
Robust visual tracking using
feature selection

Master thesis

Fabien Willemin
epfl ee lts2 – 2013

fabien.willemin@epfl.ch

Supervised by:

Pierre Vandergheynst – EPFL
Signal Processing Lab
http://lts2www.epfl.ch

Johan Paratte – EPFL
Signal Processing Lab
http://lts2www.epfl.ch

mailto:fabien.willemin@epfl.ch
http://lts2www.epfl.ch
http://lts2www.epfl.ch

Abstract
Visual tracking has become a very important component in computer vision, but

achieving a robust, reliable and real time tracking remains a real challenge.
In order to improve the actual state-of-the-art, we choose to study and improve

one of the most performing adaptive tracker by detection. We selected Struck [27]
for this quality performance and his low computational cost that makes it real time.

Inspired by the great successes of binary keypoint descriptors, we choose to apply
binary description to a patch. We propose to use Multi-Block Local Binary Pattern
(MB-LBP), based on its great success in face detection and description. In this work
we present a technique for selecting the best features for tracking. In combination
with the feature selection we propose a technique to take into account contextual
information in order to increase the robustness of the tracker.

We propose a solution to add scale adaptation to the algorithm, and suggest to
transpose this technique to add rotation adaptation.

Experimentally we validate these techniques showing that we outperform the
state-of-art tracking algorithms. To do that we use a benchmarking tool using 51
videos and compare our algorithm to 29 algorithms.

Contents

Contents

Contents v

Acronyms vii

Introduction 1

I Theoretical Foundations 3

1 Visual tracking 5
1.1 Purpose . 5
1.2 Techniques . 5

1.2.1 Snakes models [38] . 5
1.2.2 Condensation [34] . 5
1.2.3 Mean shift [15, 16] . 5

1.3 Tracking by detection [6] . 5
1.3.1 Representation Scheme . 5
1.3.2 Search Mechanism . 6
1.3.3 Model Update . 6
1.3.4 Context and Fusion of Trackers . 7

2 Patch description 9
2.1 Purpose . 9
2.2 Feature-point description . 9

2.2.1 SIFT . 9
2.2.2 SURF . 9
2.2.3 BRISK . 9
2.2.4 FREAK . 10

2.3 Feature Patch description . 10
2.3.1 Haar-like . 10
2.3.2 Local Binary Patterns . 10
2.3.3 Multi-Block LBP . 10

3 Machine Learning 13
3.1 Purpose . 13
3.2 Support Vector Machine . 13
3.3 Structured output SVM . 13

4 Benchmarking 15
4.1 Dataset . 15
4.2 Evaluation Methodology . 16

4.2.1 Precision plot . 16
4.2.2 Success plot . 16
4.2.3 Ranking . 16
4.2.4 Robustness Evaluation . 16

–v–

Contents

II Contributions and Applications 17

5 Motivation 19
5.1 State of the art . 19
5.2 Struck . 20

6 Feature Choice 23
6.1 Motivation . 23

6.1.1 Realtime constraint . 23
6.1.2 Illumination invariance . 23
6.1.3 Scale invariance . 23
6.1.4 Rotation invariance . 23

6.2 Binary keypoint descriptor . 23
6.3 MB-LBP . 24

6.3.1 Fully random sampling . 25
6.3.2 Feature selection . 26

7 Extension of Search Space 29
7.1 Size adaptation . 29
7.2 Rotation adaptation . 29

8 Context-awareness (tracking) 31
8.1 Idea . 31
8.2 Algorithm . 31

9 Benchmarking 33
9.1 Success plot . 33
9.2 Precision plot . 37

III Conclusion 43

Conclusion 45
Future work . 45

Technical details 47

Acknowledgements 49

Equipment and software 51

References 53

–vi–

Acronyms

Acronyms
BRISK Binary Robust Invariant Scalable Keypoints

BRIEF Binary Robust Independant Elementary Features

ORB Oriented FAST and Rotated BRIEF

FREAK Fast Retina Keypoint

HOG Histograms of Oriented Gradients

LBP Local Binary Patterns

MB-LBP Multi-Block LBP

SIFT Scale-Invariant Feature Transform

SURF Speeded-Up Robust Features

SVM Support Vector Machine

Struck Structured Output Tracking with Kernels

–vii–

Acronyms

–viii–

Introduction

Introduction
Due to the low cost and the increasing quality of the visual sensors, they have become a
good choice for the motion estimation of objects. The noninvasive aspect makes video
cameras very versatile, but the drawback is the poor reliability. Having a robust and
reliable visual tracking using cameras can have great applications and at the same time
hard to achieve, and this makes the subject very interesting.

This task is indeed a real challenge, and the reason is that even if tracking a semantic
object is relatively obvious for a human, the problem is not easy to define in term of
images. The recent evolution in computing power and computer vision has made possible
to tackle this challenge only in recent years. The importance of having a really reliable,
robust and precise tracking has stimulated the current research in the area [83]. The scope
of the domain of applications is wide and we can cite surveillance [28, 13, 31], human
computer interaction [63, 75, 33], medical imaging [22] and robotics [32, 78].

In this document we only focus on online (i.e. realtime) tracking. That is, given the
initialized state (e.g. rectangle position and size) of an object in a frame of a video, the
goal of online tracking is to estimate the position of the target in the next frames. There
is no need of having the entire video stream, but only the frames between the initial
frame with the positioned target and the frame where we want to know the position of
the target.

The algorithm need to deal with illumination variation, partial or total occlusions and
change in object appearance. An algorithm can be really robust to one kind of change
but not to another, so it is crucial to have both a good dataset and a good evaluation
method to take this variability in consideration.

–1–

Introduction

–2–

Part I

Theoretical Foundations

–3–

–4–

1 Visual tracking

1 Visual tracking
1.1 Purpose
The challenge is to design an algorithm that is reliable and robust to a wide variety
of conditions, particularly if the camera is mobile. The algorithm need to deal with
illumination variations, occlusions, and appearance changes. The motions of the object
and camera are obviously unknown so it is impossible to deal with all the parameters
without assumptions. The goal is thus not to make too strong assumptions.

1.2 Techniques
In this section we present some tracking techniques, focusing on the current state-of-the-
art, i.e tracking by detection with an adaptive appearance model. There are however
many other techniques and we quickly present a subset in the following.

1.2.1 Snakes models [38]

A snake is an energy-minimizing spline guided by external constraint forces and influenced
by image forces that pull it toward features such as lines and edges. Snakes are active
contour models: they lock onto nearby edges, localizing them accurately. They are really
powerful for lane tracking [72] and for autonomous car or driver assistance. They are
however not not very efficient for tracking arbitrary objects (without prior model) and
deal poorly with occlusions.

1.2.2 Condensation [34]

The Condensation algorithm uses "factored sampling", previously applied to the interpre-
tation of static images, in which the probability distribution of possible interpretations is
represented by a randomly generated set. Condensation uses learned dynamical models,
together with visual observations, to propagate the random set over time.

1.2.3 Mean shift [15, 16]

Mean shift is based on the mean shift iterations and finds the most probable target position
in the current frame. The dissimilarity between the target model (its color distribution)
and the target candidates is expressed by a metric derived from the Bhattacharyya
coefficient.

1.3 Tracking by detection [6]
Recently, the techniques called “tracking by detection” have been shown to give promising
results at realtime speeds. These methods train a discriminative classifier in an online
manner to separate the object from the background. The classifier bootstraps itself by
using the current tracker state to extract positive and negative examples from the current
frame. This technique is organized around three main components : representation
scheme, search mechanism and model update.

1.3.1 Representation Scheme

Object representation is one of the major components in any visual tracker and is really
crucial for the efficiency of the algorithm. Various techniques have been proposed [44, 74],

–5–

1 Visual tracking

and one of the first method is simply based on holistic templates (i.e. raw intensity
values) [2, 26, 50]. This simple representation does not take appearance changes into
account, so more sophisticated models have been proposed, such as subspace-based
tracking approaches [10, 4]. In addition sparse representations have been proposed to
handle corrupted appearances in [51] whose method has recently been further improved
in [8, 52, 76, 82, 71, 53].

In addition to templates, many other visual features have been adopted in tracking
algorithms, such as color histograms [16], Histograms of Oriented Gradients (HOG)
[18, 65], covariance region descriptors [67, 73, 57] and Haar-like features [70, 23].

