
be opened, ready for analysis. During this import process,
the number of points that comprise the mesh can be reduced,
decreasing its file size, then scaled to the correct units of
measure. In the example shown here the units are microns.
The Neuromorph tools assume that the mesh models are
accurate representations of the segmented objects, with their
surfaces adequately smoothed to produce accurate morpho-
logical measurements. This part is to the discretion of the
user to ensure that the parameters used in this import phase
do not alter significantly the shape of the object.

Morphometric Analysis Using NeuroMorph

When a 3D mesh surface is loaded into Blender and visi-
ble in the viewing window (Fig. 1), regions can be selected
and measurements of volume, surface area, and length
made. The user highlights the part of the mesh, defines
the name of this feature either manually or by using the
“Object Name” interface, then clicks on the “Surface Area”
or “Volume” buttons. These create two new Blender mesh
objects as children of the original object, and in the Object
Properties, a new “Geometry Properties” field is populated
with analytical information about the new objects (Fig. 1
region 4).

The first new object, called yourname surf, is an exact
copy of the highlighted region of the mesh, and its surface
area is exact. The second new object, called yourname vol,
closes any open holes of the highlighted region, which is
necessary for the volume calculation, as explained later. The
volume property of this second object is the exact volume of
the original highlighted region, and its surface area includes
the surface area of any surface faces that were added to close
any holes in the highlighted mesh, so may be larger than the
surface area of yourname surf.

To measure distances, the user selects several points
through which a piecewise linear curve is fitted, and the dis-
tance of this curve is provided in the ‘Geometry Properties”.
Alternately, a second length-measuring tool is provided
which calculates the shortest distance between exactly two
points on a mesh via a path through the vertices of the mesh
surface itself.

The Surface Area Calculation

A mesh object consists of connected vertices that form its
surface. Each vertex is connected to its neighbors by edges,
which are then connected to defined polygonal faces. The
surface area of the object is the sum of the areas of each of
the individual faces. To calculate the surface area, all faces
contained in the selected mesh are converted to triangles,
which means that any face with n > 3 sides is divided into
n − 2 triangles.

The area of a triangle, given the 3D coordinates of its
three vertices �v1, �v2, �v3, is calculated via the area of the par-
allelogram defined by two sides of the triangle, which is
equal to the norm of the cross product of the two edges. The
area of the triangle is half this value, A = 1

2‖(�v2 − �v1) ×
(�v3 − �v1)‖.

The Volume Calculation

Calculating a volume is only meaningful for a closed mesh
with no holes. Any open region in the mesh structure must
therefore be closed prior to the volume calculation. A hole
is detected by finding edges that are only connected to a sin-
gle face. These edges can be grouped together into strings
of edges that share consecutive vertices, and every closed
string defines a single hole to be closed (Fig. 2). A new ver-
tex located at the center of each hole is added to the mesh.
New triangular faces defined by each boundary edge con-
nected to the new vertex are added to close the hole. The
normal vector to the face, which is the vector pointing in the
direction perpendicular to the face surface, is stored along
with the face.

Fig. 2 An open region of a mesh with its open boundaries highlighted,
and a copy of the mesh after its holes have been closed for the volume
calculation

Neuroinform

The orientation of the new faces must be consistent with
that of the original mesh for the volume calculation to be
correct; that is, the normal vector of each face must be
pointing outwards, by convention, rather than towards the
inside of the mesh. However, the normal vector may have
been added incorrectly when the new faces were added. The
following algorithm is used to determine whether the orien-
tation of a new face, f1, is consistent with that of the face
in the original mesh that it connects to, f0. Take e to be the
edge shared by the two faces, defined by vertices va and vb,
take vertices v0 and v1 to be the third vertex of each of the
triangular faces, respectively, and take n0 and n1 to be the
normal vectors of each of the faces, respectively.

s0 = (v0 − va), the edge connecting va to v0 (1)

s1 = (v1 − va), the edge connecting va to v1 (2)

c0 = s0 × e, c1 = e × s1 (3)

d0 = n0 · c0, d1 = n1 · c1 (4)

dindicator = d0d1 (5)

If dindicator < 0, then the orientation of the normal vector
of face f1 must be flipped.

