
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. W. Gerstner, président du jury
Prof. B. Moret, directeur de thèse

Dr Ph. Bucher, rapporteur 
Dr J.-P. Kocher, rapporteur 
Prof. J. Stoye, rapporteur 

Improving Comparative Genomic Studies: 
Definitions and Algorithms for Syntenic Blocks

THÈSE NO 6347 (2014)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 26 SEPTEMBRE 2014

À LA  FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE BIOLOGIE COMPUTATIONNELLE ET BIOINFORMATIQUE

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS 

Suisse
2014

PAR

Cristina Gabriela GHIURCUŢA





Acknowledgements
Success is not a destination but the road that you’re on has it the saying, and I will add to it and

the people that you meet along it. I would like to express my most sincere gratitude for the

very precious contribution of my friends and family, who greatly contributed to my present

achievements.

My utmost gratefulness to Prof. Bernard Moret, for having me part of the LCBB family;

for being my priceless mentor and friend; the fascinating discussions about science, society

and concepts—thank you for putting up with all my questions. I cannot thank enough you

enough for all the support, patience, the valuable teaching, and the guidance that you offered

me in moments of need; your confidence in my success; giving me the freedom to explore,

while always keeping me on the right track! Thank you, Bernard, for being such a wonderful

mentor!

My warmest thanks to the ex- and present members of the LCBB: Xiuwei Z., Vaibhav R.,

Yu L. and Yann C., for all the support, insightful (non-)scientific discussions, but mostly for the

warm welcome they gave me when I joined the group. Your support was of tremendous help

to me. Special thanks to Nishanth N. and Slavica D., fellow Ph.D. students and friends whit

whom I spent so many nice moments during my time at EPFL. Sincere thanks to Min Y. and

Mingfu S., for keeping the spirit of the lab high, and equally for their support.

I had the pleasure to mentor and work with Anastasiya Tychinskaya during her semester

project and with Dorija Humski during her summer internship at EPFL. Thank you both for

the good work that contributed to this thesis, and for the fun time that you brought along!

Friendly thanks to Laura H. for the amazing, lively and lovely spirit that she brought to us

during this past summer.

I thank the EPFL Doctoral School and the Swiss Institute of Bioinformatics for the scien-

tific training that they offered over the past few years; for providing a truly diverse and creative

environment, along with access to cutting-edge technology!

I sincerely appreciate and thank to Prof. Jens Stoye, Dr. Philipp Bucher, Dr. Jean-Pierre

A. Kocher and to Prof. Wulfram Gerstner for the considerable effort and participation in my

thesis committee, and for their valuable feedback.

As part of paving my road to this successful piece of work, I acknowledge and thank to

my mentor at ETH Zürich, Prof. Gábor Székely, and Dr. Alexander Rauch, for their patience,

support and guidance during my first research experience in the field of computational

biology. My special thanks to the members of the BIWI, especially to Michael B., Bryn L.,

Gabriele F., Andreas E., Peter B., Alain L. and Benjamin H., who gave me an overwhelmingly

iii



Acknowledgements

hearty welcome to the lab, and in the same time also to Switzerland. I am deeply grateful to

Dr. Bernhard Reber and Ruth Steinmann, for their kind support and for caring for me like my

family!

I am sincerely thankful for all the precious friendships that I made, during my stay in

Switzerland, through IAESTE and at EPFL. I could not have made it without you guys, without

the rich memories and the many happy moments that you granted me. Thank you for giving

me your time and for your presence in my life! Special thanks to Ludek C., Petr S., Jennifer S.

and Mutaz A., for being there for me!

Sincere and warm thanks to Stefanie Uhl, for all the patience, initiative, understanding

and her priceless pieces of advice, since my very beginnings in Switzerland. Thank you, Stef!
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Abstract
Comparative genomics aims to understand the structure of genomes and the function of

various genomic fragments, by transferring knowledge gained from well studied genomes,

to the new object of study. Rapid and inexpensive high-throughput sequencing is making

available more and more complete genome sequences. Despite the significant scientific

advance, we still lack good models for the evolution of the genomic architecture, therefore

analyzing these genomes presents formidable challenges. Early approaches used pairwise

comparisons, but today researchers are attempting to leverage the larger potential of multiway

comparisons.

Current approaches are based on the identification of so called syntenic blocks: blocks of

sequence that exhibit conserved features across the genomes under study. Syntenic blocks

are in many ways analogous to genes—in many cases, the markers are used to constructing

them are genes. Like genes they can exist in multiple copies, in which case we could define

analogs of orthology and paralogy. However, whereas genes are studied at the sequence level,

syntenic blocks are too large for that level of detail—it is their structure and function as a unit

that makes them valuable for genome level comparative studies.

Syntenic blocks are required for complex computations to scale to the billions of nu-

cleotides present in many genomes; they enable comparisons across broad ranges of genomes

because they filter out much of the individual variability; they highlight candidate regions for

in-depth studies; and they facilitate whole-genome comparisons through visualization tools.

The identification of such blocks is the first step in comparative studies, yet its effect on final

results has not been well studied, nor has any formalization of syntenic blocks been proposed.

Tools for the identification of syntenic blocks yield quite different results, thereby pre-

venting a systematic assessment of the next steps in an analysis. Current tools do not include

measurable quality objectives and thus cannot be benchmarked against themselves. Com-

parisons among tools have also been neglected—what few results are given use superficial

measures unrelated to quality or consistency.

In this thesis we address two major challenges, and present: (i) a theoretical model as

well as an experimental basis for comparing syntenic blocks and thus also for improving the

design of tools for the identification of syntenic blocks; (ii) a prototype model that serves as a

basis for implementing effective synteny mining tools. We offer an overview of the milestones

present in literature, on the development of concepts and tool related to synteny; we illustrate

the application of the model and the measures by applying them to syntenic blocks produced

by different contemporary tools on publicly available data sets.

v



Chapter 0. Abstract

We have taken the first step towards a formal approach to the construction of syntenic

blocks by developing a simple quality criterion based on sound evolutionary principles. Our

experiments demonstrate widely divergent results among these tools, throwing into question

the robustness of the basic approach in comparative genomics. Our findings highlight the need

for a well founded, systematic approach to the decomposition of genomes into syntenic blocks

and motivate the second part of the work—starting from the proposed model, we extend

the concept with data dependent features and constraints imposed by the computational

power, in order to test the concept in practice and to provide a solid, structured basis for future

synteny mining tools.

Keywords: homology, syntenic blocks, comparative genomics, de Bruijn graphs, mul-

tiway comparisons, whole genomes, yeast genomes, sequence similarity, markers, formal

model.

vi



Résumé
La génomique comparative vise à comprendre la structure des génomes et la fonction des

regions genomiques particulieres, par le transfert de connaissances acquises découlant des

génomes bien étudiés, au nouvel objet d’étude. Le séquençage rapide et peu cher à haut débit

a mis à la disposition de plus en plus des séquences complètes du génome. Malgré le progrès

scientifique significatif, nous manquons encore de bons modèles pour l’évolution de l’archi-

tecture génomique, donc l’analyse de ces génomes présente toujours de formidables défis.

Les premières approches utilisées comparaisons par paires, mais aujourd’hui, les chercheurs

tentent de tirer parti de la plus grande potentiel de comparaisons multivoies.

Les approches actuelles sont basées sur l’identification de ce qu’on appelle blocs de

synténie : blocs de séquence qui présentent des caractéristiques conservées à travers des

génomes étudiées. Les blocs de synténie sont à bien des égards analogues à des gènes—dans

de nombreux cas, les marqueurs utilisés pour les construire sont des gènes. Comme les gènes,

ils peuvent exister en plusieurs exemplaires, dans ce cas, nous pourrions définir des analogues

de l’orthologie et de la paralogie. Cependant, tandis que les gènes sont étudiées au niveau

de la séquence, les blocs de synténie sont trop grands pour telle niveau de détail—c’est leur

structure et fonction comme une unité qui les rendent utiles pour des études comparatives au

niveau du génome entier.

Les blocs de synténie sont nécessaires pour des calculs complexes à l’échelle des milliards

de nucléotides présents dans de nombreux génomes ; ils permettent des comparaisons entre

des larges gammes de génomes, car ils filtrent beaucoup de la variabilité individuelle ; ils

mettent en évidence les régions candidats pour des études approfondies ; et ils facilitent les

comparaisons des génomes entiers grâce à des outils de visualisation. L’identification de ces

blocs est la première étape dans les études comparatives, quoique leur potentiel n’a pas été

bien étudié, ni a une formalisation des blocs de synténie été proposé.

Des outils pour l’identification des blocs de synténie donnent des résultats tout à fait

différents, ce qui empêche une évaluation systématique des étapes suivantes de l’analyse. Les

outils actuels ne comprennent pas des objectifs de qualité mesurable, donc ils ne peuvent

donc pas être comparés éux-mêmes. Les comparaisons entre les outils ont également été

négligé—les peu des résultats de ces comparaisons qui sont donnés, utilisent des mesures

superficielles sans rapport avec la qualité ou la cohérence.

Dans cette thèse, nous abordons deux défis majeurs, et présente : (i) un modèle théo-

rique et une base expérimentale pour comparer des blocs de synténie, qui pourra servir à

améliorer la conception d’outils pour l’identification des blocs de synténie ; (ii) un prototype
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Chapitre 0. Résumé

qui sert comme base pour la mise en œuvre des outils efficaces d’extraction de synténie.

Nous proposons un aperçu des étapes présentés dans la littérature, sur le développement des

concepts et d’outils liés à la synténie ; nous illustrons l’application du modèle et les mesures

en les appliquant à des blocs de synténie produites par différents outils contemporains sur

des ensembles de données publiquement disponibles.

Nous avons fait le premier pas vers une approche formelle de la construction des blocs

de synténie par l’élaboration d’un critère de qualité simple, basé sur des principes sons

d’évolution. Nos expériences montrent des résultats très divergents parmi ces outils, en

questionant la robustesse de l’approche de base en génomique comparative. Nos résultats

mettent en évidence la nécessité d’une approche systématique fondée à la décomposition

des génomes en blocs de synténie et de motiver la deuxième partie de ce travail—à partir du

modèle proposé, nous étendons la notion de base avec des contraintes caractéristiques a des

données et celles imposés par la puissance de calcul, afin de tester le concept dans la pratique

et à fournir une base solide et structurée pour les futurs outils d’exploration de synténie.

Mots-clés : homologie, blocs de synténie, la génomique comparative, des graphes de

Bruijn, des comparaisons multivoies, génomes entiers, génomes de levure, similarité de

séquence, marqueurs, modèle formel.
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1 Introduction

The intricate story of evolution is encoded in the genomic data of all living organisms. Cracking

evolution, implies a good understanding of the mechanisms and principles which drive

biological processes; here we include the nucleotide level mutations (identified as Single

Nucleotide Polymorphisms—SNPs), insertions and deletions that shape the genome at a

small scale, up to the large scale events that involve the alteration of extended DNA strips—

s.a. rearrangements (transposition, inversion, fusion, etc.), recombination, (whole genome)

duplications, gain or loss of genomic material of different types (lateral or horizontal transfer,

etc.). An evolutionary perspective that explains the diversity of life and considers such events,

relies on fundamental and commonly accepted ideas that form the basis of structured and

formal evolutionary models. As such, the data that is used to validate them has to come from

several organisms and tissues, revealing evolution.

Literally, comparative genomics allows one to connect laboratory notebooks of clin-

ical and basic researchers. Studying certain organisms in a laboratory setting is difficult–

experiments cannot be performed on some organisms, including the main target for the

application of clinical studies—humans, for ethical and practical reasons. Hence, learning

about such organisms is best done by studying other ones that present a high degree of re-

latedness to them. In this context, comparative approaches have long been the mainstay of

knowledge discovery and transfer in biology. Years of research show that tracing back evolu-

tionary events is best done by transferring knowledge from well studied organisms to the ones

that are not yet well studied. This transfer is done by identifying conserved patterns through

sequence alignment and careful analysis of the DNA of highly related species. With knowledge

of model organism genomes, biomedical studies of human genes can be complemented

by experimental manipulations of corresponding e.g. mouse genes to accelerate functional

understanding.

Depending of the aim of the study–whether it is for detecting population level genetic

changes or phylogenetic studies of multiple organism, different models and data sources

apply. Comparing even just two genomes raises computational and conceptual challenges.

Consequently, researchers have addressed the computational problem by defining (or search-
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Chapter 1. Introduction

ing for) well conserved sequences (mostly belonging to the better understood coding regions

of the genome) that are under positive selection playing a critical role in the existence of an

organism. Genes—large sequences whose identity for relatedness and sequence similarity is

not in doubt, make up a very small part the genome—5%, while most of it ( 90% in humans) is

poorly understood and so lacks a suitable evolutionary model. For this reason, most of the

studies employ genes, the main focus being the interactions between genes and the associated

regulatory regions.

With the advent of inexpensive sequencing tools, pairwise sequence comparison became

a major research tool; programs such as BLAST [1] are used to identify short, super conserved

genomic regions in similar genome sequences, in order to study problems in genetics and

genomics, by using knowledge from better characterized organisms. Such comparisons have

been carried out on relatively short sequence fragments–usually up to the length of a protein

transcript, i.e., a few thousand nucleotides.

Such work continues at a great pace today, but the rapidly increasing availability of

complete genome sequences has led to the desire to compare entire genomes at once, the

better to understand the large-scale architectural features of genomes and the evolutionary

events that have shaped these features, such as segmental and whole-genome duplication,

horizontal transfer, recombinations of various types, and rearrangements.

In the case of vertebrates, mammals in particular, the genome comprises over 3G base

pairs (bps), which is huge in the context of what present computational methods can handle.

A sparse sampling of the genome can be achieved by identifying regions of high similarity with

other genomes. There exist a number of attempts to identify such regions, some approach

it in a very principled way, such as Mauve [8]. The regions are then used to form large-scale

patterns that can be evaluated for similarity and conservation. Such large scale patterns when

used systematically, can be viewed as alternative representations of the genomes.

The simplest such representation uses the concept of syntenic blocks (SBs), large blocks

of sequence that are well conserved (as testified by commonality of markers and similarity of

high-level patterns) across the species (or within a genome). Comparative genomics relies on

the structuring of genomes into SBs. SBs are required for complex computations to scale to

the many similar regions shared by multiple genomes.

Working with such blocks facilitates comparisons across broad ranges of genomes: (i) it

confers robustness against variability across individuals and against various sources of error;

(ii) it reduces the dependence on an accepted model of sequence evolution for each region

and is less likely to suffer from homoplasy–a parallel and independent evolution of analogous

structures in different organisms, that was not present in the common ancestor; (iii) it reduces

the complexity of the analysis of the genomic structures; (iv) it provides high-level features for

further evolutionary studies; (v) it identifies specific regions of interest for detailed studies

and possible bench experiments; and (vi) it facilitates whole-genome comparison through

visualization tools.
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However, the concept of SB remains loosely defined. Tools for the identification of SBs

yield quite different results, thereby preventing a systematic assessment of the next steps in

an analysis. Current tools do not include measurable quality objectives and thus cannot be

benchmarked against themselves. Comparisons among tools have also been neglected–what

few results are given use superficial measures unrelated to quality or consistency.

