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Abstract— A novel splitting scheme to solve parametric multi-

convex programs is presented. It consists of a fixed number of

proximal alternating minimisations and a dual update per time

step, which makes it attractive in a real-time Nonlinear Model

Predictive Control (NMPC) framework and for distributed com-

puting environments. Assuming that the parametric program is

semi-algebraic and that its critical points are strongly regular,

a contraction estimate is derived and it is proven that the sub-

optimality error remains stable under some mild assumptions.

Efficacy of the method is demonstrated by solving a bilinear

NMPC problem to control a DC motor. In particular, the effect

of the sampling period on the optimality tracking error is

analysed for a fixed computational power.

I. INTRODUCTION

The applicability of NMPC to fast and complex dynamics
is hampered by the fact that a nonlinear program (NLP),
which is generally non-convex, is to be solved at every
sampling time. Solving an NLP to full accuracy is not
tractable when the system’s sampling frequency is high,
which is the case for many mechanical or electrical systems.
This difficulty is enhanced when dealing with distributed
systems, as they typically lead to large-scale NLPs. Several
techniques have been proposed in order to improve the com-
putational efficacy of NMPC schemes by avoiding solving
with more accuracy than needed. Most of them rely on the
parametric nature of the NLP [17,16,10]. Most of the existing
approaches to real-time NMPC are based on Newton type
methods, which benefit from local quadratic convergence,
but are not easily applicable in a distributed context.

In this paper, a parametric optimisation scheme based on
augmented Lagrangian techniques [7,3] is proposed. In an
NMPC context, such an alternative has already been explored
in [16]. In [16], the theoretical analysis relies on the fact that
the primal quadratic program is solved to a given accuracy
and the influence of the number of iterations of the suggested
projected successive over-relaxation (PSOR) method on the
sub-optimality error is not examined. Moreover, the efficacy
of the proposed algorithm strongly relies on the fact that
the current iterate is close to the optimal solution, as this is
required to guarantee convexity of the quadratic program.
Finally, due to the dual update, the tracking error is only first-
order in the parameter difference. Therefore, the augmented
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Lagrangian approach may not be very competitive as a fast
local method for NMPC, compared to Newton strategies.
Yet it is an interesting direction for parallel computing
environments or in a distributed NMPC context, assuming
that one is able to decompose the evaluation of the primal
iterates, as shown in [6] for convex problems.

The main idea of our algorithm is to apply a truncated ver-
sion of the proximal alternating minimisation method [2] to
solve the primal program approximately. Alternating minimi-
sation strategies are known to lead to ‘easily’ solvable sub-
problems, which can potentially be parallelised and are well-
suited to distributed computing platforms [4]. At the expense
of a few assumptions on the parametric program, we provide
an analysis of the stability of the sub-optimality error. In par-
ticular, we give new insights on how the penalty parameter
and the number of primal iterations should be tuned in order
to ensure boundedness of the tracking error over time. The
proposed framework can also address more general problem
formulations than [16], where the PSOR strategy is restricted
to quadratic objectives subject to non-negativity constraints.

In Section III, the parametric optimisation scheme is
presented. In Section IV, some key theoretical tools are
introduced. Then, in Section V, a contraction estimate for the
primal-dual iterates is derived, ensuring stability of the op-
timality tracking error. Finally, in Section VI, the conditions
derived in Section V are verified on a numerical example,
which consists in controlling the speed of a DC motor to
track a piecewise constant reference. An analysis of the
evolution of the tracking error as a function of the sampling
period for a fixed computational power is also presented.

II. BACKGROUND DEFINITIONS

Definition 1 (Critical point): Let f be a proper lower
semicontinuous function. A necessary condition for x

⇤ to
be a minimiser of f is that

0 2 @f(x⇤) , (1)

where @f(x⇤) is the sub-differential of f at x⇤ [14]. Points
satisfying (1) are called critical points.

Definition 2 (Normal cone to a convex set): Let ⌦ be a
convex set in Rn and x̄ 2 ⌦. The normal cone to ⌦ at x̄

is the set

N⌦(x̄) :=
n

v 2 Rn
�

�

�

8x 2 ⌦, v

>(x� x̄)  0
o

. (2)
The indicator function of a closed subset ⌦ of Rn is denoted
by ◆⌦ and is defined as

◆⌦(x) =

(

0 if x 2 ⌦

+1 if x /2 ⌦ .

