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We  outline  a novel  method  for  assessing  time-unlocked  topographic  EEG  activity.
We  apply  this  method  for  accurately  predicting  accept  vs.  reject  decisions.
The  time  when  decisions  have  been  made  is modulated  by  task  difficulty.
It occurs  well  before  subjects’  button  press  (∼340  ms).
This  time  is compatible  with  a  diffusion  process,  evaluated  at behavioral  level.
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a  b  s  t  r  a  c  t

Background:  Recent  neuroimaging  studies  suggest  that  value-based  decision-making  may  rely  on  mech-
anisms  of  evidence  accumulation.  However  no  studies  have  explicitly  investigated  the  time  when  single
decisions  are  taken  based  on  such  an  accumulation  process.
New  method:  Here,  we  outline  a  novel  electroencephalography  (EEG)  decoding  technique  which  is based
on accumulating  the  probability  of  appearance  of  prototypical  voltage  topographies  and  can  be  used for
predicting  subjects’  decisions.  We  use  this  approach  for studying  the  time-course  of  single  decisions,
during  a task  where  subjects  were  asked  to  compare  reward  vs. loss points  for  accepting  or rejecting
offers.
Results:  We show  that based  on  this  new  method,  we can  accurately  decode  decisions  for  the  majority  of
the  subjects.  The  typical  time-period  for accurate  decoding  was  modulated  by  task  difficulty  on  a trial-by-
trial  basis.  Typical  latencies  of  when  decisions  are  made  were  detected  at ∼500  ms  for  ‘Easy’  vs. ∼700  ms
for  ‘Hard’  decisions,  well  before  subjects’  response  (∼340 ms).  Importantly,  this  decision  time  correlated
with  the  drift  rates  of  a diffusion  model,  evaluated  independently  at the  behavioral  level.
Comparison  with  existing  method(s):  We compare  the  performance  of our algorithm  with  logistic  regres-

sion  and  support  vector  machine  and  show  that we  obtain  significant  results  for  a  higher  number  of
subjects  than  with  these  two  approaches.  We  also  carry  out analyses  at the average  event-related  poten-
tial level,  for comparison  with  previous  studies  on  decision-making.
Conclusions:  We  present  a novel  approach  for  studying  the  timing  of  value-based  decision-making,  by
accumulating  patterns  of  topographic  EEG  activity  at  single-trial  level.
Please cite this article in press as: Tzovara A, et al. Quantifying the ti
Neurosci Methods (2014), http://dx.doi.org/10.1016/j.jneumeth.2014
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1. Introduction

Before making a decision, we often need to extract informa-
me for accurate EEG decoding of single value-based decisions. J
.09.029

tion from the environment and weight within possible alternative
options in order to optimize a potential outcome. Perceptual
decisions are known to rely on mechanisms of evidence accumu-
lation (Gold and Shadlen, 2007; Kim and Shadlen, 1999; Shadlen
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nd Newsome, 2001) described by drift diffusion models (DDM;
Ratcliff, 1978)). According to those models, sensory evidence, usu-
lly deriving from competing sources or masked stimuli (Heekeren
t al., 2004), is integrated over time from a starting point toward one
f two decision boundaries, corresponding to alternative choices.
lectroencephalography (EEG) experiments have identified neu-
ophysiological signals in humans that reflect this accumulation,
ither as fluctuations in oscillatory power in specific frequency
ands (van Vugt et al., 2012; Wyart et al., 2012), or as the EEG
ctivity on pre-defined groups of electrodes (O‘Connell et al., 2012).

Recent studies suggest that similar mechanisms of evidence
ccumulation might also be involved in value-based decision mak-
ng, where values corresponding to an offer are encoded, compared
nd accumulated over time according to DDM (Basten et al., 2010).

 widespread network of brain regions is involved in this process,
ith the ventromedial prefrontal cortex being a value integration

egion (Basten et al., 2010; Philiastides et al., 2010), and parietal
egions accumulating results of this integration (Basten et al., 2010;
luth et al., 2012; Hunt et al., 2012). Because an accumulation
echanism implies a dynamic process which evolves over time,

ssessing the temporal dynamics of decision-making can be highly
nformative of the underlying neural process.

Previous studies based on EEG or magnetoencephalography
MEG) have typically investigated neural activity at an across-trials
evel (Cohen and Ranganath, 2007; Frank et al., 2005; Talmi et al.,
012; Tzovara et al., 2012a; Yeung et al., 2005) and provided some

nsight on the timing of decision-making. These studies have shown
hat the neural correlates of outcome evaluation typically appear
s modulations of EEG components, as early as ∼200–300 ms  after
he presentation of the outcome of subjects’ decisions (Cohen and
anganath, 2007; Yeung et al., 2005). However, these findings
ften rely on average event-related analyses and therefore overlook
ariability in decision-making strategies across subjects or trials.
ingle-trial analyses can provide further insight into various stages
f decision-making and possibly reveal mechanisms that vary on a
rial-to-trial level and would remain undetected otherwise (Pernet
t al., 2011).

The utility of studying single-trial activity has been highlighted
y recent studies in value-based decision-making (Billeke et al.,
013; Gluth et al., 2013; Hunt et al., 2012; Philiastides et al., 2010).

n particular, these studies have isolated readiness potentials in
he EEG signal which reflect the emergence of value-based deci-
ions (Gluth et al., 2013) or, in the case of MEG, have allowed
racking the information flow in brain regions linked to different
tages of a decision (Hunt et al., 2012). Even though these stud-
es clearly demonstrate the added value of single-trial analyses,
hey mainly rely on model-based approaches, where one needs to

ake strong assumptions about the neural mechanisms underly-
ng decisions. Additionally, analyses often rely on a pre-selection of
ime-windows and/or electrodes of interest, which might introduce

 bias in the results, or overlook phenomena occurring outside the
egion/time-window of interest. In the present study, we  present

 novel data-driven approach for studying decision-making. This
pproach builds upon an existing single-trial EEG method, based
n modeling the distribution of voltage topographies with a mix-
ures of Gaussians model (GMM)  (Tzovara et al., 2012b) and takes
dvantage of the whole electrode montage for identifying single-
rial patterns of EEG activity.

We carried out an experiment where subjects made decisions
y combining values (reward vs. loss points). A previous study has
hown that this task follows behaviorally a DDM (Basten et al.,
010). Here, we assumed the same behavioral model and aimed at
Please cite this article in press as: Tzovara A, et al. Quantifying the ti
Neurosci Methods (2014), http://dx.doi.org/10.1016/j.jneumeth.2014

xtracting neural activity preceding single decisions. We  hypoth-
sized that because of a high degree of inter-trial variability, the
ecision-making process would likely be revealed by single-trial

nstead of average analyses.
 PRESS
ce Methods xxx (2014) xxx–xxx

The method we introduce here is based on EEG activity starting
from the offer presentation and lasting until the button press on
a single-trial basis. This method can therefore deal with trials of
different lengths. A simpler version of this approach has been pre-
viously used for decoding decisions in an exploration/exploitation
task based on a fixed-length trial (Tzovara et al., 2012a). The present
study aims also at taking those previous findings one step further by
detecting the time when single decisions are made at a neural level
and by coupling behavioral models’ parameters with single-trial
neural modulations. Information about the timing of value-based
decision-making will be beneficial for a better understanding of its
mechanisms in the human brain and possibly for establishing a link
between perceptual and value-based decisions.