Discriminative models give very good results and they are widely adopted in tracking
[4, 14]. In short, a binary classifier is learned online to discriminate the target from the
background. The majority of learning techniques are not usually online, but for obvious
performance matter, it is really important to find online implementations, that give the
same results or a good approximation of the original offline implementations. Numerous
learning methods have been adapted to the tracking problem, such as Support Vector
Machines (SVM) [3, 29], structured output SVM [27, 66], ranking SVM [7], boosting
[4, 23], semi-boosting [24] and multi-instance boosting [5].

To better cope with appearance variations, some approaches regarding integration of
multiple representation schemes have recently been proposed [45, 64, 39].

1.3.2 Search Mechanism

To estimate the position of the target objects, deterministic or stochastic methods have
been used. When the tracking problem is posed within an optimization framework,
assuming the objective function is differentiable with respect to the motion parameters,
gradient descent methods can be used to locate the target efficiently [48, 16, 20, 41].

However, the problem is usually non-linear and contain many local minima. To
alleviate this problem, dense sampling methods have been adopted [27, 23, 5] at the
expense of high computational load. In practice, it really depends on the cost of a sample
evaluation, but it can quickly become computationally expensive.

On the other hand, stochastic search algorithms such as particle filters [34, 56] have
been widely used since they are relatively insensitive to local minima and computationally
efficient [36, 58, 51]. The advantage of these methods is to reduce the cost of a dense
sampling method (when it is necessary) without missing the optimal solution.

1.3.3 Model Update

It is crucial to update the target representation or model to account for appearance
variations. It is a really difficult task, because we need to adapt the model without
introducing drifts, or falsely adapt the model during an occlusion. Effective update
algorithms have also been proposed via online mixture model [35], online boosting [23]
or incremental subspace update [58]. For discriminative models, the main issue has
been to improve the sample collection part to make the online-trained classifier more
robust [27, 5, 37, 24]. While a lot of progress has been made, it is still difficult to get an
adaptive appearance model that avoids drifts, especially if the video is long. Indeed most
of sequences used for benchmarking are pretty short (a few seconds), so drifts are not
necessary noticeable for all algorithms, although it remains a really challenging task.

–6–

1 Visual tracking

1.3.4 Context and Fusion of Trackers

Contextual information is also very important for tracking. It is important to avoid drifts
and handle full occlusions correctly. Recently some approaches have been proposed by
mining auxiliary objects or local visual information surrounding the target to assist the
tracking [77, 25, 19]. The context information is especially helpful when the target is fully
occluded or leaves the image region [25]. To improve the tracking performance, fusion
methods have been proposed. This approach combines static, moderately adaptive and
highly adaptive trackers to account for appearance changes [62]. Even multiple trackers
[40] or multiple feature sets [79] are maintained and selected in a Bayesian framework to
better account for appearance changes. We will see in this work how the extension of the
target size (i.e. accounting for contextual information) around the object can improve
the tracking.

–7–

1 Visual tracking

–8–

2 Patch description

2 Patch description
2.1 Purpose
The first technique and also the simplest is a holistic template (i.e. raw intensity values)
[2, 26, 50]. It has however some weaknesses, such as:

• Very high dimentionality

• Very sensitive to illumination variations

• Very sensitive to all geometric transformations

• Very sensitive to occlusions

An alternative is the patch description whose purpose is to find a way to describe a patch
by avoiding most of the above drawbacks, but with a relatively low computational cost.

There are two families of patch descriptors : feature-point descriptors (or keypoints
descriptors) and patch descriptors. The former describes a point and its neighborhood
and the latter describes a patch as a whole rectangle.

2.2 Feature-point description
In the keypoint description framework, two families of descriptors can be distinguished :
the floating point descriptors and the binary descriptors.
The floating point descriptor is older and a little bit more descriptive but come with a
very high computational cost. Scale Invariant Features Transform (SIFT) [47] and then
Speeded-Up Robust Features (SURF) [9] are the most famous ones. Their computational
cost make them not very attractive for tracking.

Binary descriptors are more recent and very promising, as they have a low computa-
tional cost and can still be very descriptive. The first one is Binary Robust Independant
Elementary Features (BRIEF) [12] and afterwards Oriented FAST and Rotated BRIEF
(ORB) [59] and Binary Robust Invariant Scalable Keypoints (BRISK) [43] were proposed
to make the descriptor invariant to rotation. Fast retina keypoint (FREAK) [1] is one of
the most recently proposed method and seem to have a better descriptive power with the
same computational cost as the other methods.

2.2.1 SIFT

The SIFT descriptor is a 128-dimensional real valued vector, composed of 8 float normalized
histogram of gradients over a cell, with 16 cells in total. There is a mechanism to choose
the best scale and the normalized orientation to be invariant over rotation and scale.

2.2.2 SURF

The SURF descriptor is a 64-dimensional real valued vector, composed of 4 float which is
four sums of orientations over a cell, computed on a grid of 16 cells. The orientation is
computed using a Haar wavelet filter response. It is supposed to provide invariance to
illumination, viewpoint and contrast variations.

2.2.3 BRISK

BRISK is a vector of 512 bits, each bit is the short-distance binary intensity comparisons of
pairs of weighted Gaussian, the position of the pair is computed using Gaussian sampling.

–9–

2 Patch description

2.2.4 FREAK

FREAK uses the same principle as BRISK, the difference being the choice of the pairs,
and the fact that the Gaussians are overlapping.

2.3 Feature Patch description
2.3.1 Haar-like

The Haar-like feature [69] is a real-valued vector, where each coordinate (float) is the
result of a weighted sum over a square. There exists some extension with more features
in order to account for the tilted (45 ◦) Haar-like features [46]. The sampling is random
or in a grid at a different scale.

Figure 1: A standard set of Haar-like feature

2.3.2 Local Binary Patterns

The LBP feature [54] is a 8-bit value, where each bit represent the sign of a the difference
between a pixel and its neighborhood. The feature extracts information from a 3x3 square.
The sampling is one feature per pixel.

1

0

0

00

0

1

1

10000101

Figure 2: Creation of a LBP

2.3.3 Multi-Block LBP

The MB-LBP feature [81] is a 8-bit value. It is an extension of LBP, and the difference
is that the comparison is not simply between two pixels, but between the sum of two
rectangles. The feature size is over a (3n) × (3m) rectangle. The sampling cannot be
exhaustive, because the number of features quickly becomes huge (166464 features for a
sub-window of size 50× 50). There are three ways of sampling : over a grid, at random
or with feature selection.

–10–

2 Patch description

1

0

0

00

0

1

1

0 0 0
0
000

0 0

00

0

0 0 0

0

Figure 3: Example of MB-LBP

–11–

2 Patch description

–12–

3 Machine Learning

3 Machine Learning
A very common way, in recent tracking by detection approaches, is to use a variant
of online boosting-based classifiers [5, 23, 60]. This yields decent result especially for
particular tasks like face detection [70].
In recent object detection researches a new technique gives very promising result. It uses
SVM due to its good generalization ability, robustness to label noise, and flexibility in
object representation through the use of kernels [11, 21, 68].

3.1 Purpose
In tracking by detection we need to determine which sample has the biggest probability
to be the object. To do that we want to use a classifier to distinguish the target object
from its surrounding background. In online tracking we have only the data from the past
and to save computational cost and to be as fast as possible, we want the classifier to be
trained online.

3.2 Support Vector Machine
Support Vector Machines (SVM) have become very standard algorithms for classification
and regression problems. They belong to the class of sparse kernel machines and are
maximum margin classifiers, meaning that they minimize the classification error and
maximize the geometric margin at the same time.

the SVM was initially [17] a binary decision machine. The method was first proposed
as a linear classifier between two classes and cannot provide posterior probabilities, but
was then extended to handle non-linearly separable problems by Kernelization.

As other so-called kernel methods, SVM handle non-lineraly separable problems, by
projecting points in a higher dimensional space using a mapping. The goal is to find a
projecting function to have a linearly separable problem in the new space.

Finding this function can be very difficult. To solve this issue, kernel methods rely on
a principle called the kernel trick. It uses the observation that the only operation that
we want to perform in the high-dimensional space is computing inner-products. So we
only need to find a function allowing to compute inner-products in this space without
defining the mapping explicitly. This function k(x, x′) is called the kernel function and
must respect a few properties.
A kernel need to respect Mercer’s condition. That is,∫∫

k(x, y)g(x)g(y) dxdy ≥ 0. (1)

for all square integrable functions g(x).
The most used kernel is :

• Gaussian Radial Basis Function kernels : k(x1,x2) = e(−γ‖x1−x2‖2), with γ > 0.

