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More precisely, if we assume thatf (x) is supported on X we have

q = CX r , (4.9)

while if we considerY to be the support of f (x) we get a di�erent system of equations,

q = CY r . (4.10)

We note that if all the coe�cients have the same value, that is c(n) = C � n = {1, . . . , N },
then all the ACF elements have the same coe�cient as well,d(n) = C2. In this case, (4.9) and
(4.10) are equivalent and we cannot distinguish between the two possible supports,X and Y.
Note that the set of signals havingc(n) = C � n form a 1-dimensional subspace in the coe�cient
domain. In what follows, we show that this is the only subspace whereX and Y cannot be
distinguished from the coe�cients.

Consider the intersection between the two columns spaces ofCX and CY . This intersection
contains all the coe�cients of the ACF that could be equivalently generated by two signals, one
supported onX and the other on Y. The dimensionality of this intersection can be computed as

dim(span(CX ) � span(CY )) = (4.11)

rank(C X ) + rank( CY ) Š rank([C X , CY ]) = 1

where [CX , CY ] is a symbol representing the concatenation of the columns of two matricesCX

and CY . It is possible to verify that (4.11) holds for the example of Bloom and by linearity to
any other element of the set of counterexamples.

We deduce from (4.11) that the ACFs with coe�cients
�

d(n)
� N 2 Š N

n=0 that can be generated
by the two di�erent supports lie on a 1-dimensional subspace. Given that we have already
characterized this 1-dimensional subspace as the one where all the

�
c(n)

� 5

n=0 have the same
value, this concludes the proof.

4.8.2 Proof of Proposition 4.1

First, we de“ne the projection f̄ (s) of the signal f (x) over the subspace indicated byP as
the following inner product

f̄ (s) =
 

RD
� (s Š P x )f (x) dx =

N�

n=1

c(n) � (s Š P x (n) ).

Then, we compute the ACF of the projected signal as

a(s) = f̄ (s) � f̄ (Šs)

=
 

RD

N�

n=1

c(n) � (h Š P x (n) )
N�

m =1

c(m ) � (h + s Š P x (m ) )dh

=
N 2 Š N�

n=0

d(n) � (s Š P y (n) ), (4.12)
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where the δ(s) are located on the 1-dimensional domain defined by the projection. Finally, we

compute the projection of the ACF according to (4.3) as

ā(s) =

∫
RD

δ(s− Py)a(y)dy

=

∫
RD

δ(s− Py)

N2−N∑
n=0

d(n)δ(y − y(n))dy

=

N2−N∑
n=0

d(n)δ(s− Py(n)),

that is equal to (4.12), which proves the proposition.

4.8.3 Proof of Theorem 4.4: [Uniqueness condition for the D-dimensional
PR problem]

First, we introduce some notation. The projected deltas are located on {w(n)}N2−N
n=0 . These

locations can be computed with the following matrix vector multiplications

w =

⎡⎢⎢⎢⎣
w(0)

w(1)

...

w(N2−N)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
y
(0)
0 y

(0)
1 · · · y

(0)
D−1

y
(1)
0 y

(1)
1 · · · y

(1)
D−1

...
...

...

y
(N2−N)
0 y

(N2−N)
1 · · · y

(N2−N)
D−1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

p0
p1
...

pD−1

⎤⎥⎥⎥⎦
= Y P T ,

where Y is a matrix containing on each row the locations of the points
{
y(n)

}N2−N

n=0
. Note

that the set of all possible projections from a D-dimensional to a 1-dimensional space forms a

rank(Y )-dimensional space. More precisely, unless the locations of the deltas of f(x) are lying

on a lower dimensional subspace, it forms a D-dimensional subspace.

