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ReviewRobotics and Neuroscience
Dario Floreano1,*, Auke Jan Ijspeert2, and Stefan Schaal3

In the attempt to build adaptive and intelligent machines,
roboticists have looked at neuroscience for more than
half a century as a source of inspiration for perception
and control. More recently, neuroscientists have resorted
to robots for testing hypotheses and validating models of
biological nervous systems. Here, we give an overview of
the work at the intersection of robotics and neuroscience
and highlight the most promising approaches and areas
where interactions between the two fields have generated
significant new insights. We articulate the work in three
sections, invertebrate, vertebrate and primate neurosci-
ence. We argue that robots generate valuable insight into
the function of nervous systems, which is intimately linked
to behaviour and embodiment, and that brain-inspired
algorithms and devices give robots life-like capabilities.

Introduction
Intelligent robots are behavioural agents that autonomously
interact with their environment through sensors, actuators,
and a control system producing motor actions from sensory
data. Interestingly, what is today considered the first auton-
omous robot [1] was built in the early 1950s by neurophysiol-
ogist William Grey Walter [2], to show that complex,
purpose-driven behaviours can be produced by few inter-
connected neuron-like analog electronic devices that close
the loop between perception and action in a situated and
embodied system (see, https://www.youtube.com/watch?
v=lLULRlmXkKo). Along this line of thought, thirty years later
the neuroanatomist Valentino Braitenberg [3] conceived a
series of imaginary vehicles with simple sensors and wirings
inspired by universal properties of nervous systems and
argued that the resulting behavioural complexity originated
from the interaction with the environment rather than from
the complexity of the brain, and that traditional analysis of
nervous systems can learn from the ‘synthesis’ (construc-
tion) of behavioural systems. Indeed, nervous systems
cannot be understood in isolation from body and behaviour,
because physical properties (mass, springs, temporal de-
lays, friction, etc.) significantly alter the behavioural effects
of neural signals and affect the co-evolution and co-develop-
ment of brains and bodies [4]. Consequently, it has been
argued that understanding brains requires the joint analysis
and synthesis of relevant parts of the body, environment
and neural systems [5]. Understanding motor control re-
quires understanding a series of specific transformations
from neural signals to musculoskeletal systems to the
environment where the complexity of animal bodies may
simplify, instead of complicating, control [6]. In this context,
robots incorporating the biomechanics of the animal system
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under study become physical models to test hypotheses. In
the following sections we will examine to what extent neuro-
science and robotics have resulted in novel insights and
devices in the specific fields of invertebrates, vertebrates,
and primates.

Invertebrates
Invertebrates producemore stereotyped behaviours and are
easier to manipulate than most vertebrates, making them
suitable candidates for embodiment of neuronal models in
robots [7].

Perception
Insect behaviour largely depends on external stimulation of
the perceptual apparatus, which triggers basic reactions
such as attraction and evasion. Mobile robots have been
often used to understand the neural underpinnings of taxis,
movement towards or away from a stimulus source. For
example, Webb and Scutt [8] resorted to a mobile robot
equipped with a bio-mimetic bilateral acoustic apparatus
to disambiguate between two different neuronal models of
cricket phonotaxis whereby females can discriminate and
approach conspecific males that produce species-specific
songs. The authors showed that two spiking neurons repli-
cating the temporal coding properties of identified auditory
neurons were sufficient to reproduce a large variety of pho-
notactic behaviours observed in real crickets, supporting
the hypothesis that recognition and localization of a singing
cricket does not require two separate neuronal mechanisms.
Chemotactic behaviour of invertebrates has been studied

in a variety of contexts. For example, Grasso et al. [9] used an
underwater robot to test and discriminate between different
neuroethological hypotheses of how lobsters detect and
navigate towards the source of a chemical plume in turbulent
water. The robot was designed to accurately model the
dimension of the lobster and its chemical sensor layout,
while the locomotion system was abstracted as a pair of
wheels. Similarly, Pyk et al. [10] used wheeled and flying
robots equipped with bio-mimetic chemical sensors to
falsify a neuronal hypothesis of moth chemotactic behaviour
and propose an alternative hypothesis.
Robots have also been used to investigate the neural

mechanisms that allow flying insects to navigate in complex
environments with a compound eye radically different from
vertebrate eyes, featuring coarse spatial resolution, fixed
focus, and almost complete lack of stereovision. Models of
those neural mechanisms have also led to the development
of vision-based control of robot drones flying near the
ground or in cluttered environments [11]. Insects rely on
image motion generated by their own movement to avoid
obstacles, regulate speed and latitude, chase, escape and
land [12,13]. There is a mathematical correspondence be-
tween the amplitude of image motion, also known as optic
flow, and the distance to corresponding objects when the
viewer translates on a straight line, but not when it rotates
[14]. It has been speculated that freely flying flies follow
straight lines interrupted by rapid turns, during which visual
signals are suppressed, in order to estimate distances using
translational optic flow [15]. This hypothesis was tested
by Franceschini, Pichon, Blanès and Brady [16], using a
wheeled robot equipped with a circular array of compound
eyes, whose analog electronics mimicked the elementary
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Figure 1. Drones with insect-like vision.