3.3 Structured output SVM
The structured Support Vector Machine [66] is a generalization of the SVM classifier.
The structured SVM allows to train of a classifier for general structured output labels.

Training the classifier consists of showing pairs of correct sample and output label
pairs. After training, the structured SVM model allows one to predict for new sample
instances the corresponding output label.

–13–

3 Machine Learning

Training

For a set of ` training instances (xn, yn) ∈ X ×Y from a sample space X and label space
Y, the structured SVM minimizes the following regularized function.

min
w

‖w‖2 + C
∑

max
y∈Y

(∆(yn, y) + 〈w,Ψ(xn, y)−Ψ(xn, yn)〉) (2)

The function ∆ : Y × Y → R+ measures a distance in label space. The function
Ψ : X ×Y → Rd is a feature function, extracting some feature vector from a given sample
and label.

Because the regularized risk function above is non-differentiable. We reformulate in
terms of a quadratic program by introducing one slack variable ξn for each sample, each
representing the value of the maximum. The standard structured SVM primal formulation
is given as follows.

min
w,ξ

‖w‖2 + C
∑
ξn

s.t. 〈w,Ψ(xn, yn)−Ψ(xn, y)〉+ ξn ≥ ∆(yn, y), ∀y ∈ Y
(3)

Inference

At test time, only a sample x ∈ X is known, and a prediction function f: X → Y maps it
to a predicted label from the label space Y. For structured SVMs, given the vector w
obtained from training, the prediction function is the following.

f(x) = argmax
y∈Y

〈w,Ψ(x, y)〉 (4)

Therefore, the maximum y over the label space is the predicted label. Solving for the
maximizer can become a hard problem depending on the structure of the function Ψ.

–14–

4 Benchmarking

4 Benchmarking
Benchmarking in tracking can seem easy, because it is easy to find a metric for evaluation.
Indeed We can build a video dataset and ask someone to locate a bounding box around
the object for all frames. If we are careful we can ask different people to label the dataset
and compare their performance to the algorithm. We just need a metric such as the
Euclidean distance between the center of the box.

This technique is used by the majority of researchers to test their algorithms, and
when you read the actual research the state-of-the-art seem to achieve very good results.
In fact, we really need a standard framework for evaluating algorithm to compare the
results between different papers.

We do not presume of the honesty of the researchers concerned, but we noticed that
in general the datasets used for evaluation are really small (i.e. between three and ten
videos). As often in computer vision, most of the algorithms have many parameters, which
are generally invisible and hard coded. And all these parameters are optimized to provide
very good results over the specific dataset used for evaluation. This is a kind of overfitting
performed by the people optimizing the parameters during the implementation of the
algorithm. To avoid this problem, it is important to use a sufficiently big (and diverse)
dataset, with the same parameters for all the video sequences and a good evaluation
method. That is why we choose to use the benchmarking method of Wu and al.[74].

4.1 Dataset
As we said it is important to use many videos comprising different kind of challenges. To
understand the strengths and the weaknesses of an algorithm it is essential to organise
videos in different categories according to the kind of difficulty.

Wu and al.[74] have built a dataset of 51 videos that come from different datasets.
These 51 videos are categorized into 11 categories. The dataset is probably still not
big enough for a completely objective evaluation, but it is a good start, and it has the
advantage of allowing a comparison with the results of many state-of-the-art algorithms.

Attr Description
IV Illumination Variation - the illumination in the target region is signifi-

cantly changed.
SV Scale Variation - the ratio of the bounding boxes of the first frame and

the current frame is out of the range [1/2, 2].
OCC Occlusion - the target is partially or fully occluded.
DEF Deformation - non-rigid object deformation.
MB Motion Blur - the target region is blurred due to the motion of target or

camera.
FM Fast Motion - the motion of the ground truth is larger than 20 pixels
IPR In-Plane Rotation - the target rotates in the image plane.
OPR Out-of-Plane Rotation - the target rotates out of the image plane.
OV Out-of-View - some portion of the target leaves the view.
BC Background Clutters - the background near the target has the similar

color or texture as the target.
LR Low Resolution - the number of pixels inside the groundtruth bounding

box is less than 400 pixels.

Figure 4: The categories used by Wu and al.

–15–

4 Benchmarking

Figure 5: Samples of the video sequences constituting the dataset

4.2 Evaluation Methodology
A classical way to have a quantitative evaluation is to compute the average Euclidean
distance between the center of the ground truths and the center of the tracked box. The
main issue is that when the tracker looses the target then this distance becomes totally
random. They do not propose a real solution to avoid this problem. The proposed
solution is to run the tracker several times with different starting frames or different
starting bounding boxes.

4.2.1 Precision plot

The precision plot was proposed recently in [6, 30]. It shows the percentage of frames for
which the distance between the tracked target and the ground truth is below a threshold.
The precision plot is the precision rate in function of the threshold.

4.2.2 Success plot

Another evaluation metric is the bounding box overlap. The overlap is simply defined as
the intersection area divided by the union area of the tracked box and the ground truth
box. We use the same technique as the precision plot to build the success plot.

4.2.3 Ranking

In order to establish a ranking between different algorithms we can use the Area Under
the Curve (AUC) of the success or precision plot. There is no clear evidence that this
metric is the most objective one, but this is a good insight of the real performance.

4.2.4 Robustness Evaluation

To avoid the problem of the sensitivity at the initialization we use two techniques.

1. For each video we evaluate the algorithm several times with different starting frames.

2. For each video we evaluate the algorithm several times with different starting
bounding boxes.

–16–

Part II

Contributions and Applications

–17–

–18–

5 Motivation

5 Motivation
The motivation to start this master thesis was to study and try to improve the state-
of-the-art of visual tracking, and the obvious first step is to evaluate it. To do that we
use the study of Wu and al. [74], as they compare many different algorithms using more
video sequences for the tests than usual. They also provide a good benchmarking method,
which is really important for visual tracking as explained before.

One algorithm stands out : Struck [27] which has a great performance and is realtime
(25 fps in average). It is a very interesting work because the mathematical formulation is
clean and elegant.

The main innovation comes from the machine learning side. On the other hand, the
description of the features is very classical, and our first contribution is to improve this
part. We will present the machine learning part of Struck because it is very informative,
but we do not improve it.

5.1 State of the art
The standard technique used for traditional tracking by detection algorithms is to learn a
classifier in order to separate the target from the background.

The classifier is trained with example pairs (x, z) where x is the feature vector of a
patch and z = ±1 its corresponding binary label. The function f : X → R being the
classification confidence function, the prediction corresponds to ẑ = sign(f(x)).

To estimate the new position, we search the maximum of f(x) around the initial
estimated position (in general we use the position of the previous frame). Let pt−1 be the
estimated bounding box (position and size) at time t− 1. The goal of the tracker is to
estimate a transformation1 yt ∈ Y such that the new position (or the new state) of the
bounding box is estimated by the composition pt = pt−1 ◦ yt.Here, Y denotes the search
space and its form depends on the type of motion to be tracked (generally a translation,
but in this work we extend the search space of Struck to integrate scale transformations.

Finally we obtain:

pt = pt−1 ◦ yt (5)

yt = arg max
y∈Y

f(xpt−1◦y
t) (6)

where xpt−1◦y
t are the feature vectors extracted from the frame at time t with the bounding

box pt−1 ◦ y. When we have the new estimate for the bounding box, we can build a set of
training data from the current frame. It is divided into two components: the sampler and
the labeller.

The sampler generates a set of transformations {y1
t , ..., y

n
t } with a corresponding

set of feature vectors {xpt◦y1
t

t , ...,xpt◦yn
t

t } and the labeller chosen for these training set
{z1
t , ..., z

n
t }. Finally, using this information, we can update the classifier.

In the work of Hare and al. [27] the authors raise some problems that can arise with
this technique (and Struck try to avoid these problems).

• The assumption made in (6) that the classification confidence function provides
an accurate estimate of the object position is not explicitly incorporated into the
learning algorithm. Why hiding the information about the transformation to the
classifier?

