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ABSTRACT

This paper describes the design and potential applications of CNC-fabricated snap-fit joints for 

cross-laminated veneer lumber panels (LVL). These joints are new to the building construction sector, 

but commonly used in other domains such as the automotive or consumer electronics industry. 

We explain our application of existing knowledge about the design and dimensioning of such 

joints, as well as several adaptations that we have made in order to optimize the connectors for 

the jointing of structural wood panels. This was necessary due to the materials and fabrication 

processes in timber construction, which are different from those in the sectors of origin of the 

snap-fit joints. We propose applications, including two case studies with physical prototypes:

1. A box girder prototype on which we introduce the combination of snap-fit joints with 

shear-resistant tab-and-slot joints and test the mechanical performance of the joints.

2: A double-layer arch prototype with non-orthogonal, 5-axis CNC-fabricated joints.

Basic Cantilever Hook Nomenclature: (a) Geo-
metrical parameters of the two parts. (b) Mating 
force Fmating in relation to the insertion angle α 
and the deflection force Pdeflection
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INTRODUCTION

In 2010 the building sector was responsible for nearly a third 

(32 per cent) of global final energy use. The embodied energy 

in buildings can be significantly reduced with materials which 

require less energy in their production, such as wood products 

(IPPC 2013). Typical building certified spruce laminated veneer lum-

ber (LVL) panels are made from more than 90 per cent renewable 

materials and store 450 g of carbon per kg. Following the com-

bustion conditions provided by the manufacturer, these panels 

can be recycled into energy production.

Generally, due to its low weight-to-strength ratio, timber is an 

ideal material for the production of prefabricated building com-

ponents, where ease-of-transport, handling and assembly have a 

great impact on the construction footprint, cost and timespan. In 

this context, LVL panels offer particular advantages: Compared 

to cross-laminated timber panels (CLT), thinner cross-sections are 

possible with the more homogenous and mechanically strong 

peeled-veneer laminate components, such as the Kerto RIPA rib 

or box elements (MetsäWood 2014).

In the context of shell and spatial structures, timber panels ma-

chine easily into irregular shapes, and prefabrication simplifies 

the use of advanced techniques and technology. However, 

while LVL panels offer numerous advantages for such construc-

tions, design constraints result from limitations in the edgewise 

jointing of the thin panels. Geometrically simple, orthogonal 

components such as the Kerto RIPA elements can be prefabri-

cated with glued butt joints. On site, metal plates or fasteners 

are used for the final assembly. Gluing is not possible due to a 

lack of constant conditions for the curing of the adhesive. For 

more complex timber panel assemblies, such as folded plate 

structures (Buri 2010), the assembly of large amounts of angular 

edgewise joints becomes very challenging with state-of-the-art 

metal fasteners. Previous studies have also demonstrated that 

the structural performance of such designs could be increased 

considerably through improved joints (Hahn 2009).

Inspiration for improvements can be taken from Integral me-

chanical attachment, the oldest known method of joining 

(Messler 2006). Rigid interlocks form one category of this general 

concept, including connections like mortise-and-tenon, dovetail 

or finger-joints, which were common handcrafted joining tech-

niques in traditional carpentry and cabinetmaking. However, with 

industrialization and its proliferation of machine-tool-technology 

(Schindler 2009), these joints were widely replaced by mass-pro-

duced metal plate connectors and fasteners. Only recently, the 

increasing use of information-tool-technology in timber construction 

companies and Application Programing Interfaces for the algo-

rithmic generation, analysis of integrated joints, has caused a 

resurgence of integral mechanical attachment techniques. 

First examples of integrated line-joints for wood panels have been 

demonstrated on the ICD/ITKE Research Pavilion 2011 (la Magna et 

al. 2013) and the Curved-folded CLT Pavilion (Robeller et al. 2014), as 

well as the recent ICD/ITKE LaGa Exhibition Hall (ICD/ITKE 2014). In 

these projects, form-fitting joints integrate locator features for the 

fast and precise positioning of elements, which enables and sim-

plifies complex assemblies. Simultaneously, the joints participate 

in the load-bearing connection of the components through their 

connector features. Additional metal fasteners or adhesive bond-

ing are necessary to receive forces and to retain elements in their 

remaining degrees of freedom.

A possible solution for the jointing of structural wood panels without 

additional fasteners or adhesive bonding may be found in elastic inter-

locks, another category of integral mechanical attachment techniques. 

So-called snap-fit joints provide an integrated locking feature to connect 

the parts. While snap-fit joints are a common attachment technique in 

the consumer electronics or automotive industry, possible applications 

for the jointing of timber panel structures have yet to be studied.