(3)



Lemma 1 (Sub-differential of indicator function [14]):

Given a convex set ⌦, for all x 2 ⌦,

@◆⌦(x) = N⌦(x) . (4)
The distance of a point x 2 Rn to a subset ⌃ of Rn is
defined by

d(x,⌃) := inf
y2⌃

�

�

x� y

�

�

2
. (5)

A function h :
�

z1, . . . , zP

�

7! h

�

z1, . . . , zP

�

is said to be
multi-convex if for all i 2 {1, . . . , P}, by fixing variables zj

with j 6= i, the resulting function is convex in zi. The open
ball with center x and radius r is denoted by B (x, r).

III. SOLVING TIME-DEPENDENT MULTI-CONVEX
PARAMETRIC PROGRAMS

A. Problem formulation

We consider multi-convex parametric programs

minimise f(z1, . . . , zP ) (6)
s.t. g(z1, . . . , zP , sk) = 0

zi 2 Zi, 8i 2 {1, . . . , P} ,

where f is multi-convex in z := (z>
1 , . . . , z

>
P )

> 2 Rnz with
zi 2 Rni and nz :=

PP
i=1 ni, g(·, sk) is a multi-linear

function mapping Rnz into Rm, the constraint sets Zi are
compact convex and k is a time-index. The time-dependent
parameter sk is assumed to lie in a subset S ⇢ Rp. Critical
points of the parametric nonlinear program (6) are denoted
by z

⇤
k or z⇤(sk) without distinction.

Assumption 1 (Smoothness and semi-algebraicity):

The functions f and g are twice continuously differentiable
and semi-algebraic.

B. A truncated multi-convex splitting scheme

The basic idea of the proposed algorithm is to track
time-dependent local optima z

⇤
k of (6) by approximately

computing saddle points of the augmented Lagrangian

L⇢ (z, µ, sk) := f (z) +
⇣

µ+
⇢

2
g (z, sk)

⌘>

g (z, sk) (7)

subject to z 2 Z , where Z := Z1 ⇥ . . . ⇥ ZP , µ 2 Rm

is a multiplier associated with the equality constraint
g(z, sk) = 0 and ⇢ > 0 is a well-chosen fixed penalty
parameter. In Algorithm 1 below, the coefficients ↵i > 0 are
regularisation parameters. Algorithm 1 builds a suboptimal
solution z̄k+1 by applying M iterations of the proximal
alternating minimisation method proposed in [2], to evaluate
the primal iterates approximately. The dual variable µ is
then updated in a (non-smooth) gradient ascent fashion.

Remark 1: Note that each of the subproblems in
Algorithm 1 is strongly convex, hence uniquely solvable.

IV. THEORETICAL TOOLS

In order to analyse the truncated augmented Lagrangian
scheme, we use the concept of generalised equation, which
has been introduced in real-time NMPC by [16]. The
stability analysis of the sub-optimality error is also based on
the convergence rate of the proximal Gauss-Seidel method
in Algorithm 1.

Algorithm 1 Optimality tracking splitting algorithm
Input: Suboptimal primal-dual solution (z̄>

k , µ̄
>
k )

>, param-
eter sk+1, augmented Lagrangian L⇢ (·, µ̄k, sk+1).
z

(0)  z̄k

for l = 0 . . .M � 1 do

for i = 1 . . . P do

z

(l+1)
i  argmin

zi2Zi

L⇢

⇣

z

(l+1)
1 , . . . , z

(l+1)
i�1 , zi,

z

(l)
i+1, . . . , z

(l)
P , µ̄k, sk+1

⌘

+
↵i

2

�

�

�

zi � z

(l)
i

�

�

�

2

2
end for

end for

z̄k+1  z

(M) ; µ̄k+1  µ̄k + ⇢g (z̄k+1, sk+1)

A. Parametric generalised equations

Critical points w

⇤ (sk) of the parametric nonlinear pro-
gram (6) satisfy the generalised equation

0 2 F (w, sk) +NZ⇥Rm (w) , (8)

where

F (w, sk) :=



rzf (z) +rzg (z, sk)
>
µ

g (z, sk)

�

, (9)

and w = (z>
, µ

>)>. A central concept of our analysis is
the strong regularity of the generalised equation (8). As ad-
dressed in the sequel, strong regularity provides a measure of
how close two time-dependent parameters need to be in order
to guarantee recursive stability of the sub-optimality error.

