
Constrained convex minimization
via model-based excessive gap

Quoc Tran-Dinh and Volkan Cevher
Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL), CH1015-Lausanne, Switzerland
{quoc.trandinh, volkan.cevher}@epfl.ch

Abstract
We introduce a model-based excessive gap technique to analyze first-order primal-
dual methods for constrained convex minimization. As a result, we construct new
primal-dual methods with optimal convergence rates on the objective residual and
the primal feasibility gap of their iterates separately. Through a dual smoothing
and prox-function selection strategy, our framework subsumes the augmented La-
grangian, and alternating methods as special cases, where our rates apply.

1 Introduction
In [1], Nesterov introduced a primal-dual technique, called the excessive gap, for constructing and
analyzing first-order methods for nonsmooth and unconstrained convex optimization problems. This
paper builds upon the same idea for constructing and analyzing algorithms for the following a class
of constrained convex problems, which captures a surprisingly broad set of applications [2, 3, 4, 5]:

f? := min
x
{f(x) : Ax = b, x ∈ X} , (1)

where f : Rn → R∪{+∞} is a proper, closed and convex function; X ⊆ Rn is a nonempty, closed
and convex set; and A ∈ Rm×n and b ∈ Rm are given.
In the sequel, we show how Nesterov’s excessive gap relates to the smoothed gap function for a
variational inequality that characterizes the optimality condition of (1). In the light of this connec-
tion, we enforce a simple linear model on the excessive gap, and use it to develop efficient first-order
methods to numerically approximate an optimal solution x? of (1). Then, we rigorously characterize
how the following structural assumptions on (1) affect their computational efficiency:
Structure 1: Decomposability. We say that problem (1) is p-decomposable if its objective function
f and its feasible set X can be represented as follows:

f(x) :=
∑p

i=1
fi(xi), and X :=

∏p

i=1
Xi, (2)

where xi ∈ Rni , Xi ⊆ Rni , fi : Rni → R ∪ {+∞} is proper, closed and convex for i =
1, . . . , p, and

∑p
i=1 ni = n. Decomposability naturally arises in machine learning applications such

as group sparsity linear recovery, consensus optimization, and the dual formulation of empirical risk
minimization problems [5]. As an important example, the composite convex minimization problem
minx1

{f1(x1) + f2(Kx1)} can be cast into (1) with a 2-decomposable structure using intermediate
variables x2 = Kx1 to represent Ax = b. Decomposable structure immediately supports parallel
and distributed implementations in synchronous hardware architectures.
Structure 2: Proximal tractability. By proximal tractability, we mean that the computation of the
following operation with a given proper, closed and convex function g is “efficient” (e.g., by a closed
form solution or by polynomial time algorithms) [6]:

proxg(z) := argmin
w
{g(w) + (1/2)‖w − z‖2}. (3)

When the constraint z ∈ Z is available, we consider the proximal operator of g(·) + δZ(·) instead
of g, where δZ is the indicator function of Z . Many smooth and non-smooth convex functions have
tractable proximal operators such as norms, and the projection onto a simple set [3, 7, 4, 5].

1

Scalable algorithms for (1) and their limitations. We can obtain scalable numerical solutions of
(1) when we augment the objective f with simple penalty functions on the constraints. Despite the
fundamental difficulties in choosing the penalty parameter, this approach enhances our computa-
tional capabilities as well as numerical robustness since we can apply modern proximal gradient,
alternating direction, and primal-dual methods. Unfortunately, existing approaches invariably fea-
ture one or both of the following two limitations:
Limitation 1: Non-ideal convergence characterizations. Ideally, the convergence rate characteriza-
tion of a first-order algorithm for solving (1) must simultaneously establish for its iterates xk ∈ X
both on the objective residual f(xk)− f? and on the primal feasibility gap ‖Axk − b‖ of its linear
constraints. The constraint feasibility is critical so that the primal convergence rate has any signif-
icance. Rates on a joint of the objective residual and feasibility gap is not necessarily meaningful
since (1) is a constrained problem and f(xk) − f? can easily be negative at all times as compared
to the unconstrained setting, where we trivially have f(xk)− f? ≥ 0.