To calculate the volume of a closed mesh, the signed
volumes of the tetrahedra defined by each triangular face
connected to the origin are calculated, and these are summed
for the total. The signed volume of a tetrahedron connect-
ing vertices v1, v2, v3 with the origin is computed by the
standard formula

V = v1 · (v2 × v3)

6
. (6)

It is positive if the normal vector to the triangle is point-
ing away from the origin and negative if the normal is
pointing towards the origin. The sum of all the signed tetra-
hedral volumes defined by a mesh surface produces the
correct volume of the region contained in the mesh, which
can also be understood as an application of the divergence
theorem from calculus (Fig. 3).

The Length Calculation

In addition to the 2-dimensional and 3-dimensional mea-
surements described above, the software is also able to
estimate one-dimensional lengths along surface profiles.
The length measurement is based on the interpolation of a
user-defined set of vertices by a piecewise linear function.

Two length tools handle various measurement require-
ments. The first calculates the length of a curve constructed
from a set of user-defined points (Fig. 4a-b). The user
selects any number of vertices along a mesh, and the soft-
ware constructs linear segments to connect the points into
a continuous curve, creating a new object to store this
multi-segment distance called yourname MS dist as a child

Fig. 3 The volume of the shaded region between faces f1 and f2 on
the right is equal to the volume of the tetrahedron formed by face f1
with the origin (labeled O) minus the volume of the tetrahedron for-
med by face f2 with the origin. The signed volume of the first tetrahe-
dron is positive because its normal vector points away from the origin,
while the signed volume of the second tetrahedron is negative because
its normal vector points towards the origin, and so the sum of the two
signed volumes produces the desired volume of the region between the
two faces

of the original mesh. This new object contains the curve
length in its Geometry Properties panel. The precision of
the measurement, compared to the length of the curve that
lies exactly along the surface of the selected mesh profile,
depends entirely on the user input sampling, which can be
tedious for very irregular surfaces. However, this tool allows
the user to calculate the distance between any two points in
space, regardless of the surface geometry.

A second length measurement tool is provided that cal-
culates the length of the curve lying along the surface of a
mesh connecting any two specified vertices (Fig. 4c). Using
the “Shortest Distance” button, an internal Blender func-
tion is called that finds the shortest path between vertices
through successive edges connecting them on the mesh.
This tool first temporarily adds supplementary edges to the
mesh to connect all vertices on each mesh face. This allows
the shortest path to have the option of passing directly
between any two vertices across any given face without hav-
ing to traverse its boundary edges. If the provided remesh
function has been used during the import, the faces of the
mesh will be near-regular quadrilaterals, as this requires
fewer computational resources to maintain, compared to tri-
angles. For quadrilateral faces, which are also encouraged
by the developers of Blender, edges are added to connect
the two pairs of opposite vertices on the face. For general
n-sided faces, a vertex at the center of mass of the face is
created, adding edges connecting this vertex to each of the
original vertices of the face. After these temporary edges
have been added, the shortest path calculated through the
edges of the mesh will be the piecewise linear shortest path
through the mesh vertices along the surface. The accuracy of
this length calculation is increased with increased mesh den-
sity. The new object, a child of the original mesh, is called
yourname 2pt dist and the performed length measurement
is stored in the mesh Geometry Properties.

Neuroinform

a

b

c

Fig. 4 Examples of curves generated by the length calculation. a The
multi-segment distance connects any number of user-defined points
with linear segments. b The multi-segment distance from a different
angle. c The shortest distance between two user-defined points through
vertices on the surface of the mesh

a

b

c

Fig. 5 The dumbbell objects compared in Example 1, constructed
using (a) 242, (b) 930, and (c) 3650 vertices

Guiding Examples

This section provides some simple examples to demon-
strate the numerical properties of the measurement tools.
The tools return exact numerical measurements of the
meshes provided, but if a mesh is not sufficiently
smooth then the resulting measurements may not ade-
quately describe the structure being studied. In general we
will see that as more vertices are used the measure-
ments will become more precise. However, using too many
vertices might result in measuring unwanted noise. It is
up to the user to ensure that the meshes being mea-
sured are sufficiently accurate models of the underlying
3D structures being studied, and this section is included
to provide a rough guide as to the types of behavior
to expect when using 3D mesh models. We also pro-
vide examples of extreme cases where surface area and
length measurements might be less precise than expected,
so that users are aware of some limitations when working
with meshes.