CONCEPT

Snap-fit joints are widely used in the industry as a simple, econom-

ical and quick way of connecting two parts. The joints consist 

of one male and one female part. The temporary bending of the 

cantilever hook allows the fit of two pieces, using the material’s 

elasticity property. After the joining operation, the pieces return to 

a stress-free state. The geometrical parameters of the parts define 

the force needed to assemble or disassemble it and the separable 

or inseparable characters of the joints. The joint is mainly de-

signed according to the mechanical load during assembly and its 

corresponding assembly force (Figure 1).

GENERAL JOINT DESIGN

Rudimentary design is provided by the snap-fit manufacturers 

such as BASF (BASF 2007) or Bayer (Bayer MaterialScience LLC 2000). 

Based on the assumption of the Euler-Bernoulli beam theory, the 

design variables for the joints are the following:

Height of the cantilever beam h,

Length of the cantilever l,

Width of the cantilever b,

Undercut y.
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Given the maximal permissible strain of the material ε, the maximal de-

flection for a cantilever with rectangular and constant cross section is:

ymax= 0.67 (εl2) / hbase 

For a cantilever snap joint with decreasing height to one-half at 

the tip over the length the 0.67 factor becomes 1.09.

During the assembly, the deflection force P at the tip of the canti-

lever at ymax is given by:

Pdeflection= (bh2/6) (Eε/l)

Where E is the E-modulus of the material and b the width of canti-

lever. More information on the design of cantilever snap joint with 

other geometry such as trapezoid section can be found at (BASF 

2007) or derived from the beam theory of a cantilever beam with 

point load at the tip (Figure 2).

The force necessary to assemble the joint, called mating force, 

depends on the friction coefficient of the material μ, the insertion 

angle and the deflection force. Both the deflection and friction 

force have to be overcome by the mating force:

Fmating=P [μ+tan(α)] / [1-μtan(α)]

The same equation can be used to determine the separation force 

of the joint where the insertion angle alpha has to be replaced 

by the retention angle beta. A value of 90° for the retention angle 

gives the maximal retention force.

Furthermore, a study from Luscher (Luscher 1995) shows that the 

retention force not only depends on the retention angle but on 

the Percentage of Engagement (PE) as well. The engagement is the 

depth of insertion in the undercut of the mating part. A hook fully 

in contact with its mating part would have a PE of 100 per cent. 

The PE defines the failure mode and thus the maximal retention 

force. (Figure 1) shows that a Percentage of Engagement of 100 per 

cent or higher is preferable. Finally, the stress concentration at the 

root of the cantilever should be reduced by adding a fillet radius.

ADAPTATION TO FABRICATION AND MATERIALS 
IN TIMBER CONSTRUCTION

(Figure 2) shows our design for a CNC-fabricated snap-fit joint. For 

the production of our prototypes, we have used a MAKA MM7s 

5-axis router equipped with a cemented carbide shank-type cutter 

with a radius of 6mm, operated at a feed rate of 6-8m per minute 

and a rotational speed of 17,000 revolutions per minute.

CNC fabricated Snap-fit Joint for LVL Panels - Protrusion (A), panel thickness 
(B), cantilever length (C), insertion angle (D), cantilever height (E), cantilever 
spacing (F), mating cutout (G), fillet radius (H), lateral pressure zone (I), undercut 
(J). Top right shows a version of the joint without hook protrusion. Bottom shows 
a schematic time-lapse assembly and disassembly.
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Retention Force Diagram (Courtesy of A. Luscher)2
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Box Girder Specimen for the Mechani-
cal Analysis of Combined Snap-fit and 
Tab-and-slot Joints - A combination of 
the snap-fit joint with shear-resistant tab-
and-slot joints allows for a mechanical 
behaviour equivalent to a screwed joint

1.

2.

4

The elasticity of the wood allows to design a cantilevering hook for the jointing of two panels of 

wood. For a given panel thickness t and an undercut y the cantilever length l and height h can be 

chosen to correspond to the material’s limits:

Maximal permissible elastic strain in the bending direction.

Maximal compressive strength at the hook contact to avoid fiber crushing.

During the joining operation, the hook will be bent. This implies bending moment at the base of 

the cantilever and a deflection force against the mating panel. For a given undercut, the length and 

height of the cantilever have been chosen to limit the strain at the base in its elastic range and to 

avoid the crushing of the fibers at the tip of the hook and the top layer of the mating part, due to 

the deflection force. The undercut is the displacement constraint imposed to the hook during in-

sertion. A smaller height gives a larger flexibility of the cantilever, smaller strain at the base (h) and 

a smaller deflection force (h2). In case of the use of the retention resistance and an engagement of 

the hook higher than 100 per cent, the section of the cantilever have to be sized sufficiently for the 

disassembly tensile force.

