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Abstract 

Estimating the respiratory rate (RR) from the 

electrocardiogram (ECG) is of interest as the direct 

measurement of the respiration in clinical situations is 

often cumbersome. In this study, the RR was estimated 

from the multi-lead ECG R-peak amplitude (RPA) 

waveforms, which contain the modulation of the cardiac 

activity by the respiration. An adaptive oscillator-based 

frequency tracking algorithm was used to estimate the RR 

from the RPAs of two or three ECG leads. This automatic 

and instantaneous method tracks the common respiratory 

frequency which is present in its inputs as the RR estimate. 

On a subset of the Physionet MFH/MF dataset, it was 

shown that combining information from three leads yielded 

more accurate RR estimates than using two leads or each 

lead alone. It was also shown that the frequency tracking 

algorithm outperformed Fourier-based frequency 

estimation. 

 

 

1. Introduction 

There is a growing interest in estimating the respiratory 

rate (RR) from an electrocardiogram (ECG), as the direct 

measurement of the respiration involves uncomfortable 

and expensive equipment and on the contrary, the ECG is 

routinely acquired in clinical and non-clinical situations. 

Respiration influences the cardiac activity in several ways. 

In particular, the electric dipole of the heart and the 

impedance of the thorax change with the respiratory 

inhalation and exhalation movements. These changes 

generate a modulation of the ECG R-peak amplitudes 

(RPA). The RR has already been estimated from the RPA 

using temporal methods [1], spectral methods [2] and an 

adaptive method [3].  However, the RPA was shown not to 

yield accurate RR estimates, which is in part because the 

suitability of a given ECG lead to represent the respiratory 

influence is subject-dependent [4]. This variability is 

caused by the variations in the axis of each lead with 

respect to the electrical axis of the heart. Often, in 

ambulatory and clinical applications, multi-lead ECG 

recordings are available. Using RPA waveforms derived 

from several leads may be beneficial in better capturing the 

respiratory modulation of the ECG amplitude. Multi-lead 

ECGs have been used to derive the RR by combining RR 

estimates from four leads in a scheme involving wavelet 

transfer coherence and a Kalman filter [5]. In the present 

study, the RR was estimated by using an adaptive 

frequency estimation algorithm [6] to track the common 

respiratory frequency in the RPA waveforms of several 

ECG leads. This algorithm is a weighted multi-signal 

oscillator-based frequency tracker (W-OSC) that follows a 

common frequency component in several inputs adaptively 

and instantaneously. It has been previously applied to the 

RR estimation from the ECG by using the RPA and the 

respiratory sinus arrhythmia as inputs [3]. 

 

2. Methods 

2.1. Data 

Evaluation data was a subset of 20 records (total of 

41.73 hours of recordings from 7 female and 13 male, aged 

49-84 years, with characteristics reported in Table 1) from 

the Physionet MGH/MF datasett[7] [8]. This dataset was 

recorded from stable and unstable patients at the 

Massachusetts General Hospital and contains various 

physiological recordings of different lengths. The ECG 

and respiratory impedance recordings are of interest in this 

study. The selected subset contains leads I, II, an 

unidentified V lead and the respiratory impedance, 

digitized at a rate of 360 Hz.  

 

Table 1: Patient characteristics. SR: sinus rhythm, ST: 

sinus tachycardia, SB: sinus bradycardia, VP: ventricular 

pacing, AP: atrial pacing, AF: atrial fibrillation, AFL: atrial 

flutter, JR: junctional rhythm, S: spontaneous, C: 

controlled, IMV: intermittent mandatory ventilation. The 

reported values are the RR. 

  
Cardiac 

condition 
Rhythm Respiration 

 

mgh005 graft ST C 12  

mgh006 endocaritis VP IMV 8/22  



mgh007 graft SR S 16  

mgh008 endocaritis AF S 16  

mgh009 graft ST IMV 6/20  

mgh013 angioplasty AF S 20  

mgh014 graft AP S 18  

mgh016 graft VP IMV 2/18  

mgh020 graft JR C 7  

mgh024 graft AFL S 16  

mgh026 graft ST S 16  

mgh027 
carotid 

endartarectomy 
AF S 18 

 

mgh028 
post-infarction 

angina 
VP S 20 

 

mgh029 graft ST C 10  

mgh030 none AF C 18  

mgh031 none ST S 30  

mgh034 none SB S 16  

mgh035 graft SB IMV 5/8  

mgh037 graft SR S 16  

mgh038 graft SR S 16  

 