Hitherto, the convergence results of state-of-the-art methods are far from ideal; see Table 1 in [28].
Most algorithms have guarantees in the ergodic sense [8, 9, 10, 11, 12, 13, 14] with non-optimal
rates, which diminishes the practical performance; they rely on special function properties to im-
prove convergence rates on the function and feasibility [12, 15], which reduces the scope of their
applicability; they provide rates on dual functions [16], or a weighted primal residual and feasibility
score [13], which does not necessarily imply convergence on the primal residual or the feasibility;
or they obtain convergence rate on the gap function value sequence composed both the primal and
dual variables via variational inequality and gap function characterizations [8, 10, 11], where the
rate is scaled by a diameter parameter of the dual feasible set which is not necessary bounded.
Limitation 2: Computational inflexibility. Recent theoretical developments customize algorithms to
special function classes for scalability, such as convex functions with global Lipschitz gradient and
strong convexity. Unfortunately, these algorithms often require knowledge of function class param-
eters (e.g., the Lipschitz constant and the strong convexity parameter); they do not address the full
scope of (1) (e.g., with self-concordant [barrier] functions or fully non-smooth decompositions); and
they often have complicated algorithmic implementations with backtracking steps, which can cre-
ate computational bottlenecks. These issues are compounded by their penalty parameter selection,
which can significantly decrease numerical efficiency [17]. Moreover, they lack a natural ability to
handle p-decomposability in a parallel fashion at optimal rates.
Our specific contributions. To this end, this paper addresses the question: “Is it possible to effi-
ciently solve (1) using only the proximal tractability assumption with rigorous global convergence
rates on the objective residual and the primal feasibility gap?” The answer is indeed positive pro-
vided that there exists a solution in a bounded feasible set X . Surprisingly, we can still leverage
favorable function classes for fast convergence, such as strongly convex functions, and exploit p-
decomposability at optimal rates.
Our characterization is radically different from existing results, such as in [18, 8, 19, 9, 10, 11, 12,
13]. Specifically, we unify primal-dual methods [20, 21], smoothing (both for Bregman distances
and for augmented Lagrangian functions) [22, 21], and the excessive gap function technique [1] in
one. As a result, we develop an efficient algorithmic framework for solving (1), which covers aug-
mented Lagrangian method [23, 24], [preconditioned] alternating direction method-of-multipliers
([P]ADMM) [8] and fast dual descent methods [18] as special cases.
Based on the new technique, we establish rigorous convergence rates for a few well-known primal-
dual methods, which is optimal (in the sense of first order black-box models [25]) given our partic-
ular assumptions. We also discuss adaptive strategies for trading-off between the objective residual
|f(xk)−f?| and the feasibility gap ‖Axk−b‖, which enhance practical performance. Finally, we
describe how strong convexity of f can be exploited, and numerically illustrate theoretical results.

2 Preliminaries

2.1. A semi-Bregman distance. Given a nonempty, closed and convex set Z ⊆ Rnz , a nonnegative,
continuous and µb-strongly convex function b is called a µb-proximity function (or prox-function)
of Z if Z ⊆ dom (b). Then zc := argminz∈Z b(z) exists and is unique, called the center point of
b. Given a smooth µb-prox-function b of Z (with µb = 1), we define db(z, ẑ) := b(ẑ)−b(z)−
∇b(z)T (ẑ−z), ∀z, ẑ ∈ dom (b), as the Bregman distance between z and ẑ given b. As an example,
with b(z) := (1/2)‖z‖22, we have db(z, ẑ) = (1/2)‖z− ẑ‖22, which is the Euclidean distance.

2

In order to unify both the Bregman distance and augmented Lagrangian smoothing methods, we
introduce a new semi-Bregman distance db(Sx,Sxc) between x and xc, given matrix S. Since S is
not necessary square, we use the prefix “semi” for this measure. We also denote by:

DS
X := sup{db(Sx,Sxc) : x,xc ∈ X}, (4)

the semi-diameter of X . If X is bounded, then 0 ≤ DS
X < +∞.

2.2. The dual problem of (1). Let L(x,y) := f(x) + yT (Ax − b) be the Lagrange function of
(1), where y ∈ Rm is the Lagrange multipliers. The dual problem of (1) is defined as:

g? := max
y∈Rm

g(y), (5)

where g is the dual function, which is defined as:

g(y) := min
x∈X
{f(x) + yT (Ax− b)}. (6)

For y ∈ Rm, let us denote by x?(y) the solution of (6). Corresponding to x?(y), we also define the
domain of g as dom (g) := {y ∈ Rm : x?(y) exists}. If f is continuous on X and if X is bounded,
then x?(y) exists for all y ∈ Rm. Unfortunately, g is nonsmooth, and numerical solutions of (5)
are difficult [25]. In general, we have g(y) ≤ f(x) which is the weak-duality condition in convex
optimization. To guarantee strong duality, i.e., f? = g? for (1) and (5), we need an assumption:
Assumption A. 1. The solution set X ? of (1) is nonempty. The function f is proper, closed and
convex. In addition, either X is a polytope or the Slater condition holds, i.e.: {x ∈ Rn : Ax = b}∩
relint(X) 6= ∅, where relint(X) is the relative interior of X .

Under Assumption A.1, the solution set Y? of (5) is also nonempty and bounded. Moreover, the
strong duality holds, i.e., f? = g?. Any point (x?,y?) ∈ X ? × Y? is a primal-dual solution to (1)
and (5), and is also a saddle point of L, i.e., L(x?,y) ≤ L(x?,y?) ≤ L(x,y?),∀(x,y) ∈ X ×Rm.
2.3. Mixed-variational inequality formulation and the smoothed gap function. We use w :=

[x,y] ∈ Rn × Rm to denote the primal-dual variable, F (w) :=

[
ATy

b−Ax

]
to denote a partial

Karush-Kuhn-Tucker (KKT) mapping, and W := X × Rm. Then, we can write the optimality
condition of (1) as:

f(x)− f(x?) + F (w?)T (w −w?) ≥ 0, ∀w ∈ W, (7)

which is known as the mixed-variational inequality (MVIP) [26]. If we define:

G(w?) := max
w∈W

{
f(x?)− f(x) + F (w?)T (w? −w)

}
, (8)

then G is known as the Auslender gap function of (7) [27]. By the definition of F , we can see that:

G(w?) := max
[x,y]∈W

{
f(x?)− f(x)− (Ax− b)Ty?