1Generally a translation, but it can be a rotation or zoom

–19–

5 Motivation

• The examples used to train the classifier are all equally weighted, meaning that
a negative example which overlaps significantly with the tracker bounding box is
treated the same as one which overlaps very little. We thus loose a very important
part of the information.

• The labeller is usually chosen based on intuitions and heuristics, rather than having a
tight coupling with the classifier. Mistakes made by the labeller manifest themselves
as label noise.

Many current state-of-the-art approaches try to overcome these problems by using
robust loss functions [42, 49], semi-supervised learning [24, 61], or multiple-instance
learning [5, 80].

All these methods are essentially workarounds for the real problem which stems from
the fundamental issue of separating the labeller from the learner. Struck does not depend
on a labeller, and tries to overcome all these problems by using a structured SVM to
learn the transformation function.

5.2 Struck
A transformation function

f : X → Y (7)

is used to estimate the object transformation between frames, where X is the space of the
feature vector and Y is the space of all transformations. Note that it avoids the use of
binary labels z = ±1. A labelled example becomes a pair (x, y). The function f is learned
using a structured-output SVM framework [11, 66], which introduces a discriminant
function

F : X × Y → R (8)

that we use for prediction according to

yt = arg max
y∈Y

F (xpt−1
t , y) = f(xpt−1

t) (9)

The difference with equation (6) is that now F is a function of y so it can be incorporated
in the learning algorithm.
F measures the compatibility between (x, y) pairs by restricting this to be of the form

F (x, y) = 〈w; Ψ(x, y)〉 (10)

where Ψ(x, y) is a joint kernel map. And now we can use the structured SVM to learn
from a set of example pairs {(x1, y1), ..., (xn, yn)} by minimizing the convex objective
function:

min
w,ξ

‖w‖2 + C
∑n
i=0 ξi

s.t. 〈w,Ψ(xi, yi)−Ψ(xi, y)〉+ ξi ≥ ∆(yi, y), ∀y ∈ Y
(11)

This optimization ensures that the value of F (xi, yi) is greater than F (xi, y) for y 6= yi,
by a margin which depends on a loss function ∆. This loss function should satisfy the
following properties :

• ∆(y, yi) = 0 ⇐⇒ y = yi

• ∆ decreases towards 0 as the similarity between y and yi increases

–20–

5 Motivation

The loss function plays an important role in this method, as it allows us to address the
issue raised previously of all samples being treated equally. In the original Struck, they
propose to use the bounding box overlap:

∆(y, yi) = 1− a(y, yi) (12)

Where a is the overlap ratio. In order to improve Struck we tried several other functions2

but the overlap function (12) achieved the best results.

2We tried to build a function based on the distance of the two bounding boxes with or without
normalization.

–21–

5 Motivation

–22–

6 Feature Choice

6 Feature Choice

6.1 Motivation
To build a good algorithm for visual tracking, we need a fast and smart technique to
describe a patch. Here we try to define what is a good description.

The description is obviously dependent of the algorithm, and so we do not aim at
preserving the same properties for all algorithms.

We want to approximate the distance given by a human, with the constraint of the
visual tracking. To approximate this we need to care about some properties.

6.1.1 Realtime constraint

It may seem strange to mention this property first, but if the algorithm cannot be run in
realtime, why bother using an online algorithm as we could use the information from all
the frames from the sequence instead. It is interesting to explore different ways, but for a
usable algorithm, we need to restrict ourselves only to the class of realtime algorithms.

If we feed Struck with raw values only, using the appropriate scale, we see that the
performance (i.e. measured by the quality of the tracking) remains acceptable. The speed
constraint is really important and limits the fields of usable descriptors.

6.1.2 Illumination invariance

It is often one of the first property that we require for a good descriptor. Haar-like features,
LBP, and most of keypoint descriptors are resistant to illumination variations. Generally
if the descriptor is not illumination invariant, it is so by design (e.g. histograms).

6.1.3 Scale invariance

Scale invariance is a nice-to-have but not necessary property since it can be de-localised
to other components. For example in our method we added scale adaptation without
having this property built in the feature descriptor. In general this is not really important
because the scale changes slowly.

6.1.4 Rotation invariance

Rotation invariance is nice to have but not necessary for the same reason as the scale,
i.e. the rotation varies slowly so it can be incorporated in the model adaptation. Most
feature points are rotation invariant, but it is harder to make a patch descriptor resistant
in the same way. The tricks used for the scale is unusable or inefficient due to use of an
integral image to compute the descriptor.

6.2 Binary keypoint descriptor
Due to the recent success of binary descriptors such as FREAK [1]. We tried to use it
for the tracking, with a naive approach. We simply put one or several keypoints in the
patch. The result is good given the quantity of information (64 bytes for one FREAK
descriptor), but the performance is significantly worse than the Haar-like features from
the original Struck paper.

The possible explanation is that the time saved during the comparison is largely
lost during the extraction of the keypoint. This is not the use for which keypoint

–23–

6 Feature Choice

descriptors have been designed. Normally the number of comparisons between descriptors
is significantly bigger than the number of descriptors to extract.

In the end we want to keep the principle of the binary representation, but with faster
extraction and with a better descriptive power for a patch. The LBP appears like an
evidence for the seeked properties.

6.3 MB-LBP
We propose to use the MB-LBP features, due to their excellent results in the field of face
recognition and this is exactly the generalization for a patch of the technique of FREAK,
BRISK and BRIEF. The main problem of a keypoint descriptor is that it is centered
around a point, whereas in a patch nothing say that the interesting information lies only
at the center. Since MB-LBP features can be positioned anywhere in the patch, then the
extracted information is not related to one central point.

The problem is the number of possible MB-LBP. A patch of 50x50 pixels in 8 bits gray
level is 2500 bytes. In the same patch, it is possible to extract 166464 different MB-LBP
features, where one MB-LBP is one byte. We thus have 65 times more data with all the
MB-LBP than using the pixel information.

Taking all the MB-LBP is impossible (due to the computational cost) and if we look
at the work of Paratte [55], this seems like a bad idea 3.

w Hx

y

Figure 6: Representation of an MB-LBP with (x, y, w, h).

3for FREAK taking all the pairs is worse than a well chosen subset of pairs

–24–

6 Feature Choice

6.3.1 Fully random sampling

To start we choose the MB-LBP randomly, without using any heuristics. First, we choose
the size randomly and then we choose the position also at random. The probability is
uniform over the size, but obviously not over the MB-LBP, since there are more small
MB-LBP than big ones. We show an histogram of 1600 MB-LBP generated with this
technique (the number 1600 is chosen in order to have approximately the same number of
bytes than the Haar-like representation chosen in Struck).

Width

Height

Histogram of size Histogram of the use of each pixel

Low

High

Figure 7: Histogram of random MB-LBP with uniformly sampled size.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE

Struck [0.484]

StruckFR [0.396]

Figure 8: Struck is with Haar-like feature. StruckFR is with MB-LBP uniformly random
on the size.

In figure 8 we can see the success plot corresponding to the proposed method using
randomly chosen MB-LBP, sadly the result as not as good as expected. This shows that
if we choose the set of features too naively, the result is very poor.

–25–

6 Feature Choice

6.3.2 Feature selection

Introduction

We want to find a good subset of features. The best subset of features for this algorithm
is the set that achieves the best performance. We can define a score that we want to
maximize, e.g. the AUC in the overlap plot defined by Wu and al.. We also need a
dataset, so we could try to use a relatively small data set, but if we want not to overfit
the data, we really need to choose a data set sufficiently big. The problem of feature
selection is NP-Hard so we need to find heuristics to help us.

The goal is to separate the object from the background. Thus we want to have a small
distance when we compare patches of the object over time, and have a big distance when
we compare patches of the object and patches coming from the background.

Idea

First we use the ground truth to extract patches from the object and from the background.
Then we compute the distance of a feature from the object on the frame t and frame t− l
with l small. This distance is called distance of true match, and the distance between the
object and the background is called distance of false match. A good feature is a feature
with small mean over time of the distance of true match and a big mean over the time of
the distance of false match.

Sampling

We start by fixing the size of the patch (in our case we choose 50× 50 pixels and we will
show that it is sufficient), for all other patch sizes we use a projection. It is an idea for
the future work to generate several different patch sizes with different ratios, and finally
matching with the closest patch size (in the sens of the ratio).

Now, we use an heuristic to reduce the number of features. For each size we build a
grid for the sampling, with an horizontal and vertical spacing equal to the width and the
height respectively. This means that two MB-LBP with same size that are side by side
overlap for two third. We keep only the MB-LBP inside the patch and we center the grid.