2. Materials and methods

2.1. Participants

Twelve healthy volunteers participated in this study (6 females),
with mean age of 27 ± 1 years old (the values here and in the follow-
ing refer to the mean ± standard error – s.e.m.), all having normal or
corrected-to-normal vision. None of the subjects reported a history
of neurological disease.

2.2. Procedure and task

The experimental protocol was adapted from a previous func-
tional magnetic resonance imaging (fMRI) study (Basten et al.,
2010). It consisted of two phases: the training phase and the main
experiment. Before the training phase subjects were presented
with lists of eight colors and eight shapes, corresponding to rewards
and losses respectively and were asked to memorize them. Each
color was thus associated with a range of points that subjects could
win (reward points) and each shape with a range of points that
subjects could lose (loss points). These associations were random
and unique for every subject in order to exclude the influence of
low-level visual features in task efficiency. Colors corresponded to
reward points and shapes to loss points for half of the participants
and vice versa for the other half. Reward and loss points corre-
sponded to benefits and costs in a previous study using a similar
paradigm (Basten et al., 2010).

When subjects were confident that they had memorized these
associations, they underwent two  training sessions for learning
rewards and losses, consisting of three blocks of 57 trials each (171
trials in total). In every trial they were presented with a pair of
different colors (i.e. a ‘wavy’ vertical bar of different colors) or dif-
ferent shapes and were asked to indicate with a button press which
one was  more advantageous, corresponding to a higher reward or
a smaller loss. They had 2 s to respond; after that they received
visual feedback for their choice and saw the actual values of the
two stimuli. The feedback was  displayed on the screen for 1 s and
was followed by a fixation cross, lasting 1.00 ± 0.12 s. The presented
stimuli had values randomly and equiprobably drawn from the
interval that subjects had initially seen, spanning from 1 up to 80
points, with a step of 10. For example, the stimulus corresponding
to the lowest reward interval could give 1 up to 10 points and the
one corresponding to the greatest loss −80 up to −71 loss points.

After completing the two training sessions, subjects were faced
with the main experiment which was  a gambling task (Fig. 1a).
Subjects were presented with offers, consisting of combinations
of the previously learned stimuli (i.e. shapes filled with color) and
me for accurate EEG decoding of single value-based decisions. J
.09.029

their task was  to decide whether they would accept or reject them,
through a button press with their index or middle finger. This deci-
sion was  based on whether the overall value of the offer, when
subtracting the reward from the loss points would lead to a win or
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Fig. 1. Description of the experiment and behavioral results. (a) Each trial started with a fixation cross (0.50 ± 0.02 s) which was  followed by the offer presentation, consisting
of  a combination of the previously learned colors and shapes. Subjects had 2 s maximum to respond through a button press whether they would accept or reject the offer,
based  on whether it consisted of more reward or loss points. The offer remained on the screen for 0.5 s after the button press and was then followed by a feedback (“Good
choice”/“Bad choice”) (b) reaction times across difficulty levels (1–5). Level of difficulty is measured by the absolute difference in the reward vs. loss points that are contained
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220
ithin  each offer. Level 1 corresponds to the highest difficulty while level 5 to the e
he  ratio of correct responses consistently increased as the level of difficulty decrea
iffusion model, across subjects. Drift rates increase as the level of difficulty decrea

oss. For each trial subjects saw a fixation cross for 0.5 ± 0.02 s which
as followed by the display of the offer (Fig. 1a). Subjects had 2 s to
ake a decision, starting immediately after the offer display. Half a

econd after they made a decision by pressing a button, they saw a
essage informing them if their choice was advantageous (Fig. 1a)

or 1 s, which was followed by a fixation cross that remained on the
creen for 1.0 ± 0.1 s. In order to simulate a realistic situation and
o make the experiment more motivating, subjects were told that
hey had a total of 500 points to begin with and that their decisions
ould influence this amount: if they correctly accepted an offer

orresponding to a total positive gain, this gain would be added to
heir overall points, however, if they erroneously accepted an offer
orresponding to a loss, this would be subtracted from their total
oints.

The experimental protocol used in this study allows varying the
evels of decision difficulty, depending on the difference of reward

inus loss points for any given offer. A previous fMRI study using
his experiment (Basten et al., 2010) showed that behaviorally, the
reatest the distance between the absolute values of reward and
oss for a given offer, the easiest it is for subjects to make a decision,
s measured by reduced reaction times and increased accuracy. In
his sense, we used the difference between reward and loss points’
ange as an index of decision difficulty, which ranged from 1 for
ard decisions to 5 for the easiest ones.

In total, we presented subjects with eight blocks, including all
Please cite this article in press as: Tzovara A, et al. Quantifying the ti
Neurosci Methods (2014), http://dx.doi.org/10.1016/j.jneumeth.2014

ossible combinations of stimuli with few exceptions. We did not
resent any of those combinations where the reward and loss
oints would be equal, and we did not present most of the combina-
ions that contained extreme values (i.e. offers containing stimuli
 decisions. Subjects were faster in responding as difficulty decreased. (c) Similarly,
d) Median drift rates, vs across difficulty levels as they were estimated by the drift
ading to a faster accumulation process and therefore decisions.

that correspond to the maximum or minimum of reward or loss
points). The reason for excluding these extreme values was that
subjects would likely not need to compute the values of both stimuli
but would instead base their decisions on the extreme value alone.
Each block contained every color/shape combination twice, with
randomized order of presentation. This resulted in 76 trials per
block, or 608 trials in total per subject. The whole experiment,
including the training session and breaks between blocks, lasted
approximately 1.5 h per participant.

2.3. Behavioral models

We modeled the subjects’ behavior according to a DDM (Ratcliff,
1978). The suitability of this model to explain this type of deci-
sions has been shown in a previous study (Basten et al., 2010). Here,
we assumed the same type of behavioral model and computed its
parameters in a similar way  as in (Basten et al., 2010). Specifically,
this previous study has shown that drift rates vary according to
the level of difficulty, while the rest of the DDM’s parameters did
not differ (distance between boundaries, the starting point and the
total non-decision time). Here, we  employed a similar approach and
computed separate DDMs for each subject, with reaction times and
type of responses being the dependent variables of the models. For
computing the DDMs we used the DMA  toolbox (VandeKerckhove
and Tuerlinckx, 2007).
me for accurate EEG decoding of single value-based decisions. J
.09.029

We  also computed additional behavioral models, for which
we kept all the parameters fixed across levels of difficulty and
we compared them to the models where the drift rates varied
across difficulty levels. This comparison was based on the Bayesian
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nformation Criterion (BIC; (VandeKerckhove and Tuerlinckx,
007). For every subject, the model where the drift rates vary across
ifficulty levels provided lower values of BIC than the model where
arameters were considered constant across difficulty. Indeed, in
hese two cases we obtained a range of BIC values of 969–1653 for
he models with fixed parameters, while the more general one pro-
ided a range of values of 766–1507. In the main results we  thus
lways consider the model with varying drift rates across different
evels of difficulty.