Definition 3 (Strong regularity, [13]): Given a closed
convex set C in Rn and a differentiable mapping
F : Rn ! Rn, a generalised equation 0 2 F (x) + NC

�

x

�

is said to be strongly regular at a solution x

⇤ 2 C if there
exists radii ⌘ > 0 and  > 0 such that for all r 2 B

�

0, ⌘
�

,
there exists a unique x 2 B

�

x

⇤
,

�

such that

r 2 F (x⇤) +rF (x⇤)(x� x

⇤) +NC

�

x

�

(10)

and the inverse mapping from B
�

0, ⌘
�

to B
�

x

⇤
,

�

is Lips-
chitz continuous.

Assumption 2 (Strong regularity of (8)): For all time
instants k and associated parameters sk 2 S , the generalised
equation (8) is strongly regular at a solution w

⇤ (sk) in the
sense of [13].
From Assumption 2, the following Lemma can be proven
[13], guaranteeing local Lipschitz continuity of the primal-
dual solution to (8).

Lemma 2 (Theorem 2.1 in [13]): There exists radii �A >

0 and rA > 0 such that for all k 2 N, for all s 2 B (sk, rA),
there exists a unique w

⇤ (s) 2 B (w⇤
k, �A) such that

0 2 F (w⇤(s), s) +NZ⇥Rm(w⇤(s)) (11)

and for all s, s0 2 B(sk, rA),

kw⇤(s)� w

⇤(s0)k2  �A kF (w⇤(s0), s)� F (w⇤(s0), s0)k2 ,

where �A > 0 is a Lipschitz constant associated with (8).



Remark 2: Without loss of generality, the radii �A and
rA are assumed not to depend on the parameter sk.

Assumption 3: There exists �F > 0 such that for all
w 2 Z ⇥ Rm,

8s, s0 2 S, kF (w, s)� F (w, s0)k2  �F ks� s

0k2 . (12)
Such an assumption is valid if, for instance, the parameter
s enters the equality constraint g(z, s) = 0 linearly.

B. Kurdyka-Lojasiewicz property and convergence rate

The convergence properties of the proximal Gauss-Seidel
scheme of Algorithm 1 have been analysed in the case of two
alternations [2] under fairly general assumptions, the main
one being the Kurdyka-Lojasiewicz (KL) property.

Property 1 (KL property): A lower semi-continuous func-
tion f satisfies the KL property at a point x⇤ in its domain
if there exists a neighbourhood U of x

⇤, ⌘ 2 (0,+1] and
� : [0, ⌘)! R+ such that �(0) = 0, � is C

1 on (0, ⌘) with
�

0
> 0 and

�

0 (f(x)� f(x⇤)) d (0, @f(x)) � 1 , (13)

for all x 2 U \ {f (x⇤) < f (x) < f (x⇤) + ⌘}.
Given a semi-algebraic function L : Rn ! R [ {+1},
it can actually be shown that L satisfies the KL property
at a given critical point x

⇤ with �(t) = ct

1�✓ [5], that is
there exists � > 0, c > 0 and ✓ 2 [0, 1) such that for all
x 2 B (x⇤

, �) \
�

x 2 Rn
�

�

L(x) > L(x⇤)
 

,

d (0, @L(x)) � c (L(x)� L(x⇤))✓ , (14)

where ✓ is taken as the smallest possible exponent satisfying
(14). The parameter ✓ can be seen as a shape parameter of
the graph of L around a critical point x⇤. When ✓ is close to
0, the graph is sharp at x⇤. When ✓ is close to 1, the graph
is flat around x

⇤.
Assumption 4: The augmented Lagrangian (7) satisfies the

KL property for all µ 2 Rm and s 2 S with Lojasiewicz
exponents ✓ (µ, s) 2 (1/2, 1) and radius � > 0 at its critical
points. The exponents ✓ (µ, s) can be upper bounded by ✓̂ 2
(1/2, 1).

Remark 3: Such an assumption is reasonable. It can be
proven that for real analytic functions, the exponent ✓ lies
within [1/2, 1) [12]. Moreover, for multivariate polynomials
of degree higher than two, such as L⇢ (·, µ, s), an upper
bound on ✓ can be computed, which depends only on the
number of variables and the degree [8]. In many cases,
the radius � is large. For instance, in the case of strongly
convex functions, � = +1.

