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Abstract

With the aim to generalize the theory of LP and L™ de Rham cohomology to metric measure
spaces, we define the scaled Alexander-Spanier cohomology and L” and L” Alexander-Spanier
cohomology. We follow the work of Pansu [33], Smale [37] and Hausmann [24].

Alexander-Spanier cohomology at scale ¢ > 0 of a metric space (X, p) is defined as the simplicial
cohomology of the complex given by all simplices (xo,...x;) € X*¥*! with diam{xo,...x¢} < t.
Scaled L9P Alexander-Spanier cohomology is the L9” simplicial cohomology of the same
complex. The limit as # — oo is the asymptotic Alexander-Spanier cohomology of X.

The asymptotic L” Alexander-Spanier cohomology is a quasi-isometry invariant for Rieman-
nian manifolds with bounded geometry. We show that the asymptotic L7 Alexander-Spanier
cohomology is a quasi-isometry invariant for graphs with bounded degree and that L>° L9
Alexander-Spanier cohomology is a quasi-isometry invariant for Riemannian manifolds with
bounded geometry.

For Riemannian manifolds with bounded geometry, there exists a number £y > 0 such that for
all scale ¢ < tj, the Alexander-Spanier cohomology at scale ¢ is isomorphic to the de Rham
cohomology. The same result is true for the L” Alexander-Spanier cohomology and L” de
Rham cohomology.

We show that for Riemannian manifolds with bounded geometry and non-positive sectional
curvature, the LP Alexander-Spanier cohomology is independant of scale. In this situation,
the asymptotic cohomology coincide with the cohomology at any scale. This results in a
proof of quasi-isometry invariance for L” de Rham cohomology on Riemannian manifolds of
non-positive sectionnal curvature.

Key words : Alexander-Spanier cohomology, L” cohomology, Vietoris-Rips complex, quasi-
isometry invariance, metric space, bounded geometry, double-complex






Résumé

Nous définissons la cohomologie d’Alexander-Spanier d’échelle ¢ ainsi que la cohomologie
LP et L™ d’Alexander-Spanier d’échelle ¢, dans I'objectif d’étendre certaines propriétés de
la cohomologie L” et L* de de Rham au cadre des espaces métriques mesurés. Nous nous
basons en particulier sur les travaux de Pansu [33], Hausmann [24] et Smale [37].

La cohomologie d’Alexander-Spanier a I'échelle ¢ > 0 d'un espace métrique est la cohomologie
simpliciale du complexe défini par 'ensemble des simplexes de la forme (xo, ...xg) € X*+!
tel que diam{xy, ...xx} < t. La cohomologie L7 d’Alexander-Spanier d’'un espace métrique
mesuré est la cohomologie L77 du méme complexe. En prenant la limite a l'inifini sur le
parametre £, on obtient la cohomologie asymptotique d’Alexander-Spanier.

La cohomologie L” d’Alexander-Spanier asymptotique est un invariant de quasi-isométrie
pour les variétés riemanniennes complete a géométrie bornée. Nous montrons que la co-
homologie L9P d’Alexander-Spanier asymptotique est un invariant de quasi-isométrie pour
les graphes de degré borné. Nous montrons aussi que la cohomologie L> L97 d’Alexander-
Spanier asymptotique est un invariant de quasi-isométrie pour les variétés riemanniennes a
géométrie bornées.

Pour les variétés riemanniennes compléte a géométrie bornée, il existe un nombre #, > 0
tel que pour tout ¢ < £y, la cohomologie d’Alexander-Spanier d’échelle t est isomorphe a la
cohomologie de de Rham. Le méme résultat est vérifié pour les cohomologies LP d’Alexander-
Spanier et de de Rham.

Nous montrons que pour les variétés riemanniennes compléete a géométrie bornée de cou-
bure sectionnelle non-positive, la cohomologie L? d’Alexander-Spanier est indépendante de
I’échelle ¢ > 0 choisie. Dans cette situation, la cohomologie asymptotique coincide avec la
cohomologie d’Alexander-Spanier a n'importe quelle échelle, ce qui prouve que la cohomolo-
gie de de Rham L est un invariant de quasi-isométrie pour les variétés riemannniennes de
courbure sectionnelle non-positive.

Mots clefs : cohomologie L”, cohomologie L”, Alexander-Spanier, Vietoris-Rips, espace mé-
trique, quasi-isométrie, géométrie bornée, double-complexe
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Introduction

With the aim of generalizing the L™ de Rham cohomology theory to metric measure spaces, we
define a scaled Alexander-Spanier cohomology based on the idea of the Vietoris-Rips complex.

0.1 Metric cohomology

Given a metric space (X, p), the Vietoris-Rips complex of X at scale t > 0 is the abstract
simplicial complex X; whose k-skeleton consists of all k + 1-tuple of points {xy, ...x)} with
diameter smaller than ¢. The concept was first introduced by L. Vietoris [41] and rediscovered
by E. Rips. The name Rips complex was coined by M. Gromov [22], who used it in the study of
hyperbolic groups.

J.-C. Hausmann [24] gives the following result for Riemannian manifolds with bounded geom-
etry. For small values of ¢, the underlying space of the Vietoris-Rips complex | M;| is homotopy
equivalent to the original manifold M. J. Latschev [26] extended this result in 2001 as follows.
Assuming M is closed, there exists ty > 0 such that for all ¢ < f, there exists a number 6 > 0
such that for any metric space Y which is at a Gromov-Hausdorff distance less than § of M,
then | Y;| is homotopy equivalent to M.

Hausmann defines as well the metric cohomology of a metric space X by taking the direct
limit of the simplicial cohomology of the Vietoris-Rips complex :

76*(X) =lim H* (X)),

and shows that for compact metric spaces, this cohomology is canonically isomorphic to the
Cech cohomology.

The Vietoris-Rips complex is used in computational topology [8] [3] and computational geom-
etry [9], for instance as a way to obtain a good approximation of a shape from a discrete set of

points.

We define a slightly different complex, which we call the Alexander-Spanier complex at scale t.
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Let Xf“ be the set of points (xy,...x;) € X**! such that p(x;, xj) < tforall i, j. An Alexander-
Spanier k-cochain is a function

w: X R
and the space of k-cochains of size ¢ is written AS]t‘(X). The Alexander-Spanier differential is

k+1

8w(x0, - Xpe1) = Y (= 1) (X0, .. K, . X 1).
i=0

We have 6 041 = 0 and so for each ¢ > 0 we have a differential complex

e — ASKT100) %51 AsK (0 2 ASFI(X) — ..

to which are associated the scaled Alexander-Spanier cohomology groups :

Hbg (X, p) = ZF(X)1Bf (X).

These cohomology groups are related by the restriction operators ry, s, : AS’;} X)— AS’,f2 (X), for
s,r,(X). We can study both
the direct and inverse limits of this cohomology theory, as well as how it changes depending

all t; = £, > 0, which induce homomorphisms ry, ¢, : H ﬁs n(X)—H ’IX

on the value of the scale. When taking the direct limit on ¢, as t — oo, we get the asymptotic
Alexander-Spanier cohomology of X :

Hiis,00(X, p) =1im Hg (X, p).

In the other direction, the inverse limit defines the initial scaled Alexander-Spanier cohomol-
ogyof X :

Hijs o(X, p) =1im Hyg (X, p).

Although the definition of the initial cohomology is different than the definition of metric
cohomology given by Hausmann, we can show that both constructions give the same result.
Indeed, by choosing an ordering of the points of X, we can uniquely assign an alternating
cochains in AS IIC(X ) to each simplicial cochain defined on the Vietoris-Rips complex. Alternat-
ing cochains form a subcomplex AS’; +(X) of the scaled Alexander-Spanier complex and the
projection operator



0.1. Metric cohomology

Alt: ASF(X) — ASF (%)

is in fact a homotopy equivalence, so both AS7 (X) and AS; ,(X) yield the same cohomology.

If the diameter of X is finite, then the asymptotic Alexander-Spanier cohomology of X is trivial.
More precisely :

Property0.1.1. Let X be a metric space of finite diameter. If the scale t is such that diam(X) < t,
then we have

0 ifk=1
Hf‘s’f(x):{me ifk=0

This gives a notion that details of small size are unseen by the scaled Alexander-Spanier
cohomology. We have more interesting results about the asymptotic cohomology in the L”
and L” cases.

Concerning the initial limit, we give the following "de Rham theorem", which extend the result
of Hausmann to the non-compact case.

Theorem 0.1.2. Assume that M is a complete Riemannian manifold with bounded geometry.
There exists ty > 0 such that for all t < ty, the Alexander-Spanier cohomology at scale t is
isomorphic to the de Rham cohomology of M :

Hjg (M) = Hpp(M), forall t < to.

In particular, the initial Alexander-Spanier cohomology of M is isomorphic to its de Rham
cohomology :

Hiyso(M) = Hpy (M).

To prove this, we use the method that A. Weil [42] used to give a proof of the original de Rham
theorem.

The main tool in this method is the following : a double complex, or bicomplex, is a collection
of spaces (Ck'l)k'le,\l together with morphisms dbl.ckl - ck+Llgnd 681 ckl - ckl+1 guch
thatdod =0,600 =0and (6 +d) o (0 + d) =0. When all rows and all columns are exact, we
have the following "Staircase" Lemma.

Lemma 0.1.3. Let ((Ck’l)k,le,\,, d®!, 8% be a double-complex such that every rows and every
columns are exact. If we augment exactly the complex with a row (C~"*,8) and a column
(C*~1,d), then the cohomology of the augmented row and column are isomorphic :



Contents

H*C™V" d) = H*C*™,6) , forall k= 0.

The idea is to construct diagrams of this kind relating the different cohomologies we are
studying. The archetype for this method is the Cech-de Rham complex. Given a good cover
A ={Uq}qes of M, the Bicomplex Lemma implies the usual de Rham theorem when applied
to the double-complex defined as

ckl =TT o*wnp.
IeS;

The differentials are, in one direction, the exterior derivative component by component, and
in the other direction, the alternating sum of the components, as in the Cech cohomology.
Following this structure, we construct two double-complexes. The Cech-de Rham complex,
as described earlier, and the Cech-Alexander-Spanier complex. The first double-complex
shows that the de Rham cohomology coincides with the Cech cohomology, and the second
shows in turn that the Alexander-Spanier cohomology, at small scales, coincides with the Cech
cohomology.

In order to apply Lemma 0.1.3, we need to find the conditions for which the double-complexes
are exact. In the direction of the exterior derivative (or the Alexander-Spanier differential), the
conditions are given by the Poincaré Lemma and its generalizations. In the direction of the
Cech differential, we will look for Mayer-Vietoris sequences. The addition of the hypothesis
from both these results gives the hypothesis of Theorem 0.1.2 and are generally met by com-
plete Riemannian manifolds with bounded geometry, at scales that are small in comparison
of the curvature and the strong convexity radius.

0.2 LP cohomology

Assume that (X, p, ) is a metric measure space. The L” norm of an Alexander-Spanier cochain
is defined in the usual way :

1/p

k+1

el = (f @I dptn ()

The space of L” Alexander-Spanier cochains is written L” AS’tc (X), and so for each ¢ >0 and
k = 0 we have unreduced cohomology groups

LP HYg (X, p) = Z{,(X)1 Bf ,(X).



0.2. L? cohomology

Initial and asymptotic cohomologies remain well-defined in this case, and we set :

LP HJg  (X) =lim LV H} g (X),

LpH’gS’O(X) = li_n)leH’gs)[(X).

Throughout our work, we will assume the measure p on X to be quasi-regular, in order for
most of our results to be valid. A measure ¢ on a metric space (X, p) is quasi-regular if there
exist positive real functions v(r) and V(r) such that for all x € X and for all r > 0, we have

v(r) <u(B(x,r) < V(r).
It is generally the case for Riemannian manifolds with bounded geometry.

The method we use for Theorem 0.1.2 works also in the L” case, and gives the following result
for small scales.

Theorem 0.2.1. Assume that M is a complete Riemannian manifold with bounded geometry.
There exists ty > 0 such that for all t < ty, the LP Alexander-Spanier cohomology at scale t is
isomorphic to the LP de Rham cohomology of M :

Llejs,t(M) = LPHE (M), forall t < .

This theorem concerns small scales. For large values of ¢, we are interested in a different kind of
result. We can show that the asymptotic L” Alexander-Spanier cohomology is a quasi-isometry
invariant.

A quasi-isometry between metric spaces f : X — Y is an application that is close to an isometry
in the following sense : there exists positive constants A, B and C > 0 such that for all x;, x € X,

1
ZPX(XI»JQ) —B=py(f(x1), f(x2)) < Apx(x1,x2) + B

and such that the image f(X) is C-dense in Y. The existence of a quasi-isometry is an
equivalence relation, and carries the notion that two spaces have the same geometry at large
scale. Typically, Z" is quasi-isometric to R". To state a more advandced example, one can
consider a finiteley generated group and two different sets of generators of this group. The
Cayley graphs obtained from each of these sets are quasi-isometric, and thus finitely generated
groups can be assigned quasi-isometry classes.
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The pullback induced in L” Alexander-Spanier cohomology by a quasi-isometry between
metric measure spaces f : X — Y is generally not well-defined between L? classes, and it
is generally not possible to evaluate the norm ||a o f|, given a cochain a € Lr AS’tC (Y). This
problem is solved by using a kernel and the étalement operator it defines by convolution. Let
¢ be akernel on X’TC“, the pullback of f is re-defined as

[ (@)(Q) = alp* f(A).

These two concepts are developped with more details in Section 3.2. Given a quasi-isometry
f:X — Y and an inverse quasi-isometry g: Y — X, the pullback of f and g do not necessarily
induce isomorphism in cohomology. Because a quasi-isometry generally changes the diameter
of simplices, the composition f* o g* and g* o f* cannot be compared with the identity
id: LP AS¥(X) — LP AS¥(X) (and thus are not inverse of each other in cohomology). But they
can be compared with, and acts the same way as, the restriction operator. As a consquence,
f* and g* induces isomorphism between the inverse limits H ﬁs,oo(X) and H’j (Y). This
gives us a first invariance theorem :

S,00

Theorem 0.2.2. The asymptotic LP Alexander-Spanier cohomology is a quasi-isometry invari-
ant on the class of metric measure spaces with quasi-regular measure.

Theorem 0.2.1 relates Alexander-Spanier cohomology to the de Rham cohomology for small
scales and Theorem 0.2.2 states an invariance property for large scales. But it happens that in
some cases, the Alexander-Spanier cohomology is constant relatively to its scale, which means
that both of these theorems apply at the same time.

A first way to obtain this kind of result is to extend the proof of Poincaré Lemma for the
Alexander-Spanier cohomology. The proof of this Lemma relies on building an inverse to the
restriction operator, by considering the barycentric subdivision of simplices. Since barycentric
subdivision can be extended to CAT(0) space at any scale, we have the following result, which
Pansu states as a remark :

Theorem 0.2.3. Assume that X is a CAT(0)-space. Then the LP Alexander-Spanier cohomology
of X is independant of scale.

In situations where the scaled LP Alexander-Spanier cohomology is independant of scale, the
quasi-isometry invariance is true for any value of ¢, with no need to take the limit. In particular,
the combinaison of Theorems 0.2.1, 0.2.2 and 0.2.3 results in the following corollary :

Corollary 0.2.4. The LP de Rham cohomology is a quasi-isometry invariant for the class of
Cartan-Hadamard manifolds, that is, simply connected complete Riemannian manifolds of
non-positive sectional curvature.

6



0.3. L" cohomology

Another possibility to obtain this kind of result is the case of uniformly contractible manifolds.
The property of double-complex we use to prove de Rham theorems can be used to link the
Alexander-Spanier cohomology at different scales instead of linking it to the Cech cohomology.

Theorem 0.2.5. Let M be a uniformally contractible Riemannian manifold with bounded
geometry. The LP Alexander-Spanier cohomology of M is independant of scale : given any
t,t'>0, forall k=0,

LPHE (M) = LPHY (M),

We also have this corollary, using Theorem 0.2.5.

Corollary 0.2.6. The L” de Rham cohomology is a quasi-isometry invariant for the class of
uniformly contractible complete Riemannian manifold.

This method of proof for the quasi-isometric invariance for L” de Rham cohomology was
sketched by P. Pansu [33] in a preprint. The quasi-isometric invariance was already announced
by Gromov [23].

Please note that all the results in this section are initially from the preprint [33] of Pansu. We
clarify their proofs, except for Theorem 0.2.5 for which we were not able to do so.

0.3 L” cohomology

Given a sequence 7 = {py}ren Of nUMbers 1 < pj < oo, we define the scaled Alexander-Spanier
cohomology in the following way : the space of L Alexander-Spanier cochains at scale ¢ > 0 is
given by

L"ASK(X) = {a e ASK(XOlllallp, < coand |5l p,,, < o0}
We get the following differential complex :

o LTASK 10 250 7 ASK 0 2 17 ASK (X0 — ..

From which we obtain cohomology groups

L"HYg (X) = ZF, (X)/BF,(X)

as well as the initial and asymptotic L" Alexander-Spanier cohomologies
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L"Hg (X)=limL" HY ,(X) and L" HA ¢ () =lim L" HY ¢ ,(X).

De Rham L" cohomology has a some interesting properties that were motivations for this
work. M. Troyanov and V. Gold’shtein [17] show that, when setting py = n/k, the L™ de Rham
complex obtained is a quasi-conformal invariant. S. Ducret [13] extends a result by G. Elek [14]
by showing that for Riemannian manifolds with bounded geometry with a triangulation, the
L9P de Rham cohomology is isomorphic to the L9P simplicial cohomology of the triangulation
for g and p such that

1 1 1
1<q,p<ooand;——s—or

q n
1 1
15q,p<ooand;——<1/n.

He shows as well that L7 is a quasi-isometric invariant for uniformally contractible Rieman-
nian manifolds for g and p satysfying one of these former inequalities as well as

However, the method of proof we used for the metric and the L case does not translate well
to the general L” case. In particular, integrability conditions imply that the Mayer-Vietoris
sequence works only when py = pi.1. By restricting to compact manifolds, we can still state
the following result.