This thesis highlights systematically, the role that is played by syntenic blocks in compar-

ative studies. The thesis has two parts:

1. A survey on the notion of synteny and syntenic blocks present in current literature–

definitions, use in comparative studies; what are the issues that prevent the application

of syntenic blocks to whole genome comparative studies; solutions to two of the prob-

lems. This is presented in chapter 2 through 4.

2. A practical model and its possible implementation that makes use of our formal frame-

work proposed in the first part, that we enrich with common sense principles inspired

by hands on dataset analysis.

Based on the review of the work on synteny and its evolution in the context of com-

parative studies, we provide solution to two of the problems that we point out throughout

it.

• A formal and principled definition for syntenic blocks: here we address the lack of

a consistent, commonly accepted and used notion for syntenic blocks; as a direct

consequence, a common basis for the comparison and evaluation of such structures

is not possible, thus their use in comparative studies is hindered. We promote the use

of syntenic blocks in whole-genome comparative studies, and propose a principled

definition that serves as an experimental basis for comparing syntenic blocks and for

improved design for tools that are meant to identify such blocks. This work is described

in detail in chapter 4.

• A number of measures that are used to evaluate current synteny mining tools’ output

against our definition: reflects features of syntenic blocks, the relatedness, respectively

the structural differences among current syntenic blocks and the heuristics that are

used in existing state of the art tools. The results and findings from the evaluation of

various syntenic blocks against the same definition, as well as the challenges revealed

by our findings are presented along chapter 5.

The second part of the thesis focuses on the refinement and adaptation of the formal

definition to defining and identifying synteny block families on specific datasets:

• By using weak common intervals, we propose a model for identifying syntenic blocks:

we identifying genomic regions of high similarity that are further used in the context of
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common intervals, to formalize and adapt the concept to datasets of interest, for which

we generate syntenic blocks. This part of the thesis is presented in chapter 6 and is work

in progress.

Chapter 2 introduces notions of comparative genomics. In a first part, an overview

presents genomic units that have been used over time in comparative studies; while the

second part of the chapter presents the methods that have been commonly used to find

such genomic units. A comprehensive review of the previous work that is necessary for

synteny based studies, in literature since early times up to contemporary notions, is provided

throughout chapter 3. Chapter 7 is the conclusions chapter.
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2 Background

The first part of this thesis provides a comprehensive review on the evolution of the notion of

synteny in the context of comparative studies. The survey implicitly extends over the heuristics

used by tools designed for identifying syntenic regions, from early notions up to the state of

the art. This chapter provides the notions necessary for understanding the work from this

thesis.

2.1 Biological concepts

Frequently the reason why the reliability of comparative studies is jeopardized, is the lack of

sound understanding of basic notions of sequence similarity and evolutionary relatedness. In

this sense, throughout this section, we will briefly present the notions of homology, orthology,

markers and synteny and their main features.

To start with, Figure 2.1 sketches an example of hierarchy between homology and orthol-

ogy, and paralogy. As the figure shows, homology is the basic form of evolutionary relatedness,

while orthology designates a pair of related genes consequence of a speciation event. Paralogs

are then copies of the same ancestral gene, but which reside in the same genome; unlike in the

case of orthology where the association is between organisms belonging to different species.

A more in detail presentation of these terms follows.

2.1.1 Homology

In evolutionary biology, two structures (character positions in a sequence, markers of various

types, genes, syntenic blocks) are homologous if they are descended from a common ancestral

structure [10]. Common ancestry is the base feature for homology, but in the same time

such structures present highly similar or identical base composition, therefore sequences that

are homologous are also called conserved. To be noted though, that such structures do not

necessary fulfill similar functions.
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Chapter 2. Background

Figure 2.1 – A visual representation of the evolutionary events and thus the presence of different
copies of the same gene in variously related species, that makes the difference between the
degree of relatedness of these copies.

Homology cannot be observed, but only inferred. It is not a measurable quality of two

structures—there exists no quantification for the degree of relatedness. Due to this feature,

homology is transitive, a unique property that distinguishes it from the other forms of evolu-

tionary relatedness. It is an equivalence relationship and, as such, determines equivalence

classes, the families of homologous structures.

Sequence similarity alone can be explained by various phenomena, other than true ho-

mology. High sequence similarity can occur by chance, by convergent evolution–independent

evolution of similar features in species that belong to different lineages and that were not

present in the common ancestor. Such an evolution creates analogous structures–also known

as homoplasy. Yet in practice, homology for markers and genes is determined on the basis

of sequence similarity, using tools such as BLAST. For this reason, inferred homologies are

neither symmetric nor transitive in practice, as they depend on similarity thresholds.

2.1.2 Orthology

It is another form of genomic structure relatedness, mostly used to identify genes. It relies

on homology, but in addition to it, the structures are orthologous if the branching at the

last common ancestor was a speciation. Orthology, in contrast with homology, depends on

the speciation point—when a species diverges into two separate species, and so is context-

dependent; in particular, it is generally not transitive. (For instance, two gene duplicates

within the same genome cannot be orthologous, but these two duplicates and a homologous
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gene in another species are orthologous if the duplication followed the speciation.) Instead,

orthology must be specified through hierarchies structured through the phylogeny as pointed

out by Gabaldon in [12].

In this context, orthologs are indispensable for species’ evolution as they serve as mile-

stones for speciation events. Until recently, another strong statement about the role of or-

thologs was their role played in functional information transfer from experimentally already

characterized genes to the ones in newly sequenced genomes. However, the strong belief that

orthologous copies of the same ancestral gene belonging to different species are the closest

related, has been challenged by stating that copies of the same gene in the same species

(paralogues) are functionally more closely related than orthologs. A comprehensive overview

of the topic is given in [12]. Such findings call for a thorough approach in studies that use

orthologous copies, and throw into question the reliability of their results.

Like homology, orthology is also inferred. It is also initially determined through sequence

similarity, but often verified through phylogenetic analysis or by ascertaining functional

similarity. This makes orthology, a stronger relationship than homology; it is often preferred,

at least for pairwise comparisons, as it may provide higher-quality markers.

However, only rarely is position along the genome taken into account—exceptions are

the database OrthoDB, which also provides a hierarchy of orthology relationships, and the

orthology tool MSOAR [11]. In practice, therefore, identifying homologies is much easier than

identifying its particular cases.

2.1.3 Markers and Anchors

From medical research, but for comparative studies as well, genetic markers are very practical

as they can help link an inherited disease with the responsible gene. A genetic marker is a

short—even single nucleotide (identified as a SNP), yet precisely conserved DNA sequence

across genomes; it has a known physical location on a chromosome; it is long enough to make

its conservation statistically significant. DNA segments close to each other on a chromosome

tend to be inherited together, as they are in linkage. The genetic marker itself may be a part

of a gene or may have no known function. Genetic markers are used to track the inheritance

of a nearby gene that has not yet been identified, but whose approximate location is known.

A short review and presentation of the use and origin of markers and their application in

population genetics is given in [31].

Genomic alignment uses markers as anchors, that is, fixed references in the alignment. It

may use however, a richer pool of markers, such as scaffold data, maximum unique matches

(perfectly conserved sequence fragments of maximal length), genes, and even assembly

contigs. Those that use markers in the sense of highly conserved sequence fragments define

markers through a variety of criteria, such as Bayesian statistics in Pecan [17] or sequence

similarity iterated through a refinement pipeline in ProgressiveMauve [8].
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Considering markers individually, means working at the base pair level of the sequence.

We are not much interested in the individual movement and reconstruction of markers, as

they form only a small part of the genome. We have to think of them rather as in their original

context and use them to characterize what is in between such markers. Taken as a collection of

markers, their varying positioning across genomes shows that major events took place—trying

to explain the event chain that lead supports the present genomic architecture being the

main challenge in phylogenetic studies. A comprehensive review on how non-coding nuclear

DNA markers of various origins (internally and externally transcribed spacers (ITS/ETS),

transposable elements (TE) microsatellites, etc.) are used for phylogenetic reconstruction, is

provided in [30].

In order to use them in alignments or to study synteny, markers have to be formalized.

Syntenic blocks are one such formal context.

2.2 Computational Approaches

Based on the notions from the previous section, there are four distinct concepts necessary to

effective synteny mining, that will be discussed in details in the following sections:

1. Homology tools that identify short sequences of local similarity in the context of pair-

wise genome comparison.

2. Databases used in the analysis to be presented and that served as source for genomes

and as resource for homology/orthology.

3. Genomic alignment tools that extend comparative studies beyond looking for local,

short sequences of similarity, offering a broader perspective on the possible evolutionary

scenarios.

4. Common intervals as a formalized frame for working with markers towards discovering

genomic patterns that encompass large scale evolutionary events.

2.2.1 Mining For Homologs

Tools that are widely used for the detection of various types of homologs, are sequence

alignment tools that provide short local matches, as a result of comparing a query sequence to

several possible matching target sequences, part of a database. Such tools that are widely used

and accepted in the community are the earlier mentioned BLAST and FASTA [18]—adequate

for searching DNA and protein databases and for evaluating statistical significance from

randomly shuffled sequences.

8



2.2. Computational Approaches

2.2.2 Databases

Gene data for running experiments has been downloaded from various sources. Databases

used included OrthoDB [28], NCBI [36] and YGOB [5].

2.2.3 Genomic Alignment

Early comparative studies (CS) were carried out at the level of short DNA sequences. This

allowed for the prediction of pairwise homologies, limited orthology and paralogy relation-

ships within gene families; however, such comparisons allowed only for the detection of edit

events such as insertions, deletions and substitutions, limiting the scope of pairwise local

alignments to gene-sized alignments, which are without doubt still very important as they

form the basis of most evolutionary studies, for they allow translating functional information

between genomes.

However, there is more to evolution than just basic genome edit events. Once that

sequencing techniques improved, whole genomes (WG) became available, making it possible

to leverage phylogenetic information as CS would be carried out at the genome level instead

of only locally. A straightforward result is the incorporation and the possibility to study

various evolutionary mechanisms (s.a. natural selection, genetic drift and hitchhiking, etc.—

all important genetic indicators), reconstruct events (s.a. speciation, duplication, loss, the

large scale events like rearrangements, lateral gene transfer and many more), assess more

carefully or proof check the type of homologous relationships between related sequences.

In [32] Dewey provides more details on WG alignments, issues, purpose and use.

Even though using phylogenetic information improves CS considerably, handling duplications—

establishing the correct orthology/paralogy relationships, still remain significantly challenging.

The genome level alignment combines local alignment-level similarity with events that are

detected at a higher, block-level analysis. Genomic regions identified as part of higher-level

abstract features, are related to other such regions that are approximately similar to each

other. This approximate similarity reduces the computational effort for large genomes, s.a. the

eukaryotic ones. This comes consequently with new challenges, leaving room for creativity—

defining sets of parameters that are minimal, general and as little as possible empirical to

consolidate evolutionary models to be able to deal with large scale rearrangements. As a

result, determining syntenic blocks remains a very hard task, hence the many tools (GRIMM-

Synteny [38], ADHoRe [27], Cinteny [37], FISH [6], OrthoCluster [40], etc. to name a few—more

detailed description of their main features is given in chapter 3).

Just as most work on defining syntenic blocks focuses on two genomes at a time, so is

whole-genome alignment usually done pairwise. Biologists have long known that multiway

comparisons provide more information than pairwise comparisons, especially multiway

comparisons within a phylogenetic context.

Multiple sequence alignment (MSA) builds upon local pairwise alignment and makes
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Figure 2.2 – Example use of sequence alignment in comparative studies. Illustration for gene content alteration
in the intergenic regions of R. prowazekii. Different types of genome alteration are presented: split genes in R.
prowazekii (top) and in R. conorii (middle), partially conserved gene in R. prowazekii (bottom) through the pairwise
alignment of R. conorii with R. prowazekii [66].

use of phylogenetic information, enhancing the quality of the final alignment. However, in the

same time it comes with new problems: finding good markers that are present in all, or almost

all, genomes; choosing or inferring a number of parameters related to attributes difficult to

measure, such as the level of evolutionary divergence among the genomes or the quality of

the genome sequences used; assigning one-to-one correspondences among similar blocks so

as to minimize the number of evolutionary events needed to explain the architecture of the

modern genomes; whether to insist on the transitivity of relationships such as homology and

orthology (among markers, among genes, among syntenic blocks, etc.); and many others.

Figure 2.2 illustrates how sequence alignment is used for annotation and functional

transfer—each of the three pairwise alignments between the genomes of R. conoriiand R.

prowazekii, depict an event that altered the sequence of R. prowazekii. In the top example,

the region around position 20000 is split in the R. prowazekiias opposed to how it shows in R.

conorii. The second alteration shown in the middle alignment, is the mirror example for the

previous case, while the bottom alignment shows the decay for the rompA gene in the genome
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of R. prowazekii. The arrows that make up the two genomes from the illustration stand for

genes, and the conserved adjacency between them is referred to as collinearity. Collinearity

constitutes a milestone notion, that will be discussed in more detail throughout subsequent

chapters, as it played and still does an important role in synteny detection.

What can be efficiently solved for pairwise comparisons, remains intractable for more

than two genomes. As a direct consequence, all methods attempt to reduce MSA to a series of

pairwise comparisons, hence the progressive pairwise alignments that either use phylogenetic

trees as a guide for the merging process or consider a reference genome which is then used

on the position of an ancestral genome. It must be mentioned though, that at this level too,

handling complex events is still far from being solved—besides point mutations and indels,

e.g. determining the right orthologous pair has not yet become a basic task that would yield

accurate and reliable results without the need to curate them. For this reason, most of the

multi wise comparisons are most successful for closely related strains of the same species,

larger taxonomic groups with a short history ( e.g. vertebrates).

2.2.4 Common Intervals

The study of rearrangements led to the definition of common intervals. The concept is used to

compute the evolutionary distance between the species in question, as given by the number

or reversals necessary to transform one genome into another one; common intervals stand

for conserved regions of a chromosome within which the same set of genes can be observed,

albeit not necessarily in the same order. Taking the mathematical model introduced by Uno

in [39], Heber et al. in [35] places the concept into a biological context, pointing out ways to

detect functional associations between genes. If the genomes are modeled as permutations

of genes, finding co-occurring genes translates into finding common intervals—all on the

premises that genes occurring in different genomes, but existing in eachother’s neighborhood,

tend to encode proteins that interact at the functional level [67], [68].