(A) An indoor vision-based drone developed by Zufferey et al. [19] at
EPFL is equipped with linear camera facing forward (d), linear camera
facing downward (c), propeller (a), anemometer (e), rudder and ailerons
(b), and battery (f). (B) An outdoor vision-based drone developed by
Beyeler et al. [20] at EPFL is equipped with seven optic flow sensors
pointing left, left-down, down, right-down, and right. (Reproduced
from [20] with kind permission from Springer Science and Business
Media.)
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motion detection circuitry of visual neurons. This robot could
perform collision-free navigation in a cluttered environment
by moving along straight lines interrupted by sharp avoid-
ance rotations during which visual information was ignored.

In another study, Srinivasan et al. [17] argued that, as the
angular velocity of the image projected on the ventral side
of the insect is proportional to the ratio between horizontal
speed and height, insects regulate their speed by maintain-
ing a constant image motion, which results in graceful
deceleration during landing. The hypothesis that a simple
mechanism of optic flow regulation could be used to control
altitude and landing without explicitly measuring distance to
the groundwas validatedwith helicopters equippedwith two
artificial ommatidia pointing towards the ground. The same
optic flow regulator was then shown to be effective to repro-
duce a variety of other behaviours observed in insects, such
as terrain following and corridor centering [18]. It has also
been shown that optic flow regulation of collision-free navi-
gation and altitude control in indoor [19] and outdoor [20]
free-flying drones (Figure 1) can be achieved by making roll
and pitch angles dependent on two weighted sums of
optic flow intensities — a simple operation that could be
accomplished bywide-field visual neurons in the lobula plata
complex of the insect brain. Indeed, Humbert et al. [21] pro-
posed the hypothesis that wide-field tangential cells in the
visual system of insects are not used to estimate self-motion,
as previously argued, but to detect discrepancies between
desired and observed optic flow, and use these discrep-
ancies to correct navigation in a feedback loop. The authors
successfully tested this hypothesis on a micro-helicopter
using analog very large-scale integration (VLSI) sensors
and models of the tangential neurons flying in textured
environments.

Insect compound eyes have also inspired the develop-
ment of novel types of tiny cameras capable of unparalleled
fields of view with no angular distortion. Recently, two
different designs of miniature artificial compound eyes
have been proposed. Song et al. [22] described an hemi-
spherical compound eye combining elastomeric compound
optics with deformable arrays of thin silicon photodetectors
that could be shaped into a half sphere to grab wide-field
images. Floreano et al. [23] instead described a semi-cylin-
drical compound eye made of a layer of compound optics,
a layer of neuromorphic photodetectors with self-adjusting
light sensitivity and a layer of signal processing electronics
(Figure 2) that can extract optic flow even faster than the in-
sect. A compound eye composed of three ocelli has been
added to an insect-size flying robot to validate the hypothe-
sis that some insects may use visual information, instead of
angular accelerations, to stabilize flight [24].

Locomotion
The large variety of locomotion strategiesobserved in insects
inspired several types of locomotion systems in robots, such
asperistalsis, jumping, flying andwalkingonwater [25–29], to
mention a few. However, most of the research in this area still
focuses on the mechanical aspects of the locomotion sys-
tem, and relatively few authors have ventured into neurally
inspired control of these robots. Izquierdo and Beer [30]
investigated a neuronal circuit derived fromneuroanatomical
constraints of the Caenorhabditis elegans connectome in a
simulated worm body and environment, and used artificial
evolution to predict unknown electrophysiological parame-
ters of the nervous system necessary to generate worm-like
movements of klinotaxis. Evolved individuals revealed con-
sistent neurophysiological and behavioural patterns, which
prompted the authors to suggest a series of new experi-
ments, such as a better study of turning as a function of
gradient and ablation of specific neurons.
Some hexapod robots have been developed to under-

stand sensory-motor control of legged invertebrates and
address, for instance, questions of how rhythms are gener-
ated either by central pattern generators [31], i.e. systems
of coupled neural oscillators that have been found in many
invertebrates [32], or by chains of reflexes [33]. These robots
range from robots with legs that have only two degrees of
freedom to validate theories of basic gait control [31,33], to
robots with legs that capture biomechanical properties of
real cockroaches [34], all the way to robots with legs equip-
ped with pneumatic artificial muscles that could be directly
driven by electrical activity of the neuromuscular system of
the insect [35]. Interestingly, each robot was designed to
address a specific question raised by discrepancies be-
tween the insect and the previous version of the robot [6],
revealing the usefulness of robots in generating new insights
into the functioning of the nervous system.



Figure 2. Curved artificial compound eye.