Theorem 0.3.1. Let M be a compact Riemannian manifold. Assume thatm = {...pg < Pi+1,..-} IS
a non-decreasing sequence. There exists t > 0, such that for all t < ty, the L™ Alexander-Spanier
cohomology of M at scale t is isomorphic to the de Rham cohomology of M :

LﬂHgs,t(M) = HIISR(M),forall t<tp.

In a paper from 2012, S. Smale and N. Smale [37] describe a different complex with the aim
of studying L” cohomology with Alexander-Spanier cochains : an element x = (xp, ...xx) is a
simplex of f(f if the distance between x and the diagonal is less than ¢. In this case, we have
these inclusions :

Xl{c cX f c szt'
The main result of this paper is the development of a Hodge theory for compact metric

8



0.3. L" cohomology

spaces. A de Rham theorem similar to that of Hausmann is given for compact Riemannian
manifolds. The cohomology, both simplicial and L” simplicial, of M, is isomorphic to the
Cech cohomology of M for small value of . The proof also relies on double-complex, but
includes a rather technical discussion about the hypothesis.

We extend the result of quasi-isometry invariance in two different ways to L” Alexander-
Spanier cohomology. The first way is to consider graphs. If a graph has bounded degree, there
is an inclusion of L? spaces : a cochain which is L? integrable is also L7 integrable for all g = p.
This allows to state the following result :

Theorem 0.3.2. Let 7w = {...p; = Pi+1,.--} be a non-increasing sequence. The asymptotic L*
Alexander-Spanier cohomology is a quasi-isometry invariant for graphs with bounded degree.

Recall that a graph has bounded degree if there exists a uniform bound on the number of
neighbours that each vertex has. The counting measure on a graph is quasi-regular if and only
if the graph has bounded degree.

The second option is to consider locally bounded cochains. In that case, there is also an
inclusion of LP spaces.

Theorem 0.3.3. Let 7 = {...pg = pi+1,..-} be a non-increasing sequence. The asymptotic L™ lo-
cally bounded Alexander-Spanier cohomology is a quasi-isometry invariant for metric measure
spaces with quasi-regular measure.

On graphs, the asymptotic L™ Alexander-Spanier cohomology coincides with the locally
bounded version of it, which can be a motivation to the definition of a coarse L” Alexander-
Spanier cohomology. Given a metric space X with a quasi-regular measure, there exists
quasi-regular graphs which are quasi-isometric to X. In consequence, given a non-increasing
sequence 7, the asymptotic L" Alexander-Spanier cohomology of these graphs can be at-
tributed to X.

This thesis is organized as follow : in Chapter 1, we recall some basic properties about cochain
complexes and cohomology. In Chapter 2, we introduced the scaled Alexander-Spanier coho-
mology of a metric space and the LP Alexander-Spanier cohomology of a metric measure space,
as well as some basic properties. In Chapter 3, we show that the asymptotic LP Alexander-
Spanier cohomology is invariant through quasi-isometry and discuss several extensions to
L9P cohomology. In Chapter 4, we show the different De Rham-type theorems we mentionned.
An important part of the work is to establish a Poincarré Lemma for scaled Alexander-Spanier
cohomology. Chapter 5 serves as a conclusion to this thesis, by discussing scale independance
and how we can relate the results for Chapter 3 and 4.






1] Preliminaries : differential complexes
and cohomology

This thesis presents a number of different cohomology theories. We recall here some basic
facts about differential complexes, in order to fix some general notation and terminology. In
terms of category, the aim is to work with Banach spaces and bounded operators, but we will
also work with abelian groups and vector spaces.

1.1 Differential complexes

Definition 1.1.1. A cochain complex, or differential (co)-complex, is a collection of abelian
groups {C*} teny and homomorphisms dj : C* — Ck+1 such that dg o dy = 0 for all k. These
homomorphisms are called coboundary operators or differentials. Note that the expression
differential complex will generally be used, even if technically we are working with cocomplexes.

A chain map between two cochain complexes (C*,d,) and (D*,§.) is a collection of homo-
morphisms fk : C* — DF such that frv10dr =0ko f.

The identity on a cochain complex is a chain map and the composition of two chain maps is a
chain map as well. Thus, the collection of cochain complexes on a pointed category together
with the collection of chain maps is also a category.

Given a cochain complex (C*, d.,), it is usual to define the following notations :
o« Zk(C,d) = kerdy;

e B¥(C,d) =imdy_,.

The elements of Z*(C, d) are called cocycles. The k' -group of cohomology of (C*,d,) is then
defined as the following quotient :

H*(C,d) = Z,(C,d) I Bx(C, d).

11



Chapter 1. Preliminaries : differential complexes and cohomology

By ease of langage, we called the sequence of groups {H*(C, d)} xen the cohomology of (C*, d*).

Remark 1.1.2. In the case where (C*,d"*) is a complex of Banach spaces, its cohomology
itself will not always be complete and hence not consists of Banach spaces. Indeed, kerdy, is
a closed subspace of C¥, as the kernel of a continuous mapping. It is thus a Banach space
itself. However, imdj._, is not closed in general. It can be useful to considerate the reduced
cohomology groups defined by :

H'(C,d) = Z4(C,d)/ B(C, d),

with By (C,d) = imdj_;. In this case, ﬁk(C, d) is a Banach space.

The following property is the reason why we defined chain maps in the first place.

Property1.1.3. Achainmap f:(C*,d.) — (D*,d.) induces an homomorphism f* : H*C,d) —
Hk(D,é),for all k €N, in cohomology.

Proof. Let @ and f € Zi(C, d) be cocycles that are in the same cohomology class. That is, there
exists w € Bi(C,d) such that a — f = dw. In this case, f(a) and f(f) are cocycles as well :

6o f(a)=fod(a)=0.

And f(a) and f(f) are still in the same cohomology class :

fl@)—f(B) = fla-p) = fldw) =5(f (w)).

O

A consequence of Property 1.1.3 is that the cohomology of differential complex is a covariant
functor from the category of differential complexes (of a given category) to the category of
abelian groups. From that viewpoint, a cohomology theory is defined by the way we construct
a differential complex.

1.2 Chain homotopy

We recall now a tool of very general use in this thesis. A chain homotopy between two chain
maps f and g: (C*,d,) — (D*,d.) is given by a collection of mappings

Ei: ck - pk1

such that
fx— 8k =Exs100k+dg_10Ey.
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1.2. Chain homotopy

The homomorphisms Ej are called homotopy operators. The situation is shown in Figure 1.1.

Property 1.2.1. (Chain homotopy) Let (C*,0.) and (D*,d.) two differential complexes and

f,g: C — D two chain maps. Assume there exists a chain homotopy Ey. : C* — D*~1 between f

and g. Then f and g induce the same homomorphism in cohomology.

Figure 1.1: Chain homotopy

Ok—2 ck-1 Ok ck Ok C [
Ex
fe-1| 8k—1 fi || 8k a1 | | 8k+1
k+1
di-2 pk-1 k-1 Dk d pk+1 e+1

Proof. Let c € kerd; and compute :

(f—8)(c)=Eob(c)+doE(c).

We have 6(c) = 0 by hypothesis and d o E(c) € imd by definition, and so (f — g)(c) is a cobound-

ary and thus the difference, in cohomology, between f and g is always 0.

O

Furthermore, if f: C — D and g : D — C are two chain maps such that there exist a chain
homotopy between go f and the identity as well as between and f o g and the identity, then the
cohomology groups of C and D are isomorphic. In that situation, we call g and f a homotopy

equivalence between the complexes C and D.
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Alexander—Spanier Cohomology on
metric spaces

In this section, we discuss the definitions of the classical and scaled Alexander-Spanier coho-
mology and recall some basic results about these objects. The aim is to define a cohomology
theory that is suited to study the geometry of metric spaces.

2.1 Classical definition : Alexander-Spanier cohomology for topo-
logical spaces
Definition 2.1.1. Let X be a topological space. A k-function on X is a function of k+1 variables

f: X*1 — R. The space of all k-functions on X is denoted by ®* (X, R). We define a differential
5 : OF(X,R) - OF1(X,R) by :

k+1

Sk f (X0 v Xpr1) = Y (=1 F (X0, eeey iy ooy Xpe1)-
i=0

A direct computation shows that .1 o0 = 0 and thus @%(x),6 k) is a differential complex.
We say that two k-functions f and g are locally equal if for each x € X, there exists an open
neighborhood V < X of x such that for all (xy, ..., xx) € V we have

f(x()’ veey xk) = g(xo, ceny Xk).
In other word, there exists an open neighbourhood of the diagonal on which f and g coincide.

This is an equivalence relation, and the quotient of ®*(X,R) by this relation is denoted by
CfflS(X ,R). The differential 6 induces a map

8 CR (X, R) — CKEL (X, R)
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Chapter 2. Alexander-Spanier Cohomology on metric spaces

which is a differential as well. This gives us a differential complex (C fxs(X ,R),6¢), and its
cohomology is the Alexander-Spanier cohomology of X.

There are a number of variants to this construction that give different cohomology theories.
For instance, we can restrict to the subcomplex of finitely valued cochains or to compactly
supported cochains, depending on the class of spaces we want to study.

For sufficiently nice spaces, the Alexander-Spanier cohomology is isomorphic to the Cech
cohomology and the singular cohomology (paracompact spaces for Cech, cell complexes for
singular cohomology). For a discussion of this, see Spanier [38] and Massey [27].

2.2 Metric Alexander-Spanier cohomology

We want to construct an L version of this cohomology for metric measure spaces. We start by
defining a scaled Alexander-Spanier cohomology for metric spaces. The main idea is to fixa
specific neighborhood of the diagonal, depending on a parameter ¢ which we call the scale
of the cohomology. Varying the scale will give different results depending on the features of
the space. Intuitively, a large scale will result in a rough approximation and a small scale will
capture local features.

Let (X, p) be a metric measure space.

Definition 2.2.1. Let t > 0. We denote by Xf the set of points (xo, ..., x¢—1) € X¥ such that
diam{xy, ..., xx_1} < £. One can consider Xf to be the space of ordered k — 1-simplices in X of
diameter at most ¢. Elements of X{““ will often be written A = (xg,...Xx).

The distance between points x = (xo, ...xx) and y = (yo,...yx) € th“ is given by
Pk+1(x,J/) = miaXP(xiyJ’i).

In the situation when X is a measure space, with measure p, we will use the product measure
on th“, and write d .1 (A) for du(xg)...du(xy), or even du(A) when the index is obvious.

Definition 2.2.2. An Alexander-Spanier cochain of degree k and size ¢t > 0 on X is a real valued
function

f:xFH1 LR

The space of such cochains is denoted by AS]f(X ). We use the same differential as in the
topological settings. Let 6 : AS’tC X)— AS’;Jrl (X) be defined by

16



2.2. Metric Alexander-Spanier cohomology

k+1

6kf(x0;) xk+1) = Z (_l)lf(x();) -x,:\l'v---) xk+1)-
i=0

The index will be dropped when unnecessary. Again, d44; 06, = 0 and (AS';(X),dk)k isa
differential complex, called the Alexander-Spanier complex of size, or scale, t.

Remark 2.2.3. Without any size restriction on the simplices, the cohomology of the Alexander-
Spanier complex is always trivial. Let a : X¥*! — R be such that §a = 0 and a an arbitrary
element of X. Then the cochain 6 : X* — R defined by

0(xo, ..., Xk—1) = a(a, Xo, ..., Xx—1)

is such that 66 = a. This remark is also valid for classical Alexander-Spanier cochains : if we
do not use the local equivalence relation, the same method shows that every cocyle has a 6
preimage, and thus the cohomology is trivial.

Remark 2.2.4. In the litterature, there are sometimes variations in the definitions for this
cohomology. The Vietoris-Rips of size t is usually defined as the complex with simplices given
by finite subsets {xy, ..., x;} of diameter smaller than . We give a definition using points of
X*+1_ We show in section 2.5 that the subcomplex of AS ’tc (X) defined by alternating cochains
is equivalent to ASltC (X). The consequence of this is that both definitions are equivalent when
considering the cohomology of these complexes. Pansu [33] uses the usual definition of the
Vietoris-Rips complex and calls its cohomology the (scaled) Alexander-Spanier cohomology.

Hausmann [24] shows that the underlying topological space of the Vietoris-Rips complex
(using the usual definition) of a closed Riemannian manifold is homotopy equivalent to
that manifold for small values of ¢. Latschev [26] expands this result : if a metric space Y
is sufficiently close, regarding to the Gromov-Hausdorff distance, to a closed Riemannian
manifold M, then |Y;| is homotopy equivalent to M for small values of . Hausmann calls
the cohomology of the Vietoris-Rips complex the metric cohomology and gives a de Rham
Theorem for this cohomology, for compact manifolds. We shall prove a stronger result using
the method of double-complex.

N. Smale and S. Smale [37] define a scaled Alexander-Spanier cohomology on the subspace
X tk“ defined by points of X**! which are at a distance smaller than ¢ from the diagonal, that is,
a point (xo, ...xx) € X¥*1 isin X¥*! if there exists a point y € X such that max<;<f p(x;, y) < t.
We have in particular the following inclusions :

ch+1 CX;C+1 chk;—l.

Those authors show in the same paper that the L” cohomology they define this way coincide
with the de Rham cohomology for compact Riemannian manifolds. We find the same result
and extend it to L” cohomogy and to some non-compact cases.

17



Chapter 2. Alexander-Spanier Cohomology on metric spaces

2.3 L? and L”" scaled Alexander-Spanier cohomology

We define the L? version of our Alexander-Spanier cohomology. Let (X, p,u) be a metric
measure space.

Definition 2.3.1. We denote by M AS ’tc (X) the space of measurable Alexander-Spanier cochains
of size t on X. The LP norm of a cochain f € M AS’tC (X) is defined by :

1/p

”f”p = (f |f(x0’---) xk)|pdﬂ(x0,---,xk)
X[k+1

for p € [1,00). When p = oo, the definition is :

[ flloo =esssup|f(x)].

xe Xkt

We denote by LP AS';(X) the L” class of cochains such that || f|, < oo, that s :

LPASK(X) = {fe MASEXO) 1111, <oo}/{f€ MASEXO) LI, = 0}-

In Lemma 2.3.2 and Proposition 2.3.3, we check that § is well-defined on LpAS’tC(X) (if f=g
almost everywhere, sodo 6 f and 6 g, andif || f]l , < oo, then [|6 f |, < co. Thus (L”AS’E(X), Ok) keN
defines a differential complex as well. Note that Proposition 2.3.3 includes a condition of
regularity on the measure of X. We will see in our main results that this is an important
hypothesis.

Lemma 2.3.2. Let (X, p, ) be a metric measured space. Let f : X**1 — R be a real function
such that

kaﬂ | f (x0, ... 1) | d p(x0)...d p(xg) = 0.

Then we also have :

fX 181 G X)) .o () = 0.

Proof. In avery straightforward manner, we have :

18



2.3. L? and L” scaled Alexander-Spanier cohomology

k+1
me 10 f(MN)ldpgs1(A) < Z |f (xo, ... Xy XD A p(X0)... A (X1 1)

<(k+2) ka+2 | f (x0,...x1)1du(xo)...dp(xg) dp(Xg,1)-

In the last line, we use Fubini theorem to conclude the proof:

f 16 f(A)|dpgs: (A) Sf 0du(xgs+1) =0.
Xk+2 X

Proposition 2.3.3. Assume there exists V(t) such that u(B(x,t)) < V(t) for any x € X. Let
pe(l,00]. Then . : LP AS¥(X) — LP AS¥*1(X) is bounded for the LP -norm.

Proof. Set A = (xy,...xx+1), and let f € L”AS’;(X). If p < 00, we have :

k+1 . p
Hakf”Z :kaﬂ Z(‘Ulf(xO,...)fi,...ka) A1 (D)
t i=0
k+1 p
fX"“ (Z |f (xo,... xk+1)|) ap(xp)...dp(xg+1)

k+1
skaﬂ(k+ DPUY | f(x0, ooy eeeXir1) [P (o). dpa(pes1)
t i=0

The last step is Jensen’s inequality. Now we can exchange the sum and the integral.

k+1
16:fID < (k+1)P! Z f - | f(x0,...% xk+1)| dp(xo)...dp(Xg+1)

< (k+ 1)”[){}6+1 | f (xo, -.x0)|” dp(xo)...dpp(xpes1)-

In this last line, x;4; does not appear in the integrand. This has as a consequence that the
volume of the acceptable domain for x4 factors in. This domain is precisely

k
{xke1 € X1 (0, xis) € XF = () Blxi, 0,
i=0
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Chapter 2. Alexander-Spanier Cohomology on metric spaces

This is always contained in some ball B(x;, t). Because we assume that balls of a given radius ¢
has a uniformly bounded volume, we have :

I8, fIID < V(t)-(k+ 1)P-Lk | f (o, -0 |” dp(xo)...d pa(xx)

< V@O k+DPIfI.

For p = oo, we have :

10 flloo = (k+1)-esssup|f(x)| = (k+ DI flloo-

xeXk+

Note that we do not need to bound the measure of balls for this case. O

Example 2.3.4. We give an example where there is no bound on the volume of balls. Consider
N with distance p(n, m) = |n—m| and p({n}) = n as a measure. In this case, the volume of balls
of fixed radius has no upper bound, and the Alexander-Spanier differential is not bounded at
all scale. Indeed, let f :N — R be defined by

Fon = 1/n3 ifniseven;
1o if n is odd.

It is bounded in L! norm :

o0 o0 1
Ifllh=Y fmum) <), — <oo.
n=1 n=11

We then have 6 f(n, m) = f(m) — f(n). Choose a scale t such that 1 < £ < 2. Then an element
of I\If is of the form (n, n+ 1) or (n, n—1). The norm of § f is the following :

16flh="Y |f(n)—fm)l-p(muim).