.4. EEG acquisition and preprocessing

Continuous 128-channel EEG was acquired through a Biosemi
ctive II portable system with a sampling rate of 1024 Hz. EEG was
eferenced to the common mode sense (CMS; active electrode) and
rounded to the driven right leg (DRL; passive electrode), which
unctions as a feedback loop driving the average potential across
he electrode montage to the amplifier zero. EEG was  recorded dur-
ng the training phase and the main experiment, however, in the
ontext of this study, we only processed data acquired during the
ain experiment.
Data preprocessing was done with Cartool (Brunet et al., 2011).

EG data were bandpass filtered offline (0.18–40 Hz) and eye move-
ents, muscle or other artifacts were rejected in a semi-automatic
ay, by applying a criterion of ±60 �V. Peristimulus epochs of EEG,

panning from −100 ms  before the offer presentation and lasting
p to the subjects’ button press for each trial, were extracted. Data
rom artifacted electrodes because of a bad contact were identified
isually for each participant (6 ± 1 electrodes per subject) and were
nterpolated (Perrin et al., 1987). For the single-trial analysis data

ere down-sampled to 64 electrodes to reduce the computational
oad and were normalized by their instant EEG power, i.e. the mean
f the squared values across electrodes:

 = m0√
1
N

∑N
i=1m2

i

(1)

Here m refers to a normalized single-trial voltage topography
nd consists of a 64-dimentional vector with voltage values across
ll the N electrodes in the montage: m = [m1, . . .,  mN] (where

 = 64). m0 refers to the original voltage topography.
Only trials where subjects made a ‘correct’ decision were kept

or further analysis. These corresponded either to an accepted offer
hich would give more reward than loss points, or to a rejected

ffer which would lead to a loss (i.e. more loss than reward points).
he total number of trials that were considered for accept and reject
ecisions was 227 ± 6 and 221 ± 6 trials per subject, respectively,
orresponding to 75 ± 2% and 73 ± 2% of all the recorded single-
rials. The total number of accept and reject trials did not differ
ignificantly for the two conditions (t-test, t(11) = 1.06; p = 0.31).

.5. EEG analysis

.5.1. Multivariate EEG decoding based on accumulation of
opographic activity

The single-trial topographic EEG analysis was carried out at the
ingle-subject level and was based on a multivariate EEG decod-
ng approach, whose suitability for decoding subjects’ decisions has
een shown in a previous study (Tzovara et al., 2012a). In this pre-
ious study, we evaluated the time of decisions at the neural level
y taking advantage of the EEG activity locked to the reward pre-
entation. In the present study, we aim at detecting such a time at
Please cite this article in press as: Tzovara A, et al. Quantifying the ti
Neurosci Methods (2014), http://dx.doi.org/10.1016/j.jneumeth.2014

he level of each single decision/trial.
The analysis presented here consists of three main steps:

a) cross-validation: extraction of template maps, (b) validation:
ecoding decisions based on the extracted maps, consisting of an
 PRESS
ce Methods xxx (2014) xxx–xxx

evaluation of the generalization of these maps in new trials and (c)
Detection of critical time-points, which aims at quantifying the tim-
ing of single decisions. In the following we  present in detail every
one of these steps.

2.5.1.1. Cross-validation: extraction of template maps. The
employed approach consists of modeling single-trial voltage
topographies (i.e. the configuration of electric activity across all
electrodes at any given instant) based on Mixture of Gaussians
models (GMM)  (see similar applications of the GMM  for single-trial
EEG analysis in (Bernasconi et al., 2011; Cossy et al., 2014; De Lucia
et al., 2012). The probability distribution of a GMM  model with
Q Gaussians in total was computed in an N-dimensional space
(N = total number of electrodes) as:

P (m|�, �) =
Q∑

k=1

pkPk(m|�k, �k) (2)

Pk denotes the k-th Gaussian distribution with mean �k and
covariance �k. pk is the prior probability of the k-th Gaussian. In
the following, we replace “�k, �k” with ck for reasons of simplic-
ity. The parameters of the GMM  models were estimated based on
an expectation–maximization algorithm (Bishop, 1995; Dempster
et al., 1977), which iteratively computes the �k, �k and pk param-
eters by minimizing an error function:

E = −lnL = −
∑

i

ln

{
Q∑

k=1

P(m|ck)pk

}
(3)

The index i spans over all the instantaneous single-trial voltage
topographies of the training dataset. This step does not take into
account the temporal order of appearance of voltage topographies
(Tzovara et al., 2012b) and thus extracts few that are representative
of the whole dataset (i.e. the means of the Gaussians, or template
maps). The extraction of template maps was done for every exper-
imental condition separately (i.e. accept vs. reject decisions).

Model estimation was  based on one part of the available tri-
als (training Dataset, on average 173 ± 4 trials per subject and type
of decision) and was then tested on another part (test Dataset, on
average 19 ± 4 trials per subject and decision), in a 10-fold cross
validation procedure. Final results were confirmed on a validation
dataset (26 ± 3 trials per subject and condition), which consisted of
trials that were never used at any point in the cross-validation, for
training or testing the models (see also validation of the extracted
maps). The total number of trials extracted within each dataset did
not differ significantly across subjects for accept vs. reject deci-
sions for any level of difficulty (paired t-tests, |t| ≤ 1.49, p ≥ 0.17
for training/test datasets and |t| ≤ 1.25, p ≥ 0.24 for the validation
dataset).

Since it is not possible to estimate beforehand the optimal num-
ber of Gaussians in the GMM  models, we trained a range of models
with a total number of Gaussians from 3 up to 11 for each condi-
tion. This range of parameters was chosen in an empirical way,
based on the range that provided satisfying results on previous
studies using a similar approach (Tzovara et al., 2012a). On a second
step we  selected the optimal pair of models by maximizing decod-
ing performance across the 10 test datasets, in a cross validation
procedure.

We made the hypothesis that the neural generators that are
me for accurate EEG decoding of single value-based decisions. J
.09.029

responsible for making accept vs. reject decisions are reflected in
one voltage topography each. Therefore, by maximizing discrimi-
nation between accept vs. reject decisions in the training dataset,
we extracted two template maps, one per type of decision.
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Based on the computed GMM  models, we quantified the degree
o which the recorded voltage topographies are represented by the
emplate maps with posterior probabilities:

(ck|m) = P(m|ck) · pk

p(m)
(4)

here m refers to a recorded topography and contains an array of
oltage values recorded at individual electrodes, ck to one Gaussian
ithin the mixture (one template map), p(m) to the unconditional
ensity function, which is the probability of observing m irrespec-
ive of the Gaussian in the mixture, and pk to the prior probability
f the k-th Gaussian.

The Bayes Factor (BF (Raftery, 1995)) was used to quantify the
elative degree of appearance of a given topography from the first
odel (computed from accept trials) versus a given topography

f the second (computed from reject trials). So, at each latency h
ithin the t-the trial, the BF was computed for any given set of

opographies cAcceptk
and cReject′

k
, as:

Ft,h = P(cAcceptk
|mt,h)

P(cRejectk′ |mt,h)
(5)

here mt,h is the observed topography of the t-th trial, at latency
. cAcceptk

and cRejectk′ refer to the k-th template map  within the
MM  generated for accept and reject decisions, respectively. k and
′ range from 1 up to the total number of Gaussians in each of the
wo different models. The indexes k and k′ are not denoted in the BF
or reasons of simplicity, as only one pair of mixtures is eventually
elected (see below).