Similarly to the analysis proposed in Section 4.5.1, we can geometrically characterize the

supports of the ACFs for which we cannot solve the turnpike problem uniquely. We build

a linear model Q from the difference set induced by X , or Y equivalently. Then, we define

a permutation matrix Πp to match the ordering given by the linear model with the ordering

chosen for the set of points representing the ACF support. Assume that the projected points{
w(n)

}N2−N

n=0
are supported on a set of points without a unique PR. Then, we have

w = ΠA,pQp,

where Q spans a 2-dimensional linear subspace and when combined with the p-dependent per-

mutation ΠA,p, it defines a 2-dimensional manifold. Note that we have either A = X or A = Y,

depending on which one of two counterexamples of the turnpike problem we have found.
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The permutation is fixed by p and we have an intersection between the D-dimensional sub-

space spanned by Y and the 2-dimensional subspace spanned by Q. We analyze the possible

cases with respect to the dimensionality of the original ACF, given by rankY :

– If the ACF is 1-dimensional and we have an intersection between span(Y ) and span(Q),

this intersection has necessarily the size of all the possible projections rank(Y ∩ Q) = 1.

Changing the direction of the projection has no effect beside a scaling. In this case, the

original signal is not uniquely recoverable from the support (see Theorem 4.1).

– If the ACF is 2-dimensional and the intersection is 1-dimensional, there is only one pro-

jection that does not have a unique reconstruction and we can pick any other P to have a

unique PR. On the other hand, if the intersection is 2-dimensional, then the signal subspace

is the same as the one spanned by the matrix Q. However, we can change p such that

the permutation Πp changes and the projected points have a unique 1-dimensional PR.

Given the structure of the manifold induced by the permutations, the good projections are

relatively easy to find.

– If the ACF is D-dimensional and D > 2, the set of projections P that generates projected

PR problems with a unique solutions is dense in the set of the projections. In fact, the set of

projections without a unique solutions is a 2-dimensional manifold while all the projections

are a D-dimensional set. We always find sufficient projections to recover the support of

f(x) and therefore all the f(x) without collisions have a unique PR.

4.8.4 Recovering the amplitudes of deltas from the support and the ACF

In general, the problem of recovering the amplitudes {c(n)}Nn=1 of a N sparse signal f(x)

given the support {x(n)}Nn=1 and its ACF a(x) is not trivial. It is equivalent to solve a system of

quadratic forms and a possible convex relaxation is given in [71], for which it is not possible to

guarantee the success of reconstruction.

The problem has the same formulation whether the domain is discrete or continuous. In what

follows we derive an algorithm that recovers the coefficients of a sparse signal whose support and

ACF are both known while we assume the absence of collisions in the ACF.

Let c = [c(1), c(2), . . . , c(N)]	 be a vector containing the coefficients of the N -sparse signal

f(x) and define a rank-one matrix C = cc∗

Given that we know the ACF and the support of f(x), then we know all the off-diagonal

elements of the matrix C. Therefore, we can reformulate the task of recovering the coefficients

from the support as follows.

Problem 4.7

Consider a rank-one matrix C whose elements are all known except the ones on the main

diagonal. Can we uniquely reconstruct the elements on the main diagonal?

There exists many alternative approaches to solve Problem 4.7. We choose to describe a

method that requires a single matrix inversion.

Let αk � |ck|2 ∀k = 1, . . . , N , and define a matrix A = C − diag(α1, . . . , αN ). Note that

A is known and we aim to recover the matrix C. The following result describes a method that

requires a single matrix inversion to find the unique solution of Problem 4.7.
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Proposition 4.2

Assume that N > 2, then

Ck,k = |ck|2 =
N − 2

1−N

1

A−1
k,k

,

where Ck,k and A−1
k,k are the k-th element on the main diagonal of C and A−1, respectively.

Proof.

Denote by D = diag(α1, . . . , αN ), then we have A = −D + cc∗. Applying the matrix inversion

lemma, we obtain

A−1 = −D−1 − (D−1c)(1− c∗D−1c)−1(c∗D−1)

= −D−1 − (D−1c)(c∗D−1)
1

1−N
.

We conclude the proof noticing that the k-th element on the main diagonal of A−1 is a function

of N and αk,

A−1
k,k =

1

αk
− 1

1−N

1

αk
=

N − 2

1−N

1

αk
.