Neuroinform

Table 1 Table of measurements of the dumbbell structures of vary-
ing mesh refinements. As the mesh more finely approximates the true
structure, the measurement becomes more accurate

Vertices Surface Area Volume Length

242 26.17 8.35 6.61

(97.1%) (94.1%) (99.5%)

930 26.75 8.74 6.64

(99.3%) (98.5%) (99.87%)

3650 26.90 8.84 6.648

(99.8%) (99.6%) (99.97%)

True Surface 26.95 8.87 6.65

Example 1 Numerical Accuracy. Take two spheres with
radius 1, located with centers a distance 3 apart, connected
by a cylindrical crossbar with radius sin(π

8), to form a
dumbbell (Fig. 5). Representations of this object are con-
structed with increasingly finer meshes, and the surface area
and volume of each are measured, as well as the distance
along each mesh between its two extreme endpoints. The
results are provided in Table 1. As more vertices are used,
the mesh representation gets closer to the true mathematical
surface, and the accuracy of the numerical measurements
increases. The errors here are caused only by the fact that
the mesh points are discretely sampled from a continuous
surface, and so the finer the mesh, the more accurate the
model.

Example 2 Mesh Refinement Limitations. Fig. 6 provides
an example where using more vertices does not improve
accuracy, but instead brings in extra noise that can interfere
with the measurements. In this example, the sharp jitters on
parts of the surface are probably caused by image noise or
errors in the image segmentation process, and are unlikely
to be modeling true features of the underlying structure

a b

Fig. 6 a Example of a mesh with too many vertices, capturing
unwanted noise. b A better, smoother refinement of this particular
mesh uses fewer vertices

a b

Fig. 7 Four ramps of varying refinement. As the mesh better approx-
imates the ramp, the volume gets closer to the ramp volume, but the
surface area is much higher because the surface is locally rough

being studied. The measurement most affected by this over-
refinement is generally the surface area, see Example 3. In
this example, the meshes were imported using octree depths
of 11 and 7, respectively, see Section “Importing .obj Files
Into Blender” for details. It is up to the user to ensure that
the mesh structure being used is an accurate representation
of the true object being studied.

Example 3 Surface Area Limitations. A mesh that is not
sufficiently smooth can result in surface areas that are
noticeably larger than the smooth surfaces they represent,
while the volume calculation is more stable. Figure 7 shows
four ramps of varying refinement, all of width 4, height
4 and length 16. As a higher number of smaller steps are
added to better approximate the smooth ramp surface, the
volume approaches the true volume, but the surface area
remains significantly higher (in fact, the surface area only
changes on the two side faces of the ramp). See Table 2 for
numbers. This example serves as a warning to ensure that all
studied meshes are sufficiently smooth, else small amounts
of variation across the surface may cause the measurements
of the mesh to not adequately describe the true structure
being studied.

Table 2 As the number of steps from Fig. 7 increases and each step
gets smaller, to better approximate the ramp, the volumes gets closer
to the ramp volume, but the surface areas remains much higher, due to
the surface remaining locally rough

Steps Surface Area Volume

2 (a) 134.0 48.0

4 (b) 133.0 40.0

8 (c) 132.5 36.0

True Ramp (d) 113.25 32.0

Neuroinform

Example 4 Length Measurement Limitations. An example
of the limitations of the length measurement is provided
in Fig. 8. Since the paths generated by our Shortest Dis-
tance function are required to pass between consecutive
mesh vertices, instead of across any part of any face, cases
like the left path in Fig. 8 arise. If the user requires a more
accurate measurement for specific cases like this, they are
encouraged to use the Multi-Segment Distance function,
with which the user can click on as many mesh points as
needed, and the path connecting these points with linear
segments will be returned. While it is possible to construct
a path through a mesh surface that is not limited to pass-
ing through adjacent vertices, the amount of calculations
required results in a function that is currently too slow, on
general meshes, to be useful in the setting for which this
tool was designed. The tool is limited by the speed at which
the Python programming language is able to perform these
numerical operations. The tool as provided can return a
general vertex-based path on a mesh of several tens of thou-
sands of vertices in under two seconds running Blender on
a laptop. Considering that the mesh is an approximation of
the true biological structure, and that the accuracy of this
approximation can generally be improved by increasing the
density of vertices on the mesh, the potential error in the
length calculation given its speed is within an acceptable
range for practical use.