The Bayes Factor was computed in the same way for topogra-
hies belonging to both conditions and represented a measure of
he confidence with which we can assign a given topography (mt,h)
o the template maps corresponding to each decision (cAcceptk

or
Rejectk′ ). In general, a BF greater than 1 suggests that the specific
opography is better represented by the template map  for accept
han for reject decisions and vice versa. However, a BF of less than
0 cannot be easily interpreted as a strong statistical evidence of
he predominance of one template map  over the other (Raftery,
995; Wetzels et al., 2011). For this reason, we never considered
he absolute value as an evidence for a difference between accept
nd reject decisions. The BF was used for building a discriminant
unction as described below.

.5.1.2. Validation: decoding decisions based on the extracted maps.
or decoding accept vs. reject decisions we considered as discrim-
nant function the accumulation of the BFt,h across the whole trial
:

Ft = 1
Lt

Lt∑
i=1

(BFt,i) (6)

here Lt is the t-th trial’s length in time-points. This discriminant
unction, obtained by averaging the BF over time, corresponds to

 majority vote rule for assigning each trial to the accept or reject
ondition. This rule is known to be more robust to errors and to
utperform other classifiers, such as a product rule (Kittler et al.,
998; Tax et al., 2000).

For every latency and trial of the training dataset we  computed
ll possible combinations of the Bayes Factor (of k and k′) and
elected the most discriminant pair of template maps. These tem-
late maps were extracted from the training datasets and were
hen used for decoding accept vs. reject decisions in the test and
Please cite this article in press as: Tzovara A, et al. Quantifying the ti
Neurosci Methods (2014), http://dx.doi.org/10.1016/j.jneumeth.2014

alidation datasets.
Decoding performance was measured as the Area Under the

eceiver operator characteristic Curve (AUC (Green and Swets,
966)), which ranges from 0 to 1 for a perfect classification. Chance
 PRESS
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levels were quantified by randomly shuffling the true labels of the
training datasets and recomputing the GMM models 100 times. We
then computed the decoding performance in the validation dataset
based on these random models and estimated a distribution of
chance levels. We  compared the decoding performance obtained
on the basis of the real GMM  models with this distribution of chance
values with a signed Wilcoxon ranking test (p < 0.001).

2.5.1.3. Detection of critical time-points. The decoding scheme
described above allowed predicting subjects’ decisions based on
single-trial EEG activity, recorded at any time-point within a given
trial. For tracking the timing of this single-trial activity, in a data-
driven way, we accumulated the BF over time and studied its
timing:

ABFt,h = 1
h

h∑
i=1

(BFt,i) (7)

where h refers to any time-point within the t-th trial, thus h ranging
from 1 up to Lt, where Lt is equal to the tth trial’s length. Please note
that for h = Lt Eq. (7) is equivalent to Eq. (6) i.e. the average BF over
the whole trial’s length.

We observed in the trials of the training dataset that the accumu-
lated BF typically increased or decreased until it reached a ‘plateau’,
after which its values remained relatively stable (Fig. 2e for few
exemplar trials). In order to detect quantitatively those plateaus
we considered the first derivative of the accumulated BF. Formally,
a plateau would correspond to a ‘small’ change in this derivative.
For each trial of the training dataset we  computed the distribu-
tion of the values of the derivatives (computed as the difference of
the BF between contiguous time points) irrespective of time. We
then considered the lowest values corresponding to the first 5% of
this distribution. By keeping the median of these lowest 5% across
all trials we  extracted one threshold for each subject which would
correspond to a plateau in the ABF.

We  then used this threshold on the test and validation trials to
examine whether they would also exhibit a plateau. This general-
ization step is crucial in determining the suitability of the method
we used here for plateau detection. In the case of the test trials,
we searched for periods of stability, starting from the beginning of
each trial and moving on. We  refer to the onset of these plateaus
as critical time-points (t*) and we hypothesized that they corre-
spond to the time-points where enough evidence has already been
accumulated for accurate decoding of subjects’ decisions. We  tested
this hypothesis by decoding accept vs. reject decisions, by taking
into account activity from the beginning of the trial up to the crit-
ical time-points. We  expected that if a decision has already been
reached at the t*, decoding performance should be (a) above chance
levels and (b) not significantly different from what was obtained by
considering the accumulation of the BF during the whole trial. Both
of these conditions were assessed with Wilcoxon signed rank tests
(p ≤ 0.001).

2.5.2. Comparison with average ERP analysis
For reasons of comparison with what can be obtained from a

‘classic’ average event-related potential (ERP) analysis, we com-
puted analyzed average ERPs at the level of the group, in a
two-factorial design (decision × difficulty). For this part of the
analysis, the extracted trials (corresponding to accept and reject
decisions) were further sub-divided in two categories each, accord-
ing to the level of difficulty (easy vs. hard). We  considered ‘easy’
trials those where the absolute difference between the range of
me for accurate EEG decoding of single value-based decisions. J
.09.029

rewards and losses was of 4 or 5 and ‘hard’ those with a difference
of 1 or 2. The length of each trial was equal to the single value of
reaction time. For this analysis we  kept only trials with a reaction
time longer or equal than 500 ms  and considered activity only up
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Fig. 2. Results of single-trial analysis for an exemplar subject. (a) Template maps for accept and reject decisions. The middle map corresponds to the difference betweenQ3
accept and reject, and highlights the pattern of the different responses across the scalp, for display purposes. White dots indicate the position of the maximum and minimum
values  across all electrodes. (b) The value of the BF across time and trials reflects how likely is one time-point to be represented by the template map  extracted for accept
decisions (warmer colors) vs. the one for reject (cold colors). The onset of the trial (0 s) corresponds to the presentation of the offer. (c) BF across trials when re-ordering
single  trials according to their critical time-points (t*, red points). For display purposes, we only show trials for which we could detect a critical time-point before the end
of  the trial, in both panels b and c. (d) Average BF across trials (<log(BF)>), aligned to the offer presentation (black lines) or to the critical time-points (red lines), for the two
types  of decisions. When time-locking at the beginning of the trial we  could observe an early component, peaking at ∼150 ms  after offer presentation for both accept and
reject  decisions (black plots in left and right panels). By contrast, when realigning single-trials according to their critical time-points and re-computing the average BF, a late
component appeared, related to the critical time-points (red plots in left and right panels). The time-course of the average log(BF) across trials is shown for display purposes
with  respect to its initial value at time 0 <log(BFo)>. (e) Accumulation of the BF over time (gray lines) and t* (red points) for five representative trials for each level of difficulty
(darker lines correspond to harder decisions). As we consider more evidence over time, the ABF of single trials initially tend to increase or decrease over time, until they
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each  a plateau, after which they remain relatively stable. The black dashed lines h
hich to reject decisions. (For interpretation of the references to color in this figure

o 500 ms  for all of them (on average 60 ± 7 trials per condition and
ubject, corresponding to 27 ± 3% of all the available single-trials).