2.2. RR estimation 

For each ECG lead, the RPA waveform was estimated 

in the following manner: the R-peaks were extracted using 

maxima detection, the time series of their amplitudes was 

then re-sampled uniformly at 2 Hz using cubic spline 

interpolation and band-pass filtered at respiratory 

frequencies, i.e., between 0.1 Hz and 0.5 Hz. The RPA 

waveforms were then fed to the adaptive oscillator-based 

frequency tracking algorithm individually, then in pairs 

and finally globally (i.e., all three), yielding ECG-based 

RR estimates. The respiratory impedance waveform was 

re-sampled uniformly at 2 Hz using cubic spline 

interpolation and band-pass filtered between 0.1 Hz and 

0.5 Hz. A ground-truth RR estimate was computed from 

the pre-processed respiratory impedance to assess the 

accuracy of the estimates resulting from the adaptive 

oscillator-based frequency tracking algorithm. 

 

2.2.1 Adaptive frequency tracking 

An oscillator-based adaptive frequency tracking 

algorithm (OSC) [6] was used to track the instantaneous 

frequency of each RPA waveform. This algorithm tracks 

the frequency of an oscillation. It is based on a band-pass 

filter, the central frequency of which is adaptively updated 

by minimizing the error between its output and a perfect 

oscillation. At each sample, the output of the filter is 

computed, and used in an adaptive scheme to update the 

filter such that oscillation criterion is maximized. The 

multi-input extension of this algorithm, the weighted 

multi-signal oscillator-based algorithm (W-OSC) [6] was 

used to adaptively track the common frequency of two or 

three RPA waveforms. This extension combines the 

estimates from several inputs by weighting the filter 

outputs using a scheme based on their signal-to-noise 

ratios as depicted in Figure 1. The W-OSC algorithm was 
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Figure 1: Structure of the W-OSC frequency tracking algorithm. At each sample n, the inputs 

of the algorithm are denoted as xi[n], the output of the band-pass filter is denoted as yi[n] and 

the frequency estimate of each input is denoted as wi[n] with i=1,…,M, where M is the number 

of inputs. The combination of all estimates yields the final frequency estimate, denoted as w[n]. 

Figure from [9]. 



used to estimate the RR using different combinations of 

two or three RPA waveforms from different leads. [9] 

2.2.2 Classic Fourier maximum frequency 

estimation 

A classic Fourier maximum-frequency estimate from 

the RPA waveform of each lead was computed as well for 

comparison purposes. The short time Fourier transform 

was computed with a window length of 28 samples. The 

frequency corresponding to the local maximum in the 

Fourier transform was extracted as the reference Fourier 

frequency estimate.  

2.3 Ground-truth 

Estimating the ground-truth RR from the respiratory 

impedance waveform is not a straightforward task as this 

signal is neither stationary nor necessarily band-limited. In 

previous studies, the same frequency estimation method 

applied to the ECG-derived respiratory waveform was 

used to estimate the ground-truth RR such as in [2]. In the 

present study, five typical frequency estimates were 

combined to yield a robust RR ground-truth in order to 

avoid artificial correlations with the ECG-derived RR 

estimates as a result of common signal processing 

methods. The five methods used in this study are the 

Fourier maximum frequency estimate, the number of 

respiratory peaks in 20 second-long centered windows, the 

inverse of the time-lapse between two consecutive 

respiratory peaks, an estimate based on the Teager-Kaiser 

energy tracking operator [10], and an estimate based on 

autoregressive modelling [4]. At each sample, the median 

of the five estimates and the two estimates closest to it were 

averaged and low pass filtered to produce the final ground-

truth. The accuracy of the ECG-based RR estimates were 

evaluated by computing their mean absolute error in terms 

of breaths-per-minute with respect to the ground-truth. 

 

3. Results 

Table 2 reports the errors in breaths-per-minute of the 

OSC estimates for each record and for each lead. Table 3 

presents the errors in bpm of the W-OSC estimates using 

all three leads and different combinations of two leads for 

each record. Table 4 contains the errors of the Fourier-

based estimates on each lead for each record. It was 

observed that in general, the errors of the W-OSC estimates 

were the smallest, followed by the OSC estimates. Both W-

OSC and OSC estimates had smaller errors than the 

Fourier-based estimates.  

 

 

 

  

Table 2: The errors in breaths-per-minute of the OSC 

estimates. 