(n,m)eN?

If we split the sum between terms of the form (n, 7 + 1) and (n, n — 1), we get twice the same
result, because of the absolute value. We can thus write :

16flh=2) 1f(n)—fn+1)| prun+1).

neN
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2.3. L? and L” scaled Alexander-Spanier cohomology

Here again, for each pair (n,n + 1), either n or n+ 1 is odd, and thus either f(n) = 0 or
f(n+1)=0.

16F1h=4 ) If(m)]-pmpn+1)

ne2N

1
=) —5 -+ ).
ne2N

This last series does not converge and hence ¢ is not a bounded operator in this case.
With all of this in place, we can define LY” cohomology for the Alexander-Spanier scaled
cochains.

Definition 2.3.5. Given g, p > 1, we define the space of L7” Alexander-Spanier cochains of
size ¢ :

LI ASK(X) = {f e MASF (X1l fll 4 < 00 and (15 1l , < oo}
The space of cocycles and closed cochains are defined as usual :

o« ZF (X) =kerby;

o Bb, (X)=imbj_y =61 (L7 ASF (X)) = 611 (LTASF ) N LP ASY.

This allows to define cohomology spaces that we write :

L HY (%) = ZF (X)1BE, (X).

As we noted before, the normed space Z,’jyt(X) is a closed subspace of L7 AS’tC (X), and thus it
is a Banach space. However, B ’(; p,¢(X) is not necessarly closed, which prevents the cohomology
space Lqulz‘iS,t
cohomology space

(X) to be a Banach space as well. We can however consider the reduced

—k —k
LIPH 5 ,(X) = Z3(X)/ B, ,(X),

where ES p,:(X) is the closure of B’;pyt(X). These spaces are then Banach spaces.

We can organize L9” cochains as a differential complex by proceeding as follow. Let & = {py. =
11k € N}, with 1 < pj < oo be a sequence of numbers. We note
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Chapter 2. Alexander-Spanier Cohomology on metric spaces

L™ ASF(X) = LPePen ASK (X).
We then have a differential complex :
o L ASK1 00 22 17 Ak (x0) 28 17 ASKH (X)) — ..
We write the associated cohomology groups L™ H ’j 5.0 (X).
Definition 2.3.6. Given ¢’ > t > 0, the restriction operator
roe: L9P ASK (X) — L7 ASF(X)

is defined by the restriction of cochains defined on simplices of size ¢’ to simplices of size  :
given f € L‘WAS];,(X), we have

r[/tf:letkH.

The restriction is a chain map :

rﬂ[(? = (57'1;’[

This means that r,/; induces a map in cohomology, for all ¢’ > t. These maps have the following
properties :

1. rtt:H;St(X) — H; (X) is the identity ;

S,t

2. ryp=rgorpsforallt’ =s=>t.

These two properties make (H ¢ ,(X), 1) a direct system with index set ((0,00),>) as well as

St
an inverse system, with index set ((0,00), <). The limit of such systems always exist for abelian

groups, and we define the following objects.

Definition 2.3.7. The asymptotic Alexander-Spanier cohomology is the inverse limit, as t — oo:

Lqugs,oo(X) = [ir_nLqu’jS’t(X).
The initial Alexander-Spanier cohomology is direct limit, as t — 0 :
LIV Hyig o(X) = lim L7 Hj g ,(X).
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2.4. Cohomology in degree 0

Concretely, an element of the inverse limit L9” H ﬁs - (X) is a collection f = (f), where f; €

Lar Hljs,t(X) for any ¢ > 0, that satisfies rg; f; = fs forany £ = s > 0.

On the other hand an element of the direct limit L9 H ﬁS,O(X) is a germ of Alexander-Spanier
scaled cochain: it is represented by an element f; in the disjoint union UoL9” H ’js,t(X)
modulo the equivalence relation defined by f; ~ f; if and only if there exists 0 < # < min(s, t)
such that ry; f; = rys fs.

Observe that we have natural maps

res L7 Hyg  (X) — LIP Hyg (X) and s L7 Hig ,(X) — LIV Hg o (X)

commuting with the restriction operators in the following way : if s = ¢ > 0, then

IsgOIg =T1%.

The spaces L1P H I[i soX)and LYPH ’g s.0o(X) can be endowed with a natural topology, this is not
a trivial task and we shall not be concerned with this question in this thesis. The interested
reader can consult the book Topological Vector Spaces by A. P. Robertson, Wendy Robertson
[34].

2.4 Cohomology in degree 0

We treat the case of AS?(X ) and LP AS? (X). The behavior is somewhat different from other
cohomologies, such as the de Rham cohomology. Note first that for any 1 < gq, p < oo,

L7 Hyg ,(X) = LP Hg (X).

Definition 2.4.1. Two connected components A and B of a metric space (X, p) are t-separated
if p(A,B) > t. The space X is t-connected if none of its components are ¢-separated. We
say that a subset A of X is a t-component or a t-cluster if for all x, y € A, there is a sequence
X = X9, X1,...Xp = y in A such that for p(x;, x;+1) < tforall0<i<n-—1,andifforall xe X\ A,
we have p(x, A) = t.

Recall that in the de Rham cohomology, the 0-cocyles are locally constant functions : for all
x € X, there exists a neighbourhood U of x such that f is constant on U. For Alexander-Spanier
0-cocycles, we have a stronger variant of this property : not only a 0-cocyle is locally constant,
but it is also constant on each t-component.
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Chapter 2. Alexander-Spanier Cohomology on metric spaces

Property 2.4.2. If f € AS%(X), we have :

8 f (x0,x1) = f(x1) — f(x0), Vxo, X1 € X2.

If two connected components Xy and X; of X are close enough, we can find xy € Xp and
x1 € X; such that p(xg, x1) < t, and so f has to take the same value on Xy and X;. So the first
group of scaled Alexander-Spanier cohomology will "count" the number of ¢-components
rather than connected components :

Property 2.4.3. If X has n t-components, then one has :

Hjg (X)) =R".

Finally, the LP case is determined by the measure of each t-component :

Property 2.4.4. If p < oo and X is t-connected, we have :

R ifu(X) <oo;
LP Hys ,(X) = .fﬂ( )y <o
’ 0 ifuX)=oc.
Thus, the LP Alexander-Spanier 0-cohomology at scale t counts the number of t-components of
finite measure.

This property allows the construction of examples to illustrate the initial and asymptotic
cohomologies as well as some properties inherent to cohomologies based on the Vietoris-Rips
complex.

Consider R* =R\ {0}. For any ¢ > 0, the Alexander-Spanier cohomology of degree 0 at scale ¢
of R* is R, because R* is z-connected for all ¢ > 0. Note that the cohomology in degree 0 of R*
is stable through the different values of ¢.

Consider now the sequence of points A = {1/2"},en with the euclidian distance. The largest
distance between any two points of this sequencesis 1/2, so for any ¢ > 1/2, we have Hg s:(A)=
R.If 1/2""! < £ <1/2", then A has n different t-components, and so Hgls, ,(A) =R". Note that
the restriction operator will be injective for any choice of scale. In consequence, we have

Hg0(A) =Rand Hjg ((A) =R".

In particular, there is no stability as t — 0.

24



2.5. Alternating Cochains

2.5 Alternating Cochains

The scaled Alexander-Spanier cohomology can be computed using only alternatig cochains,
both in the classical and the L? case.

Definition 2.5.1. A cochain f: th“ — Ris said to be alternating or antisymmetrical if for any
permutation 7 € G4, we have

F Xy, - Xe (i) = sgn(1) - f (X0, ... Xk).

The subset of ASK(X) and L™ AS¥ (X) of alternating cochains are written AS ’f 2(X)and L7 AS; 4(X).
If f is alternating, 6 f is also alternating and thus (AS’;’ 2(X),61) and (L7 AS; 4(X),6y) are sub-

complexes. The corresponding cohomology groups are written H I/i s.1,o(X) and L"H Ilg s,t,a(X)-

Definition 2.5.2. Let A = (xp,...x;) € X k+1 pe a k-simplex. We define the chain Alt(A) by

Alt(A) = Y sgn(@) (Xr(0), - Xz (k)-

166k

1
(k+1)!

Given a cochain f € AS¥(X), we also define

Alt: ASF(X) — ASF(x)

by Alt(f)(A) = f(AIt(A)).

Property 2.5.3. Let f € ASF(X).

1. Alt(f) is alternating ;

2. If f is alternating, Alt(f) = f ;

3. Altod =60Alt;

4. Iff € LP ASK(X), then Alt(f) € LP ASF(X) ;

5. If6f € L1ASK1(X), then 5Alt(f) € LTASF1(X).

Proof. 1. Let o € Gy, and compute :

1
Al e = . .
tf (Xg(0)) -+ Xo (k) " 1! Tegm sgn(1) - f(Xz0(0)s - X100 (k)
1
= (k + 1)! Tegkﬂ Sgn(T) ° (Sgn(U))z ° f(x-[g(()), ...xTO—(k))
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Now write 7/ = 7o and note that sgn(z’) = sgn(r) - sgn(o).

Altf(xg(o), X)) = Z sgn(T') -sgn(o) - f(xr’(o), e X7i(k)

T,€6k+1

=sgn(o) -Altf.

o
(k+1)!

2. This is straightforward :

Altf (xo,...xx) = Y. sgnT f(Xr(0), - Xr(k))

1
(k+1)! 1€Gpn

1
= Y fXr©) X)) = f (X0, ... Xk).
(k+1)! &

3. The proof of this consists in re-arranging the terms. Let A = (xg,...Xg+1) € X k2,

Alt5 f(A) = 6 f(AlL(A))

:m Z sgn(r)&f(x,(o),...xT(kH))

TEY k42
1 k+1 .
= —k ' Z sgn(t) Z (—l)lf(xr(o),...)ACT(i),...xT(ka)).
(k+2)! ey, i=0

The term f(x;(0),...Xi,...-X7(x.,,)) aPpears k + 2 times in the summation, each time with

the same sign. Indeed, consider

(Xz(0), ---JACr(i), "‘xT(Xk+1))

and suppose we add x; ;) at the jth place in the array. The simplex we get is of the form

(X77(0)y o Xp/ (k41))

with T/ = g o 7, and such that

0 (Xr/(0)s - Xp/ (k1) = (X7 (0)s oo X (i) o X1 (p41)) -
The sign for f(x7(),...%i, ... Xz (x;,,)) 15 sgN(T) - (-1)%.
4. This is rather direct : |Alt()}, < gy Lres,., 115 < 1f11p.

5. This is a consequence of the two preceding points.
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2.5. Alternating Cochains

This list of properties means that Alt is a projector and induces an homomorphism in L”
cohomology. We can show that it is an isomorphism.

Proposition 2.5.4. There exist operators B Alr: AS ’; (X)— AS ’f‘l (X) such that

This property is verified as well for L” Alexander-Spanier cohomology.
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8] Invariance under quasi-isometry

In this chapter, we discuss results of quasi-isometry invariance for L” and L9P Alexander-
Spanier cohomology. The main results are Theorem 3.3.5 and its corollaries. We first define
a suitable action of quasi-isometries on the L7 complex : we need to be able to compare
the norms of a cochain and of its image through the pullback induced by a quasi-isometry.
In order to do so we define the étalement of a chain. We then prove that the action of quasi-
isometries on scaled L” Alexander-Spanier complexes is equivalent to the restriction of the
size of the cochains, and thus deduce that the L” asymptotic cohomology is invariant through
quasi-isometries. This result does not extend effortlessly to the L9” cohomology. However,
we state two generalizations. The asymptotic L” cohomology is a quasi-isometry invariant
for graphs with bounded geometry, and the locally bounded asymptotic L” cohomology is a
quasi-isometry invariant for Riemannian manifolds with bounded geometry.

3.1 Quasi-isometries

We recall the notion of quasi-isometry, which capture the idea that an application is close to
an isometry and that two metric spaces have a comparable geometry when looked at from far
away. For further references, see [6] and [31].

Definition 3.1.1. Let (X, p) and (Y, p’) be metric spaces. A mapping f: X — Y is a quasi-
isometry if there exist constants A, B, C > 0 such that

1. Vx1,x2€ X, 5p(x1,x2) = B < p'(f(x1), f(x2)) < Ap(x1,x2) + B

2. Vye Y,3xe X such that p'(f(x),y) <C.
The first condition means that f is close to a local isometry, in the sense that for B = 0, a quasi-
isometry is a bilipschitz map, and if B=0 and A =1 itis an isometry. The second condition

means that f almost surjective in the sense that its range is C-dense in Y. In paticular if C =0,
f is surjective. We call A, B, C the coefficients of the quasi-isometry f.
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Chapter 3. Invariance under quasi-isometry

A former terminology was to call surjective bilipschitz maps quasi-isometries and to call
quasi-isometries in the sense of Definition 3.1.1 coarse isometries.

Property 3.1.2. If there exists a quasi-isometry [ : X — Y, then there exists a quasi-isometry
g:Y—-X.

Proof. Let y € Y. There exists y' € Y such that f~!(y') # ¢ and d(y,)) < C, by definition.
Choose g(y) € f~1(y). Then g is a quasi-isometry. O

Property 3.1.3. The composition of two quasi-isometries is a quasi-isometry.

Proof. Let f: X — Y be a quasi-isometry with coefficients A,B,C and g: Y — Z a quasi-
isometry with coefficient D, E, F. Then for any x, y € X, we have :

pz(gof(x),gof(¥)<=Dpy(f(x), f(y)+E=<ADpx(x,y)+E+B.

The other inequality works in the same fashion. For the density, consider a point zj in Z.
There is a point of the form g(y) which has pz(zg, g(y)) < F, and then there is a point x € X
such that py (y, f(x)) = C. We can estimate the distance between go f(x) and zy using the
triangle inequality :

pz(gof(x),20) =pz(gof(x),8)+pz(gW),z0).

The terms on the right can be estimated as follow :

pz(gof(x),20)<D-C+E+F.
The composition go f is thus a quasi-isometry with coefficients A-D,E+ Band D-C+E+F. [

These two properties imply that the existence of a quasi-isometry between two metric spaces
is an equivalence relationship.

Definition 3.1.4. We then say that two spaces are quasi-isometric if there exists a quasi-
isometry between them.

We cite the following alternate definition, often given in litterature :

Definition 3.1.5. Two metric spaces (X, p) and (Y, p’) are quasi-isometric if there exist maps
f:X—Yandg:Y — X suchthat

1. d(f(a),f(b)) < Ad(a,b)+B,d(g(x),g(y) <Cd(x,y)+D;
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3.1. Quasi-isometries

2. fogand go f are at a bounded distance from the identity : there exists a constant K >0
such thatforallxe X,ye Y,wehave d(fog(y),y) =<K, d(go f(x),x) < K.

Proposition 3.1.6. The definition 3.1.4 and 3.1.5 are equivalent.

Proof. We only show that go f, with g as constructed in the proof of Property 3.1.2, is close to
identity, as we will need it later.

The construction of g implies that go f(x) € f‘l(y) for some y such that p’(f(x),y) < C. In
consequence fogo f(x) =y, and we have :

p(x,g0 f(x) < Ap'(f(x), fogo f(x)+ AB
<Ap(f(x),y)+AB
<A-C+ AB.

Examples 3.1.7.

« Any mapping between two metric spaces with finite diameter is a quasi-isometry.

e [:Z — Ris a quasi-isometry and more generally if a subset N of X is a net in X, or
C-dense for some constant C, then the injection of N in X is a quasi-isometry.

« Given a metric space X, any bounded perturbation (like removing any bounded subset)
will not change the quasi-isometry class of X.

e Assume V and W are two acyclic graphs, each with a finite number of branches. If they
do not have the same number of infinite branches, they are not quasi-isometrics.

We recall the notion of Cayley graph of a group, which will give us an important example of
quasi-isometry.

Definition 3.1.8. Let G be a group and S < G be a set of generators of G. The Cayley graph
I'(G, S) is obtained by attributing a vertex to each element g € G and an edge to each couple
(g,8s) withse S.

We use the word metric on I'(G, S). Different choices of generating set will result in different
graphs, but for finitely generated groups, the Calyey graph defines a quasi-isometry class :

Proposition 3.1.9. Let G be a finitely generated group and S, S', two generating subsets of G.
ThenT (G, S) andT (G, S') are quasi-isometric.

We cite also this result from [40] to illustrate the notion of quasi-isometry class for groups.

Proposition 3.1.10. Let M be a compact Riemannian manifold. Then its universal cover M
and its fundamental group 1 (M) are quasi-isometric metric spaces.
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Chapter 3. Invariance under quasi-isometry

3.2 Etalement

Pansu define the etalement of simplex in order to be able to measure the effect of quasi-
isometries on the norm of cochains. Assume that f : X — Y is a quasi-isometry and let
de AS];(Y). We want to compute the LP norm of the pullback of ¢ through f :

If* el = fX e NIPdpea ()

This might cause some troubles to compute. Consider the following example. Assume that a
cochain ¢ € AS?([R) is defined by

1 ifxez

(P(x)z{ 0 ifxeR\Z

Consider the inclusion f: Z — R. Then || f*¢|; = oo whereas ||¢|; = 0. Etalement consists in
using kernels to smooth out such discrespancies.

Definition 3.2.1. A kernel on a metric measure space (X, p, ) is a non-negative measurable
function ¢ : X x X — R such that
1. ¢ is bounded : specifically, there exists K > 0 such that ¢(x,y) < K forall (x,y) e X x X ;
2. Foralmostall x€ X, [y ¢(x,y)du(y)=1;

3. ¢ =0 outside of a bounded neighbourhood of the diagonal D = {(x, x) € X x X|x € X} :
there exists s > 0 such that p((x, y), D) > s implies that ¢(x, y) = 0.