With this heuristic, the number of feature is reduced from 166464 to 17424.

Selection algorithm

For the selection part we use an algorithm developed by Paratte during his master thesis
[55]. Based on his work, we conclude that selecting good features (as defined above) is
not enough, we need to select features with low correlation. His work on selection of
FREAK pairs is really similar to this feature selection.

1. For each frame we extract one patch from the object, and 8 patches from the
background around the object, to find the object we use the ground truth.

2. We extract the set of 17424 features for each patch.

3. For each feature we compute the mean distance between the object at frame t up
to t− l (l = 2 yields good result), this gives the true matching score.

4. For each feature we compute the mean distance between the object at frame t and
with the background at the same frame. We subtract this mean at 8 (it is the
maximum distance between two features 4) to obtain the false matching score.

4this the Hamming distance between two bytes

–26–

6 Feature Choice

5. We compute a total score for each feature, with a linear combination between the
true and the false matching scores.

6. We rank all the features according to their matching score, they form the rank set.

7. We create an empty set (the selected set).

8. We take the feature with highest matching score from the rank set, we compute the
maximum correlation between this feature and all the ones from the selected set, if
it is below the maximum correlation threshold then we transfer the feature from
the rank set to the selected set, otherwise we delete this feature.

9. If we have the desired number of features in the selected set we stop and keep the
selected set. If the rank set is empty but the number of selected feature is not
reached we increase the maximum correlation threshold and restart to 6. Otherwise
we continue with 8.

Width

Height

Histogram of size Histogram of the use of each pixel

Low

High

Figure 9: Histogram of selected MB-LBP.

In figure 9 we see which features are selected.

–27–

6 Feature Choice

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE

StruckLS [0.506]

Struck [0.484]

Figure 10: Struck is the original implementation with Haar-like feature. StruckLS is with
the selected set of MB-LBP.

In figure 10 we see that with the same amount of data for the description, we outperform
the original Struck.

–28–

7 Extension of Search Space

7 Extension of Search Space
7.1 Size adaptation
The implementation of Struck proposed by Hare and al. cannot adapt to variation in
tracked object size. We propose a simple technique to tackle this problem.

The description has to adapt to different sizes and ratio, these are the only properties
that we need to have.

The MB-LBP based technique proposed works perfectly, because we project a patch of
size 50× 50 on the desired patch, if the desired patch change of size during the tracking,
the features remains comparable.

We simply extend the search space to add the change of size of the bounding box.
This works because the change of size is smooth and relatively slow (small size change).

For a bounding box at frame t (xt, yt, wt, ht) the search space of Struck is:

(xt+1, yt+1, wt+1, ht+1) = (xt + i, yt + j, wt, ht) i, j = {−30, ..., 30} (13)

The new search space proposed is simply:

(xt+1, yt+1, wt+1, ht+1) = (xt + i, yt + j, wt + k, ht + l)
i, j = {−30, ..., 30} k, l = {−1, 0, 1}

All the benchmarks are built with this modification and the performance improvement is
noticeable but not so big. This is probably due the fact that when the tracker looses the
object position, the change of size becomes very random.

7.2 Rotation adaptation
We can use the same approach, to add some resistance to orientation variations. The hy-
pothesis of small change is still valid. The problem comes from the actual implementation
of the algorithm. Indeed, in order to save a lot of computational power we use integral
images. The proposed solution is to compute a rotated image with an angle (+10◦ and
−10◦), and then to compute the integral image of these two images.

We sample as described above on the three images (+10◦, 0,−10◦).
Due to the limited time this implementation has not been tested.

–29–

7 Extension of Search Space

–30–

8 Context-awareness (tracking)

8 Context-awareness (tracking)

We propose a new way to take the context into account, based on the feature selection.

8.1 Idea

We use the feature selection technique to choose some features in the context to improve
the tracking process, the technique is simple but the results validate the approach.

Figure 11: In green the tracked bounding box, in blue the up scaled bounding box.

8.2 Algorithm

For the feature selection step we up-scale the ground truth of a scale factor (generally
between 1.2− 1.5). We select the features with the same technique as describe.

We then track the object with a bounding box and extract the features with a up
scaled bounding box.

We assume that the selection algorithm chooses the good features. The method is
thus strengthened, as shown by the results. Without the selection part of the feature, if
we use Haar-like features as the classical Struck, the best result is achieved with a scale
factor of 1.0, so without any scaling.

But with the selection process the best result is with a scale between 1.2 and 1.5.

–31–

8 Context-awareness (tracking)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
u
c
c
e

s
s
 r

a
te

Success plots of OPE

StruckLS15 [0.523]

StruckLS12 [0.520]

StruckLS14 [0.495]

StruckLS13 [0.488]

StruckLS16 [0.439]

Figure 12: Run at different scales.

In figure 12 The result is a little bit strange because the result in function of the scale
does not look convex. We do not have enough time investigate deeper.

–32–

9 Benchmarking

9 Benchmarking

To evaluate the performance, we use the technique proposed by Wu and al.. We do not
modify the framework to keep the neutrality as explained above. We show plots, one
by category and one for the overall performance. We display the two evaluation metrics
(overlap and distance).

We use the temporal robustness evaluation, this means that for each video we run 20
times the algorithm with different starting positions.

To achieve this performance we use all the ameliorations presented in this document,
i.e. feature selection, size adjustment and context awareness. The parameters are set one
time for all the video, so there is no specific parameter fitting for each video. We name
the algorithm StruckLS.

In the following Figures are displayed the nine best state-of-the-art algorithms plus
StruckLS, so that we can compare the overall performance.

Note that the color depends of the AUC score in each plot. And the number in the
title of the graph is the number of videos in the category.

9.1 Success plot

In the Figures we show first the success plots (based on the overlap ratio). It the most
interesting, because the precision plot is a little bit artificial5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE

StruckLS [0.541]

Struck [0.514]

SCM [0.514]

ASLA [0.485]

CXT [0.463]

VTD [0.462]

VTS [0.460]

CSK [0.454]

TLD [0.448]

LSK [0.447]

5Indeed the distance (in pixel) is highly dependent on the image resolution and on the bounding box
size.

–33–

9 Benchmarking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE − illumination variation (25)

StruckLS [0.511]

Struck [0.486]

SCM [0.475]

ASLA [0.468]

VTD [0.456]

VTS [0.456]

CSK [0.435]

LSK [0.421]

CXT [0.403]

TLD [0.402]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE − scale variation (28)

StruckLS [0.509]

SCM [0.496]

ASLA [0.487]

Struck [0.446]

CXT [0.432]

VTD [0.430]

LSK [0.428]

VTS [0.426]

TLD [0.418]

CPF [0.393]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE − occlusion (29)

StruckLS [0.510]

SCM [0.502]

Struck [0.462]

VTS [0.449]

VTD [0.446]

ASLA [0.444]

CPF [0.434]

TLD [0.426]

LSK [0.425]

CSK [0.420]

–34–

9 Benchmarking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE − deformation (19)

StruckLS [0.536]

SCM [0.515]

Struck [0.500]

DFT [0.472]

VTD [0.471]

ASLA [0.466]

VTS [0.462]

CPF [0.456]

MIL [0.446]

CSK [0.440]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE − motion blur (12)

Struck [0.485]

StruckLS [0.471]

TLD [0.388]

CXT [0.385]

DFT [0.374]

OAB [0.366]

TM−V [0.362]

KMS [0.345]

Frag [0.341]

RS−V [0.340]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE − fast motion (17)

Struck [0.464]

StruckLS [0.462]

TLD [0.392]

CXT [0.375]

Frag [0.362]

CPF [0.359]

OAB [0.356]

LOT [0.353]

RS−V [0.352]

DFT [0.349]

–35–

9 Benchmarking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE − in−plane rotation (31)

StruckLS [0.481]

Struck [0.473]

CXT [0.453]

SCM [0.453]

ASLA [0.451]

VTD [0.448]

VTS [0.446]

LSK [0.439]

CSK [0.426]

MTT [0.417]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE − out−of−plane rotation (39)

StruckLS [0.501]

SCM [0.480]

Struck [0.477]

VTD [0.469]

ASLA [0.465]

VTS [0.464]

CXT [0.444]

CPF [0.441]

CSK [0.430]

