Supporting Information

Hydrogen and Hydrogen Peroxide Formation in Trifluorotoluene-Water Biphasic System

Wojciech Adamiak,^a* Justyna Jedraszko,^a Olga Krysiak,^a Wojciech Nogala,^a Jonnathan C. Hidalgo-Acosta,^b Hubert H. Girault,^b Marcin Opallo ^a*

^a Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
^b Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland

Calculation of the Galvani potential difference between TFT and W

Assuming that (1) volumes of TFT and W phase are equal, and (2) ion activities are equal to their concentrations, the Galvani potential difference between TFT and W can be calculated from the equation:¹

$$\sum_{i=1} \frac{z_i c_i^0(W)}{1 + \exp\left[\left(\frac{z_i F}{RT}\right) \left(\Delta_W^{\text{TFT}} \phi_i^{\ominus} - \Delta_W^{\text{TFT}} \phi\right)\right]} + \sum_{i=1} \frac{z_i c_i^0(\text{TFT})}{1 + \exp\left[\left(\frac{z_i F}{RT}\right) \left(\Delta_W^{\text{TFT}} \phi_i^{\ominus} - \Delta_W^{\text{TFT}} \phi\right)\right]} = 0$$
(s1)

where $c_i^0(W)$, $c_i^0(TFT)$ are initial concentrations of ion *i* in W and TFT phase, respectively. Table S1 lists transfer potentials and initial concentrations of ions present in the studied TFT-W biphasic system necessary to solve eq. (s1). The calculated $\Delta_W^{TFT}\phi$ is equal -0.447 V.

Table S1. Standard transfer potentials $(\Delta_W^{\text{TFT}} \phi_i^{\ominus})$ and concentrations of ions in the TFT-W biphasic system with BATB in TFT.

Ion, <i>i</i>	$\Delta_{\mathrm{W}}^{\mathrm{TFT}} oldsymbol{\phi}_i^{\ominus}$ / V	$c_i^0(W)/M$	$c_i^0(\text{TFT}) / \text{M}$
BA^+	0.636 ^{<i>a</i>}	0	0.005
H^+	-0.523	0.1	0
TB	-0.616	0.005	0.005
Li ⁺	-0.650^{a}	0.005	0
ClO ₄	0.235	0.1	0

^{*a*} Calculated from eq. (4) and (6) in the paper with $\Delta_W^{DCE} G_{BA^+}^{\ominus} = -64.6 \text{ kJ mol}^{-1}$ and $\Delta_W^{DCE} G_{Li^+}^{\ominus} = 62.7 \text{ kJ mol}^{-1.5}$

Calculation of HTB and H⁺ concentrations in TFT

Transfer of HTB from W to TFT is described by the reaction:

$$H^{+}_{(W)} + TB^{-}_{(W)} \rightleftarrows HTB_{(TFT)}$$
(s2)

whose $\Delta G^{\ominus} = -40.7 \text{ kJ mol}^{-1}$. The equilibrium constant

$$K_{1} = \frac{[\text{HTB}]_{(\text{TFT})}}{[\text{H}^{+}]_{(\text{W})}[\text{TB}^{-}]_{(\text{W})}}$$
(s3)

where $[HTB]_{(TFT)}$ is the equilibrium concentration of HTB in TFT, $[H^+]_{(W)}$ and $[TB^-]_{(W)}$ are equilibrium concentrations of H^+ and TB^- in W, respectively, can be calculated as

$$K_1 = \exp\left(-\frac{\Delta G^{\ominus}}{RT}\right) = 1,35 \times 10^7 \tag{s4}$$

Since the volumes of both liquid phases are equal, one can substitute:

$$[H^{+}]_{(W)} = c_{H^{+}(W)}^{0} - \left[H^{+}TB^{-}\right]_{(TFT)}$$
(s5)

$$\left[TB^{-} \right]_{(W)} = c^{0}_{TB^{-}(W)} - \left[H^{+}TB^{-} \right]_{(TFT)}$$
 (s6)

to equation (s3). Next, by taking $K_1 = 1,35 \times 10^7$, $c_{H^+}^0(W) = 0.1 \text{ mol } dm^{-3}$, $c_{TB^-}^0(W) = 0.005 \text{ mol } dm^{-3}$ one solves eq. (s3) to obtain $\left[H^+TB^-\right]_{(TFT)} = 0.005 \text{ mol } dm^{-3}$. This means that TB⁻ transfer H⁺ stoichiometrically from W to TFT.

The concentration of H^+ and TB^- in TFT can then be calculated from HTB dissociation equilibrium:

$$HTB_{(TFT)} \rightleftharpoons H^{+}_{(TFT)} + TB^{-}_{(TFT)}$$
(s7)

The equilibrium constant

$$K_2 = \frac{\left[\mathrm{H^+}\right]_{(\mathrm{TFT})} \left[\mathrm{TB^-}\right]_{(\mathrm{TFT})}}{\left[\mathrm{HTB}\right]_{(\mathrm{TFT})}} \tag{s8}$$

can be calculated as:

$$K_2 = \exp\left(\frac{\Delta_{as}G}{RT}\right) = 2.68 \times 10^{-6} \tag{s9}$$

where $\Delta_{as}G$ is the association energy calculated from equation (15) in the paper and equal to -31.8 kJ mol⁻¹. By substituting

$$[HTB]_{(TFT)} = c_{HTB(TFT)}^{0} - [H^+]_{(TFT)}$$
(s10)

$$[H^+]_{(TFT)} = [TB^-]_{(TFT)}$$
(s11)

to eq. (s8) and taking $K_2 = 2.68 \times 10^{-6}$, $c_{\text{HTB (TFT)}}^0 = 0.005$ mol dm⁻³, one calculates [H⁺]_(TFT) = $[\text{TB}^-]_{(\text{TFT})} = 0.0001$ mol dm⁻³. This corresponds to the degree of HTB dissociation of 2%.

References

[s1] Volkov, A. E. G. *Liquid Interfaces in Chemical, Biological and Pharmaceutical Applications*; Marcel Dekker: New York, 2001.