Lemma 3 (Theorem 3.2 in [2]): Assuming that M = 1,
the sequence

�

z

(l)
 

generated by the inner loop of Al-
gorithm 1 converges to a critical point z

1 (µ̄k, sk+1) of
L⇢ (·, µ̄k, sk+1) + ◆Z (·).
This convergence result comes with a local sub-linear R-
convergence rate estimate.

Lemma 4 (Local R-convergence rate estimate):

There exists a constant C > 0 such that, assuming z̄k 2

B (z1 (µ̄k, sk+1) , �),

kz̄k+1 � z

1 (µ̄k, sk+1)k2  (15)

CM

� (✓̂)kz̄k � z

1 (µ̄k, sk+1)k2 ,

where, given ✓ 2 (1/2, 1),

 (✓) :=
1� ✓
2✓ � 1

. (16)
Proof: From [1], as the Lojasiewicz exponent

✓ (µ̄k, sk+1) associated with z

1 (µ̄k, sk+1) lies in (1/2, 1),
by Assumption 4, and z̄k 2 B (z1 (µ̄k, sk+1) , �), it can be
shown that, given µ̄k 2 Rm and sk+1 2 S , there exists
C (µ̄k, sk+1) > 0 such that

kz̄k+1 � z

1 (µ̄k, sk+1)k2  C (µ̄k, sk+1)M
� (✓(µ̄k,sk+1))

.

Note that ✓ 7! M

� (✓) is strictly increasing on (1/2, 1).
Hence, from Assumption 4,

M

� (✓(µ̄k,sk+1)) M

� (✓̂)
.

Clearly, as z̄k is the suboptimal primal solution of (6) at time
k, there exists  2 (0, �) such that for all k � 0,

kz̄k � z

1 (µ̄k, sk+1)k2 �  .

Hence there exists C

0 (µ̄k, sk+1) > 0 such that

kz̄k+1 � z

1(µ̄k, sk+1)k2 

C

0 (µ̄k, sk+1)M
� (✓̂) kz̄k � z

1(µ̄k, sk+1)k2 .

Without loss of generality, one can assume that the constants
C

0 (µ̄k, sk+1) are upper bounded, which yields (15).
Remark 4: Note that the R-convergence rate of Lemma

4 shows that convergence of the multi-convex alternations
is theoretically quite slow. Yet, the algorithm is observed to
be quite efficient in practice, as shown in Section VI. We
insist on the fact that it is an upper bound, which is used
for theoretical purpose only.

V. CONTRACTION OF THE PRIMAL-DUAL SEQUENCE

As Algorithm 1 is a truncated scheme applied online for
varying values of the parameters s 2 S , a natural question is
the following: under which conditions does the sub-optimal
primal-dual solution computed via Algorithm 1 remain close
to a solution of (6) as the parameter s changes ? In the sequel,
we show that if ⇢ and M are carefully chosen, a contraction
property is satisfied by the primal-dual iterates, and the
error sequence kw̄k � w

⇤
kk2 remains bounded, assuming

that the parameter difference ksk+1 � skk2 is small enough.

A. Existence and uniqueness of critical points

Given a critical point w⇤
k of problem (6), strong regularity

of (8) implies that a critical point of (6) exists for s = sk+1

and is unique in a neighbourhood of w⇤
k, assuming that sk+1

is in a well-chosen neighbourhood of sk.
Assumption 5: For all k 2 N, ksk+1 � skk2  rA.
Lemma 5: For all k 2 N and sk 2 S , given w

⇤
k satisfying

(8), there exists a unique w

⇤
k+1 2 B (w⇤

k, �A) such that

0 2 F

�

w

⇤
k+1, sk+1

�

+NZ⇥Rm

�

w

⇤
k+1

�

. (17)
Proof: Immediate from Assumption 5 and strong reg-

ularity of (8).