The formal definition for common intervals, as presented in [35], is as follows: given a set

S = {1, . . . ,n} and the signed permutation π of its elements: denote by π[i ] = j the i th element

of π. For x, y ∈ S, x ≤ y, [x, y] = {x, x +1, . . . , y} ⊆ S and π[[x, y]] = {π(i )|i ∈ [x, y]} is called an

interval of π. Let Π= (π1, . . . ,πk ) be a family of k signed permutations of S. Assuming w.l.o.g.

that π1 = i dn = (1, . . . ,n). A k-tuple c = ([l1,u1], . . . , [lk ,uk ]) with 1 ≤ l j < u j ≤ n for all 1 ≤ j ≤ k

is called a common interval of Π if and only if

π1([l1,u1]) =π2([l2,u2]) = . . . =πk ([lk ,uk ]). (2.1)

The set of all common intervals of Π is denoted by CΠ—the definition excludes common

intervals of size one; it allows for nested intervals.

Example Let S = {1, . . . ,9} and Π = (π1,π2,π3) with π1 = i d9 (the identity permutation for
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the first 9 elements), π2 = (9,8,4,5,6,7,1,2,3), and π3 = (1,2,3,8,7,4,5,6,9). CΠ =
[1,2], [1,3], [1,8], [1,9], [2,3], [4,5], [4,6], [4,7], [4,8], [4,9], [5,6].

Given the nature of the data that common intervals are built on, the actual nucleotide

sequences of these genes as well as the precise locations on the genome are not longer taken

into account. The definition is given in terms of families of non-duplicated genes (or other

families of unique sequences) and their ordering; such a formal definition captures many of

the properties informally associated in the literature with syntenic blocks.

Permutations, and the reversal operation, are useful tools for estimating evolutionary

distances in comparative studies. In [3], Bergeron et al. projects the reversal distance problem

into a solution for sorting sets of similar genes, with different orientation and ordering. If

the genome is seen in terms of sets of ordered genes per, organized on chromosomes, where

the genes have the their orientation associated to a +/− sign; as the gene content of a chro-

mosome is shuffled and pruned or enriched by evolutionary events, comparing two sets

that belong to different species, that are located on corresponding chromosomes, yields a

signed permutation, which is then used to estimate the evolutionary distance between the

two species.

Selective pressure will impose a strong conservation on the gene order and content

of the genomic material of certain regions. However, for practical cases when comparing

distantly related species, through shuffling and various evolutionary events that act upon the

genomes, this framework becomes less feasible for most of the relevant cases. Therefore, the

approximate version of the concept is developed based on distance metrics—a maximum

distance between the consensus gene set and the allowed approximate sets is defined, in order

to be able to cluster intervals with varying content. An efficient algorithm that implements

this extension is presented in [13].

In [33], Dörr introduces a model that is not based any more on an a priori defined family

of homologous genes, that is the case in the previous work; instead it is inferred from gene

sequence level similarity, for the dataset in question. The advantages and features of the

family-free comparative studies are presented in detail in [46]; a particularly important feature

is that it fends off issues like the fact that gene families are most of the time inferred in an

unsupervised manner; consequently such inference methods can yield false biological gene

families, which at their turn will generate incorrect results for subsequent analyses. This latest

approach relies only on gene similarity measures, and makes possible the inference of several

features such as conserved structures, rearrangements, ancestral genome reconstruction,

gene family prediction instead of use and many more.

The combination of this latest gene family free approach with the one of common

intervals is introduced in [34], under the name of context intervals. As the nature of the

combined heuristics suggests, the new concept has promising potential to serve as basis for

defining syntenic blocks, that can additionally be organized into a hierarchical structure.
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2.2. Computational Approaches

There are of course limitations to the generic form of common intervals. A straight-

forward example is the impossibility to handle a variable gene content, as the reference set

and permutation is the identity one. In order to deal with e.g. duplication and therefore

the induced marker content change, the set of markers of a generic common interval would

become a multiset instead of set, while the reference permutation would change as well.

Then the latest form of common intervals, presented in [65], introduce the concept

of weak common intervals. This concept addresses the shortcomings and the limitations

previously mentioned, by recasting the problem of common intervals on sequence profiles.
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3 Synteny: Evolution From Concept To
Implementation

This chapter provides an overview of the concepts, tools and heuristics developed to date in

what concerns synteny. The chapter is structured into the following parts:

• The concept of synteny: early notions and studies introducing sinteny related concepts.

• Syntenic blocks (SBs), markers and their inference: a few remarks on the underlying

structures that serves as a scaffold for building syntenic blocks.

• (Pairwise) Synteny mining tools and their underlying heuristics: this part presents the

tools that implement notions on synteny used in pairwise studies.

• State-of-the-art in synteny mining in the context of multiple genome comparison: pre-

senting the most recent tools that were used as well in the experimental part of the

thesis, and that are capable of handling multiple genomes in a comparative study.

3.1 The Concept Of Synteny

The first mention of synteny as it is understood today was in 1971 in an article of Renwick [23]

on human chromosome mapping, in the context of linkage studies in population genetics.

Genetic linkage is observed between two loci (i.e., the coordinate of the location of a gene

or DNA sequence on a chromosome) when the recombination rates between the specific

chromosomal regions are so low, that the loci are inherited together over generations. Renwick

introduces the term synteny out of necessity to denote collocation of markers on the same

chromosome while testing for linkage, as opposed to the clear cases where related loci are

relocated onto different chromosomes. Thus, in theory, all linked loci are syntenic, but

not all syntenic loci are necessarily linked. According to this definition, loci found on the

same chromosome are syntenic, regardless of whether this relationship can be established

by experimental methods such as DNA sequencing/assembly, genome walking, physical

localization or hap-mapping ( [43]). In this context, it makes sense to look at synteny in

15



Chapter 3. Synteny: Evolution From Concept To Implementation

multi-chromosomal organisms e.g. eukaryotes, as opposed to e.g. bacterial genomes where

all genes are according to this definition, in synteny.

In 1984 Nadeau and Taylor extends the so far existing notion on synteny in [16], into

a concept for two or more pairs of homologous genes occupying the same chromosomal

segment, where homologous loci are based on similarity of function of the products of the

corresponding genes. Their informal definition of syntenic segments, is based on conservation

of sequence. They carefully distinguished synteny from such conserved segments, by calling

for conservation of function, rather than of sequence. In this same work they gave a list of

features viewed as supporting inclusion of markers in an SB, a list that includes conserved

orientation, conserved adjacency, and conserved position of homologous markers associated

with the corresponding mapped chromosomes, a collection of features that loosely defines

what is more commonly called today collinearity. This work became the most cited reference

by researchers concerned with synteny.

3.2 Markers, Syntenic Blocks And Genomic Alignment

Identifying SBs and aligning whole genomes both rely on identifying markers. SB construction

uses subsets from the set of markers: if a sufficiently dense region is identified in most of

the genomes, those regions can be viewed as SBs. It is defined both through families of

homologous markers and through placement within the genome. Homology is inferred from

sequence level similarity, therefore the initial sources of homologous markers for a synteny

study relies on (local) alignment tool produced regions, which are inferred from the sequence

level of the genome. Representative tools in this context, which will not all be presented in

detail, being Mauve [47], MUMmer [44], Multi-LAGAN [48], AVID [49] or WABA [50] to just

name a few. The mentioned tools were primarily developed for local sequence alignment,

however the byproducts of the alignment process can serve as basic units for synteny mining.

Identifying SBs, in addition to prior knowledge of homologies, requires the examination

of rearrangement and duplication events, which disperse the members of a homologous

family throughout the genome. (Conversely, of course, producing SBs makes direct statements

about the evolutionary history of the genomes by ruling out some of the possible scenarios.)

As a result, in principle, the identification of SBs should proceed from homologies (which have

little direct dependence on location) rather than from orthologies inferred without regard to

location. Computing gene clusters, for instance, is best done based on families of homologous

genes instead of relations derived from orthologous groups [13].

More recent work has typically used conservation of sequence rather than conservation

of function, but has also made use of orthology. As inferred homologies lose their symmetric

and transitive properties in practice, orthology is often preferred, at least for pairwise synteny,

for it simplifies the task through its earlier mentioned features. Some synteny finders simply

transform orthologous relationships into bijections, in spite of the fact that orthology is a

many-to-many relation.) When moving from pairwise to multiway syntenies, orthologies
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become problematic: the more diverse the group of genomes, the more difficult it becomes

to identify orthologies. In consequence, therefore, synteny tools rely on both homology and

orthology, viewed largely as different degrees of sequence similarity, with orthology as a

dominant preference presumably because it is viewed as a stronger indicator of conserved

function than homology.

Most SB finders use genes as markers; for a fixed value of k, a de Bruijn graph is defined on

k-mers and path through such a graph represent contiguous sequences. (de Bruijn graphs [19]

are widely used for genome assembly—see Compeau [7] for an excellent introduction in this

context. In such a graph, every k-mer found in the input sequences is represented by an edge

connecting two vertices that are the k −1 prefix and k −1 suffix of the k-mer. Thus a path

of j edges through such a graph corresponds to an assembled sequence of length k + j −1

formed by ordering j k-mers, with each consecutive pair presenting a perfect overlap of length

k −1; in particular, an Eulerian path through the graph corresponds to an assembly of all

k-mers into a single sequence.) Genomic alignment may use a richer pool of markers, such as

scaffold data, maximum unique matches (perfectly conserved sequence fragments of maximal

length), genes and even assembly contigs (overlapping DNA fragments that together form a

consensus DNA region). Those that use markers in the sense of highly conserved sequence

fragments define markers through a variety of criteria, such as Bayesian statistics in Pecan [17]

or sequence similarity iterated through a refinement pipeline in ProgressiveMauve [8].

For finding SB on the other hand, k-mers are replaced by genes; DRIMM-Synteny uses

the concept previously presented on k-mers, to define an a Bruijn graph on them. In such a

graph, every vertex is a gene found in the input sequences. The edges connect contiguous

successions of genes in the input genomes. Thus a path of j edges through such a graph

corresponds to a SB.

3.2.1 Principled Marker Detection

In the multiple sequence alignment tool Mauve [47] introduced a principled approach to

detect and then use markers in sequence alignment. The model integrates both large scale

evolutionary event detection (i.e., rearrangements and inversion in conserved regions) and

breakpoint analysis, producing a final multiple sequence alignment. The package has been

developed for bacterial genome analysis, which present several particularities (i.e., small

genome size, significant repetitive regions, etc. ). Such a highly repetitive structure can quickly

explode the universe of possible homologous associations among multiple genomes, without

the right additional data. The strategy adopted by the authors to address this issue, is: (i)

identify highly conserved, sufficiently long sequences (anchors) throughout a concatenated

multi-chromosomal genome, to constitute an initial boundary for a certain genomic region

(called Multiple Maximal Unique Matches—multiMUMs—that are unique matches in at least

two genomes; have length k); (ii) each subsequent region that exceeds a certain length—thus

is potentially significant, is searched through the refinement process, for (recursively) shorter
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(than k) additional anchors. This recursive refinement continues until the anchor coverage

has reached a sufficient density or the heuristic cannot retrieve any additional anchors.

The core idea supporting the heuristic is to identify so called Locally Collinear Blocks

(LCBs), which by definition allows for partial matches between subsets of genomes, thus the

strict collinearity among all genomes is not required anymore. LCBs are then attributed a

weight as a measure to quantify the level of confidence in the rearrangement that generated

the LCB. Thus, the maximum weight LCBs are a collection of anchors such that each collinear

subset of anchors meets some minimum-weight criteria.

Figure 3.1 – Mauve: Representation of greedy breakpoint elimination in three genomes, for LCB detection from
multiMUMs. Illustration of the process that identifies collinear blocks of multisMUMs and how removing a low-
weight collinear region can eliminate a breakpoint. The resulting collinear sets of anchors delineate the LCBs that
are used to guide the remainder of the alignment process. (A) The algorithm begins with the initial set of matching
regions (multi-MUMs) represented as connected blocks. Blocks below a genome’s center line are inverted relative to
the reference sequence. (B) The matches are partitioned into a minimum set of collinear blocks. Each sequence of
identically colored blocks represents a collinear set of matching regions. One connecting line is drawn per collinear
block. Block 3 (yellow) has a low weight relative to other collinear blocks. (C) As low-weight collinear blocks are
removed, adjacent collinear blocks coalesce into a single block, potentially eliminating one or more breakpoints.
Gray regions within collinear blocks are targeted by recursive anchoring [47].
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In summary, the main steps of the algorithm are:

1. based on the multiMUMs, a phylogenetic guide tree is computed ( and not recomputed

anymore throughout the process);

2. a subset of the multiMUMs is selected to form LCBs through breakpoint analysis [51]

(illustrated in figure 3.1);

3. the recursive anchor detection is performed;

4. a progressive alignment produces the final result based on the guide tree;

Two significant features of the tool worth highlighting for future reference are that (i) it per-

forms a recursive anchor detection and (ii) the anchors are based on homology.

Later on, in [8] Darling et al. improves further the concepts implemented in Mauve

by including positional homology information. ProgressiveMauve improves on the anchor

detection by computing them progressively according to a guide tree—which is not the one

used for alignment and which is build as shown in figure 3.2. The tool allows for a larger

number of genomes to be compared, it increases the quality of the alignment for the regions

shared by only a subset of the genomes. This is done through algorithmic innovations related

to breakpoint scoring, optimization of the anchor set for the alignment, and a homology HMM

model that is used to reject unrelated, erroneous alignments in regions presenting unequal

gene content.

The multiMUMs from the previous version, are generalized and replaced by local multi-

ple alignments (LMAs) that will be part of the final whole genome alignment. By including

approximate matching, by using a palindromic spaced seed pattern, unique seeds common to

at least two genomes are extended for defining ungapped alignments of unique subsequences.

The use of such seeds allows for mismatches and relaxes the homologous structures, part

of the final alignment, as well as increases the tool’s sensitivity to indels and the large scale

segmental gain and loss.

(Progressive)Mauve was designed as an alignment tool, not a synteny tool, but it gen-

erates a list of homologous, locally collinear regions that can be used as a basis for defining

syntenic blocks.

3.3 Early Synteny Tools and Heuristics

Around the same time with the formalization of common intervals, in response to the com-

plete sequence of the human genome becoming available, the Mouse Genome Sequencing

Consortium produces a high-quality draft sequence of the mouse genome, and presents the

results of the comparative study between the human and the mouse genome in [26]. In the

form of such comparative analyses, they propose SBs as sets of adjacent syntenic segments
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Figure 3.2 – ProgressiveMauve heuristic. Overview of the alignment algorithm and recursive anchor detection,
using three example genomes A, B, and C. The algorithm starts by identifying unique matched among the three
genomes (1) and computes the relatedness distance between pairs of these genomes (2), distance that is used for
inferring the guide tree. As part of the refinement suite, the anchor set is extended if possible by searching between
already identified anchors (5); the final anchor set is used to compute the global alignment between closely related
genomes that become further profiles (6-7) [8].
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Figure 3.3 – Syntenic segment between human and mouse. Example illustration of the conserved synteny between
human and mouse—courtesy of the Mouse Genome Sequencing Consortium.