LSK [0.430]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE − out of view (6)

StruckLS [0.452]

TLD [0.434]

LOT [0.425]

CPF [0.422]

Struck [0.417]

VTS [0.407]

CXT [0.403]

VTD [0.399]

TM−V [0.390]

Frag [0.383]

–36–

9 Benchmarking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE − background clutter (21)

StruckLS [0.501]

Struck [0.478]

SCM [0.469]

ASLA [0.445]

CSK [0.432]

VTD [0.432]

VTS [0.424]

DFT [0.417]

MTT [0.413]

LSK [0.405]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE − low resolution (4)

Struck [0.456]

StruckLS [0.439]

MTT [0.413]

OAB [0.398]

LSK [0.369]

CSK [0.367]

L1APG [0.360]

SemiT [0.348]

TM−V [0.329]

CXT [0.313]

9.2 Precision plot

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of TRE

StruckLS [0.654]

Struck [0.649]

SCM [0.614]

VTD [0.593]

VTS [0.590]

ASLA [0.584]

CXT [0.581]

CSK [0.576]

TLD [0.575]

CPF [0.555]

–37–

9 Benchmarking

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of TRE − illumination variation (25)

StruckLS [0.602]

Struck [0.595]

VTD [0.566]

VTS [0.564]

ASLA [0.551]

SCM [0.551]

CSK [0.538]

LSK [0.513]

TLD [0.503]

CXT [0.499]

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of TRE − scale variation (28)

StruckLS [0.627]

Struck [0.605]

SCM [0.600]

ASLA [0.599]

VTD [0.576]

VTS [0.570]

TLD [0.556]

CXT [0.550]

LSK [0.543]

CSK [0.532]

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of TRE − occlusion (29)

StruckLS [0.611]

SCM [0.596]

Struck [0.578]

VTS [0.565]

VTD [0.562]

CPF [0.553]

TLD [0.537]

ASLA [0.533]

CSK [0.532]

LSK [0.525]

–38–

9 Benchmarking

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of TRE − deformation (19)

StruckLS [0.629]

Struck [0.610]

SCM [0.603]

CPF [0.596]

VTD [0.585]

VTS [0.570]

DFT [0.560]

ASLA [0.547]

MIL [0.539]

CSK [0.539]

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of TRE − motion blur (12)

Struck [0.577]

StruckLS [0.542]

CXT [0.490]

TLD [0.469]

DFT [0.435]

OAB [0.427]

TM−V [0.417]

KMS [0.409]

VTD [0.404]

MIL [0.403]

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of TRE − fast motion (17)

Struck [0.546]

StruckLS [0.525]

TLD [0.471]

CXT [0.455]

CPF [0.424]

LOT [0.416]

Frag [0.413]

OAB [0.411]

RS−V [0.402]

KMS [0.401]

–39–

9 Benchmarking

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of TRE − in−plane rotation (31)

Struck [0.599]

StruckLS [0.590]

VTD [0.582]

VTS [0.582]

CXT [0.573]

LSK [0.553]

SCM [0.548]

ASLA [0.547]

CSK [0.539]

CPF [0.530]

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of TRE − out−of−plane rotation (39)

StruckLS [0.612]

VTD [0.608]

Struck [0.606]

VTS [0.602]

SCM [0.579]

CPF [0.572]

ASLA [0.567]

CXT [0.558]

CSK [0.551]

TLD [0.549]

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of TRE − out of view (6)

StruckLS [0.488]

TLD [0.486]

CPF [0.473]

LOT [0.463]

Struck [0.459]

CXT [0.444]

VTS [0.431]

VTD [0.420]

TM−V [0.411]

Frag [0.386]

–40–

9 Benchmarking

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of TRE − background clutter (21)

StruckLS [0.599]

Struck [0.582]

SCM [0.564]

VTD [0.546]

ASLA [0.540]

VTS [0.536]

CSK [0.534]

MTT [0.497]

DFT [0.492]

LSK [0.490]

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Location error threshold

P
re

c
is

io
n

Precision plots of TRE − low resolution (4)

Struck [0.578]

StruckLS [0.516]

OAB [0.505]

MTT [0.493]

CSK [0.458]

SemiT [0.450]

LSK [0.447]

L1APG [0.423]

TM−V [0.405]

CXT [0.389]

Considering all these plots, we can see that in the general case StruckLS outperforms the
state-of-the-art. For us, it is an empirical validation of the presented concept.

–41–

9 Benchmarking

–42–

Part III

Conclusion

–43–

–44–

Conclusion

Conclusion
To conclude let us review the proposed evaluations and contributions. We started this
project with the goal of studying the feature description in the tracking and try to improve
a state-of-the-art technique.

We first try usual keypoint descriptors to describe a patch. But due to the computa-
tional cost, we decide to abandon the keypoint descriptor. We do not say that keypoints
are not suitable for the tracking, but that they are not so good for patch description.

To keep the advantage of binary description, and address the problem of the number
of features, we propose a method to select an efficient subset. The results validate this
approach. We absolutely do not say that the selection is optimal, but there is already a
significant improvement. With this technique the number of features can be chosen in
function of the computational power available, which is a great advantage.

To validate the technique, we integrated it in a complete algorithm, but the technique
can be integrated in any tracker by detection.

The other improvements (scale invariance, context awareness) are very specific to the
problem of visual tracking, but the feature selection as proposed by Paratte [55] and
which is applied in this work is very promising and could be applied to other problems.

The last thing we want to highlight, is that it is really difficult to compare and evaluate
the different tracking techniques. The work of Wu and al. [74] is a really good start, but
we really need a bigger dataset, with a standard framework for the evaluation (one set of
parameters for all the video and a standard scoring technique). Now there are too many
publications that test their algorithm on five or ten videos, with very tuned parameters.

Future work
Many aspects of this work can lead to extensions, but here are some interesting aspects
that would benefit of more research and we want to explore certain areas soon.

Feature selection

Selection technique

This work present one way to select the features, which already provide good results,
but there are several other techniques (based on other hypotheses) which deserve to be
studied.

Different feature

We explain why binary features work well, but most of desktop computer we have today
come with very impressive optimizations to deal with floating point operations, so it
would be interesting to apply the same method to the Haar-like feature.

The application domain

It would be interesting to use feature selection on a patch for other application. With the
supervised technique it is relatively easy to specialize the feature selection to a particular
task.

Rotation invariance

We propose a technique to add some robustness to the rotation, it would be interesting
to test if it really works.

–45–

Conclusion

ARM architecture

Due to the massive use of binary feature it would be interesting to evaluate the performance
on an ARM architecture.

–46–

Technical details

Technical remarks
The different methods proposed in this work have been implemented using Open Source
libraries and Software, and the code can be made available upon request, all the code
based on Struck is available on GPLv3, all my contribution is in GPLv3 too. The
implementation was done in C++. The OpenCV library6 was used for almost all vision
part and Eigen7 for the linear algebra.

5http://www.gnu.org/licenses/gpl.html
6http://opencv.org/
7http://eigen.tuxfamily.org

–47–

http://www.gnu.org/licenses/gpl.html
http://opencv.org/
http://eigen.tuxfamily.org

Technical details

–48–

Acknowledgements

Acknowledgements
Working on this project has been very exciting all along. It is very enjoyable to work on
real world problematic. There are some many thing to do in visual tracking.

I would first like to thank Prof. Pierre Vandergheynst and Johan Paratte for making
this project possible and for all the help during all the semester.

I would like to thank Sam Hare for resleasing the code of Struck [27] in GPL v3, which
opens research and fosters innovation.

I would also like to acknowledge Matthias Brändli and Johan Paratte for their very
helpful LATEXtemplate.

To finish I would like to thank Giorgio Margaritondo for giving me a second chance.

7http://www.gnu.org/licenses/gpl.html

–49–

http://www.gnu.org/licenses/gpl.html

Acknowledgements

–50–

Equipment and software

Equipment and software
Hardware
In this project the following development platforms were used :

Laptop Computer Asus N76VZ

• CPU : Intel Core i7 3630QMK, 4 cores (8 threads) @ 2.4 GHz

• Memory : 16GB RAM @ 1600 MHz

• GPU : nVidia GeForce GT 650M mit 4GB

• Base system : Archlinux 64bit

Desktop Computer Xeon E5-2687W

• CPU : Intel Xeon E5-2687W v2, 16 cores (32 threads) @ 4.5 GHz

• Memory : 128GB RAM @ 1600 MHz

• GPU : Asus GeForce GTX 780

• Base system : Ubuntu 13.10 64bit

• Virtual machine : VirtualBox Windows 7 professional

Software
The following software and libraries were used :

• GCC 4.8.2 with glibc 2.18

• QtCreator 3.0.0

• OpenCV library 2.4 and 3.0

• Eigen 3.2

–51–

Equipment and software

–52–

References

References
[1] Alahi, A., Ortiz, R., and Vandergheynst, P. Freak: Fast retina keypoint.