}
= f(x?)− g(y?) ≥ 0.

It is clear that G(w?) = 0 if and only if w? := [x?,y?] ∈ W? := X ?×Y?—i.e., the strong duality.

Since G is generally nonsmooth, we strictly smooth it by adding an augmented term:

dγβ(w) ≡ dγβ(x,y) := γdb(Sx,Sx
c) + (β/2)‖y‖2, (9)

where db is a Bregman distance, S is a given matrix, and γ, β > 0 are two smoothness parameters.
The smoothed gap function for G is defined as:

Gγβ(w̄) := max
w∈W

{
f(x̄)− f(x) + F (w̄)T (w̄ −w)− dγβ(w)

}
, (10)

where F is defined in (7). By the definition of G and Gγβ , we can easily show that:

Gγβ(w̄) ≤ G(w̄) ≤ Gγβ(w̄) + max{dγβ(w) : w ∈ W}, (11)

which is key to develop the algorithm in the next section.

Problem (10) is convex, and its solution w?
γβ(w̄) can be computed as:

w?
γβ(w̄) := [x?γ(ȳ),y?β(x̄)]⇔

{
x?γ(ȳ) := argmin

x∈X

{
f(x)+yT (Ax−b)+γdb(Sx,Sx

c)
}

y?β(x̄) := β−1(Ax̄− b).
(12)

3

In this case, the following concave function:

gγ(y) := min
x∈X

{
f(x) + yT (Ax− b) + γdb(Sx,Sx

c)
}
, (13)

can be considered as a smooth approximation of the dual function g defined by (6).
2.4. Bregman distance smoother vs. augmented Lagrangian smoother. Depending on the choice
of S and xc, we deal with two smoothers as follows:

1. If we choose S = I, the identity matrix, and xc is then center point of b, then we obtain a
Bregman distance smoother.

2. If we choose S = A, and xc ∈ X such that Axc = b, then we have the augmented
Lagrangian smoother.

Clearly, with both smoothing techniques, the function gγ is smooth and concave. Its gradient is
Lipschitz continuous with the Lipschitz constant Lgγ := γ−1‖A‖2 and Lgγ := γ−1, respectively.

3 Construction and analysis of a class of first-order primal-dual algorithms
3.1. Model-based excessive gap technique for (1). SinceG(w?) = 0 iff w? = [x?,y?] is a primal-
dual optimal solution of (1)-(5). The goal is to construct a sequence {w̄k} such that G(w̄k) → 0,
which implies that {w̄k} converges to w?. As suggested by (11), if we can construct two sequences
{w̄k} and {(γk, βk)} such that Gγkβk

(w̄k)→ 0+ as γkβk ↓ 0+, then G(w̄k)→ 0.

Inspired by Nesterov’s excessive gap idea in [1], we construct the following model-based excessive
gap condition for (1) in order to achieve our goal.
Definition 1 (Model-based Excessive Gap). Given w̄k ∈ W and (γk, βk) > 0, a new point w̄k+1 ∈
W and (γk+1, βk+1) > 0 with γk+1βk+1 < γkβk is said to reduce the primal-dual gap if:

Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k)− ψk, (14)

where Gk := Gγkβk
, τk ∈ [0, 1) and ψk ≥ 0.

From Definition 1, if
{
w̄k
}

and {(γk, βk)} satisfy (14), then we have Gk(w̄k) ≤ ωkG0(w̄0)−Ψk

by induction, where ωk :=
∏k−1
j=0 (1−τj) and Ψk := ψk+

∑k
j=1

∏k
i=j(1−τi)ψj−1. IfG0(w̄0) ≤ 0,

then we can bound the objective residual |f(x̄k)− f?| and the primal feasibility ‖Ax̄k − b‖ of (1):

Lemma 1 ([28]). Let Gγβ be defined by (10). Let
{
w̄k
}
⊂ W and {(γk, βk)} ⊂ R2

++ be the
sequences that satisfy (14). Then, it holds that:

−D?
Y‖Ax̄k − b‖ ≤ f(x̄k)− f? ≤ γkDS

X and ‖Ax̄k − b‖ ≤ 2βkD
?
Y +

√
2γkβkDS

X , (15)

where D?
Y := min {‖y?‖ : y? ∈ Y?}, which is the norm of a minimum norm dual solutions.

Hence, we can derive algorithms based (γk, βk) with a predictable convergence rate via (15). In the
sequel, we manipulate τk and ψk to do just that in order to preserve (14) á la Nesterov [1]. Finally,
we say that x̄k ∈ X is an ε-solution of (1) if |f(x̄k)− f?| ≤ ε and ‖Ax̄k − b‖ ≤ ε.
3.2. Initial points. We first show how to compute an initial point w0 such that G0(w̄0) ≤ 0.
Lemma 2 ([28]). Given xc ∈ X , w̄0 := [x̄0, ȳ0] ∈ W is computed by:{

x̄0 = x?γ0(0m) := arg min
x∈X
{f(x) + (γ0/2)db(Sx,Sx

c)} ,

ȳ0 = y?β0
(x̄0) := β−10 (Ax̄0 − b).