Example 3.2.2. Assume that for r > 0, we have inf,¢ x y(B(x, r)) > 0. The following defines a
kernel :

(B, M ifp,y<r
0 else.

d(x,y) = {

Property 3.2.3. Given a kernel ¢ on X, we can define a kernel @y, on X**1 :

k
Dper1 (X, ... Xk Yo, Vi) = [ [ 9(xi, yi).-
i=0

Remark 3.2.4. Assuming an hypothesis of uniformity on p, these two last points allow us to
define a kernel on X f“, by choosing a radius r > 0 such that

{(xo,...,xk) e x*| miaxp(x,',D) < r} ch“.

32



3.2. Etalement

Note that the same radius can be used for all k = 0, and so we can deduce from a kernel on X a
kernel on X f“ for each k = 0. Whenever we use a kernel in this chapter, we will assume that it
is constructed in this way. The hypothesis that inf,ec x u(B(x, r)) > 0 for any r > 0 is one of the
main hypothesis of the proof of quasi-isometry invariance we develop in this chapter.

Now that we have well-defined kernels, we can define the étalement of a simplex and its
action on Alexander-Spanier cochains. The notion of étalement is an idea from P. Pansu. The
definitions we give here are a variant of his construction that we choose in order to have
well-defined objects with minimal technical background.

Definition 3.2.5. Let ¢ be a kernel on X f“. Given a simplex A = (xyp, ...xx), its étalement is the
measure

Asxp=¢p(A,)dpg+1().

The étalement is extended linearly to simplicial chains :

Z/liAi) * = Z/\i(Ai * ).

In the next proof, we assume that B (x) is bounded for x above and below by positive constants.
We already used the assumption that inf,c x p(B(x, 7)) > 0 for all r > 0 to ensure the existence
of kernels. We also need the existence of a positive function V (r) such that sup,. y (B(x,7)) <
V(r) for all r > 0 to have a well-defined differential §; : L AS’tC (X)—LP AS’;(X). We will use
the following terminology :

Definition 3.2.6. Let (X, p, 1) be a metric measure space. The measure u is said to be quasi-
regular if there exist postive functions v,V : R — R such that for all x € X and all r > 0 we
have :

v(r) < u(Bx,r) = V(r).

In analysis on metric spaces, we often find the case when the function v and V are of the form
c-r*and C-r* for some s > 0. The metric space X is then called Ahlfors regular.

The étalement of a simplex gives a mapping on Alexander-Spanier cochains :

Property 3.2.7. Let X be a quasi-regular metric measure space and let a € LP AS ’; (X). Then the
function defined by

a *x (P(A) = Lkﬂ a(A’)(P(A,A,)d[Jk_H(A/)
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Chapter 3. Invariance under quasi-isometry

is a well-defined Alexander-Spanier cochain.

Proof. The cochain a and the kernel ¢ are measurable, so what we have to check is that
a * ¢p(A) is finite a finite number for any A € Xf“ and that [la * ¢, < oco.

For the first part, note first that since a is L” integrable, it is in particular L integrable on
any set of finite measure. Recall that ¢p(A,A") < K forall A,A’ € th“ and that if we fix A, the
support of ¢p(A,A") is contained in a ball of radius s > 0, independant of the choice of A. We
can thus make the following estimate :

kaﬂ|a(A’)¢(A’A,)|dﬂk+1(A’)SkaH|a’(A,)|"ﬂsupp(<!>(A,~))'Kdﬂkﬂ(A’).

As we mentioned earlier, supp(¢(A,-)) has finite measure because p is quasi-regular, and thus,
a * ¢(A) is well-defined. We now show that a * ¢(A) is L”. Consider first the following :

las gl = [ las pP dugn @)
- j}\(tkﬂ

Note that with the general construction we gave for ¢, ¢(A, -)d 1 (A') is a probability measure.

p
fX @A, A A (A dpgar (B,

We thus have the following, using Jensen’s inequality :

p

‘ fX L G, M dpe ()| < fX @@, A d g ().

We thus have :

"“*4)"55/ " f L a@)PPA, A dpr (A dpes ()
Xt+1 X[“

= f Ia(A’)lpf G, AV dpges (D) d g (A).
th+1 X:CJrl
We can use the same estimate on ¢ as we did before :

la* plly SfX"” la(A)IP - K - g1 (Supp@(A, ) d i1 (A).
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3.2. Etalement

By definition of a kernel, the support of ¢(A,-) in Xf“ is contained in a ball of radius s > 0,
independantly of the choice of A. Because p is quasi-regular, the volume of this ball is bounded
by a constant that depends only on V(s). We can conclude :

o+ ¢ll}, < Cstef (AP dpues1 (A)
X[kH

< Cstelall.

This property defines the étalement of a cochain :

kg LPASK(X) — LPASK(X)
a —ax¢p

We can verify that the étalement is a chain map.

Recall 3.2.8. The boundary of a simplex A € X k“, A = (xyp, ..., X§), is given by the simplicial

chain :
k

0(x0, - Xk) = 3 (=)' (Xg, - K7, oo k)
i=0

It is defined on simplicial chains by linear extension. We denote the ith face of A by :
ai(XQ, ...xk) = (xo, ...in,...xk)

Using this terminology, the boundary of A is the alternating sum of its faces :

koo
A=) (-1)'0;A.
i=0

Note that the Alexander-Spanier differential 6. is the adjoint of the boundary. Given a cochain
f:X*? - R, wehave:
6 f)A) = f(0A)

where f is extended linearly to simplicial chains.

Proposition 3.2.9. The étalement is a chain map. For a € LP AS’;(X) and A € X**1, we have :

Or(a*pri1) = (0ra) * Ppya.

Proof. Let Ao = (Xo,...-Xk+1) be a simplex in X{”Z. We develop the left hand side of the
equation :

35



Chapter 3. Invariance under quasi-isometry

k+1

8@ * Prs1) Dia2) = Y (1) a0 * Prr1(0;Arn).
i=0

On the righthand side we have :

(0k@) * Prr2(DAgs2) = Lk+2 6k“(A,)¢k+2 (Ak+2»A/)dllk+2(A,)

k+1 .
=Y D' | a@id)prroBrrz, AV dpps2 (D)
i=0 Xt

At this point, we use the construction of ¢y, ». If we write A’ = (yp, ... yk+1), we have :

k+1
| ., @@8prr Bz M8 = [ | @iy [T 90yt
t t Jj=0

h

We observe that in each term, the i'" component of A" appears in the argument of ¢ but not

in those of a. We thus have a factor on which the following property applies :

£¢(xi’Yi)dﬂ(Yi) =1.

In consequence, we have :

mea(aiA')(Pk+z(Ak+z»A/)d#mz(A')=ka+1a(5iA')H</>(xj,J/j)dﬂ(J’o)---W---d#(yk)~
t ¢ J#i

On the righthand side, 0;A’ is the integration variable, and thus we can rename it A”. We have
the following :

fX o XNV Prera (D2, AN piger2(A) = fX o OO P10 2, A" i1 (A7)

= a* Prs1(0iAgs2).

We can conclude by writing everything together.
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3.2. Etalement

k+1

610) * PreaBrs2) = Y (D) @ Ppy1(0iArs2)
i=0

=0r(a* Prs1)(Ags2).

Definition 3.2.10. Let f : X — Y be a quasi-isometry. By definition, if diam(A) < ¢, then
diam(f(A)) < At+B. In other words, f(X¥*1) c Y+ forall T> A-t+ B. Thus, given a cochain
a: Y%‘“ — R, with T > At + B, a(f(A)) is well-defined for any A € X[k“. Let ¢' a kernel on
Y}*1. We define the pullback

friASk () — AskF(x)

in the following way :

frad) =ax¢'(f(A),forall Ae XL,

We can write it explicitely :
Fra= [ e, 8 duen @),
T
We can first verify that f* is a bounded operator. The proof is similar to the one we gave to
show that the étalement is bounded.
Proposition 3.2.11. Let X and Y be metric measure spaces with quasi-regular measures [x

anduy. Letp,q=1andlet f : X — Y be a quasi-isometry. Then f* is a bounded operator for
the L9P norm.

Proof. The case where p = oo is straightforward. Assume p < co. Given A € th+1, aeL9P AS’;(Y)
and ¢’ akernel on YX*!, we have :

If*a)IP =la=*¢' (fF(A)IP
14
= ‘Lkﬂ a(AI)Qb,(f(A),A’)d,u(A')
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Chapter 3. Invariance under quasi-isometry

As in the proof of Proposition 3.2.9, we can use the fact that ¢'(f(A),A)dA' is a probability
measure on Y}‘“, and apply Jensen’s inequality :

p
= fykﬂ (AP (f (), A)dp(A).

’j;/kﬂ a(A,)(P,(f(A)yA,)dH(A/)

This allows us to compute :

7l = [ | 1f a@rdu)
= f f la(APY'(f(A), A)du(A)du(A)
th+1 YTk+1

=f |06(A/)|pf @' (f), A)dp(d)duA")
Y]]?+1 th+1

Observe that the quantity |- ko1 ¢'(f(A),A)dA is uniformally bounded. Indeed, ¢’ is bounded
and its support is contained in a bounded neighborhood of the diagonal, and since we assumed
the volume of balls to be bounded as well, we have :

f @' (f(A),A)du(A) < f Kdu(A)
th+l B ,)

Rr(A

We can then conclude :
If*all? < f la(A"P f @' (fW), A)dpu(D)duA")
Y]Ig+1 th+1

< K’/ la (A" P du(A
Y7]§+1
In a similar fashion, we have

If*6alf =16 alf < Klsal.

The adjoint f* is thus a bounded operator for the L9” norm. O

We can check that f* is a chain map as well.

Property 3.2.12. Let X and Y be metric measure spaces with quasi-regular measures Lx and
uy. Letp,q=1andlet f: X — Y be a quasi-isometry. Then f* is a chain map.
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3.3. Quasi-isometry invariance

Proof. Ttis a simple computation that relies on the following equation

0if (&) = f@;)

as well as the fact that étalement is a chain map on cochains. We have :

[r@a) (D) = (Fa) ' (f(A)
=8(a*N(f(Q)

k+2

=) (ax¢)(0;:f(D)
i=0
k+2

=) (ax¢")(f0;D)
i=0

=5(f " a)(A).

3.3 Quasi-isometry invariance

We now have a way to associate a homomorphism f*: L’ H ’j s7(Y)—LPH ],Xs,t(X ) to a quasi-
isometry f: X — Y. In this part, we will show that given a quasi-isometry f and its quasi-
inverse g, the composition f*og* : L”HIXS,T, (X) — LPHIXSJ
rrg: LprlS,T’ X) — Lpr‘S’t(X). The same result holds for g* o f*. As a consequence, f*

and g* induce inverse homomorphisms in the direct limit, when ¢t — oo, and the asymptotic

(X) is equal to the restriction

LP cohomologies of X and Y are isomorphic. The proofrelies on the following proprerty of
étalement.

Proposition 3.3.1. Let X be a metric space with a quasi-regular measure (1. Let ¢ be a kernel
on Xf“. The étalement is a homotopy equivalence for simplicial chains, that is, for all k >0
there exist operators

Bi:LPASF(X) — 1P ASF 1 (x)

such that for all a € LP AS¥(X), we have :

a*x@—a=0Br(a)+ Br16(a).

To demonstrate this proposition, we use a property of the prism defined on two simplices. We
recall the definition of the prism and its property.
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Chapter 3. Invariance under quasi-isometry

Definition 3.3.2. Let A = (xo, ..., xx) and A’ = (yy,...yx) two k-simplices. The prism of basis
A, A is the k + 1-chain

koo
b(AA) =Y (1) (X0, - Xi=1, Xi, Vi - Yk)-
i=0

Lemma 3.3.3. Let A and A’ be simplices in X**1. We have :

koo
Ob(A,A)=A'—A=) (-1)'b(0;A,0;A).
i=0

Proof. We first compute

Ob(X0, Xk Y0, Yk = D (=D Y (=1)70; (X0, X}, ¥, - Vi)
i J

=N -A+ Y (=DI=DI0i(x0, X, V), Vi)
(i,))#(k,k+1)
(i,/)#(0,0)

This last summation can be splitted as follow :

(d . k .
Z(_l)] Z (_l)l(XO! ----fi) ...x]', y]) J’k) + Z (_1)l+1 (xo, ---xj! y]) ~--J7i, J’k)
j i=0 i=j

On the other, one can observe that :

k k -1
> (=1'b@,7,0,A) =Y (-1 ( 2 (X0, Xy Vimy eVl e VE)
1=0 =0 m=0

k
+ ) (xo,...)El,...xm,ym,...yk))

m=I+1

This decomposition is the same as the former, which allows to write :

k .
Ob(A,A)=A'—A=) (-1)'b(0;7,0;A)).
i=0
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3.3. Quasi-isometry invariance

We can now prove Proposition 3.3.1.

Proof. We define the operator By, as follow. Let a € LP ASK*1(X) and A € X¥+1.

B f(D) = kaﬂ Fb(A, AP, A )dpr1 (A).

Note here that f(b(A,A")) is well-defined if A’ is close enough to A so that the simplices in
b(A,A') are in X¥+2. We can choose ¢ so that ¢p(A,A") = 0if p(A,A") > ¢.

We can do the following computation :

B(5a)(A)=fk Sa(bA,ANGA,A)duA)
Xk+1

= f . a@b(A, AN PN, AYduA)
Xk+1

koo

:fk a(A'—A—Z(—l)lb(aiA,al-A'))¢(A,A’)d/.t(A')

Xk+1 i=0
koo

=a*¢(A)—a(A)—Z(—1)’fk a(b©0;A,0; AP, A)du(A")
—0 Xk+1

1

This last integral can be rewritten as :

k
ka a(b(OiA,OiA')M)(A,A')du(A')fok b0;A,0;A") [ ] (), yj)duyo)...du(yx)
+1 +1 jZO

=kaa(b(6iA,6iA’))H(P(xj,yj)du(yo)...m...du(yk)
j#i
:kaa(b(aiA,Ak))(P(aiA,Ak)dH(J’O)---d,U(J/k—l)

And thus

e
Y (1) fX b, 0P, A)dp(A) = SB(@) (D).
l:0 +1

We can check that By, is a bounded operator to conclude this proof:
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Chapter 3. Invariance under quasi-isometry

14
1B, = fX o ‘ fX ., @b ANGA,AYduAD| dud)
< f f |aba, AP $A, A dp()du(d)
Xk+1 Xk+l
< f f (k+ 1) la@)I” A, A dp(A)dp(A)
Xk+1 Xk+1

sf f sup@- (k+1) ()P du(d)du(d)
xk1Jsupp@’(@,...))

Scste-IIaIIZ.

O

We now state the main technical result of the proof of quasi-isometry invariance for the
LP Alexander-Spanier cohomology. We have to choose scales T’, T and ¢ such that we can
compose the mappings f* and g* induced by quasi-isometries f and g.

Lemma 3.3.4. Let X and Y be metric measure spaces with quasi-regular metrics. Assume
f:X—Yandg:Y — X are quasi-isometries with coefficients A and B for f and C and D for
g, and g constructed as in the proof of Property 3.1.2. Fixt>0, T = At+B and T' = CT + D.
Let ¢ be a kernel on X;?“ and ¢' a kernel on Yﬁ,“.

Then for all k > 0, the composition f* o g* : LP AS¥,(X) — L”AS’f(X) is homotopy equivalent to
the restriction operator ryi; : LP AS ’}, (X)— LPAS ’; (X).

Proof. LetA€ X[k+1 and a € L”AS’}, (X). Compute directly :

Ot(g(f(A)*(l)/)*(/b)=j;(k+1 fykﬂa(AX)(P’(f(A)»AY)(p(g(AY)»AX)d,U(AY)dH(AX)-

If we write, for Aq, Ay € XF+1)

¢"(A1,72) :fyk+1¢(f(A1)’AY) -¢'(g(Ay), A2)du(Ay),

the first equation becomes :

a(g(f(A) x ) x ) = a(A*P").
We can check that ¢ is a kernel on X**1

o Ifwe fix A, we have :
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3.3. Quasi-isometry invariance

f (P”(AlyAz)du(Az) ——f ([ ﬁbl(f(ﬁl), Ay)p(g(Ay), Ap)du(A )) mes,
Xk+1 xk+1 \Jyk+1 Y HlAay H A
= f . (,b,(f(Al); Ay) (f . (P(g(AY)» Az)dﬂ(Az)) d,u(Ay)

=fykﬂ ¢'(f(AD, Ay)du(Ay) =1

e There exists Dy such that ¢ (x1, x2) = 0 whenever p(x1, X2) > Dy : assume that ¢(a, b) =
0 when p(a, b) > Dy and ¢'(a, b) = 0 when p(a, b) > Dy .

Assume that p'(f(x1),y) < Dy and p(g(y), x2) < Dy. The first inequality gives p(go
f(x1),8(») < A-Dy + B. Together with the second inequality, we have :

p(go f(x1),x2) <Dg+A-Dg +C

Because go f is close to the identity, we also have :

p(x1,x2) =d(x1,80 f(x1),) +p(go fx1), x2)
< K+p(go f(x1),x2)
5K+D¢,+A~D¢r+C

So ¢ (x1, x2) is non-zero only on a bounded neighborhood of the diagonal.

o Itisbounded, because ¢ and ¢’ are bounded and because the support of ¢-¢’ is bounded
as well, as seen just before.

Thus, we can apply Proposition 3.3.1 :

g ffa(d)—a(A) = BSa(A)+5Ba(A).

Because A € X¥*1, we have in fact the following :

g ffa(d) —rpa(A) = Bda(A) + 6Ba(A).

We can conclude that

g f*:LPASK, (Y) — LP ASK(Y)
and
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Chapter 3. Invariance under quasi-isometry

rpe: LPASK, (V) — 1P ASK(v)
induce the same homomorphism in cohomology. O
Using this result, we can show that the asymptotic L” Alexander-Spanier cohomology is a

quasi-isometry invariant for metric space with quasi-regular measure.