(possibly shuffled in order and orientation) belonging to the same chromosome; a syntenic

segment consists of markers arranged in a conserved order, on a single chromosome in both

species. In this view, syntenic fragments obey the collinear property, whereas SBs need not do

so. An example illustration of syntenic segment as identified by the work of the Consortium is

given in figure 3.3.

3.3.1 Statistical Validation Based Tools: FISH And ADHoRe

Unlike in [26], where the focus is on genome assembly and specifically on comparing the

human-mouse genome pair, Calabrese et al. in [6] addresses the problem of finding segmental

homologs in highly divergent genomes. The proposed probabilistic model is implemented

in FISH (Fast identification and statistical evaluation of segmental homologies) synteny tool.

The concept is exploiting linear sequences of homologous features; it is capable of handling

duplications but produces only pairs of homologous segments that share multiple homologous

features, in a rough collinear order. The objective of the framework is to distinguish blocks

that are likely significant and did not appear by chance. For this reason, a null model is

defined for individual features that are homologous, yet not part of a segmental homology;

the randomness of the structures is based on the computed p-value of the block. Mismatches

are quantified through probabilistic values.

The following pipeline is used to generate segmental homologs:

1. establish pairs of homologous features for single chromosome genomes;

2. place the homologous pairs into a matrix;

3. progressively explore overlapping neighborhoods of homologous features, to define

clumps of closely located homologous points that are set roughly in a diagonal.

The ordering of features belonging to two homologous segments needs not be strictly con-

served, some variation being allowed; strandedness is also disregarded.

To generate all the maximum sized clumps representing segmental homologies, a clas-

sical dynamic programming (DP) algorithm is used. The illustration of the neighborhood
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Figure 3.4 – Illustration of the neighborhood search for segmental homologs. A 3-clump (containing points A,
B and C) draws a segmental homology in the space delimited by the matrix of pairwise homologous features. The
neighborhood of A contains point B and the neighborhood of B contains point C, but D and E are not part of the
neighborhoods of C. Neighborhoods are defined by Manhattan distance. The neighborhood of C is restricted by the
top and that of E by the right boundary of the matrix [6].

concept used to define the clumps, is shown in figure 3.4. The tool is capable of dealing with

indels, however the use of DP does not allow for the detection of major inversions—small ones

being covered by the neighborhood concept of a clump.

In contrast to previous work, Van de Peer et al., authors of the ADHoRe (Automatic

Detection of Homologous Regions) tool [27], chooses to emphasize collinearity and to break

larger blocks into smaller, yet statistically significant collinear blocks, such that they maintain

the collinear property. The tool was developed for analyzing plant genomes—characterized

Figure 3.5 – Illustration of the matrix used by ADHoRe for clustering; crossed squares are masked, the dark squares
are at distance 1, while the white ones are at distance 5: (a) Graphical representation of the diagonal pseudo distance
(DPD) function. Every rectangle represents a cell of the matrix. The central dot corresponds to an element of a cluster.
Example positioning in the matrix, where the DPD defines dot a as being in a closer proximity to the central cluster
dot, than (b); (b) Matrix representation of homologous genes. Arrows indicate the orientation of the genes on the two
genomic fragments compared. Homologous genes with the same orientation are colored in gray; homologous genes
with an opposite orientation are in black [27].
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Figure 3.6 – Examples of collinearity as defined by ADHoRe between rice BAC and A. thaliana (A.t.). Examples
of collinear regions found between overlapping rice BACs and segments of the A.t. genome. Two ( figure A and B)
collinear segment examples between rice BACs and part of the A.t. chromosome 3. Arrows indicate genes present on
the genomic segment (black line), black bands connecting A.t. and rice genes indicate anchor points (homologs),
whereas gray bands indicate a tandem duplication. Genes probably erroneously predicted in rice are indicated in
red [27].

by at least one but could be as well several whole genome duplications, setting them apart

from the genomic architecture of e.g. vertebrates. The concept of collinearity found between

a plant genome (A. thaliana) and a rice bacterial artificial chromosome (BAC) is depicted in

figure 3.6.
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Figure 3.7 – ADHoRe flowchart for the general heuristic. White boxes represent data items, gray boxes represent
routines and arrows indicate the dataflow for the core algorithm [27].

The main three steps based on which ADHoRe produces SBs are as follows:

1. irrelevant points are eliminated, while all occurrences of tandem duplicates, with the

same orientation, are collapsed into the representative tandem duplicate;

2. cluster genes with the same strandedness into blocks, based on the distance measure

d((x1, y1)), (x2, y2)) = 2max(|y2− y1|, |x2−x1|)−mi n(|y2− y1|, |x2−x1|), where x and

y denote the coordinates of a gene on a chromosome; the matrix representation of the

homologous genes is shown in figure 3.5.

3. statistical evaluation of the clusters, by calculating the probability of the collinear frag-

ment with the given gap size vs. the null model given by the sampled and shuffled data

set.

4. merging the two strand dependent groups

The heuristic flowchart and the one for detecting collinearity highlight (figures 3.7

and 3.8) the iterative refinement part of the algorithm, responsible for the convergence of

parameter values. This approach becomes particularly important for the heuristics which
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Figure 3.8 – ADHoRe flowchart for defining collinear regions between genomic fragments. White boxes represent
data items, gray boxes represent routines and arrows indicate the dataflow for the heuristic [27].

involve many parameters, for they need fine tuning or a certain convergence. It is designed to

work on a pair of genomes and not multiple ones.

3.3.2 Rearrangement Study Based: GRIMM-Synteny And Cinteny

As the complete human and mouse genomes became available at the time, studying genomic

rearrangements between human and mouse came into the focus of many research groups.

The reference work of Hannenhalli and Pevzner [52] on sorting by inversion, served as a

basis for many works attempting to reconstruct genomic rearrangement based evolutionary

scenarios. The fundamental question to answer here being: given two permutations of the

same set, compute the minimum number of inversion operations necessary to transform one

permutation into the other (reference) one.

In this sense, an early and relevant work that actually uses the mathematical concept

in comparative genomic studies, is presented by Pevzner in [20]. He introduces a parsimony
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based approach to define SBs, concept that is implemented in GRIMM-Synteny. Here the

genomes are represented as signed permutations (i.e., each gene is represented by a (signed)

number in a set ordered by the occurrence of the gene along the genome; the sign represents

the position of the gene on one of the two strands of the double helix structure of the DNA).

The goal is then to compute the minimum number of operations necessary to transform one

genome into the reference one. SBs are defined in terms of conserved segments that can be

disrupted by internal microrearrangements—such rearrangements the authors found to be

far more common than previous studies revealed and that therefore had to be largely ignored

in constructing SBs. The lack of precision in previous studies is then attributed to the low

resolution of the comparative maps that were used for certain regions of the genome. At this

stage, the heuristic computes pairwise comparisons only.

Even though the main focus is to find the most parsimonious transformation, generating

SBs from this pipeline boils down to finding the connected components of a multigraph of

the alignment that has been constructed based on the homology relation between genes. The

latter is established using the Manhattan distance, such that a pair of genes is homologous if

they are close to each other up to a certain threshold value. Given two pairs of homologous

genes (g1, g2) and (g ′
1, g ′

2), where ri denotes the position of the gene on the genome, the

Manhattan distance between the pairs is dM (((g1, g2)), (g ′
1, g ′

2)) = |r ′
1 − r1|+ |r ′

2 − r2|.

Later Bourque et al. [4], also working on GRIMM-Synteny, improves the tool further

by merging the pairwise comparisons produced by the previous version of GRIMM-Synteny,

according to phylogenetic information (tree based), and applies it to the the human-mouse-

rat genome trio. This improvement targets the reconstruction of the ancestral mammalian

karyotype, by using phylogenetic information. In figure 3.9 we can see the illustration of the

pairs of anchors as lines 3.9a, as well as the corresponding SBs 3.9b for the clusters of anchors

that are found by the algorithm. The fact that SBs are defined as clusters bigger that a threshold

size, implies indirectly that the blocks are allowed to overlap.

Sinha et al. [37] proposes a new heuristics for mining SBs that are given by walks through

a (ternary) search tree (TSTs). The heuristic is implemented in the tool Cinteny. The proposed

heuristic is designed to deal with several genomes at a time as opposed to pairwise compar-

isons only. It takes various types of markers as input (in theory, but in practice works on genes).

The tree structure holds in each node a gene, while homologous groups are determined by a

vertical walk to the leaf level. A horizontal walk will yield the linear order in which each gene

appears in the original genome, per chromosome. The "walks" at the leaf level that yield SBs

are illustrated in figure 3.10.

The main principles underlying the heuristic are:

1. identify blocks of conserved markers without any disruption of order and orientation

(i.e., two signed permutations representing these blocks being identical up to one

reversal operation);
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Figure 3.9 – GRIMM-Synteny generated SBs. The pipeline for generating syntenic blocks (SBs) (a) in the form of
clusters of anchors; (b) returned by the heuristic of GRIMM-Synteny [4].

2. the perfectly collinear blocks are aggregated into larger (non-overlapping) blocks by

ignoring smaller blocks resulting from micro-rearrangements.

When inferring phylogenetic information, dealing with paralogs remains an issue. Cinteny

offers the user somewhat arbitrary strategies to deal with this issue: (i) use a paralog which lies

within the most conserved region (i.e., the largest SB); (ii) use a random paralog; (iii) ignore all

genes which have paralogs. Note that markers that are observed only in some genomes but

not all, are automatically filtered out when multiple genomes are used.

An important feature of the algorithm is that it produces blocks of different sizes, thus

of various levels of abstraction (i.e., the aggregation level dictates to what size micro rear-

rangements are deleted). An example of different levels of aggregation (coarse-graining) is

given in figure 3.11. The aggregation concept is particularly useful when it comes to using

SBs for phylogenetic studies (where the large scale events are of interest therefore large blocks

are desired and their content is less under the microscope, but more of a black box) or for

analyzing targeted genomic regions (where the detailed block content is in focus). This feature

introduces however, user dependent parameters (e.g., minimum length of SBs), to define the

extent to which small divergences are tolerated within extended SBs. While some parameters

are user-defined, the heuristic remains rigid when it comes to strandedness and ordering,

these features are not subject to the choice of the user.
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Figure 3.10 – Cinteny: TST based representation of "genomic walks". Example of a TST used by Cinteny, with
several genes from the human, mouse and rat genomes as well as the corresponding walks. The TST is constructed
with the gene symbols (nodes of the TST are represented by round circles in the figure, e.g., S, E, etc.) and the leaf
nodes (shown as ovals, e.g., AK, CTH, etc.) represent each homologous group (a unique string representing the name
of a gene representing that group). The individual genes belonging to each homologous group are connected below
the leaf node as meta nodes (shown as rounded rectangles, Human AK, Mouse Ak, Human CTH, etc.). Linear walks
are formed by connecting meta nodes based on the order in which the markers appear on a chromosome, as shown by
arrows connecting the meta nodes, e.g., Mouse Srm −→ Mouse E2f2 −→ Mouse Wnt4. The strandedness (orientation)
of a gene is stored in the node using an additional variable, and thus the whole genome is formally represented as a
signed permutation [37].

Figure 3.11 – Cinteny: comparison of the X chromosomes of the mouse and the rat genome (a) before and (b) after
aggregation.
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{}

{g1} {g2} {g3}

{g1, g2} {g1, g3}
{g1, g2, g3} {g1, g2, g4} {g1, g3, g4}

{g1, g2, g3, g4}

Figure 3.12 – OrthoCluster: A Set Enumeration Tree. Each node in the tree represents a subset of (orthologous)
genes; each node is obtained by adding one gene to its parent. The descendants of node g1 in the tree consists of all
subsets having g1, the descendants of node g2 consists of all subsets having g2 but not have g1, etc. [40].

3.4 State-Of-the-Art Synteny Tools And Heuristics

The problem with tools that use matrices or dot plots to visualize blocks and a Manhattan(-

like) distance to cluster related elements found on the diagonal, is that they are not suitable for

comparing more than 2 genomes; consequently, handling one-to-many marker relatedness

is also hindered; strandedness is not exploited, therefore inversion detection is poor as well.

Such features are indispensable for studying large-scale events, as well as for leveraging the

extra knowledge that is reachable through multiway comparisons.

Modern tools all attempt to handle the loss of collinearity, in recognition of the fact that

collinearity (absence of rearrangements) is unlikely to be observed in collections of genomes

of any significant size or degree of divergence. Equally important and still challenging is the

ability to deal with varying marker (most often gene) content: given reasonably divergent

genomes, markers will have been variously lost or acquired over time.

Whole genome sequences become available with a fast pace, while tools remain still

fairly limited when it comes to dealing with duplicates, with multiple genome comparison or

improving underlying evolutionary models. In this context promising progress has been done,

the state-of-the-art being presented in the followings.

Zeng et al. developed Orthocluster [29], a representative tool both for being able to

handle multiple sequence comparison and for proposing a principled and explicit statement

for the structure of the expected SB. The tool handles large-scale genomic events such as

reciprocal translocation (the exchange of genetic material between chromosomes), transpo-

sition (transfer of genetic material between organisms other than by vertical gene transfer),

indels, inversions and duplication. It is based on gene orthology though, which means that the

applicability of the tool is limited to closely related organisms.

The core idea for generating SBs is to enumerate all the possible combinations of or-

thologs that are present in all the genomes to be compared. The subsequent results are

generated via a set enumeration tree illustrated in figure 3.12. This process can become very
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time consuming and computationally demanding, since enumerating all subsets for n genes,

requires 2n steps. For this matter, the authors employ three tree pruning techniques:

1. sliding window: to reduce the count of putative blocks, by limiting the (number of genes)

size of the window, to a user defined value;

2. iterative refinement: SBs are generated though extension by an iterative evaluation of

the fitness of each gene in the reference block; constraints are given through user-defined

parameters;

3. pruning by in-between genes: to filter out possible situations where genes present in

one genome could disrupt the content wise consistency of a block defined over another

genome;

The heuristics that complement the main heuristic, introduce many parameters such

as the maximum/minimum number of genes in a block, the allowed number of genes per

block without orthologs in other genomes from the block (in-map, number of genes without

any ortholog counterpart in the block (out-map), number of singletons allowed in the block,

strandedness awareness, order-preserving.