(16)

satisfies Gγ0β0
(w̄0) ≤ 0 provided that β0γ0 ≥ L̄g , where L̄g is the Lipschitz constant of ∇gγ with

gγ given by (13).

3.3. An algorithmic template. Algorithm 1 combines the above ingredients for solving (1). We
observe that the key computational step of Algorithm 1 is Step 3, where we update [x̄k+1, ȳk+1]. In
the algorithm, we provide two update schemes (1P2D) and (2P1D) based on the updates of the
primal or dual variables. The primal step x?γk(ȳk) is calculated via (12). At line 3 of (2P1D), the
operator proxS

βf is computed as:

proxS
βf (x̂, ŷ) := argmin

x∈X

{
f(x) + ŷTA(x− x̂) + β−1db(Sx,Sx̂)

}
, (17)

4

Algorithm 1: (A primal-dual algorithmic template using model-based excessive gap)
Inputs: Fix γ0>0. Choose c0∈(−1, 1].
Initialization:
1: Compute a0 := 0.5(1+c0+

√
4(1−c0)+(1+c0)2, τ0 := a−10 , and β0 := γ−10 L̄g (c.f. the text).

2: Compute [x̄0, ȳ0] by (16) as in Lemma 2.
For k = 0 to kmax, perform the following steps:
3: If stopping criterion holds, then terminate. Otherwise, use one of the following schemes:

(2P1D) :

x̂k := (1− τk)x̄k + τkx

?
γk

(ȳk)

ŷk := β−1k+1(Ax̂k − b)
x̄k+1 := proxS

βk+1f
(x̂k, ŷk)

ȳk+1 := (1− τk)ȳk + τkŷ
k.

(1P2D) :

ȳ?k := β−1k (Ax̄k − b),
ŷk := (1− τk)ȳk + τkȳ

?
k,

x̄k+1 := (1−τk)x̄k+τkx
?
γk

(ŷk),
ȳk+1 := ŷk+γk

(
Ax?γk(ŷ

k)−b
)
.

4: Update βk+1 := (1− τk)βk and γk+1 := (1− ckτk)γk. Update ck+1 from ck (optional).
5: Update ak+1 := 0.5

(
1 + ck+1 +

√
4a2k + (1− ck+1)2

)
and set τk+1 := a−1k+1.

End For

where we overload the notation of the proximal operator prox defined by (3). At Step 2 of Algorithm
1, if we choose S := I, i.e., db(Sx,Sxc) := db(x,x

c) for xc being the center point of b, then we set
L̄g := ‖A‖2. If S := A, i.e., db(Sx,Sxc) := (1/2)‖Ax− b‖2, then we set L̄g := 1.

Theorem 1 characterizes three variants of Algorithm 1, whose proof can be found in [28].
Theorem 1. Let

{
(x̄k, ȳk)

}
be the sequence generated by Algorithm 1 after k iterations. Then:

a) If S = A, i.e., using the augmented Lagrangian smoother, γ0 :=
√
L̄g = 1, and ck := 0, then

the (1P2D) update satisfies:

(1P2D) : − 1

2
‖Ax̄k−b‖2−D?

Y‖Ax̄k−b‖ ≤ f(x̄k)− f? ≤ 0 and ‖Ax̄k−b‖ ≤
8D?
Y

(k + 1)2
.

Consequently, the worst-case complexity of Algorithm 1 to achieve an ε-solution x̄k is O(ε−1/2).

b) If S = I, i.e., using the Bregman distance smoother, γ0 :=
√
L̄g = ‖A‖, and ck := 1, then, for

the (2P1D) scheme, we have:

(2P1D) : −D?
Y‖Ax̄k− b‖≤f(x̄k)− f? ≤ ‖A‖

k+1
DI
X and ‖Ax̄k− b‖ ≤

‖A‖(2D?
Y+
√

2DI
X)

k + 1
.

c) Similarly, if γ0 := 2
√
2‖A‖
K+1 and ck := 0 for all k = 0, 1, . . . ,K, then, for the (1P2D) scheme, we

have:

(1P2D) : −D?
Y‖Ax̄K−b‖≤f(x̄K)−f? ≤ 2

√
2‖A‖

(K+1)
DI
X and ‖Ax̄K−b‖≤

2
√

2‖A‖(D?
Y+
√
DI
X)

(K+1)
.

Hence, the worst-case complexity to achieve an ε-solution x̄k of (1) in either b) or c) is O
(
ε−1
)
.

The (1P2D) scheme has close relationship to some well-known primal dual methods we describe
below. Unfortunately, (1P2D) has the drawback of fixing the total number of iterations a priori,
which (2P1D) can avoid at the expense of one more proximal operator calculation at each iteration.
3.4. Impact of strong convexity. We can improve the above schemes when f ∈ Fµ, i.e., f is
strongly convex with parameter µf > 0. The dual function g given in (6) is smooth and Lipschitz
gradient with Lgf := µ−1f ‖A‖2. Let us illustrate this when S = I and using the (1P2D) scheme as:

(1P2Dµ) :

ŷk := (1−τk)ȳk+τkβ

−1
k (Ax̄k − b),

x̄k+1 := (1−τk)x̄k+τkx
?(ŷk),

ȳk+1 := ŷk+ 1
Lg

f

(
Ax?(ŷk)−b

)
.