Theorem 3.3.5. Let (X, p1, 1) and (Y, p2, l2) two quasi-isometric metric measure spaces such
that both u and y, are quasi-regular. For any 1 < p < oo, the asymptotic LP Alexander-Spanier
cohomology of X and Y are isometric, that is, forall k=0 :

LPHY((X) = 1P HE ().

Proof. In cohomology, theorem 3.3.4 implies that f* o g* and g* o f* are equivalent to the
respective restriction operators. In turn, this implies that the mappings induced in the asymp-
totic cohomology

frog : LPHA(X) — LPHX(X)

and

g of*LPHN (V) — LPHE (V)

are equivalent to the mapping induced by the restrictions, which are the identities on LP H ’X sX)
and LPH ﬁS(Y). Thus, in asymptotic cohomology, f* and g* are inverse homomorphisms. O

3.4 Quasi-isometry invariance for graphs

In the case where we conside graphs, we can extend the result of quasi-isometry invariance to
the L9P asymptotic cohomology. The proof remains the same, but we can discuss what the
hypothesis of quasi-regularity becomes when we have a metric space with counting measure.
For graphs, there is an equivalent definition to quasi-regularity in term of the number of edges
linking each vertex.

Definition 3.4.1. Assume that X is a graph, with length metric and counting measure. We say
that X has bounded degree if there exists a constant K > 0 such that for any vertex x € X, the
number of neighbours of x is less than K.

Property 3.4.2. The measure of a graph X is quasi-regular if and only if X has bounded degree.

44



3.5. Bounded cohomology

Proof. The lower bound exists automatically, since any ball B(x, r) contains its center x and
thus always has a volume bigger than 1. The upper bound implies that each vertex has a
finite number of neighbours : if u(B(x,3/2)) < V(3/2), for all x, it implies that any given point
x has less than V(3/2) neighbouring points, and that X is a graph with bounded geometry.
Reciproqually, assume that X has bounded geometry and let x € X and r > 0. Because any
point in X has less than K neighbours, B(x, r) contains less than K" points (the maximum
being the case of a regular tree), and thus u(B(x, 1)) < K. O

Corollary 3.4.3. In the settings of theorem 3.3.4, assume that X and Y are graphs with bounded
geometry. Let1 < p < q <oo. Then thereexists T'> T =t >0 such thatg* o f*: L’”’AS’;,(Y) -
L‘”’AS’;(Y) is homotopy equivalent to the restriction operator ry; : L‘”’AS’}, (Y)— L‘”"AS’;(Y).

Proof. We can rewrite the last part of the proof of theorem 3.3.4. We have to check that
| B(a)ll4 < co. We already know that

IB(@)llf < cste- [lal].

Since X and Y are graphs, if g = p, then |a|, < oo implies ||all; < co, which concludes the
proof. O

Corollary 3.4.4. Let X and Y be graphs with bounded geometry. Assume X and Y are quasi-
isometric. Then, for1 < p < q < oo, their asymptotic LY cohomologies are isomorphic :

L HX (X) = L HX (V).

Proof. The corollary 3.4.3 allows to use the proof of theorem 3.3.5 for L9P Alexander-Spanier
cohomology. Indeed, since f* o g* and g* o f* are equivalent to the restriction in L9” coho-
mology, f* and g* induce inverse homomorphism in L7” asymptotic cohomology. O

3.5 Bounded cohomology

Another way to extend the result of invariance through quasi-isometry toward L7 cohomol-
ogy is to consider LY” cochains that are globally bounded, or L*°. Although the bounded
cohomology is already used for a different construction, we will use the term bounded L9P
cohomology.

Definition 3.5.1. Let f € LPAS’;(X). We say that f is bounded if || f |loo < co. We denote the
space of bounded L9P Alexander-Spanier cochains by sz AS’;(X ). The kth group of cohomol-
ogy associated is denoted by sz H gS,t(X)' The asymptotic bounded LP Alexander-Spanier
cohomology of X is simply written
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LY HE0 = i £ S 0

Property 3.5.2. Let f € LZAS’;(X) and assume that q = p. Then | f 4 < co.

Proof. Letus consider A={A€ th+1 | f(A)=1}and B = X;C“ \ A. Then we have :

AN =1f Talg+ 1S T8 1.

Since f(A) <1for Ae B, |f(A)|9<|f(A)|P, and thus

If T8 ld<1fTall,,forallg=p.

Because || flloo <ocoand || f [4 ||, < oo, we deduce that u(A) <oo, and so || f [4 |4 < oo for all
q. O

The bounded L97 Alexander-Spanier cohomology allows us to formulate a result similar to the
one we stated for graphs, but for quasi-regular metric measure spaces. We restate Lemma 3.3.4
in this situation.

Corollary 3.5.3. In the settings of theorem 3.3.4, assume that g = p. Then there exists T', T, t > 0
such thatg*o f*: sz ASk, (V) — LZp AS];(Y) is homotopy equivalent to the restriction operator
rre: LJP ASK, (V) — LIP ASk(v).

Proof. In this case again, we gain an inclusion : if a is globally bounded and g = p, then
lall, <ooimplies |||l 4 < co. Thus, we do have || B(a)|l 4 < co. O

Corollary 3.5.3 allows to state quasi-isometry invariance for bounded L7” cohomology :

Corollary 3.5.4. Let (X, p1, 1) and (Y, p2, U2) two quasi-isometric metric measure spaces such
that both u, and p, are quasi-regular. For any 1 < p < q < oo, the asymptotic bounded L7
Alexander-Spanier cohomology of X and Y are isometric, that is, forallk =0 :

LIP HE(X) = L]” HE (7).
Proof. The proofis the same as for Theorem 3.3.5, using Corollary 3.5.3. O

For graphs with bounded degree, LP Alexander-Spanier cochains are bounded. We thus have
the following property :
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Property 3.5.5. Let X be a graph with bounded degree. We have the following equality :

LIP ASF(X) = L7P Hf (X).

And so we have the following isomorphism in cohomology :
LIP HE(X) = L7 HE ().

3.6 L97 Coarse cohomology

Corollary 3.4.4 allows to define the following cohomology for metric measure spaces that are
quasi-isometric to a graph with bounded geometry.

Definition 3.6.1. Let 1 < p < g < co. Assume that Y is a graph with bounded degree which is
quasi-isometric to X. The L9P coarse Alexande-Spanier cohomology of X is the asymptotic
L9P Alexander-Spanier cohomology of Y. This is well-defined, since any other choice of Y
would yield the same cohomology for X, since the asymptotic L7 cohomology is invariant
through quasi-isometry for graphs. We denote the kth group of coarse L7 Alexander-Spanier
cohomology of X by

L7 HY¢ ((X) = L7 Hy (V).

We call this the coarse cohomology in reference to the work of J. Roe [35] and P. Fan [15].
Although this is not the same construction, the idea is close.

As a consequence of Property 3.5.5, we have the following isomorphism.

Property 3.6.2. Let X be a metric space with a quasi-regular measure. Let1 < p < g < oco. Then
the coarse L7 cohomology of X is isomorphic to its bounded LP cohomology :

LPHY (00 = LIV HEg(X).

Proof. Assume that Y is a graph with bounded degree that is quasi-isometric to X. Then we
have this chain of isomorphism :

LIPHE 00 = LIV HE (V) = L7 HE (7).

The first isomorphism results from quasi-isometry invariance of the L7 bounded cohomology
and the second one from Property 3.5.5. By definition we have
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LIPHA (V) = L7 HE (%)
which conclude the proof. O

This leaves us wondering under which conditions we can build a graph with bounded degree
Y that is quasi-isometric to a given metric measure space X. We can give an answer by
considering nets, which gives an example of quasi-isometric approximation to metric space.

Definition 3.6.3. Let X be a metric space and let € > 0. A discrete subset X, c X is an e-net if

1. for any xy, x; € Xy, we have p(xp, x1) =€;
2. Xp is maximal for the first condition.

Maximality implies that you can not add a point to X, without breaching the first hypothesis.
In particular, we have

U Blx,e) = X.

xeXy

The inclusion of Xj in X is a quasi-isometry, since it is a isometry and Xj is € dense in X.

Proposition 3.6.4. Let X be a metric space with a quasi-regular measure y. Then there exists a
graph with bounded degree Y which is quasi-isometric to X.

Proof. Fixe >0 and let X, be ae-netin X. Consider Y to be the graph that has X as vertices
and an edge for each couple of points xg, x; € Xy such that p(xp, x;) < 2¢. In other words, Y
is the 0-skeleton of the Vietoris-Rips complex of Xj for 2e. We use the word metric and the
counting measure on Y. Note that Y is quasi-isometric to X for the inclusion : given two
points yyp, y1 linked by an edge in Y, we have by construction

€= px (Yo, y1) < 2e.

So given arbitrary points yy, y1 € Y, we have

epy (Yo, Y1) = px (Yo, y1) = 2epy (Yo, y1)-

Because X is an e-net, we also have

J B(x,e) = X.

xeyY

48
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We will now show that Y has bounded degree. Let x € Xy. The measure u is quasi-regular, and
so we have the following bound :

u(B(x,2¢€)) < V(2¢).

Let xp and x; be two points of Xy lying in B(x, 2¢€). Because p(xp, x1) = €, we have

€ €
B(xO;E)nB(xLE):(D-

Asa consequence, we have :

Y uBx, g)) < u(B(x,26)).
x;€B(x,2¢€)

We use the lower bound for the volume of balls :

Y vl =vee.

x;€B(x,2€)
If we denote the number of neighbours of x in Y by K(x), we find the following upper bound :

v(5)

K(x) = Ve

Since the choice of x is arbitrary, this bound is uniform, and thus Y has bounded degree. [
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De Rham Theorems

In this chapter, the main results are different variations of the de Rham Theorem for the
metric and L” Alexander-Spanier cohomology. We will show that for complete Riemannian
manifolds with bounded geometry, the scaled Alexander-Spanier cohomology is isomorphic
to the de Rham cohomology, for small value of the scale ¢. This result is also true for the L
Alexander-Spanier cohomology and the LP de Rham cohomology. In the compact case, we
show that the L9P Alexander-Spanier cohomology is isomorphic to the de Rham cohomology.
The proof of these results relies on a property of bicomplexes, which we detail in Section 4.4. A
bicomplex is a diagram of spaces and homomorphisms forming a two dimentional matrix,
such that each column and each row is a differential complex. We can build bicomplexes that
link the Alexander-Spanier cohomology or the de Rham cohomology to the Cech cohomology.
When the rows and columns of these bicomplexes are exact, then the cohomologies they links
are isomorphic. In order to apply this property, we need to discuss the Poincaré Lemma and
the Mayer-Vietoris sequence for the different cohomologies we consider.

We first recall the definitions of L* de Rham cohomology and L” Cech cohomology.

4.1 De Rham cohomology

Definition 4.1.1. Let Q*(M) be the set of smooth differential forms of degree k on M. The
exterior differential d : Q% (M) — QF+1(M) has the property that

dpi10dip=0,forallk=0

and thus we get de Rham complex :

Q*on Lol 2.,
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Chapter 4. De Rham Theorems

The de Rham cohomology is the cohomology of this complex. We note

ZE (M) = ker dy

Bf R (M) = imdj_,

and

Hf o (M) = Z§ (M) BE L (M).

A form in Z}; M) is closed and it is exact if it is in Bllg r(M).

Rr(

It is rather straightforward to see that the de Rham cohomology is invariant through diffeo-
morphism. It is in fact a homotopy invariant, and de Rham [10] showed in his thesis that
it is isomorphic to the singular cohomology.We can define an L” version of the de Rham

cohomology, which leads to the construction of geometric invariants.

Definition 4.1.2. Let M be an orientable Riemannian manifold of dimension 7 without bound-
ary. We denote by Lioc (M, A¥) the set of forms a which norm is locally integrable, that is, for
any compact set K € M, we have :

f la(x)|du(x) < oo.
K

Letace Llloc(M,Ak). A form 6 € Llloc(M,Ak“) is a weak derivative of @ when the following

equality holds for any compactly supported smooth form w € C°(M, ARy

f BAw:(—l)k“f andw
M M

where d is the usual exterior differential.

Remark 4.1.3.

o If a is a smooth form, then its usual derivative is a weak derivative.
» For a given form, two weak derivatives will differ only on a set of measure 0.
o If0 = da in the weak sense, then, as in the usual case, we have d6 = 0.

Definition 4.1.4. Given p,q with 1< p, g < oo, wa(M) is the space of k-forms w € L9 (M, A¥)
such that dw € LP (M, AF*+1)
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The kth group of de Rham L%” de Rham cohomology of M is
L Hpp(M) = Z5(M)/dQy, )} (M)

where ZZj(M) = kerd, the space of closed L” k—forms.

We can construct L77 cohomology as the cohomology of a differential complex. Fix a sequence
7 = {pg = 1|k € N}. By writing

QJI;(M) = Q]l;kvplwl (M)’

we obtain a differential complex which defines the L” de Rham cohomology of M :

k _ 7k k-1
LnHDR(m - ZPk (M)/dek—lrpk (M)

As for L9P Alexander-Spanier cohomology, we defined the reduced LY de Rham cohomology
in order to have Banach spaces:
qp 7k _ 7k k-1
LIP A o (M) = Z5 (M) dQE ).

Property 4.1.5. The L9P de Rham cohomology is invariant through bilipschitz diffeomor-
phism.

4.2 Cech cohomology

Notation 4.2.1. Given a countable, ordered set of indices S, a multi-index is a finite increasing
sequence I = (ay, ..., ax). The set of all multi-indices of length k + 1 is written Sg.

Definition 4.2.2. Let X be a topological space and let % = {U,|a € S} be an open, countable
cover of X. For any multi-index I = (ag, @y, ..., @) € Sk, we write

UI = Uao n...N Uak.

We define C* (X ,%) as the space of all maps

c=1] e

1eSy

such that c; : U; — R is a locally constant function.

We define the Cech coboundary operator
Sr: CR X, ) — CM (X, )
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Chapter 4. De Rham Theorems

as the alternating difference : for x € Uy, .a;+1,
Src(®) =Y (=1 Capdis.rpur (X)-
i

The index k will generally be dropped, unless necessary.

Proposition 4.2.3. The coboundary operator is a differential :

Proof. Itis a direct calculation :

82(cn) =Y (-1)'8cqy..ar..ar.
=Y D1 cay..d;..rar

j<i

+ Y DD gy

i>j

=0
O

The spaces Ck(x, ) together with the Cech differential 4 form the Cech complex of X and %.

The Cech complex defines cohomology groups which are called the Cech cohomology. The
notation is as usual :

o 78X, %) =ker(8p);
o BF(X, %) =im(r_1);

o HN(X, %)= Z%(X,%)I B*(X,%).

With this definition, the Cech cohomology is dependant on the cover %. We can remove this
dependance by considering the limit as the open sets become, in a way, smaller and smaller.

Definition 4.2.4. Given two covers of X, % = {Uy}aea and 7 = {Vp}gep, we say that 7 is a

refinement of % if any Vg is contained is some U,. In other words, there exist a map between
the set of indices
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such that for all § € B, Vj is a subset of Uy g). We call such a map a refinement map. This map
induces a map on cochains :

o Chx, ) — Ckx, 7).

Its value on a cochain w € C¥(X,%) is given by

P oVp,...50) = 0Up(py)...o1)-

The map induced on cochains is actually a chain map, and thus induces an homomorphism
in cohomology, for every k= 0:

o HY X, %) — H*(X, 7).

Moreover, two different refinement maps ¢1, ¢, : B— A will induces homotopy equivalent
chain maps, and thus the same homomorphism in cohomology :

i o
¢y = 5.
This means that the homomorphism depends only on the covers and not on the refinement
maps. In consequence, we will denote the refinement homomorphism by

¢h, ., H (X, 2) — B X, 7).

Proposition 4.2.5. The collection of all cohomology groups H*(X,%) and all refinement homo-
morphisms cp”% o forms a direct system : for three covers?%,V and ¥, such thatV is a refinement
of % and W is a refinement of V', we have :

1. ¢k, ,, = id
2. ¢ o, , =
. VW ax, v UW

Definition 4.2.6. This last proposition allows us to define the Cech cohomology of a topological
space X as the direct limit of the Cech cohomology of X taken on all the open covers :

A*(X) =lim H* (X, ).

Assume now that a measure y is given on X.
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Definition 4.2.7. We define also an L? version of Cech cohomology using the following
p—norm. For c € C‘k(X,OZJ), set:

||c||,’i=zf lc(0)|Pdp(x).
I JUp

The space of Cech cochains ¢ € CF(X,%) such that || cllp <oois denoted by LP Ck(X,%) and
the space of cochains such that | c|l; < oo and 181 p <ocois denoted by LIP Ck(X,%). We then
use the following notations :

« ZEX, %) =1ce LPCR X, ) | bc=0};
« BE,(X, %) =8P CFN (X, u);

o LIPHNX, %) = Z§(X,%)1BE,(X,%).

If g = p, we obtain the LP Cech cohomology group L” H*(X,%). Given a sequence of numbers
7T = {pitren, With 1 < p < co, we write (CV]’,“(X,%),év) to denote the Cech L” complex and
HF(X,%) the k' cohomology group associated.

For covers that are regular enough, we can simplify the norm we use and instead of integrating
on each Uy, use a counting measure that sums the value that ¢ takes on each intersections Uj.

Property 4.2.8. Let % be a locally finite cover of X. If there exist numbers A and B such that
0 < A = u(Uy) = B for every multi-index I and if each Uj is connected, then for any choice of
x7 € Uy, we have

APY Je(xpIP = qu le()Pdu(x) < BP Y c(xplP.
1 1 I 1

Note that since c is locally constant, if we assume each Uj to be connected, we might as well
write c; for the constant value of c on Uj.

This property means that for a cover of X with the properties listed above, a Cech cochain is
bounded for the original norm if and only if it is also bounded for the discrete one, defined by
ony by a summation. A consequence of that is that for covers which sets have volume that
are bounded above and below uniformly, the LP Cech cohomology is isomorphic to the LP
simplicial cohomology of the nerve of the cover.