Once we have recovered C, we obtain the coefficients c by taking the eigenvector of C corre-

sponding to the largest eigenvalue. Note that all the matrices are invertible by construction.
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Table of notations

x,x, s spatial variables

t temporal variable

ω Fourier domain variable

f(x) signal to recover

f̃K(x) partial estimate of the signal f(x)

f̄(x) projection of the signal f(x)

a(x) autocorrelation function of f(x)

ãK(x) partial estimate of the autocorrelation function a(x)

ā(x) projection of the autocorrelation function a(x)

f̂(x) Fourier transform of f(x)

f̂ω Fourier series of f(x)

D dimensions of f(x)

c(n) amplitude of the nth delta of f(x)

c̃(n) amplitude of the estimated nth delta of f(x)

x(n) location of the nth delta of f(x)

x(n) location of the estimated nth delta of f(x)

d(n) amplitude of the nth delta of a(x)

y(n) location of the nth delta of a(x)

N number of deltas of f(x)

L number of deltas of a(x) for x > 0

e(x) unit cell of a crystallyzed molecule

φ(x) kernel interpolating the deltas the signal f(x)

p(i)(x) speckle images measured by a telescope

φ(i)(x) time-varying kernel of the telescope and the atmosphere

M number of speckle images or samples of a channel outputg(t)

p
(i)
k discrete speckle images sampled by a telescope

f(t) communication channel impulse response

p(t) input of the channel

u(t) output of the channel

uk samples of the channel output

{Fi}Ki=1 a generic frame

{wi}Ki=1 expansion coefficients of the frame ΠX
D sets of differences

P sets of products

ΠX ,ΠY ,QX ,QY ,p matrices and vectors used to model the uniqueness condition

P projection matrix

P projection matrix

rK(x) residual of the autocorrelation function

x̃∗
1, x̃

∗
2 candidate locations in an iteration of the PA

c̃n1 , c̃
n
2 nth estimated amplitude in an iteration of the PA

K set of estimated deltas

ε regularization parameter of the PA

ξ noise amplitude in the locations

l length of a discrete f(x)

CX ,CY matrices used to model the supports of non-unique supports





Chapter 5

Conclusion

This thesis proposed and discussed a set of results having a common thread: inverse problems

stemming from real-world sensing scenarios. Here, we review our results, emphasizing the open

problems and possible future work.

1. Sensor placement optimization: we introduced a new regularization technique based

on the optimization of the sensor locations for linear inverse problems. More precisely, we

are given a linear inverse problem, a set of N possible sensing locations and we would like

to choose the L locations that minimize the ill-conditioning of the inverse problem. We

proposed FrameSense, a near-optimal greedy algorithm based on the frame potential. We

show with experiments on synthetic dataset, that FrameSense improves in reconstruction

precision and computational complexity the state of the art. Moreover, we extend Frame-

Sense to parameters lying on a union of subspaces, an interesting model for applications

like the thermal monitoring of many-core processors. Last, we study the application of

FrameSense to two real-world applications: the thermal monitoring of many-core proces-

sors and the adaptive sampling scheduling for environmental sensor networks. For both

applications, we show that our method is significantly better in terms of reconstruction

precision and computational complexity with respect to the state of the art. Last, we de-

scribe a proof of concept for a new thermal monitoring architecture based on tomographic

measurements collected by interconnection wires.

Future work should be focused on the following aspects:

– FrameSense assumes that each sensor has the same sensing “energy”; we would like

to improve FrameSense for sensor networks where each sensor has different signal-to-

noise ratios.

– FrameSense could have a significant impact to improve the sensing strategies after

environmental disasters. For example, many sensors were deployed in the ocean to

measure the water contamination surrounding the Fukushima’s nuclear power plant.

Unfortunately, their locations were not well-chosen and many measurements carried

little information. Knowing the meteorological conditions, the sea currents and the

location of the leak, we could have modeled the transport of the radioactive material

using a linear model Ψ and choosen better sensing locations.