Here, x?(ŷk) is the solution of (6) at ŷk. We can still choose the starting point as in (16) with β0 :=
Lgf . The parameters βk and τk at Steps 4 and 5 of Algorithm 1 are updated as βk+1 := (1− τk)βk,

5

and τk+1 := τk
2 (
√
τ2k + 4 − τk), where β0 := Lgf and τ0 := (

√
5 − 1)/2. The following corollary

illustrates the convergence of Algorithm 1 using (1P2Dµ); see [28] for the detail proof.
Corollary 1. Let f ∈ Fµ and

{
(x̄k, ȳk)

}
k≥0 be generated by Algorithm 1 using (1P2Dµ). Then:

−D?
Y‖Ax̄k − b‖ ≤ f(x̄k)− f? ≤ 0 and ‖Ax̄k − b‖ ≤

4‖A‖2D?
Y

µf (k + 2)2
.

Moreover, we also have ‖x̄k − x?‖ ≤ 4‖A‖
(k+2)µf

D?
Y .

It is important to note that, when f ∈ Fµ, we only have one smoothness parameter β and, hence,
we do not need to fix the number of iterations a priori (compared with [18]).

4 Algorithmic enhancements through existing methods
Our framework can be applied to develop other variants of popular primal-dual methods for (1)
including alternating minimization algorithms and alternating direction methods of multipliers. We
illustrate in this section three variants of Algorithm 1. We also borrow adaptation heuristics from
other algorithms to enhance our practical performance.
4.1. Proximal-based decomposition method. We can choose xkc := x?γk−1

(ŷk−1). This makes
the (1P2D) scheme of Algorithm 1 similar to the proximal-based decomposition algorithm in [30],
which employs the proximal term db(·, x̂?k−1) with the Bregman distance db.

4.2. ADMM. Let f and X be 2-decomposable, i.e., f(x) := f1(x1) + f2(x2) and X := X1 × X2.
We can apply the (1P2D) scheme of Algorithm 1 to this case with f1 being fγ,1(·) := f1(·) +
γ
2 ‖A1(· − xc1)‖22 for fixed xc1 ∈ X1. For this variant, we substitute the primal step of computing
x?γ(ŷk) = [x?γ,1(ŷk),x?γ,2(ŷk)] in (1P2D) by the following alternating step:x?γ,1(ŷk) := arg min

x1∈X1

{
f1(x1)+(ŷk)TA1x1+

ρk
2
‖A1x1+A2x̂

k
2−b‖2+

γ

2
‖A1(x1−xc1)‖22

}
x?γ,2(ŷk) := arg min

x2∈X2

{
f2(x2)+ (ŷk)TA2x2+

ηk
2
‖A1x

?
γ,1(ŷk) + A2x2−b‖2

}
.

(18)

Here, ρk and ηk are two penalty parameters, and x̂k2 is the previous iteration of x?γ,2(ŷk). The update
of parameters, as well as the complete algorithm and its convergence can be found in [29].
4.3. Primal-dual hybrid gradient (PDHG). When A1 and A2 are not orthogonal, one can linearize
the quadratic terms in both steps of (18) to obtain a new preconditioned ADMM (PADMM) algo-
rithm that employes the proximal operator of f1 and f2 instead of two general convex subproblems.
In this case, the (1P2D) scheme with (18) leads to a new variant of PADMM in [8] or PDHG in [9].
Details of the complete algorithm can be found in [29].
4.4. Enhancements of our schemes. For the PADMM and ADMM methods, a great deal of
adaptation techniques has been proposed to enhance their convergence. We can view some of these
techniques in the light of model-based excessive gap condition. For instance, Algorithm 1 decreases
the smoothed gap function Gγkβk

as illustrated in Definition 1. The actual decrease is then given by
f(x̄k) − f? ≤ γk(DS

X − Ψk/γk). In practice, Dk := DS
X − Ψk/γk can be dramatically smaller

than DS
X in the early iterations. This implies that increasing γk can improve practical performance.

Such a strategy indeed forms the basis of many adaptation techniques in PADMM and in ADMM.

Specifically, if γk increases, then τk also increases and βk decreases. Since βk measures the primal
feasibility gap Fk := ‖Ax̄k − b‖ due to Lemma 1, we should only increase γk if the feasibility
gap Fk is relatively high. Indeed, when xc = xck is updated adaptively, we can compute the dual
feasibility gap as Hk := γk‖AT

1 A2((x̂?2)k+1 − (x̂?2)k)‖. Then, if Fk ≥ sHk for some s > 0, we
increase γk+1 := cγk for some c > 1 (we use ck = c := 1.05 in practice). We can also decrease the
parameter γk in (1P2D) by γk+1 := (1 − ckτk)γk, where ck := db(Sx

?
γk

(ŷk),Sxc)/D
S
X ∈ [0, 1]

after or during the update of (x̄k+1, ȳk+1) as in (2P1D) if we know the estimate DS
X .