4.3 The Poincaré Lemmas

In this section, we state two similar results for de Rham and scaled Alexander-Spanier coho-
mologies : for convex subsets of R”, these two cohomologies are trivial. In the L7 case, we
have some additional hypothesis to make. For the L7 de Rham cohomology, we need to have
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4.3. The Poincaré Lemmas

and for L9 Alexander-Spanier cohomology, the result is true when g < p.

We first recall the Poincaré Lemma for de Rham and L9” de Rham cohomology in R”.
Proposition 4.3.1. Let U be a contractible open subset of R". The de Rham cohomology of U is

trivial :

0 ifk=1
HSR(U)z{[Ra ifk=0

Proposition 4.3.2. Let p, q > 1 such that
1/p-1/g=<1/n,
and U a convex and bounded open subset of R", then :

0 ifk=1

This result is from Troyanov and Gol'dshtein [16].

For the scaled Alexander-Spanier cohomology, we start by an easy result : if the scale ¢ is large
compared to the diameter of the metric space X, then the Alexander-Spanier cohomology of
X atscale t is trivial.

Lemma 4.3.3. Let U be a measurable subset of (X, p, 1), such that diam(U) < ty. For t > 1y, the
Alexander-Spanier cohomology of U at scale t is trivial :

0 ifk=1
Hﬁsi(m:{ R ifk=0

Moreover, if0 < u(U) < oo and given 1 < q < p < oo, the Alexander-Spanier LY°7 cohomology at

scale t is trivial as well :
0 ifk=1

k
LquAS,t(U) = { R ifk= 0

Proof. We use the idea of remark 2.2.3 : let f : Uf“ — R a k-cochain with || |, < co and
6 f =0. We define a §-preimage to f :
Af:UF SR
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by setting
1
Af(xg,..., Xp—1) = —— X, X0, ..., Xie—1) A 1(X).
f(xo k-1) M(U)[Uf( 0 k-1)dp(x)

Because t > -diam(U), f(x, Xy, ..., Xx—1) is defined for any x € U, so Af is well-defined.

Using Fubini’s Theorem and Jensen’s inequality, we can check that A: f — Af is bounded :

1 P -
f f(x, X0, .0, Xp—1)dp(x)| < vol(U)? 2[ | £ (x, %0, v x—1) |” dpa(0).
vol(U) Ju U
Thus
LAf1l) < vol)P 2| f1I}.
Because U has finite measure, || Af||, < oo implies that |Af|; <ocoif g < p. O

This result is elementary, but it gives the intuition that the Alexander-Spanier cohomology,
both classical and L7, ignores features with diameter smaller than the scale considered. We
complete this result for smaller scales : for bounded, convex subset of R”, the Alexander-
Spanier cohomology is trivial for any scale. We show this by constructing a homotopy inverse
to the restriction operator, using barycentric subdivision. We need a few definitions.

Definition 4.3.4. Let A = (xg,...,Xx) € X k+1 Recall the boundary of A is the chain :

OA =" (=) (Xg, wvry K, e ).
i

The cone of base A and vertex x is the simplex of degree k + 1 with first vertex is x and first face
isA:
Coney(A) = (x, X0, er Xk)

We will need the following formula about the boundary of the cone.

Property 4.3.5. Letx € X and A € X**'. We have :

0Coney(A) = 0(x, xg,...Xk)
=A+ Z(‘DHI (x, X0, ...X1, ... Xk)
i

= A — Coney(0A)

Definition 4.3.6. The boundary and the cone operators allow us to define the generalized
barycentric subdivision. Let s : A — s(A) be a function which associates a point in X to each
simplex (xp, ...xx), for any dimension k > 0. We define o recursively on k : for k =0, o is the
identity. Then, for any k > 0 and any A € X**1, we set :

0 (A) = Conega)og—1(0A)
We then extend o linearly to simplicial chains.
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Figure 4.1: The barycentric subdivision of a 2-simplex.

4-drdr 4

Remark 4.3.7. We have to note here that 0. (dA) # 0 for all A € X¥*2, eventhough the definition
seems to include o_;(00A). Indeed, because we define o on chains by extended linearly, we
have :

o1(0A) := Z(—l)"ak(a,-m.

Remark 4.3.8. From the definition of the subdivision, we can observe that the general form
of a simplex in the chain o (A) is

(s(to),...s(Tg))

where 7;4; isa face of 7; for all 0 < i < k. In particular, every simplex in o (A) has s(A) as its
first vertex and some vertex of A as its k + lth vertex.

Definition 4.3.9. In R”, the barycenter of a simplex A = (xy,...Xx), x; € R”, is the point

k

1
A ZE —X;.
sp(A) i:0k+1xl

If s(A) is chosen to be the barycenter of A, for every A € (R")**1, then o, is the usual barycen-
tric subdivision. The barycentric subdivision is particularly useful because it contracts the
diameter of the simplices :

Property 4.3.10. Let A = (xyp,...Xx) € RN and lett bea simplex of the barycentric subdivi-
sion of A. Then

diam(t) < k diam(A)

+1

Proof. First recall that the diameter of A is given by
maxp(x;j, X;).
oy p(x; ])

For all x;, we have

k
p(xj,sp(A) < . diam(A).

+1
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The computation is rather straightforward :

p(xj,sp(A) = llxj — sp(A)]l
ko1
=llxj - i;omx”'

LI |
=) —llxj—x;
i§:0k+1” =Xl

k
< ——max|x; — x;||
k+1 iz

T diam(A).

As a consequence, if x is any point in the convex hull of {xy, ...x¢}, the same inequality remains
true :

p(x,sp(A)) < diam(A).

k+1

We can now prove the property by induction on the dimension of the simplex. If A is a point,
then its diameter is 0 and the inequality is verified. Fix k > 0 and assume that for any simplex of

dimension smaller than k, the property holds. Let 7 be a simplex of o (A). It is of the following
form:

T =(8p(T0),...5p(T 1))

where 7, is a face of 7; for all i. Now, forany 0 < i < j < k, either s(7;) = s(A) and we have

k
p(sp(T}),sp(A)) < T diam(A),

+1

either 7; is of dimension [ with / < k and the induction hypothesis applies :

I . k.
p(Sb(Ti),Sb(Tj))Smdlam(‘[i)ﬁ . diam(A)

+1

Property 4.3.11. The subdivision is a chain map, that is :
00’k = Uk_la
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Figure 4.2: The subdivision is a chain map.

%

b

Proof. This is quite natural intuitively speaking : the boundary of the subdivision of a simplex
is equal to the subdivision of the boundary of this simplex (see figure 4.2). We show this
formally using induction. We can easily verify for small values of k that 8;0; = 0;_,0; as well as

0;01-10;=0.

Assume now these two equalities are true for any ! < k. We then have

01010141 =01-1010;1+1 =0.

Let A € X**! and consider the following, where we apply Property 4.3.5 to the cone operator

Cs(A) .
00k (A) = 0r(Conegp) T -1 (0kA))
=0-1(0xA) — Conegn)0k—-10k-1(0kA).
We do have here 0y._;0-10) = 0 by the argument before and thus, 0y0 = 0j—10k. O

Proposition 4.3.12. The generalized barycentric subdivision is a homotopy operator on chain :
there exists operators b such that
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1-0=0b+bd

Proof. We define b inductively. Given a 0-simplex x, by(x) = 0. This is to be understood as the
empty simplicial chain : f(by(x)) = 0 for all 0-cochain f. In this case, we have

x—0(x) =0=0by(x) + byo(x).

For A € X**! we set

bi(A) = Conega) (A — b_10A).

Assume that the result is true for all / < k and verify it for k :

0by(A) = 0(Conega) (A — by_10A))
= (A - bk_laA) - Cones(A) (aA - abk_laA).

We can rewrite this as :

Obi(A) + br_10(A) = A — Conega) (0A — dbj_10A).

The induction hypothesis implies the following :

ConeS(A) [0bk_1(6A) + bk_za(aA)] = Cones(A) (aA - O'k_laA)
= Conegp)0A — Conegpn)0—10A
= Conegn)0A — o (A).

Since by_»00(A) =0, we have

0 (A) = Coneg(p) (OA — 0by_1(0A))

which allows us to conclude. O

We can now apply these two last properties in order to prove the Poincaré Lemma for the
scaled Alexander-Spanier cohomology.
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Proposition 4.3.13. Let U be a convex, bounded subset of R". Then for any t > 0 we have :

0 ifk=1
k
Has () :{ R ifk=0

Proof. The operators b and o defined earlier are well-defined here since U is bounded and
convex, and they induce operators on the Alexander-Spanier cochains. We write

o*: ASK(U) — Ask )

and

B: AS¥ () — AsFL )

for the respective adjoints

o* f(A) = foo(A)

and

Bf(A) = fob(A).
Because o contracts the size of cochains, o* is well-defined : if diam(A) < t, then diam(7) < ¢
for any 7 in 0(A) and thus f(o(A)) can be computed. The same holds for B : if diam(A) < ¢,

then diam(b(A)) < t, and thus B is well-defined.

The homotopy equation remains valid :

1-0"=Bod+60B.

This is close to what we want, but it does not use the fact that o diminishes the size of cochains.
We define a slightly different pullback. Fix T = % -tandset:

E: AS* () — Ask

with Ef(A) = foo(A). It is well-defined by the same argument than before : if A € X %“, then

any 7 from o (A) has diam(7) < ﬁdiam(A) =t. Thusany f € AS’tC (U) can be evaluated on
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o(A).

Note now that if we compose E with the restriction operator rr,; : AS’;(U) - AS’tC (U), we get :

rrioE=0": ASK(U) — ASK(U)

and

Eorp,=a": ASk(U) — ASk ).

In consequence, we have the following equations :

1-Eory;=Bob+00B

and

1-rpi0cE=Bod+00B.

This means that r7; and E induce inverse homomorphisms in cohomology and that the
Alexander-Spanier cohomology of U does not depend on the scale. Since at large scale, U has
the cohomology of the point, it follows that it is the case for any scale. O

This results remains valid in LP and L9” cohomology. We need to redefine the operators E and
B a bit differently so that they are well-defined bounded operators on L? classes.

Proposition 4.3.14. Let1 < g < p < oo and U be a convex, bounded open subset of R". Then
for any t > 0 we have,
0 ifk=1
LPHE () =

as () { R ifk=0
Proof. We need to redefine E and B from the last proof. They would still be well-defined in the
sense that for fj and f> € AS’;(U) that differ only on a set of measure 0, then E(f;) and E(f>) as
well as B(f1) and B(f>) are also equal almost everywhere. However, because B sends simplices
of degree k to simplices of degree k — 1, we can not control | B(f) ||, with || f] .

In order to counter that, we first note that given a simplex A € U**!, there exists a number
€(A) > 0 such that for any choice of y € B(s(A),e(A)) the subdivision

0k(4A,y) =Coneyo-1(A)
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keeps the property of diameter contraction : there exists 0 < k < 1 such that for any simplex A’
which appears in the chain (4, y), diam(A') < k- diam(A).

We denote by Ba the open ball B(s(A),e(s(A))). Given f € LPAS’f(U), we set :

1
Ef(A) = MLA f(Coneyoi_1(A)du(y).
We also set
1
Bf(A) = 1By fBA f(Coney (A —br_10A))du(y).

If f is a cocycle, we then have :

f—E(f)=6B(f).

The only thing left to do is to check that E and B are bounded. We shows the calculation for B,
which is more complicated than for E :

p
f(Coney(A—br_10A)du(y)| dui(d)

IBfI,= f
Sy Uk | (Ba) JB,y
< ka(u(BA))”‘sz | f(Coney (A - br_10M))|P dp(y)d (D)
t A
< V(t)p_2~kafB | f(Coney (A — br—10M)|P du(y)dpi(A)
¢ A
Recall here that V(¢) is such that u(B(x, 1)) < V(¢) for all x € U. Observe that for any A =
(X0, ..oy Xp—1) € Uf and any y € By, the simplice (y, xg, ..., Xx—1) is in UZC“, by choice of Bx. We

can thus estimate :
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IBfIL < V(P2 ka fB |/ (Coney (A - by_100)|” dp(y)dpai ()

<V(P—? 'ka+1 |f(Coney(A— bk_ldA))|pdu(y)dpk(A)

p
<V()P2. f
Utk+1

au(y)dur(A)
< V(P2 f L Cste(k) 3 |F(an]7 du(y)dug(@)
Uit A€Bf(A)

Y. f@y

A;€Bf(A)

< V(1)P~2Cste' (k) f @O dpgea ()
Ut+1
< V(n)P~*Cste' (k) - I f1I},

Since U has finite measure, if 1 < g < p, then || f|, < co implies || f]l4 < co, which in turn
implies || B fl4 < oco.

We can extend both Propositions 4.3.13 and 4.3.14 using bilipschitz mappings.

Definition 4.3.15. Let (X, px) and (Y, py) be metric spaces. Amap ¢ : X — Y is bilipschitz if
it is bijective and there exists a constant L = 1 such that for every x1, x, € X, we have

1
sz(xl,xz) < py(f(x1), f(x2)) = Lpx(x1, X2).

The inverse map ¢! is also bilipschitz, for the same constant K.

Proposition 4.3.16. Let M be a Riemannian manifold and let U be a convex, bounded subset
of R". Assume there exists a bilipschitz map ¢ : U — V, with V < M. Then for every t >0, V and
U have the same Alexander-Spanier cohomology :

0 ifk=1
k
HAS,t(V) :{ R ifk=0

IfV has finite measure, this result is also true for LP and L9P cohomology, forg<p :

0 ifk=1

k
LquAS’f(V)Z{ R ifk=0

Proof. Let A€ V1. We can use ¢ to define a subdivision of A. Let 04(A) = poopodp™ (D),
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where o, is the usual barycentric subdivision. An equivalent definition for g is to consider
the center sy given by

sp(8) = pos,odp™(A)

where s, is the barycenter. The subdivision o is then a homotopy equivalence, by Proposi-
tion 4.3.12. If A; is a simplex that appears in oy (A), then the diameter can be estimated as
follow :

k
diam(A;) < ——IL?t.
iam(A;) Tl

Of course, depending on L, this will generally not suffice for o to contract the size of simplices.

But we can subdivide further : consider o(’Zf. For m sufficiently large, we have

" 2
— L 1.
(k+1) <

This means that we can define, by precomposition, an application

O ASK(V) — ASE(V)
m
with T = (%) L?t. The same reasoning as in the proof of Proposition 4.3.13, ¢b5.m induces
an inverse to rr,; in cohomology, which allows to conclude for the metric case. For the L
version, we can refer to the proof of Proposition 4.3.14 which applies as well here. O

The idea of using subdivision to show that the cohomology is stable with regard to the scale
t can be used in other situations. We develop this idea in Chapter 5. Note that the above
proposition is a restrictive case for bilipschitz invariance. We state it that way, since it is
sufficient for the use we will make of it and allow for a much simpler proof.

4.4 Bicomplexes

In this section, we develop the tool we use to prove de Rham Theorems. One can read [4] for
an exposition of the concept and its application to the original de Rham theorem.

Definition 4.4.1. A collection of Banach spaces C?/, i, j = 0 together with bounded operators
d:Ch — C™*VbJand §: C* — CH*! form a bicomplex of Banach spacesif dod = 506 =
(d+06)o(d+6)=0.

A bicomplex is a differential complex on its own, with k—cochains of the form w € }_; j_¢ chi
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and differential operator D =d + 9.
Note also that Do D = (d+ ) o(d +6) =d o6 + 6 od, which implies that dd = —dd.

The subcomplexes (C*/, d) are called the columns and the subcomplexes (C¥*,8) are called
the rows.

Lemma 4.4.2. Let (C*/,d,5), with k = 0,1 = 0, be a bicomplex such that for all | = 0, the
complex (C*J,d) is exact, that is for all k = 0, there exist operators h: C'*1J — CJ such that

1=hd+dh.

Then each cocycle w =Y. j—p, w;,j of the bicomplex can be represented by a cochain ' in con
that has Dw' = 0.

Proof. Consider the application

b:c*,* — C*y*

defined by

b(c)=-06hc—hdc.

It is a homotopy operator :

1-b=(d+06)h+h(d+0).
Let ¢ = ¢;,; be cochain in C** which only non-zero component lies in C*/. Then bc € C'~1/*1,

Upon iteration, we find that ¢ is cohomologous, for some m, to b (c) which lies only in C*¥,
where k =1+ j. O

This lemma amounts to say that, when all the rows are exact, the cohomology of the complex

D D ii D iji D
0— CO,O i Cl,o % CO,]. -, H Clr] =, H Clr] = ...
i+j=2 i+j=3

is isomorphic to the cohomology of

0 — C® A kerd -& C10 A kers - 20 Akers -4 ..
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Lemma 4.4.2 is sometimes called a staircase argument. The reason is clear if we formulate the
proof in the following way. fw € }¥;, j—x C b] is a cocycle, we have in particular that

Dwo,k =0

which implies that dwg = 0. Since the columns are exact, there exists a preimage hw ;. €
C%*~1_ Consider the cochain
o' =w— Dhwq .

It is also a coycle and we have wy, , = 0. Starting from an arbitrary cocycle w, we constructed

a cocycle o’ which has no component of degree (0, k). We can iterate this idea k times and
obtain a cocycle w” whose only non-null component is in degree (k,0).

The next lemma describes the way we will use this fact.

Lemma 4.4.3. Consider a bicomplex (C"J,d,&) to which we add a column (C*~1,d), using
homomorphisms ry : C&~1 — Ck0. Assume that rd = dr. If all the rows

0 i1 L o2,

are exact, then the cohomology of the complex C*~! is isomorphic to the cohomology of the
bicomplex (C**, D).

Figure 4.3: The bottom left part of a bicomplex, augmented with a column.