Based on these average ERPs, we calculated the Global Dissimi-
arity (Lehmann and Skrandies, 1980), for every time point, which
omputes differences between electric fields, independent of their
trength. Statistically, this was evaluated by applying a Monte Carlo
ootstrapping procedure (TANOVA; (Murray et al., 2008)), with two
Please cite this article in press as: Tzovara A, et al. Quantifying the ti
Neurosci Methods (2014), http://dx.doi.org/10.1016/j.jneumeth.2014

actors (decision and difficulty). This analysis can reveal periods
f topographic difference between experimental conditions, which
orcibly correspond to activations of different types of neural gen-
rators for each condition.
ht an indicative threshold, above which the ABF corresponds to accept and bellow
d, the reader is referred to the web version of this article.)

Additionally, we  analyzed differences in the strength of the
electric field, independently of its topographic distribution, as mea-
sured by the Global Field Power (GFP; (Murray et al., 2008)). The
GFP corresponds to the standard deviation across electrodes at
every instant in time. We  assessed differences in the GFP using
non parametric randomization statistics in a two-by-two design,
performed for every time-point. For both contrasts of GFP and
me for accurate EEG decoding of single value-based decisions. J
.09.029

Dissimilarity, we  used RAGU software (Koenig et al., 2011). Tem-
poral autocorrelation was  corrected by applying a criterion of at
least 15 contiguous time-points for the presence of a statistical
effect.
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.5.3. Comparison with other single-trial techniques
We compared the level of decoding performance we can obtain

ith the single-trial topographic analysis with two  other popular
ingle-trial techniques. The first one is logistic regression (Parra
t al., 2002, 2005), an algorithm which has been widely applied
or studying perceptual decision-making (Philiastides and Sajda,
006; Ratcliff et al., 2009) and in single-trial decoding in general
Brandmeyer et al., 2013; Farquhar and Hill, 2013). The second
s Support Vector Machines (SVM), a powerful machine learning
echnique which has been used in various decoding applications
SVM; (Rieger et al., 2008; Salvaris and Sepulveda, 2009; Schulz
t al., 2012; Taghizadeh-Sarabi et al., 2014)).

These approaches are typically based on selecting a sliding win-
ow of predefined temporal length (Ratcliff et al., 2009). Even
hough the use of such a sliding window has proven useful for
tudying perceptual decision-making, in our case we trained a clas-
ifier over the whole trials’ length, for two reasons: the first is that
ot all trials had the same length, so we would need to only con-
ider a short period from the beginning of the trial up to the shortest
eaction time and we would thus lose important information for
he majority of the trials. The second reason is that our decision-

aking task had a very high variability and a certain time-window
or easy decisions for example would not necessarily reflect the
ame processes as the ones for hard decisions over the same win-
ow. For these reasons, we considered single-trial EEG activity over
he whole trials’ length both for logistic regression and SVM, as we
id for our original analyses.

For easing the comparison with both methods we kept the
ame cross-validation and validation data splits as for the original
ingle-trial analysis. For each subject, we computed the necessary
arameters for classification (see below) based on the cross-
alidation trials. The validation dataset was always kept aside for

 final validation of our results. Chance level was  always esti-
ated by randomly permuting the labels of cross-validation trials

nd re-computing all the parameters 100 times. These random
arameters were then used for classifying the validation trials. Clas-
ification performance between this random distribution and the
rue value obtained using the original parameters was compared
ith a Wilcoxon signed-rank test (p < 0.001). Below we  present the

asic steps for the two  algorithms that we used.

.5.3.1. Logistic regression. The logistic regression algorithm is a
enerative classifier which models the single-trial EEG data as a
ogistic function, parameterized by w = (w1,. . .,wN):

(k = 1|m, w) = 1
1 + exp(−mT w)

(8)

here k is 0 or 1, according to the true labels of the two  classes
accept or reject decisions). It can be shown that assuming such

 distribution leads to a linear hyperplane, separating the two
lasses:

(t) = wT m(t) =
N∑

i=1

wimi(t) (9)

In the present study, the computation of the parameter w is
ased on a penalized likelihood estimator with an l2-regularization
Conroy et al., 2012). All the computations have been performed
ased on the matlab scripts provided by the Laboratory for Intel-

igent Imaging and Neural Computing (http://liinc.bme.columbia
edu/mainTemplate.htm?liinc downloads.htm) and described in
Parra et al., 2002, 2005).
Please cite this article in press as: Tzovara A, et al. Quantifying the ti
Neurosci Methods (2014), http://dx.doi.org/10.1016/j.jneumeth.2014

.5.3.2. Support vector machine. Similar to the logistic regression,
he SVM algorithm aims at computing a hyperplane which sepa-
ates the two experimental conditions (accept vs. reject decisions),
 PRESS
ce Methods xxx (2014) xxx–xxx 7

although in this case no assumptions on the data statistical distri-
bution is made. The most basic form of SVM is the linear one, where
the SVM computes a linear function:

f (x) = w��(m) + b (10)

where w is a weight vector, � is a fixed feature space transforma-
tion, m a vector with the single-trial EEG data, averaged over the
whole trial’s length and b is a bias term. Here, we  used a linear
feature space transformation.

The support vector machine approaches the computation of the
separating hyperplane expressed by introducing the concept of
‘margin’. Specifically the margin is the smallest distance between
the hyperplane and any of the samples in the data. The goal of the
support vector machine is to maximize this distance which trans-
lates in its simplest formulation in minimizing a cost-function:

1
2

w�w = 1
2

| |w| | (11)

with the constraint that

ki(w
��(mi) + b)≥1 (12)

where i spans over all the training samples and ki is the class label
of the vector mi.

In practice, the support vector machine allows some of the train-
ing data points to be misclassified which translates into adding
a regularization term to the Eq. (11) controlling the trade-off
between minimizing the classification error and the model com-
plexity. This term is typically parameterized by the variable C,
which here was  set to 1. For the SVM calculation, we used the
LIBSVM toolbox (Chang and Lin, 2011). For the SVM algorithm we
did not need to carry out a separate cross-validation for parame-
ter selection and a validation phase of the selected parameters. For
this reason, we computed the separating hyperplane based on the
cross-validation trials and report the decoding performance on the
validation dataset.

3. Results

3.1. Behavior

During the training phase of the experiment, subjects learned
to associate colors and shapes to corresponding rewards and
losses. Their performance increased in the three training blocks
and reached an average maximum of 92 ± 1% correct responses for
training of rewards and 94 ± 2% for losses. Average reaction times
during training were 1076 ± 37 ms  for rewards and 1051 ± 42 ms
for losses and did not differ significantly for the two types of training
(paired t-test, t(11) = 0.73, p = 0.48).

During the main task, reaction times decreased as the level of
difficulty of the decision decreased (Fig. 1b), while performance
(ratio of correct responses) increased (Fig. 1c). This behavior, both
in terms of reaction times and accuracy, was  in accordance to what
has been shown in a previous study with a similar task (Basten et al.,
2010). Subjects’ behavior during the main task was  modeled with
a DDM whose parameters were optimized for each subject sepa-
rately. Median drift rates across subjects followed a similar pattern
and increased as the level of difficulty decreased (Fig. 1d), result-
ing in faster reaction times. The rest of the parameters of the DDM
was kept constant across difficulty levels and included the mean
boundary separation (a), which quantifies the distance between
the two  boundaries of a diffusion process, the starting point of the
diffusion process (zo), as well as the total non-decision time (Ter).
me for accurate EEG decoding of single value-based decisions. J
.09.029

The mean boundary separation across subjects was 0.23 ± 0.02, the
mean starting point of the diffusion (zo) was 0.12 ± 0.01 and the
total non-decision time (Ter) was 559 ± 4 ms.  This last parameter
reflects the time needed for processes that do not contribute in the
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ecision itself, such as the encoding of visual stimuli, or the motor
esponse (VandeKerckhove and Tuerlinckx, 2007).