OrthoCluster is a solid tool, for several features s.a. capability to handle multiple

genomes, to deal with various large scale evolutionary events, to generate blocks based on

pertinent hypothesis. However, in practice, it does not scale for distantly related genome

comparisons; moreover, handling multiple genomes becomes highly resource consuming.

The main drawback to it is that the input must be formatted such that only orthologs shared

by all the genomes are considered. Even though one-to-many relations are accepted, when

the correspondence file defining the orthology relationships contains too many entries, the

performance of the tool is radically hindered, to the point of not performing anymore at all.

Cassis [2], also based on orthology relationships, prunes considerably the list of ortholo-

gous gene pairs provided as input, eliminating those that disrupt collinearity. The remaining

pairs are one-to-one orthologous relationships used to form non-overlapping blocks based

on a statistical evaluation of their match to the collinear model. The tool is designed for

analyzing whole-genome comparisons, in the light of evolutionary breakpoint regions (EBRs).

The algorithm infers the possible location of EBRs though establishing a reference genome,

and then comparing a related breakpoint region to the reference genome. Using the position

of orthologous genes as markers, it generates a list of ordered and non-overlapping blocks

which are used to identify breakpoints; then by means of sequence alignment, (denoted by

So A and SoB in figure 3.13) the EBR coordinates are defined more accurately.

The breakpoint operations are evaluated only for a certain size of genomic span upwards,

for the authors consider it to be a safe mean for avoiding false positives, however this limits

the tool’s capability to deal with duplications and deletions. The whole heuristic pipeline is

presented in the work of Lemaitre et al. [53]. The segmentation or refinement step proves to
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Figure 3.13 – Cassis: illustration for detecting SBs. Sequence Sr is defined by the boundaries of two consecutive
syntenic blocks Ar and Br on the genome Gr . So A (SoB ) is defined by the boundaries of the orthologous block Ao
(Bo ) and of the previous/next synteny block (according to the orientation of the blocks) in the genome Go . To perform
the segmentation (second step), the tool considers the extended version of the sequences Sr , So A and SoB which
includes the first/last genes of the SBs [2].

be harsh on the fragments of Sr which are not covered by neither So A or SoB –they are deleted

from Sr . The correct partitioning of Sr into three sub units representing (i) a match between

SR and So A ; (ii) a match between SR and SoB ; and (iii) a match between SR , SoB and So A—that

all three are retrieved from Blastz [54] alignments, is established by testing of an iterative

manner, for the right position in the breakpoint region, where the (breakage point) sum of

squares of the deviations of the data from the model, is minimized.

In contrast to clustering based heuristics, Cassis imposes two structural constraints on

SBs: strict collinearity is required among the markers of two blocks, thus blocks do not overlap,

and since it uses breakpoints to define start/end points for the blocks, the markers belonging

to the two genomes that frame the block are required to be orthologs, this way assuring that

they can be aligned in a future step.

Cyntenator [25] uses genes as markers and is based on a progressive alignment of profiles

of gene-order data. For the detection of conserved gene orders, thus SBs, the tool represents

first the genome with partial order graph (POG) and then aligns the graphs by using dynamic

programming (DP). The bit score quantifying the sequence similarity of homologous genes

is obtained from BLASTP searches. Further on, all pairwise alignments are generated using

Smith-Waterman local alignments [55] (DP). The so produced local alignments are then placed

in a POG, where the nodes are either a pair of orthologous genes from the two genomes, or

a single gene (evidence for insertion/deletion). The edge between two nodes means that at

least in one of the genomes the nodes are consecutive. Before continuing with the progressive

alignment of POGs, the intermediary results are refined such that only homologs found in all

species are retained for searching for collinear regions shared with the next genome.

The core heuristic improves the earlier work from [24], by making use of phylogenetic

information. Thus, the progressive alignment is done based on a phylogenetic tree. The

phylogenetic information improves also the use of gap and mismatch penalties, the goal being

to penalize more the loss of a homologous pair when the genomes are closely related. A sketch

31



Chapter 3. Synteny: Evolution From Concept To Implementation

Figure 3.14 – Cyntenator: pairwise partial gene order alignment of two genomes. During the pairwise alignment,
all contiguous sequences are compared. Alignments having a lower score that the user-defined threshold are
eliminated and by a greedy approach, genes are assigned to one another, based on the sorted alignments. Finally the
chain graph are merged into a POG [25].

of the core heuristic as implemented in Syntenator, is given in figure 3.14.

The tool in this setup allows limited gene duplication analysis (not internal duplication)

and genomic loss. As is the case for most such tools, the blocks identified by Cyntenator are

not formally characterized, but indirectly defined through the algorithm.

i-ADHoRe 3.0 [22] also uses genes as markers; it includes heuristics to deal with rearrange-

ment and duplication. This version of the tool, is the result of several iterations of improvement

to the original tool, presented earlier, ADHoRe. This version is however capable of aligning

multiple sequences. The tool produces profiles of collinear regions based on homology maps
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Figure 3.15 – The genomic decomposition procedure for DRIMM-Synteny. The decomposition of the genome
into conserved segments is presented in three steps: (a) the genome is represented as a path of 13 genes—a gene
adjacency becomes an edge of the graph; (b) matching the vertices together before collapsing them into the final
A-Bruijn graph; (c) construct the A-Bruijn graph for the path, by collapsing the vertices with the same label; (d) a
final graph is obtained, that has weighted edges by the number of their occurrences across the genomes [21]. Syntenic
blocks correspond to paths through the graph.

of pairs of genomic regions and uses a greedy, graph-based aligner that employs a network flow

heuristic [56] to resolve the pairs of genes in the graph that cannot be aligned. The statistical

validation of the final clusters has been improved by also considering the background density

of the matrix. During the clustering process, once at least three homologous gene pairs are

found, multiple hypothesis testing correction is done via either Bonferroni or False Discovery

Rate [58] [57] method. The tool provides three constraint models for generating syntenic

blocks: collinear (conserving both order and orientation), cloud (conserving neither order nor

orientation, but content) and a sequential mixture of the two.

DRIMM-Synteny (Duplications and Rearrangements In Multiple Mammals) [21], the

multiway successor of the pairwise GRIMM-Synteny, is, like most synteny tools, based on genes,

but follows an entirely different approach, as it is based on de Bruijn graphs. A somewhat

different version of de Bruijn graphs, called A-Bruijn graphs [19], is used to account for the

different facets to using gene orders rather than overlaps. Depending on the use of the graph

(sequence assembly, synteny detection, etc.) there exist several application specific filters and

improvements when working with A-Bruijn graphs. The latest tailoring of A-Bruijn graphs for

SB generation that is implemented in DRIMM-Synteny, is the sequence modification problem,

which basically eliminated small cycles from the graph structure, in order to reveal the true

SBs. The cycles that hide the SBs are the so called bulges.

In a similar vein to an RNA bulge structure, a bulge in the A-Bruijn graph is defined

as a short cycle that contains both forward and reverse edges [19]. SBs on the other hand,

are non-branching paths in the graph with multiplicity larger than 1. The core heuristic for

constructing an A-Bruijn graph is presented in figure 3.15. SBs are then generated by finding a

maximum spanning tree through the graph, then iteratively the edges that disturb the path

structure such as short paths that disturb the linear structure of the MS path, e.g. short cycles

are eliminated.
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Figure 3.16 – Sibelia generated decomposition of the genome into pseudo-hierarchical blocks. The decomposition
of the genome into conserved segments generated for increasing lengths of the k-mers [15].

Sibelia [15] follows up on DRIMM-Synteny, in that it is also based on de Bruijn graphs,

but, being designed for bacterial genomes, it works directly from sequence data and so

builds standard de Bruijn graphs from sequence k-mers. It also adds an iterative refinement

procedure that provides a range of granularity for the final blocks. The pipeline is executed

for a range of successive, increasing values of k-mer sizes, until the output block is the whole

genome. At each iteration, a different set of blocks is generated and is placed as a node into a

tree structure, with the root of the tree corresponding to the whole genome. To evaluate the

performance of Sibelia against other tools such as Mauve, Multiz [42] and Mugsy [41] (all of

them being alignment tools), the genomic coverage is computed from the genome fragments

covered by a block, respectively via the F-score between two tools, given as 2(PR)/(P +R),

where P is the fraction of nucleotides in the blocks generated by one one tool that overlap

with blocks from the second tool, and R the opposite overlap count.

The particular feature of the tool is that it proposes a pseudo-hierarchical structuring

of the blocks that are generated for k-mers of different lengths. However, this is not a true

hierarchical organization, for there is no correspondence established between the different

levels of the hierarchy, unlike shown in figure 3.16.

3.4.1 Observations and Lessons Learned

Over the past decade, technological development imposed the direction for developing tools

for comparative genomics. Initial access to the coding region of the genome provided a

narrow insight into the evolutionary history of organisms. However, it stimulated its thorough

exploration and thus yielded a good understanding of the interdependence between genes

and their regulatory networks, the role that certain genes play in pathological cases, as well
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as a better understanding of relatedness between organisms—based on reliable studies on

conserved patterns of the aforementioned genomic regions.

As the first human draft genome becomes available, there was an increasing number

of studies that tried to relate the human genome to model organisms that facilitate lab ex-

periments. This entails the mass development of alignment tools that focus on comparing

whole genomes at a larger than pairwise scale, thus stimulating the use of phylogenetic data.

The milestone at this stage, being the inference of large scale evolutionary events and then

the use of rearrangements for working with higher level genomic units than only genes—this

includes the early notions of synteny. The technological advance broadened the spectra of

challenges in comparative genomics, by making available an increasing amount of (more

accurate) data. This lead to a computational bottleneck, which call for formal, structured

models for partitioning genomes into meaningful large scale units which can be later on

analyzed, in order to address biologically significant problems. This context highlights the

role that syntenic blocks play in defining genomic regions of interest for targeted studies.

That blocks generated from the same data by different tools may differ enormously, is

mostly due to the lack of a formal definition for syntenic blocks: with no verifiable constraints

and no measurable optimality criterion, one cannot meaningfully compare two collections

of syntenic blocks for the same data. In part, the lack of such constraints and criteria can

be attributed to the very different uses to which syntenic blocks are put. For instance, using

syntenic blocks to pinpoint a region of interest in the genomes works best if the blocks are small

and highly conserved, whereas using syntenic blocks to study the evolution of the architecture

of genomes does better with larger blocks and can tolerate much larger divergence in any

given block among the genomes. (Indeed, the larger the evolutionary divergence, the larger

and sparser the syntenic blocks should be, to account for the lower number of high-quality

markers.)

When large-scale (segmental or whole-genome) duplications are present, multiple in-

stances of the same syntenic block will be found within the same genome, as well as throughout

other genomes—that is, syntenic blocks, like genes, can be grouped into families of homologs.

Identifying orthologies among the markers or genes is thus intertwined with identifying syn-

tenic blocks—arguing for a simultaneous construction, which can take into account positions,

rearrangements, and duplications and losses of markers and of blocks all at once. Thus homol-

ogy is at the root of any principled definition of syntenic blocks: the process of constructing

syntenic blocks is simply the process of extending homologies among markers to homolo-

gies among blocks under a suitable model of evolution. OF such a manner, partitioning the

genomes into syntenic blocks defines the necessary higher-level homology relationships that

relate blocks within and across genomes.

Since all genomes share a common ancestor, every single genome is trivially a syntenic

block by itself, albeit with a very low degree of conservation across a collection of genomes.

At the other extreme, if we had available a detailed history of all evolutionary events at the
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sequence level, we could construct syntenic blocks consisting of a single nucleotide position.

In a similar vein, two or more adjacent syntenic blocks can be viewed as single, larger syntenic

blocks, presumably at the cost of some loss in conservation. In other words, granularity is

an important attribute and one can construct a hierarchy of decompositions into syntenic

blocks, by taking the form of a rooted directed acyclic graph where the trivial decomposition

into a single block sits at the root and the equally trivial decomposition into individual nu-

cleotide positions sits at the single leaf. Children of a node in this dag are associated with

decompositions of finer granularity than that associated with the node itself. Under some

mild constraints, this dag is in fact a lattice (or partially ordered set).

It is important to note that the lattice is determined by constraints resulting from the

definition of a syntenic block, but the selection of a particular node in the lattice (a particular

decomposition into blocks) is driven by other criteria (such as granularity) and thus deter-

mined by the application. (Of all the various tools reviewed here, only Sibelia makes explicit

mention of a hierarchy of syntenic blocks.)

A concise overview of the features that the most recent synteny mining tools rely on, is

presented in table 3.1. The presence of certain features and the lack of other ones is a slight

indicator of the need for a principled and rigorous definition for SBs, that is presented in the

next chapter.

Table 3.1 – Major features or constraints of various synteny tools; presence is denoted by +, absence by -, and
options by o.

Prog.Mauve OrthoCluster Cyntenator i-ADHoRe DRIMM

Collinearity - o - o -
Framed blocks + - - - -

Overlapping content - + + + -
Selective content - + - + +

Across chromosomes + + - + o
Duplicated regions - + + + +
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4 A Formal Definition For Syntenic
Blocks

As seen so far, little has been done towards a formal definition for syntenic blocks, towards

a common sense concept for synteny in general; nor have developers of tools for finding

syntenic blocks given any quantifiable goals. Instead, identifying syntenic blocks has been

a matter of application-dependent heuristics, lacking any serious attempt at evaluating the

quality of the approaches—something that in any case would have proved difficult in the

absence of quality criteria.

Here we propose a fundamental constraint on the makeup of syntenic blocks, based

on an evolutionary perspective. We first formalize that constraint for pairwise synteny, then

extend it to multiway synteny. We also propose a second constraint, which provides added

refinement for bacterial genomes and also helps narrow searches when looking for conserved

regions of interest.

Our definitions are made in terms of markers and homology statements among them.

Thus we regard each genome as a multiset of markers—a multiset rather than a set, as the

same marker may occur more than once in the same genome. Associated with each marker is a

set of homology statements relating that marker to its homologs in other genomes or in its own

genome; a homology statement is just an unordered pair of markers. Ideally, these homology

statements define an equivalence relation on the set of markers; in practice, of course, these

statements come from a variety of sources (databases, direct analysis of sequence similarity,

etc.) and are unlikely to obey all the requirements of an equivalence relation.

Viewed abstractly, identifying syntenic blocks is a clustering problem: how do we parti-

tion the multiset of markers into smaller multisets, so as to maximize the similarity (as attested

by multiple homology statements) between some of the smaller multisets, while minimizing

their similarity to others? Because our definition rests on homologies rather than orthologies,

we expect to find homology statements connecting related syntenic blocks as well as some

connecting unrelated syntenic blocks—by and large, the first are more likely to be orthologies,

while the second are more likely to be paralogies. Our main constraint, then, is that, in order

for two blocks to be homologous syntenic blocks, they must be connected through homology
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statements and that neither includes markers that, while unconnected in this manner to

anything in the other blocks, are connected to markers in unrelated syntenic blocks.