0 c2-1 . 20 6 c21 6 22

o e

0—> Cl,*l r Cl,() o Cl’l ) Cl'z

TR R

0 cO-1_T_ 00 6 0! 6 02

Proof. Let a be a D-cocycle of degree k of the bicomplex. By lemma 4.4.2, it is equivalent to a
cocycle  supported only in the first column. More precisely, since « is of degree k, § = By.o.
More over, since f is a cocyle, we have 6 (8) =0 and d(B) = 0.

Recall that exactness implies that ker(r) = {0} and im(r) = kerd. This means that the complex
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0— C*°nkers 4, c'%nkers 4, Cc*%nkers 4,

is isomorphic to the complex given by

0— o1 4, o114, 21 4,

We can now formulate the form that we will use later.

Theorem 4.4.4. Assume that (C*/,d,5) with —1 < i, j < oo, is a bicomplex, augmented by a
row and a column. Assume as well that each row (C**, d) and each column (C*/,5) are exact
for0<i,j<oo. Then, the cohomology groups of (C~V*,d) and (C*~',5) are isomorphic.

Proof. We apply lemma 4.4.3 twice. Once to show that (C~1'*, d) has the same cohomology as
the bicomplex as a whole, and once to show that the bicomplex has the same cohomology as
Cc*716). O

4.5 Mayer-Vietoris Sequences

For the main results of this chapter, we need the following versions of the Mayer-Vietoris
sequence in order to apply lemma 4.4.3. The operator 5 we use in this section is an extension
of the Cech differential defined earlier.

Proposition 4.5.1. (Generalized Mayer-Vietoris Sequence for de Rham complex) Let M be a
Riemannian manifold and let % = {Uy} acs be a locally finite open cover of M. Let r : Q*(X) —
[aes Q¥ (Uy) be the component-wise restriction. The following sequence is exact :

5 5
0—0Fx) - [ Q%W = [] QFwn > ] o*wn — ...
aes IeS! Ie§?

Recall that the operator

x 5
s: [1e*wp=> [ @*wn
IeS! Tesi+

is defined as follow, given x € Uy with I = ay...a;, and w € [];c g Qk(UI) :

l

Bw) (%) =Y Wa..q..a) ().
i=0
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Proof. We have obviously ker(r) = {0}. Since & is the difference on each intersection, we also
have ker(8¢) = im(r). For the remaining cases, we construct a right inverse to é .

Let {na}aes be a partition of unity subordinated to % . Consider a cocycle w € [ Qkw 1) where
J=ap...ax € Sg. If I = ap...ay_, write al = aay...a_; and consider the following :

Kwr=) newiq.

a

Then we have 6 Kw = w. Indeed :

k .
SKwr=Y (-1 (Kt)ay.a;..as
i=0

k .
= Z Z (_l)lna’wa’ao...di...ak

aeSi=0

Because w is a cocycle, we have :

N i+1
6(w)aa0...ak = Wey..ar + Z(_l)l Waaq...d;..ar = 0-

So back to the former equation :

k .
6K(1)[ = Z Na Z(_l)lwaao.‘.di...ak

ae$S i=0

= Z NaWay...ax

acesS

= Waqy...ap

In order to describe the L? version of this result, we need to introduce some notations.

Definition 4.5.2. Let M be a Riemannian manifold of dimension n and % = {U,}4cs be an
open cover of M. An element of .4 Cf)'}l? (M, %) is a measurable function

W= 1_[ w; with wy: U — AF@R™M).
IESl

The L” norm of such a function is defined by :
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1/p
HMW=(Z: Iwﬂmwdmm)

1€S;YUr
The space L” C]’gé (M, %) consists of the equivalence classes of .4 CII%(M ,%) for this L” norm.

Proposition 4.5.3. (Generalized Mayer-Vietoris Sequences for LP de Rham complex) Let M be
a Riemannian manifold with an open cover % = {Uy} qes. Assume that there exists a positive
constant B such that for any I = ay...ag, w(U) < B. Assume as well that there exists N > 0 such

that for all « € S, Uy, intersects less than N other open of the cover. Then the following sequence
is exact :

k r k,0 0 k1
0— Lpr(M) — L”CDR(M,OZ{) - L”CDR(M,OZ{) - ...

Proof. We use the same proof as before, but we have to prove that K is a bounded operator for

the LP norm, that is, for any w € U’CE?(M,%), we have | Kw|, < cste- o] p.

Indeed :

p
dp(x)

IKol, =;fm
“x),

<Y | A-Y Nawre(01P dux).
1 JU; a

Znawla(x)

P
du(x)

Z lawrq(X)
a

To obtain the last line, we used Jensen’s inequality. The coefficient A depends on the number
of terms that appears in the summation. Because we assume that each Uy, intersect at most N
other sets of the cover, we can choose a unique A for all Uj.

||Kw||”szf AY Lewra0P du(x)
1 JUr  «a
sAZZfU 012 (OIP du(x)
I «a Ia

sANZf|muwwmm
7 /U
< AN|wll}.
The bound N is also used in the passage from a double summation to a simple one. When we
sum through all multi-indices al, with a € S, the number of a such that Uy is non-empty is

smaller than N. In the double summation on I € Sy and «a € S, a given mult-indice J € S,
can appears at most N times, which gives us the last estimation we make.
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O

We now give the same results for the scaled Alexander-Spanier complex. We first state the
non-L” case. In this situation, we need to make adjustement to take into account that the
cochains are not pointwise, but defined on simplices.

Notation 4.5.4. Given a collection of sets % = {Ug}qes, We denote by % k the collection of sets
UM ges.

Proposition 4.5.5. (Generalized Mayer-Vietoris Sequence for the scaled Alexander-Spanier
complex) Let X be a metric space and let % be a locally finite open cover of X. Fix ty > 0. Assume
that, for all k >0, " is a cover oth’f). Then for all t < ty, the following sequence is exact :

0— ASK(X) = [T ASK W) 2 T ASkwp — ...
acesS IeS,

Proof. The proof is basically the same than for proposition 4.5.1. There is two steps where
we need the additional hypothesis. The first one is the injectivity of the restriction operator.
Let f € [T, AS¥(U,) with 8 f = 0. The hypothesis that %**! is a cover of X¥*! ensure that f
defines a value for every (xy, ..., X§) € Xl‘“, and thus that f has a well-defined pre-image in
ASK(X).

The second step is in the definition of the inverse to . We need to be able to define a partition
of unity on X f“ subordinate to 2*1, which would be ill-defined if 27 **! were not a cover of
Xk, O

The generalization to the L? requires some additional notations, as well as the same additional
hypothesis that we add to make for the L” de Rham versions of these results.

Definition 4.5.6. Consider the following L¥ norm on [ eg, AS’tC (up:

1/p
£l =(Z Ilepd;uk“)

IeS; Ur

The equivalence classes on []cs, AS’;(U 1) for this norm form the space L” Cff"sl’t

X).
Proposition 4.5.7. (Generalized Mayer-Vietoris Sequence for LP -Alexander-Spanier complex)Let
X be a metric measure space. Fix ty > 0. Let% be a cover of X such that, for all k>0, %" isa
cover of X ;f) Assume that there exists B > 0 such that u(U,) < B for all a and assume there exists

N > 0 such that for all a € S, Uy, intersects less than N other sets of the cover.
The following sequence is then exact forall t < ty :

X, %) -2 1Pckl

k r k,0
0— LPASK(X, %) = LPC o

e (X, %) — ...
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Proof. Apart from the hypothesis we had to make in order to prove the metric case, the proof
of this version is analoguous to the proof of Proposition 4.5.3. O

4.6 De Rham theorems

In the following sections, we state several de Rham type Theorems. They all use the same
principle, which is, given a metric space or a Riemannian manifold, to construct a cover of
the space considered such that both the Poincarré Lemma and the Mayer-Vietoris sequence
hold, and then deduce an isomorphism between the Cech cohomology and the de Rham or
Alexander-Spanier cohomology, in an application of Theorem 4.4.4. We begin by recalling the
proof for the classical de Rham Theorem, as given by Bott and Tu [4]. The other results are
refinements of this one.

We start by defining the Cech-de Rham complex, which links the Cech cohomology of a
Riemannian manifold to its de Rham cohomology.

Definition 4.6.1. Let M be a Riemannian manifold and % = {U}} ;e be an open cover of M.
Let I € S; be a multi-indice (i, i1,...i;) with iy < iy <...<i;andlet U; = mileUin. The Cech-de
Rham complex associated to M and % is the bicomplex (C]]%(M ,),d,5) where the spaces
are :

CprM,2) = T] Q*wWn
I€Sl

forall 0 < k, I < co. Thus the general form of an element w of CS;?(M ,%) is given by

w= H wr ,VVitthEQk(UI).
IES[

The morphisms of this bicomplex are the usual Cech differential

§:chlw,a) — b
given by

I+1

(6(0)(0:0,...,&”1) = Z (_l)lw(ao,...d,—,‘..alﬂ)
i=0

and a modified version of the derivative on forms :
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d:chl, ) — el v,

It is the classical derivative components by components, to which we add a sign depending on
the degree of the cochain :

dw) = (D" T] do;.
IESl

The sign is needed in order to have

DoD=(d+8)o(d+5)=0.

Indeed, without the factor (—1)¥*!, the two differentials commutes, and we have

(d+8)o(d+6)=2dod

whereas with it, since the operator d appearing in the sum d o6 + o d differ by one degree,
they have opposite signs and cancel each others.

Definition 4.6.2. A cover % of a manifold M is a good cover if every intersection Uy is diffeo-
morphic to R”.

Theorem 4.6.3. Let M be a Riemannian manifold with a good cover % . Then the Cech coho-
mology of M for the cover % is isomorphic to the de Rham cohomology of M.

Proof. Because each open of the cover and each intersection Uy = Ug, N ...N Uy, are diffeo-
morphic to an open ball of R”, the Poincaré Lemma 4.3.2 applies, and thus the columns of the
bicomplexes are exact. The Mayer-Vietoris sequence 4.5.1 applies as well and so the rows are
exact. We can thus apply theorem 4.4.4 on the Cech-de Rham complex. O

This result can be extended to the Cech cohomology of the constant presheaf over M, without
dependance on the cover. Not only does every Riemannian manifold have a good cover, but
good covers allow to compute the Cech cohomology.

Proposition 4.6.4. Riemannian manifolds have good cover.
Proof. For any point p € M, there exists a strongly convex neighborhood. These strongly
convex neighbourhoods are diffeomorphic to R” and intersections of such neighbourhoods

are again strongly convex. Thus, in order to build a good cover, one can choose a convex
neighbourhood for each point of M. This already gives a good cover, from which we can
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choose a locally finite subcover. Each intersections of sets from this cover is diffeomorphic to
R O

Proposition 4.6.5. Let M be a Riemannian manifold. Good covers are cofinal in the set of all
covers of M, that is, for every cover V' of M, there exist a refinement % of V' which is a good cover.

Proof. We can use the same idea than in the proof of proposition 4.6.4. Around each point, we
can build a strongly convex neighbourhood. This neighbourhood can in particular be chosen
to be included in an open of 7. The resulting cover is thus a refinement of 7. O

This last proposition has the following straightforward consequence :

Corollary 4.6.6. Let M be a Riemannian manifold. The Cech cohomology and the de Rham
cohomology of M are isomorphic.

Proof. Since good covers are cofinal to the family of all covers, the limit can be computed using
only good covers. For any good cover % of M, the Cech cohomology H* (M, %) is isomorphic
to the de Rham cohomology of M, and so is the limit H* (M) = lim H* (M, %). O

This idea of proof works as well for the metric Alexander-Spanier cohomology. Let us define
the Cech-Alexander-Spanier complex.

Definition 4.6.7. Let X be a metric space and % an open cover of X. The Cech-Alexander-
Spanier complex of X of size ¢ for the cover % is given by (C% (X, %), 6, ) k,1en, Where

k1 k
Cys (X, %) = l! ASF(U))
IeS;

and the differentials are

O : Cle (X, ) — CRE (X, )

and

81:Che (X2 — CREE X,

The differential d is the usual Alexander-Spanier differential, component by component, with
a corrected sign :

5(f) =TT o).

IES]
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The differential §; is the alternating difference on the components, as defined earlier for the
Cech complex and the Mayer-Vietoris sequence.

Recall that the injectivity radius r; (p) of a point p in a Riemannian manifold is the supremum
of all radius r > 0 such that the exponential map is a diffeomorphism from B(p,r) to its
image in R”. The convexity radius, in turn, is the maximal radius for which the ball B(p, r) is
geodesically convex, that is, for any two points x, y € B(p, r), there exists a unique minimizing
geodesic which links x and y and is cointained in B(p, r). At any given point, the convexity
radius is smaller than the injectivity radius.

Definition 4.6.8. In the context of our work, we will say that a complete, orientable Rieman-
nian manifold M has bounded geometry if

1. ithas alower bound on its convexity radius : r.(p) > cp; forall pe M ;

2. for any r < c¢p and any point p € M, there is a bilipschitz diffeomorphism between
B(p, r) and the unit ball of R" ;

3. the measure Vol is quasi-regular.

Concerning the convexity radius of a Riemannian manifold, we have the following result :

Proposition 4.6.9. Let (M, g) be a complete Riemannian manifold. Assume that its sectional
curvature satisfies K < a®. Then for anye > 0, we have :

where c)y is the convexity radius and iy is the injectivity radius.

A proof of this proposition is given in [36], Theorem 5.3, p. 169.

We mainly use the properties of a manifold with bounded geometry to build uniform covers,
using open, convex balls.

Definition 4.6.10. An open cover % = {Uy}qes of M is uniform if

1. there exists ¢ > 0 such that %**1 is also a cover of M¥*! forall k> 0 ;
2. each U, meets only a bounded number of other sets in the cover;

3. the diameter and measure of U, is bounded above and below by strictly positive num-
bers.
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Property 4.6.11. Let (M, g) be an orientable Riemannian manifold with bounded geometry.
Then there exists a uniform cover % of M which use only convex sets.

Proof. The proof relies on the same idea as Proposition 3.6.4. Fix ¢t > 0 and € > 0 such that
€+ t is smaller than the convexity radius of M. Choose an e-net My of M. Let k € N such that
k-€ > e+ t. We will now prove that the cover

U =1{B(x,€ + 1)} xeM,

k+1

is a uniform cover of M. First, since M is an e-net, % is a cover of M and % is a cover of

Mf“. To show that 2* is a cover of Mk, consider A = (xg,...Xg) € Ml{”l. Since % is a cover
of M, there exists x € My such that the first vertex of A, xy, is contained in B(x,€). Because
diam(A) < t, we have

x;j € B(x,e+r),foralli<k+1.

Secondly, we show that % is uniformly locally finite. Let m > 0 such that m-e¢ = e+ t. Let
p € My and consider B(p,2me) < M. Since Vol is quasi-regular, we have

Vol(B(p,2me)) < V(2me).

On another hand, the collection of balls B(x,€/2) with x € M) is disjoint. As a consequence,

Y. Vol(B(x,e/2)) < V(2me).
X€M,
x€B(p,2me)

Also, this sum has this lower bound :

card{x € My | x € B(p,2me)}-v(e/2) < Z Vol(B(x,€e/2)).

xeM,
x€B(p,2me)

All of this add to this estimation :

v(e/2)
V(2me)’

card({xe My | x € B(p,2me)}) <

Now, if for some x € My, B(x, me) N B(p, me) is non-empty, then B(x, me) is contained in
B(p,2me). Thus we have the following bound, which is independant of p :
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v(e/2)
V(eme)

card({x € My | B(x, me) N B(p, me) # @}) <

Since we chose m such that this bound applies also to balls of radius € + ¢, this concludes the
proof that %/ is uniformly locally finite. The balls of % are convex since their radius are smaller
than the convexity radius. O

Note that in this proof, we use only the fact that the measure is quasi-regular in order to build
a uniform cover. The fact that the cover uses only convex sets depends on the fact that the
convexity radius is bounded.

We can now state one of the main results of this thesis.

Theorem 4.6.12. Let M be a Riemannian manifold with bounded geometry. Then there exists
a uniform cover % of M and ty > 0 such that for all t < ty, the Alexander-Spanier cohomology
of X at scale t is isomorphic to the Cech cohomology X for the cover % .

Proof. Since M has bounded geometry, we can construct a uniform cover M. Choose € >0
and fy > 0 such that € + t; is smaller than the radius of convexity of M. The construction in the
proof of Property 4.6.11 gives us a uniform cover % consisting of balls of radius € + .

Consider now the Cech-Alexander-Spanier complex of (M, %) for some scale ¢ > 0. Since the
sets of % are bilipschitz to an open ball of R”, the Poincaré Lemma 4.3.13 applies to each U;
for any value of . This ensures that the columns of the Cech-Alexander-Spanier complex are
exact.

Since % is uniformly locally finite and since 2 **! is a cover of M¥*1 for all ¢ < ty, the Mayer-
Vietoris sequence applies and the rows are exact. The theorem 4.4.4 thus says that, if ¢ < #j, the
Alexander-Spanier cohomology of M is isomorphic to the Cech cohomology of (M,%). O

We can sum up this section by formulating the following corollary, which does not need a
particular cover in its statement.

Corollary 4.6.13. Let M be a Riemannian manifold with bounded geometry.Then there exist
to > 0 such that for all t < ty the Alexander-Spanier cohomology of M at scale t is isomorphic to
the de Rham cohomology of M.

Proof. This result is simply the combination of the theorems 4.6.3 and 4.6.12. Indeed, if M
has bounded geometry, we can construct a uniform cover using convex balls. Note that the
convex balls are diffeomorphic to a ball of R”, so in particular, the cover is a good cover, which
means both theorems applies to the same cover. O
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4,7 LP de Rham theorems

We can extend Corollary 4.6.13 to the L” versions of Alexander-Spanier cohomology and de
Rham cohomology. For that, we need to include integrability conditions to the corresponding
bicomplexes. In the LP Cech-de Rham complex, instead of looking at cochains whose compo-
nents are smooth, we consider cochains which are bounded for the L” norm. Fortunately, the
definitions of the spaces have already been given before, and the differentials are only slightly
modified versions of those from the classical case.