B. An auxiliary generalised equation

In Algorithm 1, the proximal alternating loop, warm-
started at z̄k, converges to z

1 (µ̄k, sk+1), which is a
critical point of L⇢ (·, µ̄k, sk+1) + ◆Z (·), by Lemma 3. The
following generalised equation characterises critical points
of the augmented Lagrangian function L⇢ (·, µ̄, s) + ◆Z (·)
in a primal-dual manner, which is helpful in our analysis:

0 2 G⇢ (w, d⇢ (µ̄) , s) +NZ⇥Rm (w) , (18)

where d⇢ (µ̄) := (µ̄� µ

⇤
k) /⇢ and

G⇢ (w, d⇢ (µ̄) , s) :=

2

4

rzf (z) +rzg (z, s)
>
µ

g (z, s) + d⇢ (µ̄) +
µ

⇤
k � µ

⇢

3

5

. (19)

In the sequel, a primal-dual point satisfying (18) is denoted
by w

⇤ (d⇢ (µ̄) , s) or w⇤ (µ̄, s) without distinction.
Lemma 6: Let µ̄ 2 Rm, ⇢ > 0 and s 2 S . The primal

point z⇤(µ̄, s) is a critical point of L⇢(·, µ̄, s) + ◆Z(·) if and
only if the primal-dual point

w

⇤(µ̄, s) =

✓

z

⇤ (µ̄, s)
µ̄k + ⇢g (z⇤ (µ̄, s) , s)

◆

(20)

is a solution of (18).
Proof: The necessary condition is clear. To

prove the sufficient condition, assume that w

⇤ (µ̄, s) =
�

z

⇤ (µ̄, s)> , µ

⇤ (µ̄, s)>
�> satisfies (18). The second half of

(18) implies that µ

⇤ (µ̄, s) = µ̄ + ⇢g (z⇤ (µ̄, s) , s). Putting
this expression in the first part of (18), this implies that
z

⇤ (µ̄, s) is a critical point of L⇢ (·, µ̄, s) + ◆Z (·).
As z

1 (µ̄k, sk+1) is a critical point of L⇢ (·, µ̄k, sk+1) +
◆Z (·), one can define

w

1 (d⇢(µ̄k), sk+1) :=

✓

z

1 (µ̄k, sk+1)
µ̄k + ⇢g (z1(µ̄k, sk+1), sk+1)

◆

,

(21)

which satisfies (18). Note that the generalised equation
(18) is parametric in s and d⇢(·), which represents the
normalised distance between the sub-optimal dual and
the optimal dual parameters. Assuming that the penalty
parameter ⇢ is well-chosen, the generalised equation (18)
can be proven to be strongly regular at a given solution.

Lemma 7 (Strong regularity of (18)): There exists ⇢̃ > 0
such that for all ⇢ > ⇢̃ and k 2 N, (18) is strongly regular
at w⇤

k = w

⇤ (0, sk).
Proof: This follows from the reduction procedure

described in [13], the arguments developed in Proposition
2.4 in [3] and strong regularity of (8) for all k 2 N.

Assumption 6: The penalty parameter satisfies ⇢ > ⇢̃.
From the strong regularity of (18) at w⇤

k, using Theorem 2.1
in [13], one obtains the following local Lipschitz property
of a solution w (·) to (18).

Lemma 8: There exists radii �B > 0, rB > 0 and qB > 0
such that for all k 2 N,

8d 2 B (0, qB) ,8s 2 B (sk, rB) , 9!w⇤(d, s) 2 B (w⇤
k, �B) ,

0 2 G⇢(w
⇤(d, s), d, s) +NZ⇥Rm(w⇤(d, s))

and for all d, d0 2 B (0, qB) and all s, s0 2 B (sk, rB),

kw⇤(d, s)� w

⇤(d0, s0)k2 
�B kG⇢ (w

⇤(d0, s0), d, s)�G⇢ (w
⇤(d0, s0), d0, s0)k2 ,

where �B > 0 is a Lipschitz constant associated with (18).
Note that, given w 2 Z ⇥ Rm, d, d0 2 Rm and s, s

0 2 S ,
one can write

G⇢ (w, d, s)�G⇢ (w, d
0
, s

0) =F (w, s)� F (w, s0)

+



0
d� d

0

�

, (22)

which, from Assumption 3, implies the following Lemma.
Lemma 9: There exists �G > 0 such that for all w 2

Z ⇥ Rm, for all d, d0 2 Rm and all s, s0 2 Rm,

kG⇢ (w, d, s)�G⇢ (w, d
0
, s

0)k2  �G
�

�

�

�

✓

d

s

◆

�
✓

d

0

s

0

◆

�

�

�

�

2

.