5 Numerical illustrations

5.1. Theoretical vs. practical bounds. We demonstrate the empirical performance of Algorithm 1
w.r.t. its theoretical bounds via a basic non-overlapping sparse-group basis pursuit problem:

min
x∈Rn

{∑ng

i=1
wi‖xgi‖2 : Ax = b, ‖x‖∞ ≤ ρ

}
, (19)

6

where ρ > 0 is the signal magnitude, and gi andwi’s are the group indices and weights, respectively.

0 2000 4000 6000 8000 10000

10
−5

10
0

10
5

ite rat i ons

|f
(x

k
)
−

f
∗
|
in

lo
g
-s
c
a
le

0 2000 4000 6000 8000 10000

10
−10

10
−5

10
0

10
5

ite rat i ons

‖
A
x

k
−

b
‖
in

lo
g
-s
c
a
le

0 2000 4000 6000 8000 10000

10
−5

10
0

10
5

i te rat i ons

|f
(x

k
)
−

f
∗
|
in

lo
g
-s
c
a
le

0 2000 4000 6000 8000 10000

10
−10

10
−5

10
0

10
5

i te rat i ons

‖
A
x

k
−

b
‖
in

lo
g
-s
c
a
le

Theoretical bound

Basic 2P1D algorithm

2P1D algorithm

Theoretical bound

Basic 1P2D algorithm

1P2D algorithm

0 2000 4000 6000 8000 10000
10

−10

10
−5

10
0

10
5

i te rat i ons

|f
(x

k
)
−

f
∗
|
in

lo
g
-s
c
a
le

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

10
5

ite rat i ons

‖
A
x

k
−

b
‖
in

lo
g
-s
c
a
le

0 2000 4000 6000 8000 10000
10

−10

10
−5

10
0

10
5

ite rat i ons

|f
(x

k
)
−

f
∗
|
in

lo
g
-s
c
a
le

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

10
5

i te rat i ons

‖
A
x

k
−

b
‖
in

lo
g
-s
c
a
le

Theoretical bound

Basic 1P2D algorithm

1P2D algorithm

Theoretical bound

Basic 2P1D algorithm

2P1D algorithm

Figure 1: Actual performance vs. theoretical bounds: [top row] – the decomposable Bregman distance
smoother (S = I), and [bottom row] – the augmented Lagrangian smoother (S = A).

In this test, we fix xc = 0n and db(x,xc) := (1/2)‖x‖2. Since ρ is given, we can evaluate DX
numerically. By solving (19) with the SDPT3 interior-point solver [31] up to the accuracy 10−8, we
can numerically estimate D?

Y and f?. In the (2P1D) scheme, we set γ0 = β0 =
√
L̄g , while, in

the (1P2D) scheme, we set γ0 := 2
√

2‖A‖(K + 1)−1 with K := 104 and generate the theoretical
bounds defined in Theorem 1.

We test the performance of the four variants using a synthetic data: n = 1024, m = bn/3c = 341,
ng = bn/8c = 128, and x\ is a bng/8c-sparse vector. Matrix A is generated randomly using the iid
standard Gaussian and b := Ax\. The group indices gi is also generated randomly (i = 1, · · · , ng).

The empirical performance of two variants: (2P1D) and (1P2D) of Algorithm 1 is shown in Fig-
ure 1. The basic algorithm refers to the case when xck := xc = 0n and the parameters are not tuned.
Hence, at each iteration of the basic (1P2D), it requires only 1 proximal calculation and applies A
and AT once each, and at each iteration of the basic (2P1D), we use 2 proximal calculations and
apply A twice and AT once. In contrast, (2P1D) and (1P2D) variants whose iterations require one
more application of AT for adaptive parameter updates.

As can be seen from Figure 1 (row 1) that the empirical performance of the basic variants roughly
follows theO(1/k) convergence rate in terms of |f(x̄k)−f?| and ‖Ax̄k−b‖. The deviations from
the bound are due to the increasing sparsity of the iterates, which improves empirical convergence.
With a kick-factor of ck = −0.02/τk and adaptive xck, both turned variants (2P1D) and (1P2D)
significantly outperform theoretical predictions. Indeed, they approach x? up to 10−13 accuracy,
i.e., ‖x̄k − x?‖ ≤ 10−13 after a few hundreds of iterations.

Similarly, Figure 1 (row 2) illustrates the actual performance vs. the theoretical bounds O(1/k2) by
using the augmented Lagrangian smoother. Here, we solve the subproblems (13) and (17) by using
FISTA [32] up to 10−8 accuracy as suggested in [28]. In this case, the theoretical bounds and the
actual performance of the basis variants are very close to each other both in terms of |f(x̄k) − f?|
and ‖Ax̄k − b‖. When the parameter γk is updated, the algorithms exhibit a better performance.
5.2. Binary linear support vector machine. This example is concerned with the following binary
linear support vector machine problem:

min
x∈Rn

{
F (x) :=

∑m

j=1
`j(yj ,w

T
j x− bj) + g(x)

}
, (20)

where `j(·, ·) is the Hinge loss function given by `j(s, τ) := max {0, 1− sτ} = [1 − sτ]+, wj is
the column of a given matrix W ∈ Rm×n, b ∈ Rn is the intercept vector, y ∈ {−1,+1}m is a
classifier vector g is a given regularization function, e.g., g(x) := (λ/2)‖x‖2 for the `2-regularizer
or g(x) := λ‖x‖1 for the `1-regularizer, where λ > 0 is a regularization parameter.