COMBINATION WITH TAB-AND-SLOT JOINTS

While Snap-fit joints can resist a certain retention force, they do not provide any shear resistance. 

In order to use this joint as a load-bearing connection for building components, we combine 

the snap-fit joint with prismatic tab-and-slot joints, which receive the majority of the forces. 

Generally, we consider the snap-fit-joint as a special type of tab-and-slot-joint, with an integrated 

retention feature. This combination of integrated joints allows us to achieve a mechanical be-

havior equivalent to a screwed joint. The specific shear-resistance of such a joint combination 

depends on the individual length and overall amount of the tabs. We have first tested this be-

havior on a simple box girder prototype (Figure 4).
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FABRICATION AND ASSEMBLY

The geometry of the joint is parameterized in a Rhino3D Python script. The geometry of the snap-

fit joint is automatically generated based on the panel thickness and the before mentioned calcula-

tions. The G-Code for a CNC milling machine is also generated automatically at the same step.

The assembly of a snap-fit jointed beam is carried out by clipping the two webs to the bottom 

panel and finally connecting the top panel. This is done very quickly and no fixation is needed to 

get the precise geometry. The time of cutting is gained back with the simplicity of assembly of 

the beam. Moreover, the beam can be assembled and disassembled at any time. This means that 

the panels could be transported flat and then put together only when needed. The transportation 

volume for a beam with equivalent static height is greatly reduced.

MECHANICAL PERFORMANCE

In order to evaluate the mechanical behavior of the Snap-fit joints, a set of three beams have been tested 

with a three point flexural test, loaded at mid-span. The results were validated with a Finite Element nu-

merical model (Figure 5). The performance of the snap-fit beam is then compared to a beam with screwed 

connection. Finally, an optimized snap-fit beam is proposed with the conclusion of the analysis.

PHYSICAL LOAD TESTS

The snap-fit beam specimens have been built with spruce Kerto-Q panels with a nominal thick-

ness of 21 [mm]. The panels consist of seven laminated layers (|-|||-|), five of them in the main 

grain direction and two in the perpendicular direction (Technical Research Centre of Finland 2009). 

Kerto-Q has the advantage of being very dimensionally stable to humidity changes with good 

structural characteristics. The beam spans 2210.5 mm for a total length of the beam of 2431.6 

mm. The size was constraint by the maximal dimension of the CNC milling machine 2.5 m. The 

displacements were both measured with Linear Variable Differential Transformer (LVDT) sensors 

on the top flange and with the stereo correlation technique on the bottom flange.

FEM Simulation of a 3-point Flexural Test 
with the Box Girder Specimen Geometry—
the image shows compression on the tab-
and-slot joints on side of the specimen.  
The FEM results were subsequently com-
pared with a series of physical load tests.
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NUMERICAL MODEL

Using the Finite Element Software Abaqus, the snap-fit joint 

beam was numerically simulated. The following material val-

ues were taken from the national technical approval certificate 

(VTT) of the panel manufacturer:

VARIABLES VALUES FROM VTT 
FOR KERTO-Q 21 [MM]

Density ρmean=510[kg/m3]

E1 E0,mean = 10,000 [N/mm2]

E2 E90,edge = 2,400 [N/mm2]

E3 E90,flat = 130 [N/mm2]

ν12 0.09

ν13 0.85

ν23 0.68

G12 G0,edge, mean = 600 [N/mm2]

G13 G0,flat, mean = 60 [N/mm2]

G23 G90,flat, mean = 22 [N/mm2]

The Kerto-Q material was modeled as perfectly linear elastic. 

Linear brick 8-nodes elements with reduced integration (C3D8R) 

were used for the mesh. Attention was paid to refine the mesh at 

the contact zones. The contact is modeled with the general con-

tact function of Abaqus. Its interaction property has two features: 

a tangential behavior defined by a friction coefficient μ = 0:4 

(Technical Research Centre of Finland, 2009) and a normal behavior de-

fined as ‘hard contact.’ Contact constraints are enforced for both 

with the penalty method. Separation after contact is allowed.