.2. Multivariate EEG decoding based on accumulation of
opographic activity

By accumulating over time the BF (Fig. 2a and b for an exemplar
ubject), we were able to decode above chance levels subjects’ deci-
ions for 8 out of 12 subjects (Wilcoxon test, |z| ≥ 3.3, p ≤ 0.001). For
hese 8 subjects, decoding performance in the validation dataset
as on average 0.61 ± 0.02 while chance level was 0.51 ± 0.01

Fig. 3a, subjects with an asterisk). Decoding performance across all
ubjects was 0.58 ± 0.03 and 0.57 ± 0.08 in the test and validation
atasets (Fig. 3a). An above chance level decoding for the major-

ty of the subjects suggests that the extracted template maps were
ndeed informative of the underlying decisions (accept vs. reject)
nd able to generalize to new trials.

.3. Temporal evolution of single decisions

The accumulated BF over time, (ABF), tended in general to
ncrease or decrease as we considered more evidence, until it
eached some plateau (Fig. 2e for few representative trials). After
his plateau, the ABF remained relatively stable, possibly because
Please cite this article in press as: Tzovara A, et al. Quantifying the ti
Neurosci Methods (2014), http://dx.doi.org/10.1016/j.jneumeth.2014

he decision had already been taken at some point before (Fig. 2).
ased on the first derivative of the ABF we detected the onset of
hese plateaus (critical time-points, t*; Fig. 2e red points). Fig. 2c
isplays the detected critical time-points (t*) across trials for an
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ig. 3. Decoding performance for all subjects. (a) Decoding performance in test (white 

ars)  for all subjects of the experiment. Subjects with significant decoding results (Wilco
n  asterisk (n = 8 subjects). Chance levels were computed by randomly permuting the la
emplate maps 100 times. (b) Decoding performance when taking into account informati
ut  of the 8 significant subjects, denoted here with asterisks (Wilcoxon test, |z| ≥ 4.02, p ≤
or  making a decision have already started differentiating their responses for each trial at
hen  the decision has already been made at a neural level. The error bars on panels (a) a
 PRESS
ce Methods xxx (2014) xxx–xxx

exemplar subject (Fig. 2, red points). These t* were detected on
average at ∼590 ms  after the offer display, or at ∼340 ms  before
the subsequent response (Fig. 4a, left panel for the distribution of
the t* across all subjects). We were able to detect such t* for 75% of
the single-trials on average (range 61 up to 90% across subjects).

Importantly, when considering time-locked activity across tri-
als based on the BF, we observed an early component peaking at
∼150 ms  after the display of the payoff for both accept and reject
decisions (Fig. 2b and d, black line). Re-ordering single trials accord-
ing to the detected t* revealed an additional late component locked
to the t* which was previously masked (Fig. 2c and d, red lines).
These two  components closely match previous findings in percep-
tual decision-making, where early components appeared around
170 ms  and were linked to encoding of sensory information, while
late components were also shifted across trials and linked to the
decision process (Philiastides and Sajda, 2006). In order to validate
the role of the detected t*, we re-computed accuracy of decod-
ing in the validation dataset for the significant subjects by taking
into account only information up to the critical time-points for
each trial. For each subject separately, we  compared the decod-
ing performance based on the whole trial vs. only up to the t*,
based on a Wilcoxon test. Average decoding performance when
only considering activity up to the t* was 0.60 ± 0.01 on average
and at similar levels to the decoding results based on the activity
me for accurate EEG decoding of single value-based decisions. J
.09.029

extracted from the whole trials’ length (0.61 ± 0.02; Fig. 3b). Impor-
tantly, the decoding performance up to the t* was  significantly
above chance levels for seven out of the eight subjects that we found
significant when using the whole trial (Wilcoxon signed rank test,
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* *
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bars) and validation datasets (light gray bars), as well as chance levels (dark gray
xon signed rank test, |z| ≥ 3.3, p ≤ 0.001) in the validation dataset are denoted with
bels of the training and test trials (cross validation dataset) and re-computing the
on only up to the critical time-points (t*, white bars) was above chance levels for 7

 0.001). An above chance decoding suggests that the neural generators responsible
 the critical time-points and provide further support that the t* reflect time-points
nd (b) represent the standard errors.
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Fig. 4. Reaction times and critical time-points (t*) across difficulty levels. (a) The boxplots show for each level of difficulty the median reaction times (on the left) and t* (on
the  right), across all subjects. As the level of difficulty increases (d = 1) both reaction times and t* are longer and variability increases. By contrast, for easy decisions (d = 5),
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eaction times and t* are shorter, with lower variability. (b) The median drift rates (
*  (Spearman’s Rho = −0.41, p = 0.001). This negative correlation suggests that longe
urposes only, the drift rates are plotted in a logarithmic scale and different subjec

z| ≥ 4.02, p < 0.001, Fig. 3b, subjects with an asterisk). These results
uggest that already at or before the detected t*, the neural genera-
ors of the subsequent decisions have started differentiating their
esponses.

.4. Modulation of t* by decision difficulty

We  tested whether the amount of evidence needed by our clas-
ifier to accurately decode subjects’ decisions, as indicated by the t*,
as modulated by the level of difficulty by computing the correla-

ion between the t* and the corresponding reaction times for each
rial. We  found a positive and significant correlation for all sub-
ects (Spearman’s Rho > 0.24, p < 0.001). These positive correlations
hows that greater t* are associated with longer reaction times.

An additional link between t* and subjects’ behavior was
evealed when examining individual subjects’ drift rates. We  con-
idered the median t* and the median drift rates across subjects
nd difficulty levels and we found that they significantly correlated
Spearman’s Rho = −0.41, p = 0.001; Fig. 4b). This negative corre-
ation shows that smaller drift rates (or slower decision-times)
orrespond to longer t* and vice versa. We  should note here that
hese results might be partly driven by the fact that the trials’
engths vary across trials and are equal to the corresponding reac-
ion times. It is therefore more likely to detect a higher t* in a longer
rial, than in a shorter one. This confound might also partly explain
he correlation of t* with drift rates, because the parameters of the
ehavioral model were based on the subjects’ reaction times.