Developed by a European team lead by Dario Floreano [23], the cylin-
drical array of 670 neuromorphic ommatidia are glued on a green scaf-
fold enclosing electronics capable of extracting optic flow at 300 Hz
with neurally plausible algorithms.
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Ayers et al. [36] developed a bio-mimetic lobster robot
whose legs were activated by artificial muscles that pro-
duced movements similar to those of the animal and used
it to propose hypotheses of neuronal control for which
neuroscience data are not available. In another study, Spa-
gna et al. [37] argued that insects required to rapidly walk
over irregular terrain rely on distributedmechanical feedback
to stabilize rather than on neuronal feedback (which does not
have sufficient bandwidth) and showed that ghost crabs
equipped with prosthetic and compliant spines on their
legs could actually improve their natural walking abilities.
In order to further corroborate the hypothesis that neural
control does not play a role in those situations, theymodified
the legs of an hexapod robot, but not its control system, to
approximate the biomechanics of the modified crab legs
and found that the robot improved its walking capabilities.

Navigation
Robots have also been used to study higher ‘cognitive
capabilities’ of invertebrates, such as spatial memory [38].
Several insects can find their nest or foraging area after trav-
eling for hundreds of meters or long periods of time. The
widely accepted ‘snapshot model’ [39] assumes that insects
compute the homing direction by comparing the retinal posi-
tions of landmarks in orientation-adjusted snapshots of their
visual surrounding taken at different intervals. However, this
model requires the nervous system to engage in intensive
computation and cannot explain experimental results where
portions of the landmarks were removed between outgoing
and return flights of insects [40].

A more parsimonious version of the snapshot model,
named the ‘average landmark vector (ALV) model’, was
recently proposed and tested with mobile robots [41]. This
model assumes that the insect represents each visual land-
mark as a unit vector and that all landmark vectors detected
at a position are averaged to produce an ALV. The insect
memorizes only the target ALV and during the return path
continuously generates a new homing vector by computing
the difference between the currently perceived ALV and the
memorized target ALV. As in the snapshotmodel, the current
ALV must be aligned to the target ALV by means of a com-
pass before computing the home vector. When tested in a
variety of simulated and real robots, including
implementations in neural inspired analog electronics
[42,43], the ALV model produced trajectories that are com-
parable (although not identical) to the original snapshot
model and also replicated behavioural patterns that the orig-
inal snapshot model could not explain.
Other authors have suggested that instead of an ALV

the environment can be represented as a connected graph
where nodes are panoramic snapshots taken at specific
locations and edges are motor commands that lead the
insect or robot to other connected locations by means of
path integration [44]. An alternative hypothesis based on
image statistics collected by a mobile robot suggests that
insects may memorize a snapshot of the target location
and chose movements in the direction that minimizes the
root mean square error between the current image and the
image taken at the target location, which has been shown
to be a monotonically decreasing function of distance from
the target [45].

Vertebrates
Vertebrates possess some unique learning abilities and rich
motor skills that have attracted the attention of neuroscien-
tists and roboticists alike.

Locomotion
Similarly to invertebrates, vertebrates have conqueredmulti-
ple ecological niches. From fish to mammals, they exhibit
multiple types of morphology and different modes of loco-
motion in water, on ground and in the air. Interestingly,
despite the large variation of morphology, the organization
of the underlying motor control systems is quite well
conserved [46]. Similarly to the ganglions of invertebrates,
the spinal cord contains oscillatory circuits called central
pattern generators (CPGs) that can generate complex peri-
odic motor patterns while being activated and modulated
by relatively simple descending drive signals.
The lamprey is probably one of the vertebrates whose spi-

nal locomotor circuit is best known [47]. Because of its rela-
tively simple eel-like shape it has also served as inspiration
for the construction of swimming robots [48,49]. The lamprey
swims using an anguilliform swimming gait in which a lateral
undulation of increasing amplitude is propagated from head
to tail. The underlying CPG is composed of multiple coupled
oscillatory networks distributed along the spinal cord.
The coupling between the CPG circuits, the body, and the

environment have first been studied with neuromechanical
simulations [50], thenwith real robots [48,49]. Wilbur and col-
leagues [48] built a lamprey-like robot actuated with five
pairs of artificial muscles made of shape-memory alloys
(Figure 3). They carefully analysed different motor behav-
iours exhibited by freely moving lamprey such as forward
swimming, burrowing, crawling, turning and withdrawal.
Based on those analyses, they constructed a CPG as a
look-up table that could replay similar activation patterns
of the artificial muscles. The robot could successfully swim
forward, turn and burrow. Another lamprey robot with an
original actuation system based on permanent magnets
was constructed to test hypotheses about visually-guided
goal-directed behaviour [49], specifically how head stabiliza-
tion (obtained by generating neck movements in opposite
phase to those of the trunk) affected tracking performance
of a moving target. Two swimming strategies were com-
pared, with and without head stabilization, and it was found
that using head stabilization largely improved keeping track
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Figure 3. A lamprey-like swimming robot.