We now formalize our definition for the basic version of syntenic blocks: syntenic blocks

for two genomes, in which we restrict each to be a contiguous range of positions within a

chromosome.

Definition 1 We are given two genomes, G A with a set A of nA markers and GB with a set B of

nB markers; the markers of G A are ordered along the chromosomes, as are the markers of GB .

Let H be a set of pairs of distinct elements of A∪B—the homology statements. We assume that

every marker in A and B is part of at least one homology statement.

Let S A be a set of contiguous markers on one chromosome of G A and SB a set of contiguous

markers on one chromosome of GB . We say that S A and SB are homologous syntenic blocks if

and only if, for any marker x ∈ S A, there exists a marker y ∈ SB such that {x, y} is a homology

statement, and, for any marker u ∈ SB , there exists a marker v ∈ S A such that {u, v} is a homology

statement.

We can further require that the two end markers form a conserved frame, thereby setting

well defined boundaries on the range of positions forming a syntenic block.

Definition 2 Let S A and SB be homologous syntenic blocks as per Def. 1. If the first marker of S A

is a homolog of one of the two end-markers (the first or last marker) of SB and the last marker of

S A is a homolog of the other end-marker of SB , we say that S A and SB are (homologous) framed

syntenic blocks.

Many of the existing tools require that the homology between markers respect the ordering of

the markers along the blocks—a property usually referred to as collinearity. Because genomes

are subject to rearrangements, we do not require collinearity, but we can define it as follows

using our notation.

Definition 3 Let S A and SB be two homologous syntenic blocks as per Def. 1. We say that S A

and SB are collinear syntenic blocks if the following condition, stated in the direction from S A to

SB , holds in both directions: for any markers x and y in S A with x appearing before y, there exist

markers u and v in SB , with u appearing before v, such that both {x,u} and {y, v} are homology

statements.

Our requirement that each block be fully contained with a chromosome may require that

some evolutionary events, such as translocation, fusion, and fission, all of which can move

genomic material between chromosomes, be treated as block-splitting events. For instance, if

prior to such an operation, we would have identified regions A and B as homologous syntenic

blocks, but the operation moved part of region A, call it At (tail) to another chromosome,
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Figure 4.1 – A cartoon for syntenic blocks among 3 genomes G1, G2, and G3. The horizontal strips correspond to
the genomes; small colored boxes denote markers; each syntenic block is framed by a dashed rectangular outline; and
homologous syntenic blocks are aligned vertically and enclosed in a thin solid box. Colored lines between horizontal
strips connect markers and denote selected homology statements. Shown are an SBF of 3 framed homologous syntenic
blocks (on the left) and, using the same homology statements, an SBF of 3 ordinary homologous syntenic blocks (on
the right).

leaving only Ah (head) in the original location, then after the operation we may be unable to

associate either of Ah or At with B , but we may be able to associate Ah with a first subregion Bh

of B and At with a second subregion Bt of B , thereby producing two pairs of smaller syntenic

blocks.

We extend pairwise synteny to multiway synteny by taking advantage of the transitive

nature of true homology: we simply require transitive closure of pairwise relationships.

Definition 4 We say that blocks A1, A2, . . . , Ak are homologous syntenic blocks if and only if,

for any i and j , 1 ≤ i < j ≤ k, Ai and A j are pairwise homologous syntenic blocks.

This definition is unambiguous whenever our set of homology statements defines an equiva-

lence relation, since this property ensures transitivity. In practice, however, neither transitivity

nor symmetry will hold: our set of homology statements will typically be incomplete as not all

homologies among markers are detectable and homology defined through sequence similarity

(the most common type in practice) need not be symmetric.

The output of a synteny tool is a collection of families of homologous syntenic blocks

(SBFs), each family tied together with homology statements. We illustrate our definitions with

a few cartoons. Figure 4.1 shows the additional structure granted to SNFs by the frame feature

of related syntenic blocks. Figure 4.2 illustrates the main characteristics used in our definitions.

The first two cartoons in the figure show SBFs defined through one-to-one (figure 4.2a) and

one-to-many (figure 4.2b) homology statements. Homology statements may connect markers

in non-homologous syntenic blocks, as long as other homology statements connect these

markers to markers in homologous syntenic blocks. The third cartoon (figure 4.2c) gives an

example of invalid blocks: the red marker has a homolog in a non-homologous syntenic block,

but none in the putative homologous syntenic blocks.
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(a) Three SBFs; in the SBF on the left, three markers are in one-to-one homology.

(b) Three SBFs; in the SBF on the left, three markers are in one-to-many homology, including
an additional homologous marker in another SBF. Such a connection on the other hand, does
not violate the definition, as opposed to the case below (c).

(c) Three putative SBFs; as shown, the red marker violates our definition, since it has a homol-
ogy statement, but that homology connects it to a marker in a different SBF, while there is no
homology connecting it to any marker within its own putative SBF.

Figure 4.2 – Cartoons illustrating syntenic block structures on three genomes. Alike colored markers form families
of homologous units. The solid grey lines represent homology statements of interest, while the dashed ones highlight
the existence of alternative relations, which are nonetheless not required to fulfill the conditions of the presented
formal synteny concept.
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Our goal throughout this chapter is to exemplify evaluation and comparison means for the

various decomposition schemes of the genomes into syntenic blocks, as produced by 3 state-of-

the-art synteny mining tools (DRIMM-Synteny, i-ADHoRe 3.0, Cyntenator). Such evaluations

and comparisons have mostly been missing and, when present, have typically been limited to

aspects such as coverage of the genome or number of blocks, that might directly impact the

quality of the resulting SBFs in terms of the data quality, but neither of which provides much

insight into the structure, possible use, and purpose of the SBF.

Our first step was to propose formal constraints that any decomposition into syntenic

blocks should satisfy, that is we proposed a formal definition as presented in the previous

chapter. These constraints are not likely to be met except in ideal cases, so our second step is

to measure compliance with the constraints, which is to say, to measure quality. We therefore

assemble a dataset of whole genomes to use in testing various methods; devise specific

measurements of compliance with our definitions; and provide other insights and measures

regarding the various tools tested.

Two sets of experiments have been performed. A briefer version is presented in [45].

These experiments were performed on a set of eight yeast genomes that were downloaded

from the YGOB database. The second set of experiments which provide complementary

insights into the structure of the syntenic units as produced by the three tools, were obtained

from a subset of six out of the eight genomes, that were retrieved from the NCBI database.

5.1 Experimental Design

5.1.1 The Data

YGOB Dataset

Because we chose to include DRIMM-Synteny in our evaluation, but could not reproduce its

authors’ results, we decided to use their results directly. Of the datasets used in the DRIMM-
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Synteny study, only the yeasts combined complete results from the authors and public avail-

ability of the genomic data. We thus used the gene data from the Yeast Gene Order Browser [5]

(version of April 2009) for the following eight yeast genomes: C. glabrata (c), E. gossypii (g),

K. lactis (l), L. thermotolerans (t), S. cerevisiae (s), Z. rouxii (r), K. waltii (w), and S. kluyveri

(k). The _genome.tab files were used to retrieve the complete list of genes for each of the

organisms and the associated NT.fsa file was processed in order to retrieve the sequences for

these genes. Table 5.1 summarizes the characteristics of the data. All four tools require a list of

Table 5.1 – Characteristics of the data from YGOB. The “genes" for K. waltii are often contigs with various functions
(ORFs, short complements with intron/exon annotation), which explains their abnormally high number.

genomes genes/genome homolog pairs

C. glabrata 5211 106291
E. gossypii 4725 104817

K. lactis 5086 113075
L. thermotolerans 5111 94262

S. cerevisiae 6600 140851
Z. rouxii 5006 135707
K. waltii 10825 194234

S. kluyveri 5340 166835

homology statements—orthology statements for OrthoCluster. We used Fasta36 [18], with a

cutoff of 10−5, to compile homology statements for each gene, reflecting common practice. We

discarded any gene for which no homology statement was produced and, because Cyntenator

does not scale well with large gene family sizes, we retained only the 10 best matches (homolog

candidates) for each gene. Computational constraints imposed by the tools meant that the

number of markers could not be too large; moreover, a number of tools assume that the

markers are genes; thus we used genes as markers.

NCBI Dataset

Initial evaluation of the selected tools was done on a subset of the data set mentioned

above. The main motivation being the quality of the data thus the choice of data source

from NCBI [36], as well as the fact that the experiments with DRIMM-Synteny can be re-

produced on a smaller data set. The 6 yeast species used in the preliminary evaluations

are:

• C. glabrata_CBS138_uid12376

• E. gossypii_uid10623

• K. lactis_NRRL_Y1140_uid12377

• L. thermotolerans_CBS_6340_uid39575

• S. cerevisiae_uid128 (S. cerevisiae ATCC 204508 S288c)
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• Z. rouxii_CBS_732_uid39573

OrthoDB Dataset

Complementary data to the NCBI one was necessary, to provide the orthology relations

required for running OrthoCluster. This data was downloaded from OrthoDB [28], release

number 6. The protein data was derived from OrthoDB’s protein data, version 5.5. The

resulting data set was normalized to the list of proteins provided by the NCBI repository—the

ones absent from the repository were eliminated.

The similarity scores were retrieved from nucleotide-level comparison by using Fasta36,

as well as crosschecked with the orthology relations as provided in OrthoDB.

5.1.2 The Tools

We used the results of the DRIMM-Synteny study and ran OrthoCluster, Cyntenator, and i-

ADHoRe 3.0 on the yeast dataset. We had chosen DRIMM-Synteny because it represented a

very different approach to the problem (using de Bruijn graphs) and chose the other 3 because

all were of recent design and well maintained, all support multiway comparisons, and all have

reasonably clear statements about their design in the respective original publications.

We ran Cyntenator with the parameter setting used by the authors in the original article:

gap=0.3, mismatches=0.3, threshold=2, and filter=10000. The final output depends on, in

effect, a guide tree (a phylogeny of the 8 species), as it is obtained by running the tool on

pairs of intermediate results—the tool ran well on pairs, but not so well on triples, and almost

never on larger subsets of genomes. We eventually settled on the pattern described by the tree

( (r, (w, (g, (k, (c, s))))), (l, t) ).

We ran i-ADHoRe 3.0 in collinear mode, with the following parameters: gap size=15,

cluster gap=35, q value=0.9, probability cutoff=0.001, anchor points=3, gg2 heuristic, no level

2 only, and FDR as multiple hypothesis correction.

OrthoCluster has a limited comparison power, since it accepts only equal gene content,

shared across all the query organisms. For a large number of orthologous markers, the tool

cannot generate syntenic blocks, due to algorithmic limitations. The compromise suggested

by the author is to eliminate the most popular genes that form large gene families, i.e., keep

only 1-to-1 correspondences among the six genomes and relax the stringency of synteny

blocks, by allowing for a higher percentage of in- and out-map mismatches; however this

would mean a drastic loss of information.

Unfortunately, in spite of prompt support from the developers, OrthoCluster [29] could

not run within reasonable time on our dataset without removing so many genes and homology

statements as to invalidate the exercise, so we had to exclude it from the comparison study on
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the 8 yeast genome sets. (We ran the tool for 2 weeks on a 48-core, 256GB Dell Poweredge 815

without results.)

5.1.3 The Output

The output of all 3 tools is in the form of families of homologous syntenic blocks (SBFs), where

each family has at most 8 blocks, each belonging to one of the 8 genomes under comparison.

That we get no more than 8 is due to the use of genes as markers: a large fraction of the genes

are singletons (have no homolog within their own genome), thereby making it highly unlikely

that a particular block structure would be found repeated within the genome. A family has

fewer than 8 blocks when no homologous syntenic block in that family can be identified in a

particular genome.

Of a similar fashion, the syntenic block families produced by the three tools on the

dataset of the 6 genomes are families of at most 6 genomic fragments.

5.2 Results

A main set of results comes from the evaluation of SBFs against our formal definition, means

of the four measures on the homology statements that we define. A second set of results

come from measuring marker content (in terms of the size of the blocks) and reuse, as well

as the overlap among blocks. The third insight into SB quality and features is a rather visual

representation that gives a feeling for the size diversity of the produces SBFs by the three tools

on the genome of C. glabrata. This result highlights more the common structure shared by

SBFs as produced by the three tools.

5.2.1 Measures For Assessing SBF Robustness

The robustness of SBFs is measured in terms of the quality of the homology statements

between its SBs. From this point of view, we devise and present 4 measures that highlight the

relations among markers within SBFs with respect to the requirements of definition 1.

• Block incompleteness. This first measure is derived directly from the indirect require-

ment of definition 1, that is syntenic blocks belonging to the same SBF must not contain

markers that relate only to markers outside the respective SBF, while not related at in any

way to any of the markers part of the SBF that it belongs to. Since SBFs as produced by

the evaluated tools, do not present an ideal structure, this requirement represents a

pre-screening that gives a first impression on what is the composition of the SBFs as

produced by each of the tools.

• One-in-one homology. We are interested in the nature of homology statements that is

associated to SBFs. Therefore we analyze this feature in two steps. Unlike the previous
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Table 5.2 – Characteristics of the SBFs generated by the tools.

SBFs
w/o homologs
in the SBF

content
overlap

selective
content

DRIMM-Synteny 509 509 0 455
Cyntenator 1106 583 39 0

i-ADHoRe 3.0 8088 278 2 7247

measure, here we assess the ratio of markers within a SBF that have a homologous

counterpart in its own SBF. This is a weak statement fot the homology requirement of

definition 1.

• One-in-each homologies. This is the second step in assessing the quality of the homol-

ogy statements that link together homologous SBs that form an SBF. Here is of interest

the percentage of markers that have homologs in every other SB that is part of the same

SBF as the marker in question.

• Shared similarity. As the previous measures reveal different features for the SBFs

produced by the different tools, this measure complements the previous findings, by

highlighting the common behavior of the tested tools. This is illustrated through the

SBFs that cover the same genomic area and have highly similar size in terms of gene

content, for the genome of C. glabrata.

5.2.2 Evaluating SBFs Against Our Definitions

The primary constraint of definition 1 is unlikely to be satisfied in practice, so we relax the

transitivity requirement and measure compliance with the resulting weakened constraint.

With the block incompleteness we compute the distribution of the SBFs based on the

percentage of markers within each SB, that has no homolog within the SBF, yet it relates to a

marker in another SBF. This count is reported in the second column of Table 5.2. Since this

measure tolerates failures in transitivity, the number of SBFs not in perfect compliance with

our definition may be much larger.