In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
(2012), IEEE, pp. 510–517.

[2] Alt, N., Hinterstoisser, S., and Navab, N. Rapid selection of reliable templates
for visual tracking. In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on (2010), IEEE, pp. 1355–1362.

[3] Avidan, S. Support vector tracking. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 26, 8 (2004), 1064–1072.

[4] Avidan, S. Ensemble tracking. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 29, 2 (2007), 261–271.

[5] Babenko, B., Yang, M.-H., and Belongie, S. Visual tracking with online
multiple instance learning. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on (2009), IEEE, pp. 983–990.

[6] Babenko, B., Yang, M.-H., and Belongie, S. Robust object tracking with
online multiple instance learning. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 33, 8 (2011), 1619–1632.

[7] Bai, Y., and Tang, M. Robust tracking via weakly supervised ranking svm. In
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (2012),
IEEE, pp. 1854–1861.

[8] Bao, C., Wu, Y., Ling, H., and Ji, H. Real time robust l1 tracker using accelerated
proximal gradient approach. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on (2012), IEEE, pp. 1830–1837.

[9] Bay, H., Tuytelaars, T., and Van Gool, L. Surf: Speeded up robust features.
In Computer Vision–ECCV 2006. Springer, 2006, pp. 404–417.

[10] Black, M. J., and Jepson, A. D. Eigentracking: Robust matching and tracking
of articulated objects using a view-based representation. International Journal of
Computer Vision 26, 1 (1998), 63–84.

[11] Blaschko, M. B., and Lampert, C. H. Learning to localize objects with structured
output regression. In Computer Vision–ECCV 2008. Springer, 2008, pp. 2–15.

[12] Calonder, M., Lepetit, V., Strecha, C., and Fua, P. Brief: Binary robust
independent elementary features. In Computer Vision–ECCV 2010. Springer, 2010,
pp. 778–792.

[13] Collins, R. T., Lipton, A. J., Fujiyoshi, H., and Kanade, T. Algorithms
for cooperative multisensor surveillance. Proceedings of the IEEE 89, 10 (2001),
1456–1477.

[14] Collins, R. T., Liu, Y., and Leordeanu, M. Online selection of discriminative
tracking features. Pattern Analysis and Machine Intelligence, IEEE Transactions on
27, 10 (2005), 1631–1643.

–53–

References

[15] Comaniciu, D., Ramesh, V., and Meer, P. Real-time tracking of non-rigid objects
using mean shift. In Computer Vision and Pattern Recognition, 2000. Proceedings.
IEEE Conference on (2000), vol. 2, IEEE, pp. 142–149.

[16] Comaniciu, D., Ramesh, V., and Meer, P. Kernel-based object tracking. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 25, 5 (2003), 564–577.

[17] Cortes, C., and Vapnik, V. Support-vector networks. Machine learning 20, 3
(1995), 273–297.

[18] Dalal, N., and Triggs, B. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on (2005), vol. 1, IEEE, pp. 886–893.

[19] Dinh, T. B., Vo, N., and Medioni, G. Context tracker: Exploring supporters
and distracters in unconstrained environments. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on (2011), IEEE, pp. 1177–1184.

[20] Fan, J., Wu, Y., and Dai, S. Discriminative spatial attention for robust tracking.
In Computer Vision–ECCV 2010. Springer, 2010, pp. 480–493.

[21] Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D.
Object detection with discriminatively trained part-based models. Pattern Analysis
and Machine Intelligence, IEEE Transactions on 32, 9 (2010), 1627–1645.

[22] Ferre, M. R., Jakab, P. D., and Tieman, J. S. Position tracking and imaging
system with error detection for use in medical applications, Oct. 14 1997. US Patent
5,676,673.

[23] Grabner, H., Grabner, M., and Bischof, H. Real-time tracking via on-line
boosting. In BMVC (2006), vol. 1, p. 6.

[24] Grabner, H., Leistner, C., and Bischof, H. Semi-supervised on-line boosting
for robust tracking. In Computer Vision–ECCV 2008. Springer, 2008, pp. 234–247.

[25] Grabner, H., Matas, J., Van Gool, L., and Cattin, P. Tracking the invisible:
Learning where the object might be. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on (2010), IEEE, pp. 1285–1292.

[26] Hager, G. D., and Belhumeur, P. N. Efficient region tracking with parametric
models of geometry and illumination. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 20, 10 (1998), 1025–1039.

[27] Hare, S., Saffari, A., and Torr, P. H. Struck: Structured output tracking
with kernels. In Computer Vision (ICCV), 2011 IEEE International Conference on
(2011), IEEE, pp. 263–270.

[28] Haritaoglu, I., Harwood, D., and Davis, L. S. W< sup> 4</sup>: real-time
surveillance of people and their activities. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 22, 8 (2000), 809–830.

[29] Hearst, M. A., Dumais, S., Osman, E., Platt, J., and Scholkopf, B. Support
vector machines. Intelligent Systems and their Applications, IEEE 13, 4 (1998),
18–28.

–54–

References

[30] Henriques, J. F., Caseiro, R., Martins, P., and Batista, J. Exploiting the
circulant structure of tracking-by-detection with kernels. In Computer Vision–ECCV
2012. Springer, 2012, pp. 702–715.

[31] Hu, W., Tan, T., Wang, L., and Maybank, S. A survey on visual surveillance of
object motion and behaviors. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on 34, 3 (2004), 334–352.

[32] Hu, Y., Zhao, W., and Wang, L. Vision-based target tracking and collision
avoidance for two autonomous robotic fish. Industrial Electronics, IEEE Transactions
on 56, 5 (2009), 1401–1410.

[33] Iannizzotto, G., and La Rosa, F. Competitive combination of multiple eye
detection and tracking techniques. Industrial Electronics, IEEE Transactions on 58,
8 (2011), 3151–3159.

[34] Isard, M., and Blake, A. Condensation—conditional density propagation for
visual tracking. International journal of computer vision 29, 1 (1998), 5–28.

[35] Jepson, A. D., Fleet, D. J., and El-Maraghi, T. F. Robust online appear-
ance models for visual tracking. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 25, 10 (2003), 1296–1311.

[36] Jia, X., Lu, H., and Yang, M.-H. Visual tracking via adaptive structural local
sparse appearance model. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on (2012), IEEE, pp. 1822–1829.

[37] Kalal, Z., Matas, J., and Mikolajczyk, K. Pn learning: Bootstrapping binary
classifiers by structural constraints. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on (2010), IEEE, pp. 49–56.

[38] Kass, M., Witkin, A., and Terzopoulos, D. Snakes: Active contour models.
International journal of computer vision 1, 4 (1988), 321–331.

[39] Kwon, J., and Lee, K. M. Visual tracking decomposition. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on (2010), IEEE, pp. 1269–
1276.

[40] Kwon, J., and Lee, K. M. Tracking by sampling trackers. In Computer Vision
(ICCV), 2011 IEEE International Conference on (2011), IEEE, pp. 1195–1202.

[41] Learned-Miller, E. G., and Lara, L. S. Distribution fields for tracking. In
IEEE Conference on Computer Vision and Pattern Recognition (2012).

[42] Leistner, C., Saffari, A., Roth, P. M., and Bischof, H. On robustness of on-
line boosting-a competitive study. In Computer Vision Workshops (ICCV Workshops),
2009 IEEE 12th International Conference on (2009), IEEE, pp. 1362–1369.

[43] Leutenegger, S., Chli, M., and Siegwart, R. Y. Brisk: Binary robust invariant
scalable keypoints. In Computer Vision (ICCV), 2011 IEEE International Conference
on (2011), IEEE, pp. 2548–2555.

[44] Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., and Hengel, A. v. d. A survey
of appearance models in visual object tracking. arXiv preprint arXiv:1303.4803
(2013).