The robot was constructed by Manfredi et al.
[49] to explore the mechanisms of visually-
guided swimming in the lamprey. (Repro-
duced from [49] with kind permission from
Springer Science and Business Media.)
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of the target with only a small decrease
of swimming speed. The authors also
observed that the CPG patterns re-
sulted in lamprey-like swimming and
could generate sharp turning resem-
bling that of a real lamprey.

Salamanders use an anguilliform
swimming gait like lampreys, and a
walking trot gait also observed in liz-
ards. Ijspeert and colleagues [51]
developed an amphibious salaman-
der-like robot driven by a CPG model
to test hypotheses about the evolution

from swimming to walking and the mechanisms of gait tran-
sition (Figure 4). Their main working hypothesis was that the
salamander has kept a lamprey-like swimming circuit for its
axial musculature, and that, during evolution, specialized
and slower oscillatory centres have emerged to control the
limbs. The CPG model could replicate gait transitions
induced by electric stimulation of the mesencephalic loco-
motor region in a decerebrated animal [52], with the genera-
tion of a slow walking mode at low stimulation, and a faster
swimming mode with traveling waves along the body at
high stimulation (when the limb CPGs were saturated). The
model furthermore provided an explanation of why walking
gaits have systematically lower frequencies than swimming
gaits in salamander, by demonstrating how the slower limb
oscillators could slow down the frequencies of the whole lo-
comotor network during walking.

The concept ofCPGs is nowbeing usedand tested inmany
types of robots, from snake to octopods [32]. In particular,
quadruped cat- and dog-like robots have been useful to bet-
ter understand the interactions between gait generation and
balance control. For instance, Kimura and colleagues [53,54]
built a series of light-weight compliant quadruped robots to
investigate the interplaybetweenCPGs, reflexesandbalance
control. In particular, two different options were explored:
one in which sensory feedback (from tendon force, ground
contact, and body orientation) acts independently of the
CPG (i.e. directly on the motors) and, and one in which sen-
sory feedback is fed through the CPG network. They found
that the most stable locomotion in uneven terrains was ob-
tained when sensory feedback is fed through the CPG
network compared to when feedback does not affect CPG
activity. This interplay between sensory feedback and the
CPG is thus important for allowing variations of the cycle
duration depending on the conditions and for allowing sen-
sory feedback that is phase-dependent (e.g. reflexes that
have different effects on limbs during swing or stance
phases) similarly to what is known in the cat [55].

More recently, quadruped robots were also used to
explore the mechanisms of coordination between limbs,
and the respective role of neural coupling versus mechanical
coupling [56]. Interestingly, it was found that direct neural
coupling between limb oscillators was not necessary for
generating stable gaits, something that was known from
research on invertebrates, such as the stick insect [33].
Indeed stable gaits could be obtained by using decoupled
oscillators that only interact through sensory feedback and
mechanical coupling (as opposed to neural coupling).
Different gaits could be obtained depending on themass dis-
tribution in the robot, with more weight on the back or in
front, replicating gaits observed in monkeys (centre of
mass more to the back) and camels (centre of mass more
to the front). Here, the robot was key to demonstrate these
phenomena.

Sensorimotor Coordination
Vertebrates are capable of sophisticated movements that
require complex sensorimotor coordination. Proper sensori-
motor coordination is essential for animals and robots: any
motor action needs to be guided by perception, and percep-
tion is often an active process that involves motor actions
[57,58]. More than 50 years ago, Held and Hein [59] devised
an ingenious experiment showing the importance of motor
actions on development of the nervous system: they raised
two kittens in a textured arena where the gross movement
of a freely moving kitten was transmitted to a second kitten
carried on a gondola preventing contact between feet and
ground, so that they were both exposed to the same visual
environment, but only one kitten received visual stimulation
directly generated by its own motion. When tested outside
the gondola, the freely moving kitten displayed normal be-
haviours in several visually guided tasks, whereas the other
kitten failed or performed poorly. The authors concluded
that correlated perception and motor actions are necessary
for normal behavioural development, but could not precisely
explain themechanical cause. Suzuki, Floreano and Di Paolo
[60] replicated those experiments with wheeled robots
equipped with a pan-tilt camera and a neural network with
Hebbian plasticity (a type of learning that involves strength-
ening synapses between co-activated neurons) linking the
visual input to the motor commands of the camera and of
the wheels. Constraints on body movements affected the
development of visual receptive fields, which became
responsive to sensory features that were correlated with
the constrained behaviour and interfered with production
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A B Figure 4. A salamander robot driven by a spi-
nal cord model.

(A) Numerical model of the salamander central
pattern generator for swimming and walking.
(B) An amphibious salamander robot [51].
The CPG and robot could replicate the typical
swimming and walking gaits of the salaman-
der, and induce a gait transition between the
two depending on the level of stimulation
coming from the simulated mesencephalic lo-
comotor region (MLR).
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of normal behaviour. This provides an explanation for the be-
havioural deficiencies of the suspended kitten.