Integration With EM Image Stacks

The NeuroMorph toolset is aimed at the analysis of 3D
models resulting from segmentations of EM image stacks.
Performing direct measurement of the 3D structures them-
selves means that the user does not have to visualize them
through a series of 2D planes, and makes the operation

Fig. 8 The “Shortest Distance” length measurement is limited to
passing through consecutive vertices

faster and more intuitive. However, with this tool the user
is able to visualize the original image stack superimposed
on the mesh objects during this analysis process, so that
any classification of substructures, such as spines on den-
drites, can be done correctly. The tool includes functions for
the user to refer to an original image in the stack, and to
scroll through them, with each image appearing at its correct
Z position relative to the mesh objects. Also the ability to
search for different meshes, by using each image as a refe-
rences map onto which the user can select positions with
the tool showing the corresponding mesh situated at this
position.

The simultaneous visualization of mesh models and
images at their corresponding Z position is important as a
means of correctly assigning names to the different objects.
This is particularly relevant for models that may be asso-
ciated with others, but have been reconstructed separately.
Synapses, for example, are the site of contact between
axons and dendrites, and reconstructed as isolated objects.
In the presentation of the final data, these structures must
be labelled according to which axon and bouton they are
located, as well as to which dendrite they contact. Synapses
are labelled, therefore according to the number of the den-
drite, spine (‘0’ if synapse on the dendritic shaft), axon,
and bouton; and also whether the synapse is excitatory or
inhibitory (see Fig. 9 for an example).

Visualization Tool

The visualization tool can rapidly upload the bitmap images
from which the models were reconstructed using only lim-
ited memory allocation because editing or rendering is not
possible. The positioning of a specific image from a stack
is achieved by using its position along the z-axis. The cor-
respondence is between the total number of slices of the
stack and the total depth of sectioned material. The user is
able to define the image dimensions and the mesh objects
in microns. The tool then allows the user to scroll through
the image stack, visualizing the serial images in rapid suc-
cession at their correct z position on the models. This
functionality allows the user to check the segmentation and
importation process to ensure that the objects correspond
precisely with the original images and the segmentation was
correct.

Object Retrieval

When large number of models are imported into a single
Blender file it can be challenging to locate specific struc-
tures within a defined region. For example, to locate a
particular dendrite that shares a synaptic contact with a par-
ticular axon requires all dendrites to be made visible, one
at a time, until the correct one is found. To speed up this

Neuroinform

Fig. 9 The models can be
viewed simultaneously with the
images from which the
reconstructions were originally
made. They are displayed at their
correct position in the volume so
that the correspondence between
the image and the model can be
assessed. Scrolling with the
mouse through the image stacks
places each image at its
corresponding z position. Shown
here are dendrite and axon
models (transparent green) with
a connecting synapse (red).
These models are assigned
numbers, shown as white labels
in this figure, and these are used
to assign a unique identifier to
the synapse. In this case the
synapse is found on spine 2 of
dendrite 8, and bouton 1 of axon
2. This gives in the name
syn d8s2a2b1E. The ‘E’
indicates that the synapse is a
putative excitatory synapse

search process, an image from the stack can superimposed
on the model (explained above). Once this image is dis-
played, a grid overlying the image plane is then added. This
allows the user to select a specific vertex in this grid that
lies inside the object (axon in this case) that is being sought.
The retrieval process is then activated to identify the mesh
that encloses the selected point. In this multi-step retrieval
process, the bounding box of each known mesh is checked
to determine which mesh potentially contains the selected
point. To further reduce the number of potential meshes con-
sidered, if the minimum distance from the selected point to
an object’s set of vertices is too large, it is excluded. Finally,
a ray casting is performed from the selected point along
the six cartesian directions, and the number of intersections
between the rays and each mesh are counted. If the num-
ber of intersections of each ray with a mesh is odd, then the
point is on the inside of that closed mesh surface. The mesh
object found to contain the point is then made visible.