RESULTS

This section presents the results of the experimental tests and 

the numerical model. The results of the test are consistent with 

the numerical results. A final deflection at mid-span of 35 [mm] 

was reached for the failure load of 6000N. The failure occurred in 

the panel. The numerical model gives a deflection of 32 mm for 

the same load. As we can see from the results in Abaqus (Figure 

4), the snap-fit hook is not participating to the shear connection. 

Its stiffness is much lower than the tab connection as it was de-

signed to be easily bent for the joining operation.

OPTIMIZATION OF THE SNAP-FIT 
CONNECTION FOR THE BEAM

Looking at the result of the first snap-fit beam, the design of 

the beam could be improved or optimized by changing the 

hook geometry and the number of hooks. In the case of the 

beam, the snap-fit does not need to take any traction forces 

when the beam is loaded. The snap-fit is only necessary to 

keep the pieces together during construction. This means that 

the hooks do not need to be designed for high traction forces 

but should only be able to retain the four panels from going 

apart. The snap-fit cantilever can then be slender designed 

to make it more flexible, which would reduce the risk of fiber 

crushing during insertion. Moreover, as the hook is not partic-

ipating in the resistance of the shear connection, fewer snap-

fits are needed and could be replaced by more tap joints to im-

prove the shear capacity of the shear connection. Furthermore, 

it is not necessary to have the hook pointing in two directions. 

As it can be seen on the deformed shape of the beam in (Figure 

4), the hooks pointing in the direction opposite of the shear 

stresses are losing contact as soon as the beam deforms and 

are then unnecessary. Less snap-fit hook will considerably 

reduce the cutting time with the CNC and improve the compet-

itiveness of the technique over the glued or screwed connec-

tion. Finally, in order to have flat surfaces, the height of hooks 

and taps can be trimmed to the panel surface. The analysis of 

the optimized beam gives a deflection of 25 mm at mid-span 

for the same load of 6000N.

COMPARISON WITH SCREWED CONNECTIONS

Metal fasteners such as screws allow for a fast and convenient 

assembly of wood components on site. Unlike adhesives, con-

stant climatic conditions are not required for their assembly. 

However, for the edgewise jointing of structural wood panels 

with screws with a shaft diameter d, a lateral distance must 

be respected. For the Kerto Panels, the minimum distance 

is defined as 5*d, while the minimum screw shaft diameter 

d is 6mm (Deutsches Institut für Bautechnik 2011). From this, 

we obtain a minimum lateral distance of 30 mm and a mini-

mum panel thickness of 60 mm. Following these regulations, 

screwed edgewise joints cannot be used on thin LVL panels. 

Furthermore, large amounts of fasteners are necessary for 

load-bearing joints and additional locator features are neces-

sary to improve precision and ease of assembly. The combina-

tion of integrated connectors presented in this paper supports 

loads not with additional fasteners but with the parametric 

geometry of the joints, which can automatically be optimized 

depending on the specific material characteristics and actual 

local load-bearing requirements. Elements can be transported 

to the construction site flat-packed and put together on site. 

This reduces the necessary transportation volume. Moreover, 

they can be quickly put together or disassembled if needed. 

Finally, the snap-fit connection is a mono-material connection, 

including advantages such as aesthetics, ease-of recycling or 

a homogenous thermal conductivity of the parts, which can re-

duce condensation and decay (Graubner and Wolfram 1986).
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Side-cutting Fabrication of a Non-orthogonal Snap-fit Joint with a 5-axis CNC Router—The illustration at the top left shows the main fabrication constraint of the side-cutting technique, 
which is the maximum tool inclination bmax. It is determined by the geometry of the tool and the tool holder. From this angle, we obtain the most obtuse (A) and the most acute angle (B) 
for the non-orthogonal snap-fit joint. The blue line (TCP) shows the tool center point path, generated with our RhinoPython script. Note the automatic height compensation for inclined faces

6

Prototype for a Snap-fit Jointed, Double-layered Corner (90° and 120° fold)—built from 17mm plywood, 75mm spacing. Note the double-snap-fit- element, which has a hook for 
the first layer and another hook for the second layer. The snap-fit joint in the middle is used as a spacer element. This technique can be used for structural improvement as well 
as for the fitting of (flocked) insulation materials

8

Sandwich Element with Inclined Vertical Connectors—The snap-fit joint allows for a simple, precise and quick assembly of non-orthogonal connections. There is no differ-
ence between the fabrication and assembly of a 90° joint and a 110° joint. This can be exploited for the assembly of corrugated sandwich components

7
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APPLICATIONS AND FEATURES: 
5-AXIS FABRICATION OF  
NON-ORTHOGONAL JOINTS

As one of the most important features, 5-axis cutting allows us to 

fabricate the snap-fit joint not only at 90°, but also for a  

fabrication-constrained range of non-orthogonal joints (Figure 6). 