Another interesting example of sensorimotor coordination
is offered by electric fishes, which actively emit electric
pulses and which can sense objects and living beings by
measuring changes in the electric fields surrounding their
electrosensitive skins [61]. The black ghost knifefish, for
instance, uses electric sense together with a ribbon fin that
offers high manoeuvrability. Using simulations and a robotic
ribbon fin prototype that can propel itself in a flow tank,
MacIver and colleagues [57] provided evidence that the
sensing and locomotion abilities are well matched. In partic-
ular, using optimal control theory they showed that typical
swimming manoeuvres observed in the fish are very similar
to those generated by the model when minimizing a cost
function that approximates metabolic effort, and that they
are well adjusted to the sensory abilities of the fish by
increasing the quantity and resolution of sensory inflow
[57]. Related work using planar or swimming robots has
since successfully used electrolocation for localizing objects
and avoiding obstacles [62,63].

The sense of touch is another sensory modality that has
been explored with robots. A sophisticated tactile system
found in mammals is one using whiskers, as found in rats
and mice [64]. Whiskers allow animals to determine the
shape, texture, position and motion of encountered objects.
Typically whiskers are actively moved, making rhythmic
sweeping movements that are continuously adjusted de-
pending on the situation. The ‘Whiskerbot’ [58] and its
successor ‘ScratchBot’ [64] explored the underlying sensori-
motor mechanism using a mobile robot equipped with an
articulated head and active whiskers (Figure 5). These pro-
jects involved replicating the morphology and mechanics
of large whiskers and a neural network model of different
brain areas underlying the sensorimotor coordination of the
whiskers, including a model of a CPG for generating the
periodic motion of the whiskers. Whiskerbot could replicate
typical whisker response and orientation behaviours ob-
served in rats in response to whisker stimulation [58]. In
particular, the robot exhibited variations of amplitude of
whisker oscillations, with a decrease of amplitude when
there is a contact, as well as body and head movements to
bring the nose of robot towards the point of contact.
In related work, Schroeder and Hart-
mann [65] explored analogies between
optical flow and the dynamical aspects
of tactile sensing with whiskers. They
demonstrated that, similarly to optical
flow, the signals provided by whiskers
when moving over an object could pro-
vide rich information about the object,
such as its radial distance and its curvature. That informa-
tion could be used to predict future contact points. While
interesting from a neurobiological and neuroethological
point of view, these projects are clearly useful for robotics
to design artificial tactile systems that, like their biological
counterparts, can complement vision (e.g. when in the
dark) and that can serve not only to detect objects but
also to recognize their motion and their properties.

Navigation
Some of the earliest interactions between neuroscience and
robotics investigated the mechanisms of vertebrate naviga-
tion. Following the discovery of place cells in the hippocam-
pus of rats [66], several projects have been launched to test
models of vertebrate navigation using robots (for instance
[67,68]). Place cells are neurons in the hippocampus that
fire at a high rate when the rat is in a particular location
and that are strongly dependent on visual cues [69]. Burgess
and colleagues [68] have implemented a navigational sys-
tem based on place cells on a small wheeled robot with a
camera and a series of infrared proximity sensors. Learning
rules were implemented that change the synaptic connec-
tions from in the network to gradually learn the place cell
mapping when exploring the environment and that update
a population vector towards specific goal/reward locations
when these are visited. The robot and model correctly repli-
cated several observations from real rats. For instance, the
robot was capable of rapidly returning to goal locations,
and was able to generalize when starting from new loca-
tions. Interestingly, when the environment was modified,
and increased in size along one axis, the PC in the model
showed the same type of adaptation as in real rats [66].
In related work, Touretzky and colleagues [67] showed

that a neural model of place cells with path integration could
not only explain awareness of position and orientation in
space but was also sufficient for replicating results from
various behavioural experiments, such as navigation in the
dark and in environments that are geometrically ambiguous.
Also related and going further than navigation is the ambi-
tious concept of a ‘brain-based device’ [70] that aims at con-
trolling a robot with a neuronal architecture composed of
multiple brain areas, and to gradually endow robots with
increasingly mammal-like learning abilities.



Figure 5. Robots equipped with whiskers.