Importing .obj Files Into Blender

The toolset also provides an import function for opening
.obj format mesh models generated from segmentation

software. For this phase, information is needed concerning
the model’s scale so that all measurements in the subse-
quent analysis correspond to known units. This is based on
the arbitrary unit system contained within the Blender soft-
ware (Blender units). Here, the user can rescale the meshes
such that a Blender unit is equivalent to a unit of mest, here
microns are used. The scaling is achieved by defining the
number of pixels per micron, in the original images and
from which the models are made.

In addition, this tool includes a function for reducing the
number of points (vertices) in the models. Segmentation
software often produces models with high density meshes
containing many vertices, resulting in large file sizes. Many
of these points do not add a greater level of morphological
detail to the structure so are unnecessary. In such meshes,
the removal of a significant proportion of the vertices does
not change their overall shape. Surfaces of objects that
should be smooth are often rough, by way of this high
vertex density, and this can interfere with accurate measure-
ments. Many existing software tools are able to perform
mesh smoothing and downsampling operations, includ-
ing freely available functions in Blender, MeshLab,2 and

2meshlab.sourceforge.net

meshlab.sourceforge.net

Neuroinform

plugins for Fiji,3 or for-purchase software such as 3DS
Max4 or Maya5. The remesh tool we provide is not fun-
damentally different from any of these options, and it is
included only for convenience.

The import function provides a “Remesh” modifier inte-
grated into Blender that generates a new mesh based on the
original surface. The algorithm (Ju et al. 2002) is able to
produce meshes with fewer vertices, giving different levels
of structural detail depending on the settings used. Selec-
tion of the most suitable remesh setting (the “Octree Depth”
and whether or not to use “Smooth Shading”) is done on the
basis of how closely the mesh model fits with the segmented
structures, while substantially reducing the vertex count, see
Fig. 1. Typical remesh operations during import are able to
halve the number of vertices, without disturbing the model’s
morphology.

The measurement and visualization tools in NeuroMorph
will work with any mesh and image stack, regardless of
the method of segmentation. The accuracy of the measure-
ments of the segmented structures depend on how closely
the final model represents the imaged structure, and how
carefully the vertices selected. The simultaneous imaging of
the models and the image stack help to check the accuracy
for reconstructions. With these tools the user can then decide
how accurately the measurements from the mesh reflect the
true biological structure.

Installation of NeuroMorph

NeuroMorph comprises three Python scripts available for
download.6 Modules have been implemented to be cross-
platform and do not require any additional installations.
They are based on the Blender 2.70 Python API which
requires Python 3.x. The installation procedure is straight-
forward and described in detail within the NeuroMorph doc-
umentation site site.7 It is important to note that although the
measurement functions provide a general and comprehen-
sive tool for volume, surface, and length estimates of mesh
objects, the use of the import and visualization modules are
intimately related to models reconstructed from image seg-
mentations. This means that meshes must be reconstructed
and rescaled properly to obtain the correct superposition
of image slices according to their size and position in the
Blender reference system. Although the toolset has been
constructed on the latest Blender version (2.70), it cannot be

3fiji.sc/Fiji
4www.autodesk.com/products/autodesk-3ds-max
5www.autodesk.com/products/autodesk-maya
6cvlab.epfl.ch/NeuroMorph
7wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Neuro tool

excluded that during the evolution of Blender’s Python API,
the tool could experience errors in future versions. However,
it is hoped that any conflicts will be corrected in time.

A sample image stack and object meshes are also pro-
vided for download.8 These include a blender file containing
the models of two dendrites, five axons, and their synapses,
as well as two .obj files derived from the ilastik software.
These were reconstructed from the stack of serial images
using the interactive carving feature in ilastik (Straehle et al.
2011). The images were taken using focused ion beam
scanning electron microscopy of a resin embedded sam-
ple of adult rat brain. The images are 3.5 microns in width
and height, and the total stack of images is 3.5 microns in
depth.