Such angular joints can be used for the design of structurally effi-

cient timber folded-plates.

DOUBLE-LAYER STRUCTURES

As mentioned in our comparison with screwed joints, the combi-

nation of snap-fit joints and tab-and-slot-joints allows for the edge-

wise jointing of thin LVL panels (for example Kerto-Q 21, 27, 32 

mm). We can therefore, instead of a single layer of thick panels, 

design double-layer structures, where we achieve a large static 

height at a low self-weight and take advantage of the compressive 

and tensile strength of the panels at the top and bottom (Figure 

7). Another advantage of such double-layer structures is the pre-

fab-integration of insulation materials, which are protected from 

mechanical damage inside the components during transportation.

A particular structural advantage of the snap-fit and tab-and-slot 

joints on such double-layer assemblies is the possibility to estab-

lish a direct edgewise connection between all four layers of a fold 

(Figure 8). With longer snap-fit connectors, the interior panels of a 

fold can first cross through each other like a mortise-and-tenon 

joint, and then snap into the exterior layers above. The interior 

panels now double-lock the exterior panels in place, and the two 

additional line-joints per edge improve the overall stiffness and 

rigidity of the connection.

In an assembly with multiple components, additional elements can 

be added to a naked edge where both the exterior and the interior 

layer are fitted with either male or female connectors (Figure 9) and 

(Figure 10). This assembly constraint results from the fact that panels 

with snap-fit joints must be inserted along a vector that lies on the 

plane of the male part of the connection.

Finally, this assembly technique can also be applied to folded 

plate shells corrugated in two directions, allowing for the design 

of doubly-curved and free-form shell structures (Trautz, Martin et al. 

2009; Falk, Andreas et al. 2011). In such structures, multiple edges 

must be jointed simultaneously, which has, depending on the 

chosen assembly technique (Figure 9a) or (Figure 9b), certain impli-

cations on the geometry of the folded plate shell (Figure 11). This 

prototype also demonstrates a possible combination of snap-fit 

joints with dovetail joints on the exterior panels of a fold. While 

performing similarly to the tab-and-slot joints, the dovetails do not 

require a protrusion on the panel with female connectors.

CONCLUSIONS AND OUTLOOK

This first study on a snap-fit connection for structural wood 

panels clearly shows the potential of its application. Numerical 

parameterized geometry and CNC cutting technology enable the 

production of the joint. Few restrictions on the design need to 

be taken into account due to the wood’s material properties. The 

behavior of the first application on a box-beam of the beam was 

satisfactory but showed that improvements of the connection 

are still possible. 

1

2

1

2

c.

a.

d.

b.

e.

m
f m

f

f
f

m

f
f f

f

m
m

Assembly of Multiple Double-layer Components in one Direction—(a) and (b) show two 
possible male (m)/female (f) connector configurations and the resulting insertion directions 
of the panels. (a) requires spacer elements only on one interior panel, while (b) requires 
spacers on both interior panels. (c) and (d) show this method applied to an arch prototype. 
(e) shows additional snap-fitted shear block elements for this single-folded structure

Physical Prototype of the Single-folded Double-layer Arch. - The prototype was 
built from Kerto-Q 21mm panels and spans over 2.5m
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Assembly of a Double-layer Folded Plate Shell—(a.) Two edges of one panel (F4lower) simultaneously connect panels on two layers (F2lower / F2upper) and (F3lower / F3upper) via their four edges. 
The direction may be chosen within the plane of (F4). (b) shows the insertion of the upper panel (F4upper) with female connectors. Here, the line of insertion must lie on all planes the panel will be 
attached to (F2 and F3). For only two edges, a solution will always be found at the intersection line of the two planes. This constraint does not apply to the technique shown in (Figure 9b). (c) shows the 
interior view of the double layer assembly. Joints will only be visible on the mountain folds. The drawings (d) and (e) show two possible fold patterns which are corrugated in two directions and their order 
of assembly. The illustrated Herringbone (d) and diamond patterns (e) require only a small deviation (θ) of the snap-fit joints’ insertion direction from a line perpendicular to the edge to be jointed.
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Finally, the construct-ability of more complex joint geometries 

was shown on the last part, taking advantage of the ability to 

join thin panels, which was used for the jointing of double-layer 

prototypes. The possibility of disassembling the parts at any 

time and transporting them unassembled opens a wide range of 

future applications such as temporary or modular structures.
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