Definition 4.7.1. Let M be a Riemannian manifold and % an open cover of M. The spaces
LP Cf,’ll{(M ,%) we consider have already been defined in order to describe the Mayer-Vietoris
sequence. The differential

§:LPCEL(M, %) — LPCRE (M, )

is the alternating difference, exactly as before. In the other direction, the only difference with
the classical case is that we consider the weak differential :

dp: LPCEL (M, ) — LPCEr b (v, ).

The spaces L” Clk)’}é (M, %) together with the differentials § and d as described above form the

L? Cech-de Rham bicomplex.

Theorem 4.7.2. Let M be a Riemannian manifold with bounded geometry. Then there exists a
cover % of M such that the LP de Rham cohomology of M and the LP Cech cohomology of M
and % are isomorphic.

Proof. There are two differences with the classical version of this result. We need the sets of
the cover and their intersections to be bilipschitz diffeomorphic to an open ball of R”, and we
need the cover to be uniformly locally finite. This is achieved by the type of uniform cover that
we used for Theorem 4.6.12. O

For the L version of the Cech-Alexander-Spanier complex, we only have to restrict the type of
cochain that we consider. The definition of the differentials stay the same.

Definition 4.7.3. The L” Cech-Alexander-Spanier bicomplex of a metric measure space (X, p, 1)
for a cover % of X is given by the spaces L Ci’sl (X,%) together with the differentials 5 and &
described earlier.

Theorem 4.7.4. Let M be a Riemannian manifold with bounded geometry. Then there exist
a cover U and a scale ty > 0 such that for all t < ty, the LP Alexander-Spanier cohomology at
scale t of M is isomorphic to the LP Cech cohomology of M and % .
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Theorem 4.7.2 and 4.7.4 are both the combination of the corresponding Poincaré Lemma and
Mayer-Vietoris Sequence. These two theorems allow to formulate the following result.

Corollary 4.7.5. Let M be a orientable Riemannian manifold with bounded geometry. Then
there exist ty such that for all t < ty, LP H}, ,(M) and L H}, ; (M) are isomorphic.

Proof. This is a direct consequence of theorem 4.7.2 and theorem 4.7.4.

0 —= LPQA(M) —"= LPC20 (M, %) —= LPCEL (M, %) —= 1P CEE (M, )
dT d d d
00— 1PQ (M) —"= LPCL0 (M, %) — = 1PCL (M, 20) = 1P CL2 (M)
d] d d d
0 —= LPQO(M) —"> LPCO0 (M, %) — = 1P UL (M, ) — 1P CO2 (M)
i i i

LPCOM, %) —2 = LPEY M, U) —2— LPC2(M, %)

Figure 4.4: Bicomplex for the Cech and de Rham L,-cohomology

Example 4.7.6. We give a simple counter-example for Corollary 4.6.13. Consider R\ {0}. Its de
Rham cohomology is isomorphic to the cohomology of two points. However, for any ¢ > 0, the
Alexander-Spanier cohomology at scale ¢ is the cohomology of a point. This does however
not contradict our result, since R\ {0} is not complete. In order for Corollary 4.6.13 to apply,
we would need to find a cover % of R\ {0} such that each element of the cover has the de
Rham and scaled Alexander-Spanier cohomology of a point, and such that %* is a cover
of (R\ {0})’;. Because (¢/3,—t/3) is in (R\ {0})%, this means that for some U € %, we would
have (¢/3,—t/3) € U?, and thus ¢/3 and —¢/3 € U, which would be in contradiction with the
requirement that U has trivial de Rham cohomology.

4.8 The Compact case

For compact Riemannian manifolds, it is well-known that the L” and L” cohomologies coin-
cide with the usual cohomologies, assuming 1/ py.1—1/py < 1/nfor the L” case. The theorems
we described it the previous sections gives an easy proof of this fact. For the L” case, we can
consider a finite uniform cover of M. The Cech cohomology of this cover is isomorphic to
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its L” Cech cohomology. Applying the Theorem 4.7.4 to the same cover shows that the LP
Alexander-Spanier is isomorphic to the Cech cohomology.

Corollary 4.8.1. Let M be a compact Riemannian manifold. The LP de Rham cohomology and
the classical de Rham cohomology of M are isomorphic. There exists ty > 0 such that for all
t < ty, the metric and the LP Alexander-Spanier cohomology at scale t are isomorphic to the de
Rham cohomology of M.

Proof. If M is a compact Riemannian manifold, we can find a finite cover satisfying the
conditions of Corollary 4.7.5. Indeed, the convexity radius of M has a lower bound and we
can choose € and ¢ such that € + ¢ is smaller than the convexity radius at any point of M.
Consider the cover of M given by all balls of radius €. By compactness, we can choose a finite
subcover of balls centered at points {xg, x1,...X;;}. The cover {B(x;j,€ + t)}o<i<m is uniform.
Thus, the LP de Rham and the L” Alexander-Spanier cohomologies are isomorphic to the L
Cech cohomology. However, for a finite cover consisting of sets of finite measure, any Cech
cochain is L” integrable, and thus the LP Cech cohomology is the same as the usual Cech
cohomology. O

This situation extends further to the L” case, both for the de Rham and Alexander-Spanier
cohomology. We give a proof specifically for the Alexander-Spanier cohomology by defining
the L™ Cech-Alexander-Spanier complex. Let m = {pi}ren be a sequence of numbers with
1 < pi < oo and let % be an open cover of M. The differentials of the L* Cech-de Rham
bicomplex of (M, %) are the same as those of the L” version and the spaces are defined as
follows, where k =i+ j :

(M, %) = {a e LP*C" (M, %) |8a e LPe c’+1 (M, %) and $a € LP¥1 CF f“(M U}

ASt ASt

With this definition, a cochain in the L™ Cech-Alexander-Spanier complex an element
ae [] CAé (M%)

such that [a| », <ocoand |Dallp,,, <oo.

Theorem 4.8.2. Let M be a compact Riemannian manifold and let n be a non-decreasing
sequence. There exists ty such that for all t < ty, the L™ Alexander-Spanier cohomology of M at
scale t is isomorphic to the Cech cohomology of M.

Proof. In this situation, we can build a finite uniform cover % of M such that M,/ k is covered

by 2*. In consequence, any cochain a € L*C". (M,%) is a finite direct sum of components

ASI,‘
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aj € L"ASi(Uy), with I € S;. This means that we can check the integrability conditions on the
5 and & preimages of @ component by component. Assume that 8(a) = 0. Proposition 4.5.7
gives a cochain Ka such that

5(Ka) = a and Keallp, <oo.

Since each Uy has finite measure, ||(Ka)/|lp, < oo implies that || (Ka)llp,_, <o0if pr_1 < pi,
and thus, that | Kall,_, < oo as well. The reasoning for the § preimage of « is similar. This
means that for all £ < £, the rows and columns of the L* Cech-Alexander-Spanier bicomplex
are exact, if 7 is a non-decreasing sequence. This means that the L™ Alexander-Spanier
cohomology of M is isomorphic to the L” Cech cohomology of (M, %), which is in turn
isomorphic to the Cech cohomology of M.
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Scale independance and conse-
quences

We discuss results of scale independance. This type of result is important, since it relates the
behavior of scaled Alexander-Spanier cohomology at large and small scales. In particular, if

the restriction operator ryy, : HZS X)) — HZS 4 (X) is an isomorphism for all value of 7y and

4
t1, the initial and asymptotic L” cohomologies coincide. In the context of this thesis, for a class

of Riemannian manifolds with such a property, it means that, no matter the scale considered,
the LP Alexander-Spanier is a quasi-isometry invariant and isomorphic to the L” de Rham
cohomology. This is a way to give of proof of the quasi-isometry invariance of L” de Rham
cohomology.

5.1 Self-similar spaces

We have a first naive example by considering R”. Let £y, t; > 0. There is a bijection between
AS’;0 (R™ and AS’;1 (R™) : given a cochain a € AS’;0 (R™), we define a cochain F;,, (a) € AS’;0 (R™)
by setting

)
F[Otla(A) =a (t_A) .
1

The inverse F, 4, is given by

5]

Fun1,BA) =P (_A) .
fo
These are chain maps, and thus induce mappings in cohomology :
Fpyr,  Hy (R") — H; (R").
These homomorphisms verify the following :
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id = Fl] to OFtotl and id = Ftotl C’F‘t1 fo

This means that F;, and F;, are isomorphisms, and thus that R” has constant scaled Alexander-
Spanier cohomology. We can also check that F;, and F;, are bounded operators in the L” and
L9P cohomology, and thus the result of scale independance extends to these cases.

We can make this example a litte more interesting by considering subsets of R” which are self-
similar. Let C c [0, 1] be the usual ternary Cantor set. It has the property that C = f3(C)u f1(C),
with fy(x) =1/3-x and fj (x) = fo(x) +2/3. We define a extended version of the Cantor set as
follows :

c*=s*-c.
keN

With this definition, C* has the following property :

c*=3k.c* forall ke Z.

Using the same reasoning as for R”, we deduce that the scaled Alexander-Spanier cohomology
of C* is periodic with respect to the scale :

Hjxs,t(C*) = H:lS,3t(C*)'
However, we cannot deduce that the restriction operator r3; ;: H) ¢ ,,(C*) — H)¢ ,(C*) is an
isomorphism, and thus this does not give us a mean to compute the initial and asymptotic
cohomology of C*.

This kind of example can be built using many different subsets of R”, independantly of the
dimension. The main hypothesis here is the existence of a bijective contraction f: X — X,
with f(x)=A-xforall xe X, with |A| < 1.

5.2 Scale independance for CAT(0) spaces

In the proof of Propositions 4.3.13 and 4.3.14, we use the hypothesis that U is bounded in order
for it to have the cohomology of a point at large scales. Without this condition, we cannot
state that it has the cohomology of a point, but we still have the following result :

Proposition 5.2.1. Let U be a convex subset of R". For all ty = t|, and for all k = 0, the restric-
tion operator ry, : AS’;0 ) — AS’;1 (U) induces an isomorphism in scaled Alexander-Spanier
cohomology and we have :
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s, (U) = Hig,,, (U).

This is also true for L cohomology, but if the measure of U is not finite, it is not necessarly
verified for L97 cohomology.

Proposition 5.2.2. Let U be a convex subset of R". For all ty = t;, and for all k = 0 and
1 < p < oo, the restriction operator ry, : LPAS’fO(U) — U’AS’;1 (U) induces an isomorphism in
LP Alexander-Spanier cohomology and we have :

L’”H;;S,t0 o) = L’DH;';SJ1 0).

These two propositions imply in particular that R” has constant metric and L” Alexander-
Spanier cohomology, and that in consequence, its initial cohomologies H’ ¢ ,(R") and L H}, ; , (R™)

coincide with its asymptotic cohomology H),¢ . (R") and LP H}¢ _(R™).

AS,00

The barycenter is also well-defined in the hyperbolic space H". Consider the hyperboloid
model of H” and let A = (xy, ...x) be a simplex of H”. The euclidean barycenter of A is given by
sp(A) € R"*! and the barycenter of A is the projection of s;,(A) on H” from 0. In consequence,
just as R”, the Alexander-Spanier cohomology of the hyperbolic space H" is constant with
regard to the scale.

In the more general case where a Riemannian manifold M is also a CAT(0), we use the following
notion of center for an arbitrary subset U c M.

Definition 5.2.3. The radius of a set U is defined as follow :

ry =inf{r > 0| there exists x € M such that U c B(x, r)}.

If ce M is such that U < B(c, ry), cis called a center of U.

We have the following property, which is particularly useful in our situation :

Property 5.2.4. Let X be a CAT(0) space and let U c X be a bounded subset. Then there exists a
unique center cy.

This center is not necessarly in U, but it is not a concern for us. A proof of this property can be
read in Bridson and Haefliger [6].

Recall that a complete, simply connected Riemannian manifold with non-positive sectional
curvature is CAT(0). This sort of manifold is called Hadamard manifold.
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Theorem 5.2.5. Let M be a Hadamard manifold with quasi-regular measure. The LP Alexander-
Spanier cohomology of M is independant of the scale :

LP H}g , (M) = LP H}g . (M) for all o, t; € (0,00).

Proof. The proof relies on the construction of a center for simplices of any size in M, with the
property that the associated subdivision contracts the size of simplices. Let (xg, ...x) € M**!
be a k-simplex in M. The unique center of A given by Property 5.2.4 is written s, (A). This gives
us a subdivision of A :

Ur(A) = Conesr(A)Ur(aA).

Consider the following inequalities, where A’ = (yy, ... k) is a simplex that appears in the chain
or(A):

diam(A).

diam(A") < rp < "
2(n+1)

The second inequality is Theorem 1.3 in [7]. We demonstrate the first inequality by induction
on the dimension of A.The diameter of a simplex is equal to the maximum of the distance
between any two of its vertices :

diam(A') = max{p(y;, ;) |0<i,j < k}.

In the case of a simplex obtained by subdivision, we can distinguish two different sets of
edges:

diam(A') = max{p(s;(A), ;) |0< i< k}U{p(y;, ) |10<i,j<kandy;y; # s (D)}

If an edge contains s, (A), then by definition, p(s, (4, yi)) < ra. We use the induction hypothesis
to show that the edges in the second set verify the inequality : let T be a face of A. Then
diam(t;) < r; for any 7; in the subdivision of 7. On another hand, the radius of {xy,...X;, ... Xx}
is smaller, by definition, than the radius of {xy,...x¢}. This implies that diam(z;) < ra. This
concludes the proof that the subdivision based on the center of the simplex is a contraction in
term of diameter. From this point, we can refer to the proof of Proposition 4.3.14 to obtain a
homotopy equivalence between L” ASy (M) and LP AS; (M). O

This theorem implies that the initial and asymptotic L” Alexander-Spanier cohomology coin-
cide. We can sum everything up in the following corollary :
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Corollary 5.2.6. The LP de Rham cohomology is a quasi-isometry invariant for simply con-
nected Riemannian manifolds with bounded geometry and non-positive curvature.

5.3 Uniformly contractible spaces
Another class of manifolds for which a result of scale independance is possible is uniformly
contractible Riemannian manifolds with bounded geometry.

Definition 5.3.1. A metric space is uniformly contractible if there exists a function R: R* — R*
such that, for every xp € X, there exists a homotopy F: [0, 1] x B(xg, ) — B(xo, R(r)) between
the identity and the constant map xp.

Remark 5.3.2. Uniformly contractible spaces are contractible, but the converse is not true.

As a motivation, we recall the result quasi-isometry invariance given by S. Ducret [13] :

Theorem 5.3.3. Assume that M and N are uniformly contractible Riemannian manifolds with
bounded geometry and of dimension n. Assume that M and N are quasi-isometric. Then if q
and p satisfy either

1 1 1
l<g,p<occandls——-—<—
p q n
or
1 1 1
l=sg,p<ocoandls——-—<—,
p q n

we have the following isomorphisms for L7 de Rham cohomology and reduced L9P de Rham
cohomology :

LIP HY, o (M) = LIP Hy, o (N) and L7 Hpyp(M) = LYY Hpp (N).

P. Pansu sketches the following result of scale invariance in his preprint [33].

Theorem 5.3.4. Let M be a uniformly contractible Riemannian manifold with bounded geom-
etry. Then for any t,t' > 0, there is a homotopy equivalence between AS; (M) and AS;‘, (M), i.e.
the Alexander-Spanier L, cohomology does not depend on the size of the cochains.

The consequence of this result is the same as for CAT(0) manifolds : as the restriction is an
isomorphism for all scales, the asymptotic LP Alexander-Spanier cohomology and the initial
LP Alexander-Spanier cohomology of a uniformly contractible Riemannian manifold with
bounded geometry coincide. This gives an alernative proof that the L? de Rham cohomology
is a quasi-isometry invariant for this class of Riemannian manifold.
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.\ Open questions

There are a number of questions that are open to further investigations.

Considering Theorem 0.3.1, we can consider the case of a complete non-compact Riemannian
manifold with finite volume.

Question A.0.5. Let (M, g) be a complete non-compact Riemannian manifold such that Volg (M) <
oo, and let T be a non-decreasing sequence. Do we have

Hpyp(M) = L"Hjg o (M) ?

Because it has finite volume, there are inclusions of L cochain spaces we would not be able
to use in the general case. In turn, we do not have a bound on the (strong) injectivity radius,
which we use for Theorem 0.2.1. What could happen would be to have an isomorphism
between initial L™ Alexander-Spanier cohomoloy and de Rham cohomology, but not in general
for scaled L™ Alexander-Spanier cohomology.

The general case remains also open :

Question A.0.6. Let (M, g) be a uniformly contractible Riemannian manifold with bounded
geometry and let m be a non-increasing sequence. Do we have

L”st,t(M) :L”HI*)R(M)
forallte (0,00) ?

This is true in the case where 7 is a constant sequence, which is the L” case. This question
could be solved by using a different method of proof, for example by defining a pairing between
Alexander-Spanier cochains and de Rham cochains. Another possibility would be to restrict to
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L°° L™ cohomology and compare to simplicial L* cohomology in the case where M accepts a
triangulation with bounded geometry.

Recall that Ducret shows that the L%? de Rham cohomology is a quasi-isometry invariant for
Riemannian manifolds with bounded geometry that are uniformly contractible, for 1 < g <
p<ooandl/p-1/p=<1/n.

Question A.0.7. In the situation of Ducret’s result, can we show that the LTP Alexander-Spanier

cohomology is a quasi-isometry invariant?

The proof given by Ducret relies on showing that the L9P de Rham cohomology coincides with
the simplicial L?P cohomology and the coarse L9” cohomology defined by Roe, the latter
being itself quasi-invariant through quasi-isometry. A positive answer to Question A.0.7 would
give a more direct proof of Ducret’s result.

Alast question can be considered, following the discussion on Ducret’s work :

Question A.0.8. Given a graph X, is there a link between the asymptotic L™ Alexander-Spanier
cohomology and the coarse L™ cohomology as defined by Roe?
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