Proof: This follows from straightforward computations.

C. Contraction estimate

In this paragraph, it is proven that under some conditions,
the optimality tracking error kw̄k � w

⇤
kk2 of Algorithm 1

decreases as the parameter s varies slowly. First, note that
given a sub-optimal primal-dual solution w̄k+1 and a critical
point w⇤

k+1,
�

�

w̄k+1 � w

⇤
k+1

�

�

2
kw̄k+1 � w

1 (d⇢ (µ̄k) , sk+1)k2 (23)
+
�

�

w

1 (d⇢ (µ̄k) , sk+1)� w

⇤
k+1

�

�

2
,

where w

1 (d⇢(µ̄k), sk+1) has been defined in (21). The
analysis then consists in bounding the two right hand side
terms in (23), for the first term using strong regularity of
(18) and for the second one using the convergence rate of
the primal loop in Algorithm 1.

Lemma 10: If ksk+1 � skk2 satisfies

ksk+1 � skk2 < min

⇢

rB ,
qB⇢

�A�F

�

,

and kw̄k � w

⇤
kk2 < qB⇢,

�

�

w

1 (d⇢ (µ̄k) , sk+1)� w

⇤
k+1

�

�

2
�B�G

⇢

�

kw̄k � w

⇤
kk2

+ �A�F ksk+1 � skk2
�

.

Proof: The proof can be found in [11].
In the following Lemma, using the convergence rate estimate
presented in Section IV, we derive a bound on the first
summand kw̄k+1 � w

1(d⇢(µ̄k), sk+1)k2.
Lemma 11: If ksk+1 � skk2 < rB , kw̄k � w

⇤
kk2 < qB⇢

and
�

1 +
�G�B

⇢

�

qB⇢+ �G�BrB < � , (24)

then
�

�

w̄k+1 � w

1 (d⇢ (µ̄k) , sk+1)
�

�

2


C (1 + ⇢�g)M
� (✓̂)

⇣

�B�G ksk+1 � skk2

+
�

�

w̄k � w

⇤
k

�

�

2

⇣

1 +
�B�G

⇢

⌘⌘

, (25)



where �g > 0 is the Lipschitz constant of g(·, s) on Z (well-
defined as Z is bounded).

Proof: Similar to the proof of Lemma 12 in [11].
Gathering the results of Lemmas 10 and 11, one can
formalise the following theorem.

Theorem 1 (Contraction): Given a time instant k, if the
primal-dual error kw̄k � w

⇤
kk2, the number of primal it-

erations M , the penalty parameter ⇢ and the parameter
difference ksk+1 � skk2 satisfy

• ksk+1 � skk2 < min

⇢

rA, rB ,
qB⇢

�A�F

�

,

• kw̄k � w

⇤
kk2 < qB⇢ ,

• ⇢ > ⇢̃ ,

•
✓

1 +
�G�B

⇢

◆

kw̄k � w

⇤
kk2 + �G�B ksk+1 � skk2 < � ,

(26)

then
�

�

w̄k+1 � w

⇤
k+1

�

�

2
�w (⇢,M) kw̄k � w

⇤
kk2

+ �s (⇢,M) ksk+1 � skk2 ,

where

�w (⇢,M) := C (1 + ⇢�g)

✓

1 +
�B�G

⇢

◆

M

� (✓̂) +
�B�G

⇢

,

(27)

and

�s (⇢,M) := C (1 + ⇢�g)�B�GM
� (✓̂) +

�B�G�A�F

⇢

.

Proof: This is a direct consequence of Lemmas 10
and 11.

Remark 5: Note that the last hypothesis (26) may be
quite restrictive, since kw̄k � w

⇤
kk2 needs to be small

enough for it to be satisfied. However, in many cases the
radius � is large (+1 for strongly convex functions).
In order to ensure stability of the sequence of sub-optimal
iterates w̄k, the parameter difference ksk+1 � skk2 has to
be small enough and the coefficient �w (⇢,M) needs to be
strictly less than 1. This last requirement is clearly satisfied
if ⇢ is large enough to make �B�G

/⇢ small in (27). Yet ⇢ also
appears in 1+⇢�g . Hence it needs to be balanced by a large
enough number of primal iterations M in order to make
the first summand in (27) small. The same analysis applies
to the second coefficient �s (⇢,M) in order to mitigate the
effect of the parameter difference ksk+1 � skk2.