(A) Whiskerbot. (Reproduced from [58] by permission of SAGE.) (B)
Scratchbot (courtesy of Bristol Robotics Laboratory [58]). The robots
are equipped with differential wheels for navigation, and with an artic-
ulated head and active whiskers. They were used to explore the neural
mechanisms underlying active whiskering.
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Primates
The behavioural repertoire of primates is vast, from bipedal
locomotion to sophisticated manipulation and complex
social interactions. These behaviours are controlled by a
powerful nervous system, and reverse engineering of the pri-
mate brain has been put forward both in Europe and in the
U.S. as one of the grand challenges for the 21st century.
The behavioural neuroscience of primates requires rather
reductionist methods, where the firing of single neurons,
arrays of neurons, or activity of entire brain regions (as re-
vealed by imaging studies) is correlated with well-controlled
minimal behaviours. Given the many layers of information
processing in the primate nervous system, it is almost
impossible to obtain a clear understanding of the underlying
computations without a systems level view. It was primarily
in the wake of David Marr’s [71] seminal work on the compu-
tational neuroscience of vision in the 1970s and 80s that a
computational approach to motor control was developed
[72] — indeed, Marr himself proposed an influential model
of motor learning for the primate cerebellum [73–75]. From
a physics point of view, primates are inertia-dominated sys-
tems (i.e., Reynolds number >> 1), and such systems have
been well studied in robotics, in particular in manipulator ro-
botics, i.e., robots with arms and legs (as opposed to mobile
robots on wheels). It thus makes sense to compare theory
and experiments of manipulator robotics with primate
behaviour and neuroscience.

Early Influence of Robotics on Primate Neuroscience
In the early days of computational motor control in the 1980s,
there was primarily a flow of knowledge from robotics and
control theory towards an understanding of phenomena of
primate behaviour and neuroscience, for instance, analysing
how movement generation with muscles can control how
strongly the end effector resists external force perturbations,
i.e., achieve impedance control [76]. Impedance control is
critical for stable force control when in contact with objects,
and sophisticated impedance control can be found in
human behaviour. In another line of research, optimal control
approaches became popular for models of human arm
movement [77], emphasizing simple organizing principles,
such as the maximization of smoothness, minimum torque-
change, minimummuscle command change approach, min-
imum task variance and others.

Based on rigid-body dynamics modelling from robotics,
neuroscientists discovered in the 1980s that the popular
experimental paradigm examining single degree-of-freedom
movements was too simplistic to reveal the complexity of
motor control and planning. The two-joint arm paradigm,
i.e., an arm composed of one shoulder and one elbow joint,
became the prominent model of neuromotor control, which
could be tested in behavioural and neurophysiological ex-
periments in humans and monkeys. The transition from an
essentially linear one degree-of-freedom movement model
to a nonlinear two degree-of-freedom model sparked an
interesting discussion: does the nervous system need an in-
ternal representation of the dynamics of the body for control,
or can it get away without, also discussed as direct vs. indi-
rect control [78]. Up to this time, the ‘equilibrium point
hypothesis’, a popular model-free theory of biological move-
ment control [79], postulated that the nervous system simply
codes the muscle lengths that realize the target posture of a
movement, while the movement to the target posture is
created by the spring properties and attractor dynamics of
the neuromuscular system, including spinal cord circuits.
Detailed biomechanical impedancemeasurements of human
arm movement demonstrated that equilibrium point control
was an implausible model of human motor control [80], as
it could not easily explain the transient characteristics of
movement to the target point. Thus, model-based control
became a leading hypothesis, often discussed as the internal
model hypothesis [81,82].

Model-Based Control
Model-based robot control, i.e., the use of internal represen-
tations to predict kinematics and/or dynamics of a control
system and its environment, has been a topic in robotics
for many years, but it was primarily at the end of the 1980s
that some torque-controlled compliant robots became
available to perform experimental evaluations — position-
controlled robots do not easily allow compliant control.
Models can be used to predict the dynamics and kinematics
of a movement system or its environment (called ‘forward
modelling’), or they can be used to compute the appro-
priate motor command for a desired state (called ‘inverse



Figure 6. Anthropomorphic torque-controlled
robots.

These robots were developed for com-
putational neuroscience in a collaboration be-
tween the ATR Computational Neuroscience
Labs (Japan), Sarcos Inc. (Salt-Lake City,
Utah), the University of Southern California
(Los Angeles, CA), and Carnegie Mellon Uni-
versity (Pittsburgh, PA). (A) A Sarcos
Dexterous Arm robot that was used in various
behavioural experiments for neuroscientific
studies. (B) The Sarcos Humanoid DB, used
for internal model learning experiments. (C)
A Sarcos Humanoid, used for locomotion
experiments.
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modelling’). An et al. [83] explored issues of model-based
control in an advance torque controlled robot and laid the
foundations of model-based control. Based on insights into
cerebellar learning, Kawato [84] developed feedback-error
learning as a model for biological learning, picked up in
several robotics approaches for learning control [85,86].
Given the mathematical complexity of dynamics models
of primate movement, several researchers investigated
machine learning techniques to acquire such models from
data. Grossberg andKuperstein [87], for instance, developed
neural networks of motor development that employed
various forms of internal models. Modular control modules
specialized for different tasks became of interest, based on
an architecture inspired by the cerebellum, and they found
verifications in human functional brain activity [88] and
robotics approaches for object manipulation [89]. Atkeson
et al. [90] developed an internal model learning approach
based on local linearization, which successfully demon-
strated internal model learning in various complex tasks
with anthropomorphic robots [91–93] (Figure 6). Mehta and
Schaal [94] examined the existence of an internal model for
control in the task of pole-balancing (Figure 6A), and con-
cluded from behavioural and robotic studies that there is
evidence of predictive forwardmodels in human control. The
success of neuroscientific and robotic studies on learning
and control with internal models hasmade the internal model
hypothesis of primate control a largely accepted theory.