Discussion

Serial electron microscopy imaging and automated proce-
dures for segmentation and reconstruction promise signif-
icant new opportunities for analysing cell structure on an
unprecedented scale. However, for the moment at least,
few are able to make any distinctions between the types of
structures recognized. Synaptic contacts, for example, can
be detected automatically from electron microscopy images
(Kreshuk et al. 2011; Becker et al. 2013), but not clas-
sified according to their morphology as to whether they
are symmetric, and presumed inhibitory, or asymmetric,
and excitatory. Automatic segmentation of neurites is now
achievable, but these cannot be separated as either axons
or dendrites. Neither can the automated recognition of fea-
tures such as boutons, or dendritic spines. Though it seems
likely, and crucial for large scale connectomics studies, that
future algorithms will be able to integrate many different
morphological features to give accurate and unbiased mea-
surements of a range of structures, today this can only be
done manually. NeuroMorph provides a convenient means
of making these further analyses on the current segmenta-
tion results. The classification and analysis process carried
out on 3D models is more efficient than manual segmenta-
tion across serial 2D images. Features are measured more
rapidly by selecting them in 3D rather than having to iden-
tify them on each image of a stack. Additionally, complex
structures can be classified and labeled by visualizing them
in 3D, together with the images from which they were
reconstructed. This process of identification is crucial for
any analysis in which separately reconstructed features may
be related to others in the vicinity. As an example, synapses
connect two different neurites, therefore it is necessary to
use a consistent naming strategy so that in the final data

8 cvlab.epfl.ch/NeuroMorph

fiji.sc/Fiji
www.autodesk.com/products/autodesk-3ds-max
www.autodesk.com/products/autodesk-maya
cvlab.epfl.ch/NeuroMorph
wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Neuro_{t}ool
cvlab.epfl.ch/NeuroMorph

Neuroinform

output it is clear which synapse is attached to which dendrite
and axon. NeuroMorph is constructed so that the user can
identify, label, measure all the connected elements, with-
out leaving the 3D environment. Dense reconstructions from
single volumes may contain many hundreds of objects. The
Neuromorph tools enable the precise organization of such
datasets as well the ability to search for objects. Though the
examples given in this paper show only limited numbers of
elements within a small volume, it is scalable to any number
of meshes across far larger stacks of images, dependent only
on the limitations of the computer being used. Construct-
ing the NeuroMorph toolset within Blender has not only
enabled the visualization and analysis to be carried out in a
3D environment, but within a well-developed software con-
taining a vast collection of functionalities for the modeling
community. This provides the opportunity to exploit these
functions and use the meshes of neuronal elements to make
further analyses by modeling different physiological pro-
cesses. The Blender software has previously been used for
several biomedical applications, including the integration
of another neuron visualization tool called Py3DN (Aguiar
et al. 2013) for importing and displaying whole cell recon-
structions made with the Neurolucida reconstruction system
(Microbrightfield, USA) from light microscopy. This gives
users the tools to perform large-scale analyses of parame-
ters such as dendritic tree lengths, and bouton (varicosity)
densities. Blender’s versatility, therefore, for integrating any
number of 3D analysis tools gives it huge potential as an
open source platform with which imaging scientists are able
to use the results of computer vision research.

Information Sharing Statement

All code for the NeuroMorph Toolkit (RRID:SciRes
000156) is available in open source under the GNU Gen-
eral Public License as published by the Free Software
Foundation, and is available for download at cvlab.epfl.ch/
NeuroMorph. Example meshes and detailed documentation
are also provided at this link. The toolkit functions as an
add-on within the Blender open source modeling software
(RRID:nif-0000-31943), available at www.blender.org.

Acknowledgments The work was supported by the Novartis
Foundation for Medical-Biological Research (G.K.) and EU ERC
MicroNano Project (P.F.).

References

Aguiar, P., Sousa, M., Szucs, P. (2013). Versatile morphometric analy-
sis and visualization of the three-dimensional structure of neurons.
Neuroinformatics, 11, 393–403.