Corollary 1 (Boundedness of the error sequence):

Assume that ⇢ and M have been chosen so that �w (⇢,M)
and �s (⇢,M) are strictly less than 1, and ⇢ > ⇢̃. Let
rw > 0 such that � �

�

1 + �G�B
/⇢
�

rw > 0 and rw < qB⇢.
Let rs > 0 such that rs < (1��w(⇢,M))rw

/�s(⇢,M).
If kw̄0 � w

⇤
0k2 < rw and for all k � 0,

ksk+1 � skk2  min

⇢

rs, rA, rB ,
qB⇢

�A�F

�

, (28)

then for all k � 0, the error sequence satisfies

kw̄k � w

⇤
kk2 < rw . (29)

Proof: Similar to the proof of Corollary 1 in [11].
In the remainder, we show that a tuning of ⇢, M and
ksk+1 � skk2, which ensures stability of the error sequence,
is achievable on a realistic numerical example and that good
tracking performance can be obtained.

VI. NUMERICAL EXAMPLE

The efficacy of Algorithm 1 is demonstrated at controlling
a simple bilinear system, namely a DC motor. The discrete-
time dynamics are

xl+1 = Adxl +Bdxlul + cd , (30)

where

Ad :=

✓

1� Ra�t
La

0
0 1� B�t

J

◆

, Bd :=

✓

0 �km�t
La

km�t
J 0

◆

,

cd := �t

✓ ua
La

� ⌧lJ

◆

, (31)

with �t the sampling period. The parameters values are
taken from [9]. In the state variable, xk(1) is the armature
current, while xk(2) is the angular speed. The control input
is the field current of the machine. The control objective
is to make the angular speed track a piecewise constant
reference ±2 rad

/sec, while satisfying the following state and
input constraints:

x =

✓

�2 A
�8 rad/sec

◆

, x =

✓

5 A
1.5 rad/sec

◆

,

u = 1.27 A, u = 1.4 A . (32)

The corresponding NMPC problem is solved via Algorithm
1. The tracking algorithm 1 is tested for different sampling
periods, while initialised at a perturbed solution 5·w⇤

0 , where
w

⇤
0 has been computed using IPOPT [15]. The speed trajecto-
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Fig. 1. Speed responses for �t = 0.026 sec (top) and �t = 0.01 sec
(bottom): full NMPC solved using IPOPT in blue, using Algorithm 1 in
dashed red.



ries are plotted in Fig. 1 and the input in Fig. 2. It clearly ap-
pears that as the sampling period is low, the tracking perfor-
mance is better, the full NMPC trajectory and the sub-optimal
one are almost the same. For a larger sampling period, the
state constraints may be violated, as illustrated in Fig. 1,
while the input constraints are always satisfied, as shown on
Fig. 2, due to the formulation of Algorithm 1. Finally, the
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Fig. 2. Input for �t = 0.026 sec (top) and �t = 0.01 sec (bottom): full
NMPC solved using IPOPT in blue, using Algorithm 1 in dashed red.

computational power is fixed artificially, that is a maximum
number of iterations per second is given a priori. The
sampling period is then made vary within a fixed range and
the performance of Algorithm 1 is measured using the nor-
malised L2-norm of the difference between the full NMPC
trajectory and the sub-optimal one obtained by tracking at the
given time period. As the sampling period increases, more
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Fig. 3. Evolution of the tracking error (normalised L2-norm) versus
sampling period for different computational powers.

iterations are allowed, so the tracking error decreases, as
pictured on Fig. 3. If the sampling period is too large, the
warm-start is too far from the optimal solution and increasing
the number of iterations does not allow to reduce the error,
as only one dual update is performed at each time step. As a

result, the tracking error explodes for large sampling periods.

VII. CONCLUSION

A parametric splitting technique has been presented in
order to solve time-dependent multi-convex parametric prob-
lems. A contraction estimate has been derived, which guar-
antees boundedness of the error sequence assuming the
parameter difference is small enough. Finally, efficacy of
our approach has been assessed on a realistic example
consisting in speed control of a DC motor using NMPC. Our
algorithm seems to be well-adapted to parallel computational
environments and can be further extended to solve distributed
NMPC problems in a real-time framework.
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