This first measure is an absolute count, although different tools produce different num-

bers of SBFs; moreover, it counts an SBF as a failure no matter how many markers in that SBF

fail the test. To address the first issue, we compute the percentage of “failing" markers in an

SBF—that is, markers that have homologs in other SBFs, but none in their own SBF. We use two

different base counts for normalization, to reflect fundamental differences between the tools

with respect to selective use of markers: the first count is the total number of markers present

in the SBF as generated by the tool, denoted E(X ), while the second is the total number of

markers present in the genome within the coordinates of the generated blocks, denoted E (X ′).

Because DRIMM-Synteny and i-ADHoRe 3.0 eliminate markers from within syntenic blocks

(within the coordinates of the block), something that Cyntenator does not do, the values of

45



Chapter 5. Measures For Syntenic Block Families

Figure 5.1 – Histogram showing the percentage of markers from an SBF that do not have any homolog in that SBF.
The percentage is computed with respect to the total number of markers present in the SBF as generated by the tool
and is supplemented by the E(X )/E(X ′) ratio.

E(X ) for DRIMM-Synteny and i-ADHoRe 3.0 may be significantly smaller than those of E(X ′).

Figure 5.1 shows that i-ADHoRe 3.0 generates more, and Cyntenator fewer, blocks with a very

small fraction of markers lacking any homolog within their own SBF.

The one-in-one and one-in-many measures are formalized through the following defi-

nitions.

Definition 5 We define two scores, the first more forgiving than the second.

Relaxed Scoring uses a pairwise view of syntenic blocks; for each block from an SBF, it

counts the number of markers in that block that have at least one homolog within the SBF and

normalizes it by the total number of markers present in the SBF.

Weighted Scoring attempts to quantify the deviation from our formal definition; for each

block in an SBF, we count the number of markers in that block that have at least one homologin

each of the other blocks in the SBF and normalize this result by the number of blocks (minus 1)

in the SBF and again by the total number of markers present in the SBF.

A perfect weighted score is 1, yet an SBF of n blocks with a weighted score of 1/(n −1) gets

a perfect relaxed score. These scores allow us to estimate the robustness of the homology

statements, as they show how densely interconnected the syntenic blocks are through their

homology statements. A reduction from the first score to the second indicates that the tool

has removed markers (to place them in other blocks) that fell within the block—so that the

block produced is not contiguous.

Figure 5.2 gives histograms of the two measures for our experiments. Since i-ADHoRe 3.0
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(a) relaxed scoring

(b) weighted scoring

Figure 5.2 – Histograms of the two scores of definition 5, illustrating the refinement over the simple score used in
figure 5.1.
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explicitly produces non-contiguous blocks, its two scores predictably differ significantly (by a

third). Like i-ADHoRe 3.0, DRIMM-Synteny ignores many markers within a block, but in most

cases it does not use them elsewhere—instead, it eliminates them from the list of markers it

uses. As a result, its two base counts remain very close, but its two scores are very different.

Cyntenator and DRIMM-Synteny yield similar distributions in both cases, but i-ADHoRe 3.0,

which scores nearly perfectly under relaxed scoring, scores poorly under weighted scoring.

i-ADHoRe 3.0 does not place much emphasis on multiway homologies: it keeps markers in its

blocks even if these markers have just one homology with one other block. In contrast, Cyn-

tenator progressively eliminates markers with few homology statements, therefore yielding

blocks with strongly related markers. DRIMM-Synteny has much the same behavior under

both scoring schemes, but its score drops by 80% when moving from pairwise to weighted

scores, due to its dropping large numbers of markers from its working list. That DRIMM-

Synteny scores poorly under both schemes, however, is due to a different set of goals: as stated

by the authors, DRIMM-Synteny aims at maximum genome coverage and simply ignores

discordant homologies and other conditions that would cause Cyntenator or i-ADHoRe 3.0 to

break a block.

The yeast dataset contains several genes and ORFs that overlap. Such overlaps are

discarded by DRIMM-Synteny, but not by the other two tools; consequently, Cyntenator and

i-ADHoRe 3.0 occasionally output syntenic blocks with overlapping content (see table 5.2).

Although we do not require collinearity, it remains desirable because it greatly simplifies

the interpretation of the blocks. Cyntenator makes this a formal constraint; in contrast, most

of the blocks produced by DRIMM-Synteny and i-ADHoRe 3.0 are interrupted intervals—

between the leftmost marker and the rightmost one, both tools “pick and choose" what to

keep in the block. The last column of table 5.2 indicates the number of blocks affected by this

selection. The high proportion of blocks with selected content explains in part the good scoring

of i-ADHoRe 3.0. In contrast, the very high proportion of such blocks, together with the 100%

rate of homology violation, in DRIMM-Synteny confirm the very different aim driving the tool.

A related issue is the handling of inter-chromosomal blocks: since genomic recombination

of various types can move parts of a conserved region to a different chromosome, one has to

decide whether to split the conserved region into two syntenic blocks or to keep it as a single

block. Our definition requires a split, since it assumes that each block is contained within a

chromosome; DRIMM-Synteny and Cyntenator do the same, but i-ADHoRe 3.0 allows blocks

to span multiple chromosomes.

The shared similarity measure is based on pairwise comparisons of the tools. A higher

dimensional comparison was not possible due to visualization constraints. We chose to

emphasize the similarity between pairs of tools. Figure 5.3 gives an overall feel for the results

of the study, showing how the blocks from one tool map onto those of another. A very clear

mapping pattern can be observed from both Cyntenator and DRIMM-Synteny to a specific,

small subset of the blocks generated by i-ADHoRe 3.0, as highlighted by the dark blue section
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Figure 5.3 – SBFs defined by Cyntenator (purple), i-ADHoRe 3.0 (blue), and DRIMM-Synteny (green), mapped to
each other in terms of gene content. Each link bears the color of the tool, the output of which is mapped through the
link onto the outputs of the other tools. There are 6 pairwise comparisons between the SBFs produced by the 3 tools.
The thickness of a link shows the level of similarity, measured by the overlap between the gene content of two SBFs
relative to the SBF being mapped. Each sector of the diagram is an ordering by size of all blocks generated by the
corresponding tool.

on the ring of i-ADHoRe 3.0. The number of blocks generated by i-ADHoRe 3.0 is considerably

higher than those generated by Cyntenator or DRIMM-Synteny, so the blocks are smaller and

the (blue) links thinner. (This kind of mapping also illustrates the lattice concept discussed

earlier: the thin links bind smaller blocks to a larger block made of these smaller blocks.)

5.2.3 Quantitative Feature Evaluation For Syntenic Block

Comparing the blocks to each other is difficult, since explicit features of the blocks have

not been defined a priori for any of the tools. We chose to focus on three features: genome

coverage in terms of used markers (the one measure commonly used in the original papers),

overlap of blocks for each tool, and agreement among blocks in terms of marker content.

We define marker coverage as the ratio of the total number of markers present in the blocks

generated by a tool to the total number of markers present in the input within the generated
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block boundaries. Figure 5.4 illustrates (qualitatively, not quantitatively) how the blocks

generated by each tool cover a certain genomic area. (figures 5.3 and 5.4 were generated

using Circos [14].) The 3 inner rings correspond to the 3 tools; each genome from our dataset

corresponds to a cone in the figure, as indicated by the thin, labeled color indicator enclosing

the diagram. Block boundaries are drawn in thin black lines, so that dark areas represent short

marker sets, thus small blocks and highly fragmented coverage. Uncovered areas are white.

Our definition does not preclude using overlapping syntenic blocks, since it sets condi-

tions on one SBF at a time. In the lattice of decompositions into SBFs, one may then choose

to impose additional conditions to select good blocks. DRIMM-Synteny does not generate

overlapping blocks, because it does not reuse markers, whereas Cyntenator and (especially)

i-ADHoRe 3.0 do, which allows them to flag regions with ambiguous homologies or complex

evolutionary histories. Figure 5.5 illustrates the degree to which markers are reused by Cyn-

tenator and i-ADHoRe 3.0. While Cyntenator just reuses a few markers and not more than

twice, i-ADHoRe 3.0 reuses several of them up to ten times, as depicted by the shape of the

Figure 5.4 – Syntenic blocks generated by DRIMM-Synteny (inside ring), Cyntenator (middle ring) and i-
ADHoRe 3.0 (outside ring). Each ring segment is a yeast genome. Dark regions include many block boundaries—these
syntenic blocks have few markers—while white regions have no identified syntenic blocks. Note the many contrasting
outcomes from ring to ring: where one tool breaks a region into many small blocks, another produces a single block.
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Figure 5.5 – Histogram of the reuse rate per marker for Cyntenator (violet) and i-ADHoRe 3.0 (blue) on C. Glabrata.
The x-axis shows the number of times a marker is reused and the y-axis shows the corresponding rate.

Figure 5.6 – Distribution of the similarity values for all pairwise comparisons between the SBFs generated by the 3
tools.

histograms.

We compute block similarity based on marker content: the markers of an SBF as gen-

erated by each tool are viewed as a single set and we compute the ratio between the overlap

of two such sets relative to each of the sets, thereby yielding an asymmetric measure and six

comparisons among the 3 tools. It Illustrates that the distribution is skewed towards small

values—most SBFs have a small overlap with other families, thus explaining the types of links

seen in figure 5.3: most of the weight of the distribution is in the 10–40% region, corresponding
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to overlaps with the many small blocks produced by and thus to the thin blue links of figure 5.3,

while the same small blocks are also responsible for the large spike at 100%, since many will

completely overlap with the larger blocks.

5.2.4 Visual Representation For Syntenic Block Size

This last experiment is meant to provide a better feel for the different data sets produced

by each of the three tools. The results come from experiments that were run on the NCBI

dataset. Figure 5.7 gives an overall feel for the size and the number of syntenic blocks as

produced by each tool, for the genome of C. glabrata. Each gene part of a syntenic block, is

represented by a dot. Contiguous lines are formed in dense marker content genomic regions.

i-ADHoRe 3.0 produces the highest number of SBFs, while DRIMM-Synteny and Cyntenator

produce considerably less block families. Each block is represented on a different line on the y

axes. The projection on the x axes is not equivalent to the gene content overlap of the blocks.

5.2.5 Observations On The 3 Tools

Throughout this chapter, we have presented the potential of definition 1 to reveal features of

SBfs as produced by each of the three tools. The 3 tools do not implement any specific rules

that would predict the final outcomes, therefore definition 1 is intended to be an impartial

measure for the features that is promotes. Nonetheless, we still gained valuable insights into

the structure and composition of SBFs, insights that allow us to preferentially choose a tool

over another, according to the desired block structure.

The evaluation has not been done with a specific study in mind. Nonetheless, it is

possible to summarize the observations and insights presented throughout this chapter. The

authors of DRIMM-Synteny chose to pursue a maximal genome coverage as general goal.

This makes the final SBFs sparse and less interconnected through homologies, which is at

the main requirement of definition 1. This feature distinguished the tool from the other 2, in

both weighted and relaxed scoring context (figures 5.1, 5.2). The tool is also unique in this

comparison, as it does not produce blocks that overlap; this fact is emphasized by its absence

from 5.5. Finally, the tool not only produces non-overlapping blocks, but it also produces a

small (the smallest) set of blocks; this is illustrated best as a combination of figures 5.7 and 5.3.

i-ADHoRe 3.0 together with Cyntenator somewhat complement DRIMM-Synteny in

the aforementioned aspects. i-ADHoRe 3.0 is promoted in the context of plant genome

analysis (unlike DRIMM-Synteny that has been developed for mammalian genomes mostly).

It produces SBFs that cover genomic regions that are more densely populated with genes

unlike those of DRIMM-Synteny. The two scores from figure 5.2 give a more precise impression

on the strength of homology statements that interconnect related SBs. Two particular features

of the tool are emphasized with the presented measures: the homology statements from SBFs

are weak and thus, they allow for many options. In consequence, the second feature of the
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(a) i-ADHoRe 3.0
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(c) DRIMM-Synteny

Figure 5.7 – Each of the figures shows the blocks generated by the respective tool over the genome of C. glabrata.
Each position on the y axes corresponds to one single block and their projection onto the x axes is not relevant for the
marker content overlap between the blocks. Note that the most varied set of block sizes is produced by i-ADHoRe 3.0,
while Cyntenator produces slightly fewer blocks than DRIMM-Synteny.
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tool is to produce a large variety and thus number of SBFs—this is depicted through both of

figures 5.7 and 5.3.

Cyntenator in contrast to i-ADHoRe 3.0 and DRIMM-Synteny, produces a relatively

small number of blocks (much closer to the set produced by DRIMM-Synteny, as shown in

table 5.2 ). Its final SBFs are nonetheless, very robust from the homology statements p.o.v., as

it scores relatively high even under the weighted measure. The reuse rate of the markers is

very low as well.
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6 Practical Design For Syntenic Block
Detection

Chapter 3 presents a succinct overview of the notions, heuristics and tools developed for

synteny discovery. The overview also provides insight into how research trends are influenced

mostly by constraints imposed by technological development. As there is an abundance of

whole genome assemblies available, the lack of data is not an impediment in comparative

studies anymore. Instead, now researches try to leverage the potential of the non-coding

region of the genomes at hand, in order to improve the existing models and our understanding

of the encoded evolutionary patterns.

The results revealed in the previous chapters, still represent the tip of the iceberg, when it

comes to having a comprehensive overview and understanding of synteny applied in compar-

ative studies. Further steps are necessary to relax and to adapt the model presented in chapter

4, the measures from chapter 5 and the general concepts that have been introduced, such

that they scale to practical cases of whole-genome data analysis. The limited understanding

that we have about the evolutionary history of the genomes, the existing, simplistic, models

are extended and tailored to the goals of specific studies through heuristics (data specific

constraints, user-defined parameters, sometimes even an experienced eye of the scientist).

The goal here is then, to adapt the formal definition presented in chapter 4 to analyzing whole

genome sequences, that is, go beyond the coding region of the genome. This chapter presents

some preliminary results in this direction.

The main challenges to be addressed still remain the computational ones. We tackle

these by using notions from the theory of common intervals. We keep the model data sensitive,

by using a minimum number of user-define parameters, thriving instead to infer charac-

teristics from the data itself; this is highly desired as defining studies that back up choices

for constraints (s.a. the size of the block, the number of mismatched markers, the quality

of markers, etc.) for syntenic block construction are very few. Nonetheless, study specific

features provide some of the necessary constraints for defining syntenic blocks with consistent

structure and content.

The main challenges that we seek to address in this part of the work are (i) leveraging
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the extra knowledge provided by complete genome sequences and (ii) refining the theoretical

formal model, with reasonable adjustments for practical use. By leveraging the availability

of whole-genome sequences, we mean using more than just signed permutations of gene

identifiers as input to the synteny-finding process. Conserved non-coding regions and other

well conserved markers of sufficient length can provide a better coverage of the genome.