Movement Planning and Imitation
In both animals and robots, the question arises of howmove-
ments are planned. For a particular movement goal, there is
usually an infinite number of ways to recruit a highly redun-
dant motor system in space and time to achieve the goal,
i.e., the possible combinations of muscles and the variety
of trajectories to achieve a goal is countless. Nevertheless,
as noted in early work on computational motor control
[95,96], human and non-human primates use rather stereo-
typical ways to move, indicating that there are some funda-
mental and common principles of movement generation.

As mentioned above, optimization principles were one
approach to look for an organizing principle [97], and optimi-
zation is still a popular topic in computational motor control.
Stochastic optimal control, i.e., optimal control that takes
random effects into account, became a prominent theory
of movement generation at the turn of the century, where
the movement plan and the time-dependent appropriate
feedback controller were computed together, which can
also address impedance control [76]. While complex to
compute, optimal control provided interesting explanations
of experimental data [98,99] and inspired many other inves-
tigations [99,100]. The renewed success of optimal control
as a neuroscientific model of primate movement also
impacted the robotics literature, where many new results
of full-body human motor control were derived from related
optimal control theories [101–103]. It should be noted that
the ability to solve complex optimization problems on normal
desktop computers contributed significantly to the renewed
success of optimal control theories, besides several algo-
rithmic advances. In a recent robot competition (DARPA
Robotics Challenge), where human-like robots had to solve
several problems of a disaster scenario, optimal control
approaches to full-body motion generation were the stan-
dard rather than the exception.
Another window into movement planning has been the

search for general movement primitives. Movement primi-
tives are sequences of action that accomplish a complete
goal-directed behaviour [104], such as ‘grasping a cup’,
‘walking’, ‘a tennis serve’, etc. This coding results in a
compact state-action representation where only a few
parameters need to be adjusted for a specific goal. For
instance, in reachingmovements, the target state andmove-
ment duration are such parameters, or in a rhythmic move-
ment, frequency and amplitude need to be specified [105].
Using such primitives dramatically reduces the number of
parameters that need to be learned for a particular move-
ment. The drawback is that the possible movement reper-
toire becomes more restricted.
Many different approaches to movement primitives have

been suggested in the past. For instance, planar trajectories
in the end effector space have been suggested for human
motor control, but some robotic experiments and theoretical
analyses discounted this idea as an artefact of the human
arm kinematics [106]. A similar robot analysis discounted
the proposal that in human armmovement, movement veloc-
ity is coupled by a power law to movement curvature [107].
Ijspeert et al. [105] advanced the theory of dynamic move-
ment primitives, i.e. the use of nonlinear attractor systems
to generate movement plans, similar as in central pattern
generators. In essence, a dynamic movement primitive pre-
scribes the next motor command to get to the goal with
some differential equations, and, due to the attractor dy-
namics, it can robustly realize the movement plan even



Figure 7. Research on movement primitives.

(A) Dual arm (Barrett Inc.) robotic test bed to study manipulation with
(dynamic) motor primitives. (B) Results of fMRI study on distinguishing
rhythmic and discrete movement primitives in the human brain (blue
areas are primarily involved in discrete movements, green areas are
primarily involved in rhythmic movement).
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when there are disturbances from the environment (such
ideas are also discussed as ‘next-state-planners’, e.g.,
[99,108]). Dynamic movement primitives can account for
data from primate motor control [109], they inspired imaging
studies to look into the difference between discrete and
periodmovement in the human brain based on the difference
between point attractors and limit cycle attractors [110], and,
with variations, became popular in robotic studies (Figure 7)
[105,111,112]. Dynamic movement primitives may be an
example where theories from neuroscience, behavioural sci-
ences, and robotics managed to reciprocally influence each
other and advance all the associated fields.

It is also interesting to view the idea of movement primi-
tives in the light of imitation learning [104,111] and the ‘mirror
neuron’ hypothesis. The work of Rizzolatti et al. [113–115]
suggested that observing the movement of others involved
the brain system that is also able to generate the samemotor
act, a hypothesis formed with the discovery of so-called
mirror neurons in premotor cortex of primates. Such an
idea requires that complete motor acts, i.e., movement prim-
itives, have a specific representation in the brain, and these
primitives can also be recognized in the behaviour of others.
Using such a coupling between movement recognition and
movement generation, particularly when combined with a
particular theory of movement primitives, became a rather
popular topic in computational motor control [116] and
various robotic studies [117,118].