Moreover, we also observed that the variability of t* (as mea-
ured by its standard deviation) is modulated by the difficulty
f the decision. The distribution of t* across all subjects (Fig. 4a)
evealed both longer latencies and greater variability of t* for ‘hard’
median t* = 697 ms,  standard deviation SD = 274 ms)  compared to
Easy’ decisions (median t* = 494 ms,  SD = 241 ms). This difference
n t* variability was found to be highly significant using Levene’s
est for equality of variances, with five levels (F = 3.88, p = 0.004).
his suggests that ‘hard’ decisions are more noisy than ‘Easy’ ones,
ven though the contextual factors influencing the decision for each
evel of difficulty remain the same across trials. It is worth noting
ere that tracking this variability at the neural level across levels of
ifficulties was only possible because we could determine the time
f decision at the level of each single trial.
Please cite this article in press as: Tzovara A, et al. Quantifying the ti
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.5. Comparison with average ERP analyses

For reasons of comparison with ‘classic’ ERP analysis, we addi-
ionally considered EEG data time-locked to the offer presentation,
 subject and difficulty level significantly correlated with the corresponding median
e associated with a slower accumulation process, or smaller drift rates. For display
shown with different symbols.

at the grand average level in the group of twelve subjects. Based on
time-point by time-point permutation tests we separately analyzed
differential responses as a function of difficulty level and decision
type in terms of response strength (measured by the GFP at aver-
age level for each subject) and in terms of configurations of voltage
topographies.

Visual inspection of the GFP revealed a first peak at ∼135 ms
after offer presentation, which was similar for all conditions
(Fig. 5a). The GFP permutation statistics revealed a significant inter-
action in response strength (decision * difficulty, p < 0.05) later in
time, at 394–426 ms post-stimulus onset (Fig. 5a). No main effect of
difficulty or decision was  detected. By contrast, the TANOVA anal-
ysis revealed a main effect of decision (bootstrapping procedure,
p < 0.05) on the configuration of voltage topographies during two
distinct periods, the first occurring at 243–285 ms and the second
at 395–437 ms  after the offer display (Fig. 5b). This second period
also overlapped with the period over which a significant interaction
of decision * difficulty was  found on the GFP. Both of these time-
locked periods were identified well before the typical latencies of
the t* (Fig. 4a), suggesting that these periods could likely reflect
processes linked to encoding of the presented offers.

Finally, we  examined the link between results obtained from
average ERP analysis and from single-trial decoding. In a similar
way to our previous study (Tzovara et al., 2012a), we exam-
ined whether the two  time-periods revealed by the TANOVA
also carry predictive power of single decisions. To test this, we
restricted the single-trial decoding of accept vs. reject decisions
only to the periods identified from the average ERP analysis.
In this case, decoding performance was  lower both on test and
on validation datasets. For the early period, ranging between
243 and 285 ms  post-stimulus onset, decoding performance in
the test dataset was  on average across subjects 0.51 ± 0.01
and in the validation dataset 0.51 ± 0.02. For the late period,
ranging between 395 and 437 ms  decoding in the test dataset
was 0.53 ± 0.01 and in the validation 0.52 ± 0.04. Only 5 out
of 12 subjects were significantly above chance levels for the
first period and 6 out of 12 during the second (Wilcoxon test,
|z| ≥ 4.8, p < 0.001), in both cases less subjects than when accu-
mulating information during the whole trial (i.e. 8 out of 12
subjects).
me for accurate EEG decoding of single value-based decisions. J
.09.029

3.6. Comparison with other single-trial techniques

We compared the decoding performance obtained with the
single-trial topographic analysis with logistic regression (Parra

732

733

734

dx.doi.org/10.1016/j.jneumeth.2014.09.029


ARTICLE IN PRESSG Model
NSM 7047 1–12

10 A. Tzovara et al. / Journal of Neuroscience Methods xxx (2014) xxx–xxx

Fig. 5. Time-locked average ERP analysis. (a) Global field power of the grand average ERPs for different types of decisions and results of permutation statistics (highlighted
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eriod). A significant interaction decision * difficulty was observed in response st
ifferences at the grand average level. The TANOVA analysis revealed a main effect
95–437 ms  post-stimulus onset. (c) Average topographies during the two  periods 

t al., 2005; Ratcliff et al., 2009) and SVM (Chang and Lin, 2011;
ieger et al., 2008).

The average decoding performance with the logistic regression
cross all subjects was 0.56 ± 0.02 for the cross-validation and the
alidation datasets. This performance across subjects was at similar
evels as with the single-trial topographic analysis (paired t-test,
t| = 0.92, p = 0.38 for the cross-validation and |t| = 0.19, p = 0.85, for
he validation datasets). When using the SVM, the average decoding
erformance in the validation dataset was 0.57 ± 0.02. This average
erformance did not differ significantly from the one obtained with
ur method (paired t-test, |t| = 0.16, p = 0.87).

However, when examining the significance of results at the
ingle-subject level, the topographic analysis outperformed both
he logistic regression and the SVM, as the total number of subjects
howing significant results was higher: we obtained above-chance
Please cite this article in press as: Tzovara A, et al. Quantifying the ti
Neurosci Methods (2014), http://dx.doi.org/10.1016/j.jneumeth.2014

evel decoding for 8/12 subjects based on the topographic analysis,
ersus 7/12 and 7/12 subjects based on the logistic regression and
VM respectively. The results of these comparisons are summarized
n Table 1.

able 1
ummary of decoding results obtained with single-trial topographic analysis, logis-
ic regression and support vector machine. The results shown correspond to the
verage AUC values across 12 subjects, obtained in the cross-validation and vali-
ation datasets. The third row shows the total number of subjects with above-chance

evel results.

Single-trial
topographic analysis

Logistic
regression

Support vector
machine

Cross-validation 0.58 ± 0.01 0.56 ± 0.02 –
Validation 0.57 ± 0.02 0.56 ± 0.02 0.57 ± 0.02
#  Significant subjects 8 7 7
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777
 at 394–426 ms  post-stimulus onset (axis on the right p < 0.05). (b) Topographic
ision (p < 0.05) during an early period, at 243–285 ms  and also during a late one, at
fied by the TANOVA in (b) for all experimental conditions.

4. Discussion

In this study we  presented a novel approach for studying the
temporal evolution of single value-based decisions. This consists of
a multivariate EEG decoding analysis which extracts time-unlocked
topographic activity, related to the underlying decisions. Using this
approach, we were able to quantify, for the first time, a correlate
of the time when single decisions are made and we  showed that
it is possible to predict decisions much earlier than the behavioral
response (∼340 ms  before).

4.1. Comparison with other single-trial methods

We  compared the performance of the single-trial topographic
analysis with two widely used single-trial classification techniques:
logistic regression (Parra et al., 2002, 2005; Ratcliff et al., 2009)
and SVM (Rieger et al., 2008; Taghizadeh-Sarabi et al., 2014).
Despite similar levels of decoding performance across all subjects,
the single-trial topographic analysis gave significant results at the
single-subject level for more subjects than either of the two tech-
niques. Moreover, it has the additional advantage of extracting
interpretable features that can be tracked across time (i.e. the tem-
plate maps for each type of decision and the BF).

Indeed, the main novelty of our study consists of extracting
discriminant patterns of time-unlocked activity at the single-
trial level. Our approach differs not only from ‘classic’ average
ERP analysis, but also from the majority of previous single-trial
me for accurate EEG decoding of single value-based decisions. J
.09.029

techniques. Indeed, most of the existing approaches for studying
decision-making at the single-trial level rely mainly on preselected
time-intervals, or on sliding windows, whose length and latency
has to be identified beforehand (Billeke et al., 2013; Bode et al.,
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012; Philiastides and Sajda, 2006; Zhang et al., 2014). Other tech-
iques consist of model-based approaches, such as regression of
ingle-trial EEG activity, mostly using behavioral models or sub-
ects’ responses as regressors (Boehm et al., 2014; Fischer and
llsperger, 2013; van Vugt et al., 2012; Wyart et al., 2012).