– The tomographic thermal monitoring architecture introduced in Section 2.6.8 is ex-

tremely interesting in theory but we did not study the problem sufficiently in depth to
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declare it feasible in practice. We should design integrated circuits measuring the wire

resistance, simulate them and compare their signal-to-noise ratio to the traditional lo-

cal sensors. Once this aspect is properly investigated, we could obtain significant

experimental results showing an improvement of the performance sufficient to moti-

vate further research on real hardware.

2. Source placement optimization: we considered a physical field that is linearly con-

trolled by a set of possible sources with the aim of controlling the future states of the

field. We introduced a different view on the control of this forward problem based on an

optimized choice of the source locations and we proposed an algorithm that finds the near-

optimal source placement given the linear forward problem. This is a brand-new problem

and it does not appear in the scientific literature, therefore it was hard to compare it and

understand its performance with respect to other methods.

In the future,

– We plan to evaluate its performance in a real-world application such as the thermal

management of many-core processors. More precisely, we would like to study if it

is possible to choose the locations of the main components, such as the cores and

the caches, such that the control of the temperature distribution at runtime is more

effective.

– We will study the noisy source placement problem, where the current state of the

field is only known with a certain precision. A possible strategy could be to use a

combination of the approximation error used for the noiseless source placement and

of the frame potential used in FrameSense.

3. Source placement and vaccination on graphs: we considered a graph modeling the

transmission of an information between entities to model phenomena such as epidemics

and rumors on a social network. We analyzed two dual problems: the selection of a

set of nodes to spread the information faster and the removal of a set of nodes to slow

the spreading. For the first problem, we proposed a greedy algorithm and proved its near-

optimal performance in terms of the average time of spreading. For the second problem, we

were able to design a greedy algorithm with a good performance but without a theoretical

guarantee about the quality of the solution. We compared the two algorithms with other

approaches on synthetic data and highlighted the obtained improvements. These results

are just scratching the surface of a very interesting problem.

In the future, we would like to:

– Test the algorithms on real-world datasets, such as the social network of a population

in a given region, and analyze if we can improve the vaccination policies. These

improvements could lead to a cost reduction for vaccination campaigns.

– Design an algorithm for the vaccination problem with bounds guaranteeing the per-

formance for the worst-case scenario.

4. Uniform sampling and reconstruction of diffusion fields: we demonstrated that

diffusion fields, at least for three different source models, are approximatively bandlimited.

Therefore, it is possible to interpolate uniformly collected samples and reconstruct the

entire field with a bounded aliasing error. More precisely, the aliasing error decreases

exponentially fast with a linear increase of the spatial sampling density.
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5. Reconstruction of the sources of a diffusion field: we considered a sensor network

collecting spatio-temporal samples of a diffusion field induced by point sources appearing at

unknown times and locations. We designed an algorithm, that under the assumptions given

in Section 3.5, is guaranteed to recover the sources exactly. Such an algorithm works in a

streaming fashion and recovers the sources one by one whenever they appear on the field.

Future work should be focused on designing a stronger algorithm, that directly estimates

all the parameters of the sources at once. During the redaction of this thesis, we were

informed by Pier Luigi Dragotti and John Murray, that they will soon submit a paper

describing a result in this direction.

6. Reconstruction of time-varying atmospheric emissions: we considered a physical

field generated by localized time-varying sources non-uniformly sampled in space and time

by a sensor network. We designed two algorithms to recover the time-varying emission

rates when the sources are modeled either as finite rate of innovations signals or as signals

lying on low-dimensional subspaces. We showed the feasibility of the proposed algorithm

on synthetic data, using a diffusion-advection equation to model the dispersion.

As future work, it would be interesting to test the proposed algorithm on a real-world

sensing scenario. For example, we could pick a region with a set of known smokestacks,

measure with a sensor network the pollutant density at different locations of the region

and attempt to recover the emission rates with our method. Last, we should compare our

estimates with the real emissions, that could be obtained having access to the smokestacks.

Note that we could model the atmospheric dispersion using FLEXPART [152], a numerical

tool used in environmental engineering.