Locomotion
It should be noted that robotics and neuroscience for pri-
mates has been mostly conducted in the context of reach
and grasp movements [99,119]. For primate locomotion,
the interaction of neuroscience and robotics is less devel-
oped. One reason may be that neuroscientific investigations
of primate walking are hard to conduct, as they involve the
spinal cord, which is notoriously difficult to measure from.
Another reason may be that bipedal locomotion is inherently
high dimensional in its actuation systems, actually involving
the entire body, such that it is hard to use a reductionist
experimental methodology as typical in arm movements,
where mostly only two degrees of freedom are considered.

One branch of neuroscience that has inspired researchers
in bipedal locomotion involves control strategies of central
pattern generators. Central pattern generators combine
motion planning and stability, and biological realizations of
bipedal locomotion have, so far, been far superior to robotic
controllers. A rather complex and seminal project by Taga
[120,121] modelled biped locomotion in simulation by a large
network of coupled oscillators. Related projects, including
robotics, can be found in [122–124] (Figure 6C). This line of
research often connects to the field of ‘passive dynamic
walking’, which investigates how far mechanics and neuro-
muscular anatomy can account for stable bipedal balance
control, walking, and running [125–127]. Energy efficiency,
minimal control, mechanical design, and stability are among
the governing topics of this branch of research. Minimal ro-
botic platformswere developed to demonstrate these princi-
ples [127]. The seminal work of Raibert [128,129] on legged
hopping robots similarly demonstrated simple control princi-
ples that could achieve very robust biped (and monoped)
locomotion.

In contrast, humanoid robotics research employs rather
complex robots that, so far, have not been easily reconciled
with ideas from passive dynamic walking. Balance and
locomotion control based on stability criteria derived from
the centre of gravity and the zero moment point have been
prominent [130]. However, one component from simpler ro-
botic and biomechanical studies did have an interesting
impact on humanoid robotics, namely the use of simplified
reference dynamics from models like the inverted linear
pendulum [131], which directly connects to Raibert’s seminal
work. These simplified models reduce the control system to
the most essential parts, e.g., a centre of gravity connected
by rigid rods to the floor, and, subsequently, allow easier
planning and stability considerations [132–134]. Simplified
models have been suggested as a key to understanding
the real control systems in legged locomotion [135], although
the right level of simplification remains disputed. From a
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behavioural and biomechanical point of view, control theo-
retic models of biped locomotion are frequently criticized
to be rather far way from known characteristics in primates.
It may well be that our scientific quest for analysable models
and algorithms will need to be replaced in the future by a
more empirical, i.e., data and learning driven approach, as
our mathematical manipulation tools of nonlinear movement
systems in contact with complex environments are too
limited.

Conclusions
Brains have co-evolved with bodies to produce tangible
effects in the physical world by mediating the continuous
loop between sensing and action that defines the success
or failure of intelligent life. Understanding the brain thus re-
quires understanding the behavioural effects of its circuits
and processes when they interact with the environment
through a physical body. In this review, we have shown
that robots and robotic theories have been used in neuro-
science to assess an hypothesis by translating it into an
operational mechanism in a robot and observing its
behaviour (validate or reject knowledge); compare alterna-
tive hypotheses against their behavioural outcome (refine
knowledge); and propose a novel hypothesis that builds
on embodiment or situatedness of the system (generate
new knowledge).

Similarly, robots that must autonomously operate in
partially unknown and changing environments, as living sys-
tems do, can benefit from incorporating principles of neuro-
science because it is impossible to pre-program such
robots for all possible sensory-motor patterns that they
will encounter during their operational life. In this review,
we have shown that neuroscience can help robotics to
devise novel sensing and actuation devices that simplify
the control problem by increasing robustness, flexibility,
and adaptability. It can further help develop simple and
yet robust algorithms that effectively map sensory in-
formation into motor commands in a wide variety of environ-
mental situations and add learning capabilities to adapt to
changing situations or incorporate new sensory-motor
knowledge.

However, just ‘blindly’ implementing biologically inspired
behaviour in a robot may not provide any insights into
biology nor novel ideas for robotics. Similarly, applying theo-
retical and algorithmic knowledge from robotics to biological
modelling may not have any valid application to understand-
ing brains. Most successful projects had prudent iterations
between neuroscience and robotics until the right questions
were asked, good methods were devised, and finally com-
pelling results could be obtained. David Marr’s [71] strategic
thinking in terms of theory, algorithms and implementation
may remain a useful guiding principle: theory could be
shared between neuroscience and robotics, algorithms
may be similar, while implementations are usually quite dif-
ferent due to different hardware. Richard Feynman’s quote
of ‘‘What I cannot build, I cannot understand.’’ is at the
essence of the interaction of neuroscience and robotics,
as, in the end, biological and robotic systems have to deal
with largely similar physics and similar environments.
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41. Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., and Wehner, R. (2000). A
mobile robot employing insect strategies for navigation. Robot. Auton. Sys.
30, 39–64.
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