By introducing a slack variable r = Wx− b, we can write (20) in terms of (1) as:

min
x∈Rn,r∈Rm

{∑m

j=1
`j(yj , rj) + g(x) : Wx− r = b

}
. (21)

7

Now, we apply the (1P2D) variant to solve (21). We test this algorithm on (21) and compare it
with LibSVM [33] using two problems from the LibSVM data set available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvmtools/datasets/. The first problem is a1a, which has p = 119
features andN = 1605 data points, while the second problem is news20, which has p = 1′355′191
features and N = 19′996 data points.

We compare Algorithm 1 and the LibSVM solver in terms of the final value F (xk) of the orig-
inal objective function F , the computational time, and the classification accuracy caλ := 1 −
N−1

∑N
j=1

[
sign(Wxk − r) 6= y)

]
of both training and test data set. We randomly select 30%

data in a1a and news20 to form a test set, and the remaining 70% data is used for training. We
perform 10 runs and compute the average results. These average results are plotted in Fig. 2 for two
separate problems, respectively. The upper and lower bounds show the maximum and minimum
values of these 10 runs.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

x 10
8 The objective values

Paramete r hor i z on (λ− 1)

T
h
e
o
b
je
c
ti
v
e
v
a
lu

e
s
F
(x

k
)

1P2D

LibSVM

0 200 400 600 800 1000

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

The classification accuracy (training data)

Paramete r hor i z on (λ− 1)

T
h

e
 c

la
s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

tr
a

in
in

g
 s

e
t)

1P2D

LibSVM

0 200 400 600 800 1000

0.74

0.76

0.78

0.8

0.82

0.84

0.86
The classification accuracy (test data)

Paramete r hor i z on (λ− 1)

T
h

e
 c

la
s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

te
s
t

s
e

t)

0 200 400 600 800 1000
−2

0

2

4

6

8

10

12

14

16

The CPU time [second]

Paramete r hor i z on (λ− 1)

T
h

e
 C

P
U

 t
im

e
 [

s
e

c
o

n
d

]

1P2D

LibSVM
1P2D

LibSVM

0 200 400 600 800 1000

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7 The objective values

Paramete r hor i z on (λ− 1)

T
h
e
o
b
je
c
ti
v
e
v
a
lu

e
F
(x

k
)

1P2D

LibSVM

0 200 400 600 800 1000

0.5

0.6

0.7

0.8

0.9

1

The classification accuracy (training data)

Paramete r hor i z on (λ− 1)

T
h

e
 c

la
s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

tr
a

in
in

g
 s

e
t)

1P2D

LibSVM

0 200 400 600 800 1000

0.5

0.6

0.7

0.8

0.9

1

The classification accuracy (test data)

Paramete r hor i z on (λ− 1)

T
h

e
 c

la
s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

te
s
t

s
e

t)

1P2D

LibSVM

0 200 400 600 800 1000
400

450

500

550

600

650

700

750

800

850

The CPU time [second]

Paramete r hor i z on (λ− 1)

C
P

U
 t

im
e

 [
s
e

c
o

n
d

]

1P2D

LibSVM

Figure 2: The average performance results of the two algorithms on the a1a (first row) and news20
(second row) problems.

As can be seen from these results that both solvers give relatively the same objective values, the
accuracy for these two problems, while the computational of (1P2D) is much lower than LibSVM.
We note that LibSVM becomes slower when the parameter λ becomes smaller due to its active-set
strategy. The (1P2D) algorithm is almost independent of the regularization parameter λ, which is
different from active-set methods. In addition, the performance of (1P2D) can be improved by tak-
ing account its parallelization ability, which has not fully been exploited yet in our implementation.

6 Conclusions
We propose a model-based excessive gap (MEG) technique for constructing and analyzing first-order
primal-dual methods that numerically approximate an optimal solution of the constrained convex
optimization problem (1). Thanks to a combination of smoothing strategies and MEG, we propose,
to the best of our knowledge, the first primal-dual algorithmic schemes for (1) that theoretically
obtain optimal convergence rates directly without averaging the iterates and that seamlessly handle
the p-decomposability structure. In addition, our analysis techniques can be simply adapt to handle
inexact oracle produced by solving approximately the primal subproblems (c.f. [28]), which is
important for the augmented Lagrangian versions with lower-iteration counts. We expect a deeper
understanding of MEG and different smoothing strategies to help us in tailoring adaptive update
strategies for our schemes (as well as several other connected and well-known schemes) in order to
further improve the empirical performance.

Acknowledgments. This work is supported in part by the European Commission under the grants MIRG-
268398 and ERC Future Proof, and by the Swiss Science Foundation under the grants SNF 200021-132548,
SNF 200021-146750 and SNF CRSII2-147633.

8

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

References
[1] Y. Nesterov, “Excessive gap technique in nonsmooth convex minimization,” SIAM J. Optim., vol. 16, no. 1, pp. 235–249, 2005.