 I II V 

mgh005 1.75 1.08 2.59 

mgh006 9.79 7.61 12.79 

mgh007 2.20 2.47 2.86 

mgh008 6.10 9.55 9.49 

mgh009 6.88 7.03 7.25 

mgh013 7.98 9.77 5.31 

mgh014 2.66 2.76 3.47 

mgh016 4.20 4.14 1.53 

mgh020 5.40 1.72 3.75 

mgh024 1.05 1.22 0.97 

mgh026 4.64 5.00 4.51 

mgh027 6.98 9.05 8.27 

mgh028 4.97 5.06 5.23 

mgh029 5.81 2.73 3.20 

mgh030 2.58 1.29 3.45 

mgh031 7.06 7.46 6.21 

mgh034 4.73 3.89 4.34 

mgh035 3.13 4.55 5.93 

mgh037 3.09 1.50 2.13 

mgh038 2.82 2.78 2.20 

average 4.69 4.53 4.77 

    

 

Table 3: The errors in breaths-per-minute of the W-

OSC estimates. 

 
I,II 

and V 

I 

and 

II 

II 

and 

V 

I 

and 

V 

mgh005 0.61 0.72 0.69 0.78 

mgh006 6.74 5.09 6.77 7.97 

mgh007 1.65 1.83 1.87 1.79 

mgh008 5.60 5.45 6.81 5.69 

mgh009 6.04 6.42 5.65 6.94 

mgh013 5.46 7.27 4.92 4.86 

mgh014 1.80 1.84 2.03 1.95 

mgh016 3.01 4.74 2.80 2.08 

mgh020 1.88 1.89 1.69 2.75 

mgh024 0.87 0.89 0.91 0.90 

mgh026 3.05 3.33 3.21 3.21 

mgh027 4.75 5.58 5.21 4.92 

mgh028 3.68 4.07 3.76 3.62 

mgh029 1.14 1.25 1.10 1.23 

mgh030 0.83 1.01 0.95 1.10 

mgh031 6.09 6.25 6.39 5.72 

mgh034 2.88 2.96 2.96 2.95 

mgh035 1.52 1.42 1.54 1.57 



mgh037 1.36 1.73 1.16 2.21 

mgh038 1.82 2.28 1.87 1.94 

average 3.04 3.30 3.11 3.21 

     

 

Table 4: The errors in breaths-per-minute of the 

Fourier estimates. 

 I II V 

mgh005 2.65 1.28 1.38 

mgh006 7.85 5.69 11.10 

mgh007 3.16 3.40 3.13 

mgh008 9.40 12.00 12.27 

mgh009 11.16 6.97 8.90 

mgh013 11.05 12.70 8.11 

mgh014 3.82 2.58 4.11 

mgh016 6.73 6.52 2.39 

mgh020 3.02 2.04 3.02 

mgh024 1.11 1.45 1.03 

mgh026 6.32 5.66 5.50 

mgh027 5.59 6.84 6.57 

mgh028 4.91 5.20 5.36 

mgh029 2.64 1.29 1.36 

mgh030 4.30 2.59 3.57 

mgh031 11.01 11.74 7.46 

mgh034 4.54 3.75 4.37 

mgh035 1.66 1.75 2.91 

mgh037 4.10 2.54 2.77 

mgh038 4.81 4.84 3.47 

average 5.49 5.04 4.94 

 

 

4. Discussion and Conclusions  

In our study, we have shown that the W-OSC adaptive 

frequency tracking algorithm using two or three ECG leads 

yields the most accurate RR estimates as compared to those 

of the OSC algorithm and Fourier estimates on one lead. 

The baseline drift of the ECG recordings was not removed, 

as in this particular case, patients lay still on beds and 

removing the baseline would remove the respiratory 

activity, which was of interest in this study. The limitations 

of this study lie in the small number of patients and the 

diversity of their health conditions. However, this diversity 

may also be a strength in demonstrating the feasibility of 

using the W-OSC algorithm when the patient suffers from 

a cardiac condition or an abnormal cardiac rhythm. It is 

possible that using several leads overcomes one of the 

limitations of the RPA to estimate the RR, which is the fact 

that the lead reflecting most the respiratory modulation of 

the ECG R-peak amplitudes varies among subjects [4]. It 

would be of interest to investigate the use of more than 

three leads. The W-OSC algorithm is instantaneous, 

meaning that it can deliver RR values in real-time. 

Furthermore, the algorithm is automatic and does not 

require special treatment to remove abnormal beats as it 

can rectify their effect within a few iterations. 
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