–55–

References

[45] Li, Y., Ai, H., Yamashita, T., Lao, S., and Kawade, M. Tracking in low frame
rate video: A cascade particle filter with discriminative observers of different life
spans. Pattern Analysis and Machine Intelligence, IEEE Transactions on 30, 10
(2008), 1728–1740.

[46] Lienhart, R., and Maydt, J. An extended set of haar-like features for rapid object
detection. In Image Processing. 2002. Proceedings. 2002 International Conference
on (2002), vol. 1, IEEE, pp. I–900.

[47] Lowe, D. G. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision 60, 2 (Nov. 2004), 91–110.

[48] Lucas, B. D., Kanade, T., et al. An iterative image registration technique with
an application to stereo vision. In IJCAI (1981), vol. 81, pp. 674–679.

[49] Masnadi-Shirazi, H., Mahadevan, V., and Vasconcelos, N. On the design of
robust classifiers for computer vision. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on (2010), IEEE, pp. 779–786.

[50] Matthews, L., Ishikawa, T., and Baker, S. The template update problem.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 26, 6 (2004),
810–815.

[51] Mei, X., and Ling, H. Robust visual tracking using l1 minimization. In Computer
Vision, 2009 IEEE 12th International Conference on (2009), IEEE, pp. 1436–1443.

[52] Mei, X., Ling, H., Wu, Y., Blasch, E., and Bai, L. Minimum error bounded
efficient l1 tracker with occlusion detection. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on (2011), IEEE, pp. 1257–1264.

[53] Mei, X., Ling, H., Wu, Y., Blasch, E., and Bai, L. Efficient minimum error
bounded particle resampling l1 tracker with occlusion detection.

[54] Ojala, T., Pietikäinen, M., and Harwood, D. A comparative study of texture
measures with classification based on featured distributions. Pattern recognition 29,
1 (1996), 51–59.

[55] Paratte, J. Sparse binary features for image classification.

[56] Pérez, P., Hue, C., Vermaak, J., and Gangnet, M. Color-based probabilistic
tracking. In Computer vision—ECCV 2002. Springer, 2002, pp. 661–675.

[57] Porikli, F., Tuzel, O., and Meer, P. Covariance tracking using model update
based on lie algebra. In Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on (2006), vol. 1, IEEE, pp. 728–735.

[58] Ross, D. A., Lim, J., Lin, R.-S., and Yang, M.-H. Incremental learning for
robust visual tracking. International Journal of Computer Vision 77, 1-3 (2008),
125–141.

[59] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. Orb: an efficient
alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE International
Conference on (2011), IEEE, pp. 2564–2571.

[60] Saffari, A., Godec, M., Pock, T., Leistner, C., and Bischof, H. Online
multi-class lpboost. In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on (2010), IEEE, pp. 3570–3577.

–56–

References

[61] Saffari, A., Leistner, C., Godec, M., and Bischof, H. Robust multi-view
boosting with priors. In Computer Vision–ECCV 2010. Springer, 2010, pp. 776–789.

[62] Santner, J., Leistner, C., Saffari, A., Pock, T., and Bischof, H. Prost:
Parallel robust online simple tracking. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on (2010), IEEE, pp. 723–730.

[63] Stenger, B., Thayananthan, A., Torr, P. H., and Cipolla, R. Model-based
hand tracking using a hierarchical bayesian filter. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 28, 9 (2006), 1372–1384.

[64] Stenger, B., Woodley, T., and Cipolla, R. Learning to track with multiple
observers. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on (2009), IEEE, pp. 2647–2654.

[65] Tang, F., Brennan, S., Zhao, Q., and Tao, H. Co-tracking using semi-
supervised support vector machines. In Computer Vision, 2007. ICCV 2007. IEEE
11th International Conference on (2007), IEEE, pp. 1–8.

[66] Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. Large margin
methods for structured and interdependent output variables. In Journal of Machine
Learning Research (2005), pp. 1453–1484.

[67] Tuzel, O., Porikli, F., and Meer, P. Region covariance: A fast descriptor
for detection and classification. In Computer Vision–ECCV 2006. Springer, 2006,
pp. 589–600.

[68] Vedaldi, A., Gulshan, V., Varma, M., and Zisserman, A. Multiple kernels
for object detection. In Computer Vision, 2009 IEEE 12th International Conference
on (2009), IEEE, pp. 606–613.

[69] Viola, P., and Jones, M. Rapid object detection using a boosted cascade of
simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on (2001), vol. 1, IEEE,
pp. I–511.

[70] Viola, P., and Jones, M. J. Robust real-time face detection. International journal
of computer vision 57, 2 (2004), 137–154.

[71] Wang, D., Lu, H.-C., and Yang, M.-H. Online object tracking with sparse
prototypes.

[72] Wang, Y., Teoh, E. K., and Shen, D. Lane detection and tracking using b-snake.
Image and Vision computing 22, 4 (2004), 269–280.

[73] Wu, Y., Cheng, J., Wang, J., Lu, H., Wang, J., Ling, H., Blasch, E., and
Bai, L. Real-time probabilistic covariance tracking with efficient model update.
Image Processing, IEEE Transactions on 21, 5 (2012), 2824–2837.

[74] Wu, Y., Lim, J., and Yang, M.-H. Online object tracking: A benchmark.

[75] Wu, Y., Lin, J., and Huang, T. S. Analyzing and capturing articulated hand
motion in image sequences. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 27, 12 (2005), 1910–1922.

–57–

References

[76] Wu, Y., Ling, H., Yu, J., Li, F., Mei, X., and Cheng, E. Blurred target tracking
by blur-driven tracker. In Computer Vision (ICCV), 2011 IEEE International
Conference on (2011), IEEE, pp. 1100–1107.

[77] Yang, M., Wu, Y., and Hua, G. Context-aware visual tracking. Pattern Analysis
and Machine Intelligence, IEEE Transactions on 31, 7 (2009), 1195–1209.

[78] Yang, S. X., Zhu, A., Yuan, G., and Meng, M. A bioinspired neurodynamics-
based approach to tracking control of mobile robots. Industrial Electronics, IEEE
Transactions on 59, 8 (2012), 3211–3220.

[79] Yoon, J. H., Yoon, K.-J., et al. Visual tracking via adaptive tracker selection
with multiple features. In Computer Vision–ECCV 2012. Springer, 2012, pp. 28–41.

[80] Zeisl, B., Leistner, C., Saffari, A., and Bischof, H. On-line semi-supervised
multiple-instance boosting. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on (2010), IEEE, pp. 1879–1879.

[81] Zhang, L., Chu, R., Xiang, S., Liao, S., and Li, S. Z. Face detection based on
multi-block lbp representation. In Advances in Biometrics. Springer, 2007, pp. 11–18.

[82] Zhang, T., Ghanem, B., Liu, S., and Ahuja, N. Robust visual tracking via
multi-task sparse learning. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on (2012), IEEE, pp. 2042–2049.

[83] Zhang, X., Hu, W., Chen, S., and Maybank, S. Graph embedding based
learning for robust object tracking.

–58–

	Contents
	Acronyms
	Introduction
	I Theoretical Foundations
	Visual tracking
	Purpose
	Techniques
	Snakes models kass1988snakes
	Condensation isard1998condensation
	Mean shift comaniciu2000real,comaniciu2003kernel

	Tracking by detection babenko2011robust
	Representation Scheme
	Search Mechanism
	Model Update
	Context and Fusion of Trackers

	Patch description
	Purpose
	Feature-point description
	SIFT
	SURF
	BRISK
	FREAK

	Feature Patch description
	Haar-like
	Local Binary Patterns
	Multi-Block LBP

	Machine Learning
	Purpose
	Support Vector Machine
	Structured output SVM

	Benchmarking
	Dataset
	Evaluation Methodology
	Precision plot
	Success plot
	Ranking
	Robustness Evaluation

	II Contributions and Applications
	Motivation
	State of the art
	Struck

	Feature Choice
	Motivation
	Realtime constraint
	Illumination invariance
	Scale invariance
	Rotation invariance

	Binary keypoint descriptor
	MB-LBP
	Fully random sampling
	Feature selection

	Extension of Search Space
	Size adaptation
	Rotation adaptation

	Context-awareness (tracking)
	Idea
	Algorithm

	Benchmarking
	Success plot
	Precision plot

	III Conclusion
	Conclusion
	Future work

	Technical details
	Acknowledgements
	Equipment and software
	References