7. Sparse phase retrieval: we discussed this classical non-linear inverse problem, where we

would like to recover a signal from the magnitude of its Fourier transform. An everlasting

open problem of the phase retrieval problem is the definition of conditions on the signal so

as we have guarantees for a unique solution to the phase retrieval problem. Here, we assume

that the original signal is a stream of Dirac’s deltas and derive a sufficient condition for the

uniqueness of the solution based on the support of the autocorrelation function of the signal.

Such a condition applies to 1-dimensional and multi-dimensional signals and significantly

extends the class of sparse signals with a unique solution to the phase retrieval. In addition,

we proposed the peeling algorithm, a sparse phase retrieval algorithm that reconstructs the

signal on the continuous domain. Note that the peeling algorithm is sensitive to noise in

the measurements and we propose a possible regularization to mitigate this issue. Future

work will be focused on the following topics:

– Design a reconstruction algorithm with an improved stability with respect to the

measurements noise. A possible approach could be inspired by the recent results on

near-optimal algorithms for combinatorial problems via convex relaxation proposed

by Fogel et al. [56].

– Design a algorithm that takes as an input the samples of the magnitude of the Fourier

transform and as an output the parametric description of the Dirac’s delta in the orig-

inal signal. Our current strategy is to recover the ACF using the collected samples

and then solve the phase retrieval problem with the ACF. Unfortunately, this ap-

proach tends to be extremely unstable to noise. Therefore, we should try to directly

estimate the parameters of the signal of interest from the collected samples, without

the intermediate estimation of the ACF.
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• Supervisors: Dr. Noah Stein and Dr. David Wingate.
• Subject: Noise removal, sources separation, calibration algorithms for mobile

phones with a compact microphone array.
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• Supervisors: Dr. Paul Hurley and Dr. Patrick Droz.
• Subject: Signal processing tools for lithographic imaging.
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• Supervisors: Dr. Amina Chebira, Dr. Yue M. Lu and Prof. Martin Vetterli
• Subject: Compressive sensing of a diffusion field using a sensor network.

MSc Thesis (Università di Bologna, Italy) October 2008 to April 2009

• Advisors: Professors Riccardo Rovatti and Gianluca Setti



• Thesis Title: Statistical optimization of sampling sequences in compressive
sensing.

BSc Thesis (Università di Bologna, Italy) March 2006 to December 2006

• Advisor: Professors Tullio S. Cinotti
• Thesis Title: HW/SW design of a tilt-compensated embedded compass based

on a magnetic sensor and accelerometer.
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2. HiPEAC Excellence Paper Award for “EigenMaps: algorithms for optimal thermal
maps extraction and sensor placement on multicore processors” presented at DAC
2012.
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4. J. Ranieri, A. Vincenzi, A. Chebira, D. Atienza and M. Vetterli, “Near-optimal ther-
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1. D. El Badawi, J. Ranieri and M. Vetterli, “Sensor placement optimization for sam-
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4. M. Martinez-Camara, I. Dokmanić, J. Ranieri, R. Scheibler, A. Stohl and M. Vetterli,
“The Fukushima inverse problem”, ICASSP 2013.
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7. I. Dokmanić, J. Ranieri, A. Chebira, and M. Vetterli, “Sensor networks for diffusion
fields: detection of sources in space and time”, Allerton Conference 2011.

8. J. Ranieri, A. Chebira, Y. M. Lu, and M. Vetterli, “Sampling and reconstructing
diffusion fields with localized sources”, ICASSP 2011.

9. J. Ranieri, R. Rovatti, and G. Setti, “Compressive sensing of localized signals: ap-
plication to analog-to-information conversion”, ISCAS 2010.

Patents

1. J. Ranieri, A. Vincenzi, A. Chebira, D. Atienza, M. Vetterli, “Method to estimate the
temperature field of a processor by means of interconnection wires,” Patent pending,
2014

2. J. Ranieri, A. Vincenzi, A. Chebira, D. Atienza, M. Vetterli, “Method to determine
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