[2] D. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: Numerical methods. Prentice Hall, 1989.

[3] V. Chandrasekaran, B. Recht, P. Parrilo, and A. Willsky, “The convex geometry of linear inverse problems,” Laboratory for Informa-
tion and Decision Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Tech.
Report., 2012.

[4] M. B. McCoy, V. Cevher, Q. Tran-Dinh, A. Asaei, and L. Baldassarre, “Convexity in source separation: Models, geometry, and algo-
rithms,” IEEE Signal Processing Magazine, vol. 31, no. 3, pp. 87–95, 2014.

[5] M. J. Wainwright, “Structured regularizers for high-dimensional problems: Statistical and computational issues,” Annual Review of
Statistics and its Applications, vol. 1, pp. 233–253, 2014.

[6] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in Optimization, vol. 1, no. 3, pp. 123–231, 2013.

[7] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,” Multiscale Model. Simul., vol. 4, pp. 1168–
1200, 2005.

[8] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging,” Journal of Mathe-
matical Imaging and Vision, vol. 40, no. 1, pp. 120–145, 2011.

[9] T. Goldstein, E. Esser, and R. Baraniuk, “Adaptive primal-dual hybrid gradient methods for saddle point problems,” Tech. Report., vol.
http://arxiv.org/pdf/1305.0546v1.pdf, pp. 1–26, 2013.

[10] B. He and X. Yuan, “On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers,” Numer. Math.,
DOI 10.1007/s00211-014-0673-6, 2014.

[11] ——, “On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method,” SIAM J. Numer. Anal., vol. 50, pp.
700–709, 2012.

[12] Y. Ouyang, Y. Chen, G. L. Lan., and E. J. Pasiliao, “An accelerated linearized alternating direction method of multiplier,” Tech, 2014.

[13] R. Shefi and M. Teboulle, “Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for
convex minimization,” SIAM J. Optim., vol. 24, no. 1, pp. 269–297, 2014.

[14] H. Wang and A. Banerjee, “Bregman alternating direction method of multipliers,” Tech. Report, pp. 1–18, 2013. Online at:
http://arxiv.org/pdf/1306.3203v1.pdf.

[15] H. Ouyang, N. He, L. Q. Tran, and A. Gray, “Stochastic alternating direction method of multipliers,” JMLR W&CP, vol. 28, pp. 80–88,
2013.

[16] T. Goldstein, B. O. Donoghue, and S. Setzer, “Fast alternating direction optimization methods,” SIAM J. Imaging Sci., vol. 7, no. 3,
pp. 1588–1623, 2014.

[17] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[18] A. Beck and M. Teboulle, “A fast dual proximal gradient algorithm for convex minimization and applications,” Oper. Res. Letter, vol. 42,
no. 1, pp. 1–6, 2014.

[19] W. Deng and W. Yin, “On the global and linear convergence of the generalized alternating direction method of multipliers,” Rice Uni-
versity CAAM, Tech. Rep., 2012, tR12-14.

[20] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods. Athena Scientific, 1996.

[21] R. T. Rockafellar, “Augmented lagrangians and applications of the proximal point algorithm in convex programming,” Mathematics of
Operations Research, vol. 1, pp. 97–116, 1976.

[22] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math. Program., vol. 103, no. 1, pp. 127–152, 2005.

[23] G. Lan and R. Monteiro, “Iteration-complexity of first-order augmented Lagrangian methods for convex programming,” Math. Program.,
DOI 10.1007/s10107-015-0861-x, 2015.

[24] V. Nedelcu, I. Necoara, and Q. Tran-Dinh, “Computational complexity of inexact gradient augmented Lagrangian methods: Application
to constrained MPC,” SIAM J. Optim. Control, vol. 52, no. 5, pp. 3109–3134, 2014.

[25] Y. Nesterov, Introductory lectures on convex optimization: a basic course, Kluwer Academic Publishers, 2004, vol. 87.

[26] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and complementarity problems, N. York, Ed. Springer-Verlag,
2003, vol. 1-2.

[27] A. Auslender, Optimisation: Méthodes Numériques. Paris: Masson, 1976.

[28] Q. Tran-Dinh and V. Cevher, “A primal-dual algorithmic framework for constrained convex minimization,” Tech. Report., LIONS, pp.
1–54, 2014.

[29] Q. Tran-Dinh and V. Cevher, “Optimal-rate and tuning-free alternating algorithms for constrained convex optimization,” Tech. Report.,
LIONS, 2015.

[30] G. Chen and M. Teboulle, “A proximal-based decomposition method for convex minimization problems,” Math. Program., vol. 64, pp.
81–101, 1994.

[31] K.-C. Toh, M. Todd, and R. Tütüncü, “On the implementation and usage of SDPT3 – a Matlab software package for semidefinite-
quadratic-linear programming, version 4.0,” NUS Singapore, Tech. Report, 2010.

[32] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[33] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 27, pp. 1–27, 2011.

9

	Introduction
	Preliminaries
	Construction and analysis of a class of first-order primal-dual algorithms
	Algorithmic enhancements through existing methods
	Numerical illustrations
	Conclusions