Becker, C., Ali, K., Knott, G., Fua, P. (2013). Learning Context
Cues for Synapse Segmentation. IEEE Transactions on Medical
Imaging, 32, 1864–1877.

Briggman, K., & Bock, D. (2012). Volume electron microscopy for
neuronal circuit reconstruction. Current Opinion in Neurobiology,
22, 154–161.

Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I.,
Preibisch, S., Longair, M., Tomancak, P., Hartenstein, V., Douglas,
R. (2012). TrakEM2 software for neural circuit reconstruction.
PLoS One, 7, e38,011.

Ciresan, D., Gambardella, L., Giusti, A., Schmidhuber, J. (2012).
Deep neural networks segment neuronal membranes in electron
microscopy images. NIPS, 2852–2860.

Denk, W., & Horstmann, H. (2004). Serial block-face scanning elec-
tron microscopy to reconstruct three-dimensional tissue nanos-
tructure. PLoS Biology, 2, 1864–1877.

Hu, T., Nunez-Iglesias, J., Vitaladevuni, S., Scheffer, L., Xu, S.,
Bolorizadeh, M., Hess, H., Fetter, R., Chklovskii, D. (2013). Elec-
tron Microscopy Reconstruction of Brain Structure Using Sparse
Representations Over Learned Dictionaries. IEEE Transactions on
Medical Imaging, 32, 2179–2188.

Jain, V., Bollmann, B., Richardson, M., Berger, D., Helmstaedter, M.,
Briggman, K., Denk, W., Bowden, J., Mendenhall, J., Abraham,
W., Harris, K., Kasthuri, N., Hayworth, K., Schalek, R., Tapia, J.,
Lichtman, J., Seung, H. (2010). Boundary learning by optimiza-
tion with topological constraints. IEEE Xplore, 2488–2495.

Ju, T., Losasso, F., Schaefer, S., Warren, J. (2002). Dual contouring of
hermite data. ACM Transactions on Graphics (TOG), 21(3), 339–
346.

Knott, G., Marchman, H., Wall, D., Lich, B. (2008). Serial section
scanning electron microscopy of adult brain tissue using focused
ion beam milling. The Journal of Neuroscience, 28, 2959–2964.

Kreshuk, A., Straehle, C., Sommer, C., Koethe, U., Cantoni, M., Knott,
G., Hamprecht, F. (2011). Automated detection and segmentation
of synaptic contacts in nearly isotropic serial electron microscopy
images. PLoS One, 6, e24,899.

Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P. (2011).
Supervoxel-Based Segmentation of Mitochondria in EM Image
Stacks with Learned Shape Features. IEEE Transactions on Med-
ical Imaging, 30.

Merchán-Pérez, A., Rodriguez, J., Alonso-Nanclares, L., Schertel, A.
(2009). Counting Synapses Using FIB/SEM Microscopy: A True
Revolution for Ultrastructural Volume Reconstruction. Frontiers
in Neuroanatomy, 3.

Straehle, C., Köthe, U., Knott, G., Hamprecht, F. (2011). Carv-
ing: scalable interactive segmentation of neural volume electron
microscopy images. Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2011, 14, 653–660.

Vazquez-Reina, A., Gelbart, M., Huang, D., Lichtman, J., Miller, E.,
Pfister, H. (2011). Segmentation fusion for connectomics. IEEE
Xplore, 177–184.

cvlab.epfl.ch/NeuroMorph
cvlab.epfl.ch/NeuroMorph
www.blender.org

	NeuroMorph: A Toolset for the Morphometric Analysis and Visualization of 3D Models Derived from Electron Microscopy Image Stacks
	Abstract
	Introduction
	Description of NeuroMorph

	Morphometric Analysis Using NeuroMorph
	The Surface Area Calculation
	The Volume Calculation
	The Length Calculation
	Guiding Examples

	Integration With EM Image Stacks
	Visualization Tool
	Object Retrieval

	Importing .obj Files Into Blender
	Installation of NeuroMorph
	Discussion
	Information Sharing Statement
	Acknowledgments
	References