While model-based approaches can be used to test specific
ypotheses, the present study presents a data-driven alternative

or analyzing single-trial data. This analysis does not require strong
ssumptions about the experimental factors influencing neural
esponses, or about the latency/location of the expected effects.
mportantly, it is suitable for assessing time-unlocked EEG activ-
ty, in a dynamic way as it gives the possibility to study trials with
ifferent lengths (as for example (van Vugt et al., 2012) also did,
y modeling events occurring in the continuous EEG signal). This is
otentially of interest in paradigms where subjects’ reaction times
re strongly modulated by experimental conditions and therefore
he periods of interest might change significantly across the exper-
ment (Bode et al., 2012; Boehm et al., 2014).

This approach could also be potentially useful for online applica-
ions, such as in the field of brain–computer interfaces (BCI; (Millan
t al., 2010)). BCI applications usually require a much higher decod-
ng performance than the one we obtained here, but nevertheless,
he detection of the critical t* for each single decision could provide

 realistic upper bound of when to stop accumulating EEG activ-
ty for accurately predicting a decision. Our results indicate that
n accurate prediction can be made in the order of few hundreds
f milliseconds before the actual decision. This information could
e used for improving the speed of BCI applications. Even though
he speed of calculations was not the main goal of the present
tudy, future experiments could evaluate and optimize the perfor-
ance of the decoding algorithm in real-life situations. In addition,

uture investigations could aim at increasing the accuracy of our
lgorithm, possibly by optimizing the extracted spatiotemporal
eatures.

.2. The timing of single decisions

From a neurophysiological point of view, the results we obtained
sing this novel approach are in line with recent developments in
he field of decision-making, which suggest that perceptual and
alue-based decisions may  rely on similar mechanisms of evidence
ccumulation (Basten et al., 2010; Hunt et al., 2012). This claim
omes mainly from model-based analyses of neuroimaging data,
hich have identified brain regions whose activity correlates with
arameters of diffusion models assessed at behavioral level (Basten
t al., 2010; Gluth et al., 2012; Hunt et al., 2012). However, the
emporal dynamics of evidence accumulation have been mainly
tudied in the field of perceptual decision-making (O‘Connell et al.,
012; Philiastides and Sajda, 2006; van Vugt et al., 2012; Wyart
t al., 2012).

In particular, EEG studies have revealed two  discrete compo-
ents, an early one, peaking at ∼170 ms  which is related to the
ncoding of sensory information and a late one, which is shifted
cross trials, according to reaction time and is related to the per-
eptual decision and amount of available evidence (Philiastides and
ajda, 2006). Our analysis at the single-trial level parallels those
revious findings, as it also identified an early, time-locked com-
onent at ∼150 ms  after offer presentation and a late one, shifted
cross trials and depending upon the level of difficulty (Fig. 2d).
ecent studies in perceptual decision-making have also identified
eural correlates of an accumulation mechanism, mainly in low fre-
uency bands of EEG (van Vugt et al., 2012) and have shown that
Please cite this article in press as: Tzovara A, et al. Quantifying the ti
Neurosci Methods (2014), http://dx.doi.org/10.1016/j.jneumeth.2014

erceptual decisions are influenced by the phase of ongoing delta
and oscillations during stimulus encoding (Wyart et al., 2012).
ther studies have identified EEG signals corresponding to various

tages of perceptual decisions, irrespective of the sensory modality
 PRESS
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and even in the absence of a behavioral response (O‘Connell et al.,
2012) and have shown that EEG activity over centro-parietal elec-
trodes correlates with subjects’ reaction times (Kelly and O‘Connell,
2013).

In the case of value-based decisions, fine-grained temporal
information has been coupled with behavioral models (Gluth et al.,
2013; Hunt et al., 2012), in order to isolate various stages of
decision-making, from value encoding to formation of a response.
In particular, Hunt et al. (2012) have assessed information flow
among different brain regions, within pre-defined regions of inter-
est (Hunt et al., 2012). Another related recent study has shown
that amplitude modulations on central electrodes reflect emerging
value-based decisions, in terms of readiness potentials (Gluth et al.,
2013). Our approach complements this work, as it takes advan-
tage of the whole electrode montage, providing a global measure
of neural responses preceding the formation of single decisions.

Importantly, the present study builds upon a previous work
(Tzovara et al., 2012a), where we  also detected timing informa-
tion based on an exploration/exploitation task. This previous study
showed that decisions had already been made at ∼520 ms after
reward presentation of the previous trial. However, this timing
was only detected at an across-trials level, leaving under-explored
single-trial variability. Our present results generalize this approach
by detecting critical time points at the level of single-trials. This
has also allowed quantifying the variability in the time of decisions
at a neural level. Indeed, we  showed that as the level of difficulty
increases, the variability in the latency of decisions also increases,
despite otherwise identical experimental conditions. This result
complements previous findings in perceptual decision-making,
studying endogenous and external influences on an evidence accu-
mulation mechanism (Kelly and O‘Connell, 2013). Future studies
could investigate the sources of this variability and their link to
behavioral performance and cognitive state.

4.3. Value encoding phase

In addition to the single-trial analysis, the average ERPs iden-
tified two  distinct time periods over which neural activity prior
to accept vs. reject decisions differed in terms of voltage topogra-
phies. Both of them occurred before the majority of the critical
time-points: the first one at ∼240–285 ms  and the second at
∼395–440 ms  after offer presentation. The timing of these distinct
periods is compatible with the existence of an encoding phase of
the incoming stimuli, a comparison of their values and a third suc-
cessive process in time related to the decision which varies from
trial to trial (as proposed in (Basten et al., 2010)). The low decoding
performance obtained when considering only the first two  periods
instead of the whole trial supports this interpretation.

It is worth noting here, that another important point of the
present study is the analysis of EEG activity from the value encoding
phase. The vast majority of M/EEG studies in value-based decision
making focused on the period after subjects receive feedback about
their decisions (for example (Cohen and Ranganath, 2007; Frank
et al., 2005; Pedroni et al., 2011; Yeung et al., 2005) and examine
the effect of this feedback on subsequent behavior. Only few studies
have assessed the temporal dynamics of the value encoding phase
in humans, right after an offer presentation (Gluth et al., 2013; Hunt
et al., 2012; Minati et al., 2012) but these were either based on
ERP responses at single electrodes (Gluth et al., 2013; Minati et al.,
2012), or were restricted within specific brain regions (Hunt et al.,
me for accurate EEG decoding of single value-based decisions. J
.09.029

2012). Our study instead examines global measures of EEG activity
and provides further insight into the processes taking place while
subjects see an offer and encode its value by quantifying the time
of the single decision for each subject.
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. Conclusions

In summary, we presented a novel approach for studying
rial-by-trial modulations in value-based decision-making and
uantifying the time when single decisions are made at a neural

evel. To the best of our knowledge, this is the first study to extract,
n a data-driven way, differential patterns of EEG activity which are
ompatible with an accumulation mechanism. Such fine-grained
emporal information fills a critical gap in combining the theoret-
cal diffusion model of decision making and direct neuroimaging
vidence at the level of the single decision.
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