The two main requirements of definition 1 are inspired from the structure of genomes

of high impact in comparative studies (e.g. bacterial genomes would conform the framing

requirement). Nonetheless, while SBFs defined over several genomes can be bounded by a

conserved frame, there is little chance that the evolutionary events that shuffled the genomic

content, would have left intact, the homology relations among all the markers belonging to

an SBF. This aspect is addressed though the refinement from (ii) of the definition, where the

nature of popular datasets is used as constraints. More insight into each approach is presented

in the subsequent sections.

6.1 The Data

Data from the NCBI repository was used; namely the complete genomes for four yeast species:

C. glabrata (c), E. gossypii (g), K. lactis (l), S. cerevisiae (s). Our main and strongest requirement

for detecting homologous syntenic blocks relies on homology. Therefore, we rely further on,

on using homologous markers and not exclusively related genes. Based on sequence similarity,

we identify homologous markers between the pairs of genomes of interest. The maximum bit

score between bidirectional pairwise comparisons is retained as measure of similarity, which is

necessary for further computations. The sequence similarity is determined of a similar fashion

to the previous experiments, presented in chapter 5. Table 6.1 summarizes the characteristics

Table 6.1 – Characteristics of the data from NCBI. The first numeric column presents the number of genes as
available in the YGOB database, and is used to highlight the contrast between this value and the number of possible
markers. The second numeric column presents the number of markers that are longer than 20 bps, as identified
by ProgressiveMauve for each genome. The last four columns present the number of homolog pairs in total and
pairwise between genomes, that serve as input for generating common intervals.

genomes Y GOBgenes/genome markers/genome homologs/pair E. gossypii K. lactis S. cerevisiae

C. glabrata 5211 17989 14128 3616 4011 6501
E. gossypii 4725 12322 8225 - 2401 2208

K. lactis 5086 14287 10190 - - 3778
S. cerevisiae 6600 18542 12487 - - -

of the data. We used Fasta36 [18], with a cutoff of 10−1, to compile homology statements for

each marker, reflecting common practice. We discarded any marker for which no homology

statement was produced and was shorter than 20bps. Singletons were also discarded from this

study. A possible integration of such markers can take place e.g. in a final step of the algorithm,

when the syntenic blocks have been already generated.
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6.2 Formalization Based Syntenic Block Identification

Different data and computational resources are already available for enriched comparative

studies. Integrating pathway and association analysis (e.g., [59] presents the potential of such

additional knowledge) further enhances the quality of such studies; through the conservation

and interaction patterns between the previously mentioned non-coding regions; though gene

onthology data, and many more. However, such sources are already defined on a function

related feature basis.

The core idea for this part of the work is to integrate different pieces of information of a

progressive, systematic manner. We use a family-free approach to assign markers to related

genomic fragments. This is achieved through the concept of weak common intervals (wCIs).

As briefly introduced in chapter 3, the concept of wCIs is formally and precisely defined and

captures many of the properties informally associated in the literature with syntenic blocks.

The definition for common intervals is given in terms of families of genes (or other families

of unique sequences) and their ordering. It does not take into account precise locations

on the genome, nor the actual nucleotide sequences of these genes. In the case of wCIs, of

interest to us is the possibility to identify genomic fragments that present also mismatched

sub-segments. Moreover, the underlying formalization for common intervals is based on

ranked-intervals (explained in [60]), that provide a certain hierarchical organization for the

final interval pairs–that is, it provides a basis for granularity specific studies.

6.2.1 Approximate Common Intervals Between Pairs Of Genomes

The markers represent an intermediary dataset–they are used to build wCIs as described

in [65]). A few notes on wCIs. The threshold on the number of mismatched markers is set by

the δ parameter. An interval pair ([i , j ]S , [k, l ]T ) in a similarity graph B(S,T,E) has distance

d , if the number of nodes with zero degree in the induced subgraph B([i , j ]S , [k, l ]T ,E ′) = d .

Thus, given δ≥ 0, and two genomes S,T by their marker sets, and the bounding markers i ≤ j

and k ≤ l , where i , j ≤ |S| and k, l ≤ |T |: the interval pair ([i , j ]S , [k, l ]T ) with distance d in a

gene similarity graph B(S,T,E) is called δ− consi mi l ar if d ≤ δ and the nodes iS , jS ,kT , lT

are connected in the induced subgraph B([i , j ]S , [k, l ]T ,E ′). The SBFs that we analyze further

on are built from such pairs of intervals.

In this context, we examine the nature of the interval-pairs, and observe the followings:

• It is possible to determine a sweet spot (optimal value) for the right threshold value of δ,

by choosing the desired ration between mismatched markers and the overall marker

content of an SBF (figure 6.1 ).

• The nature of the dataset is homogeneous; that is, based on the highly similar features

that all 6 pairwise comparisons show, results can be generalized without the need of

exhaustively testing all 6 cases, before concluding results.
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Figure 6.1 – Interval-pair distribution based on the ratio of non-homologous markers in a SBF between C. Glabrata
and E.gossypii; δ ∈ {1, . . . ,10}.

In figure 6.1 we exemplify the first point. The interval pairs are grouped by the number of

non-homologous markers normalized by the total number of markers from the SBF (figure 6.1).

This visual examination can be easily transposed into a computational condition and guide

parameter setting. For example, SBFs with a good ratio of non-homologous markers per interval

size will be on to the left in the graph. There, homologous SBs will be strongly interconnected

through homology at the marker level. The trend that we see is that most of the blocks are good

from this quality measure p.o.v., only for certain values for δ= {4,5}, while for values 3, 6, and

9 much more blocks end up on the right end of the histogram, bearing a considerable number

of unmatched markers in their composition, relative to the total makers part of the SBF. A

possible explanation for this behavior is that the genomes present multiple similar regions,

which e.g. underwent evolutionary events that fragmented them to a high extent. However,

this observation alone might not be enough to draw conclusions with a high confidence.

A supporting result for possible interpretations comes from the fact that the genome

set is highly homogeneous. Most of the interval pairs are strongly interconnected through

homology. We sample only a subset of the possible distance values, in order to discover the

nature of the data. With little deviation, all pairs of genomes present the same interval-pair

structure. We chose to show this trend for δ= 10 non-matched markers (figure 6.2), where the

algorithm chooses to identify rather well connected intervals, than to cover the genome with

long marker sets that are mostly not homologs.
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Figure 6.2 – Similar trend in the interval-pairs generated for δ= 10, for all 6 pairs of genomes shows the homo-
geneity of the dataset.

6.2.2 Building SBFs Over Multiple Genomes

SBFs can be seen from two perspectives:

• Structural features provide a better understanding of marker placement throughout

the genome, marker clusters based on their density within SBs and a few more. These

results will be presented in the following section.

• SBF are seen as functional units, that are used in targeted studies. Example applications

are the study of the Hox complex of orthologous genes and transcription factors [61];

studies over genes in linkage disequilibrium as presented in [62]; functional assignment

of paralogs to syntenic regions in [63]; vertebrate ultraconserved elements in [64] to just

name a few. However, this is a further step that has not been addressed in the current

work.

In the merge and break process, we rely on a reference genome, that is used as guide for

the merging process.

We build SBFs over the genomes of interest, by merging interval-pairs to obtain a maximal

mutually closed interval-pair. The approach that we present is a first attempt to merge pairwise

common intervals. The aim here is to produce preliminary SBFs over multiple genomes, by

extending progressively the interval-pairs. SBFs are generated in a few main steps, as follows:
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Break block

Save SBF

No

No

Final SBFs

k = k + 1

Figure 6.3 – Code flowchart for generating SBFs over 4 genomes.
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• The approximate common interval implementation of [65] is used to generate pairs

of intervals for all pairs of genomes, such that the intervals contain a given number of

non-homologous markers set by the δ parameter. For the subsequent experiments, we

chose δ= 5 for the unmatched markers.

• Maximal intervals are then retained as intermediary outputs as a result of merging

nested intervals, for maximal coverage—the main requirements for the merge are (i)

that the intervals are consecutive both in the reference and the second genome; (ii)that

the distance between the resulting interval pair remains under the chosen threshold

value. When any of these conditions is not obeyed, the intervals are segregated.

• Finally, of an iterative manner, genomes are merged progressively thus one at a time,

with the maximal intervals from the previous step.

Fig. 6.3 presents the generic code flowchart for the pipeline used to generate SBFs.

6.2.3 Features Of SBFs

Based on 6.3, we examine the features of the generated output. Three main features of interest

are:

• Framing of the resulting SBFs.

• Hierarchical organization of the nested structures for the pairwise case.

• Robustness of the final SBFs from the perspective of homology relations that connect

related SBs within a SBF.

Framed SBFs. We examine the number of framed intervals in the set of generated SBFs.

Table 6.2 summarizes the characteristics of the output blocks that account for common

genomic regions shared by the 4 genomes. A brief comparison between the percentage of

framed intervals produced by the wCI version from [65] and the intervals resulting from the

merging process are presented in figure 6.4.

Table 6.2 – Characteristics for framed SBFs defined over the complete genome sets. The first column gives the
number of SBFs that we obtain after merging the initial pairwise set, denoted by 2-wise*. The second column
represents the number of families that are framed by homologous markers found on the same extremities of the
blocks. The total number of blocks is given in the 3rd column, while the percentage of the framed blocks is the last
value in the table.

framed total SBFs %

*2-wise 178164 262789 67.79
2-wise 16712 22572 74.03
3-wise 2 138 1.44
4-wise 0 7 0
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Figure 6.4 – A brief comparison between the percentage of framed SBFs as produced by the algorithm introduced
in [65] and the ones resulting from the merge process.

The initial interval-pairs are already framed SBFs (denoted by *2-wise). However, not all

the initial intervals are maximal, which motivates our merge step. Thus after processing all

the pairwise intervals, we obtain more framed pairs.

Hierarchical organization. As mentioned previously, common intervals are a subset of

rank-intervals and therefore they present a certain hierarchical ordering; that is, the resulting

intervals are nested and form a tree structure, where at the leaf level intervals have the smallest

rank and at the top of the tree, we find high ranking intervals; the rank basically accounts for

the position of the first occurrence of an interval (number of intervals that appear before the

interval in question) in a set of intervals that are ordered according to a reference set [65].

A possible hierarchical decomposition of a genomic region and its marker set is given

in fig. 6.5. Here we can see that the merge process either produces a super-interval for the

two intervals in each of the organism pairs (interval marked in green), or it breaks the interval

according to the algorithm from 6.3 (interval marked in green and red). In this example 2

merge attempts end up in a break, such that there is no overlap in any of the resulting interval-

pairs. One of the interval pairs is used further for the merge process, while the other one

is recycled in a later cycle. After a few levels of merge, a final and maximal interval-pair is

generated.

Robustness of homology relations. In this context, we evaluate the resulting intervals

with the relaxed and the weighted scores that we introduced in the previous chapter, and

the selective measure—a complementary measure for the weighted score, that highlights the

impact of the mismatching markers within an SBF, on its robustness. Figure 6.6 presents the

histograms for the three measures for SBFs on the genomes of C glabrata, E. gossypii and S.

kluyveri. The blocks are relatively well interconnected by the weak homology requirement.

This is highlighted through the relaxed score. On the other hand, the shift in the center of
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pairs results in a breakage of the
two in 4 pairs new of intervals. 2
out of the 4 are used for further
merge in this loop, the other 2 are
examined for a potential merge in
another loop.

break

merge

chromosome — coordinates — score

Figure 6.5 – An example illustration for a possible hierarchical structure as generated from the interval merging
process presented in the code flowchart. The structure of the hierarchy is given by the rank based left-maximal
property of the approximate common intervals derived from rank-intervals.
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(a) relaxed

(b) weighted

(c) selective

Figure 6.6 – The three scores that help quantify SBF robustness according to the first requirement of the formal
definition, that is the homology based interconnection between homologous SBs. Even with a certain number of
allowed mismatched markers, the blocks are relatively high scoring, as shown in figure (a); figures (b) and (c) show a
slight shift of the graphic towards the center end of the graphic, that is the mismatched markers have a low impact
on the robustness of the final SBFs.
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the histogram towards the center, from the weighted score to the selective one, suggests that

mismatched markers have a small impact on the overall robustness of the final SBFs, for the

given distance value. However, the drastic shift of the scores from the relaxed to the weighted

histograms, is possibly due to the markers that form the intervals, which are not necessarily

always the same when it comes to merging several genomes together. This implicitly calls for

a devising a different measure for the robustness of various markers, that accounts for the

fact that markers in an interval need not relate to markers in all other SBs, but instead having

selective match could be an allowed feature.

The distance measure between blocks is kept constant, therefore we observe a decrease

in the number of SBFs as genomes are added. Figure 6.8 illustrates this trend. In figure 6.7, we

see that the SBFs that contain distantly related blocks, are eliminated when the last genome

is added to the family. The skewness of both histograms suggests on the other hand, that

the blocks are reasonably well balanced in terms of the ratio between total and mismatched

number of markers. Such behavior, together with the skewness of the histograms (towards

better scores) as shown in fig. 6.6, sets a potential direction for choosing the right value for the

δ variable or for the quality of the resulting SBFs.

The dynamics for the marker content in 3- and 4-wise SBFs is presented in fig. 6.8.

Without a dynamic adjustment of the scoring function to the increasing number of genomes

added to the comparison, we get a similar behavior to defining synteny in terms of strict

collinearity, that is, the number of blocks decreases just as shown in table 6.2, the total number

of blocks; in the same time the number of markers in a block increases.

6.2.4 Future Directions And Challenges

The so far presented approach for generating SBFs and the measures, reveal more insights

into the structure of SBFs as based on wCIs. However, such insights are still far from enough

for defining functional SBFs. This combination provides nonetheless, inspiration for future

directions and possible improvements. It is clear that the structure of SBFs is best shaped by

dynamic scores that take into account additional features of the genomes and of the algorithm,

when establishing the number of mismatching markers (e.g. size of the genomes; the density

of the markers for a certain genomic region; the quality of markers; etc.).

So far we have evaluated only SBFs that are present in all the genomes that are being

compared. This is a restricted set of the possible blocks, however, it already gives an insight into

the influence of various parameters over the features of the block families. This simplification

is directly related to the computational bottlenecks at storage, ordering, coverage detection

that arises when working with the entire set of possible SBFs. Another convention that

needs improvement is the dependence on a reference genome in multiple comparisons. The

absence of such a convention, would explode the number of possible blocks. A hierarchical

organization offers then a convenient ordering for the various decomposition schemes of the

genomes into SBFs, and implicitly addresses other issues s.a. the storage and handling of the
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(a) SBFs for 3 genomes

(b) SBFs for 4 genomes

Figure 6.7 – The constant distance measure for an increasing number of genomes produces SBFs of higher quality,
with the price of decreasing number of SBFs as shown in table 6.2, the total number of SBFs columns.
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(a) SBFs for 3 genomes

(b) SBFs for 4 genomes

Figure 6.8 – A distribution for the size of SBFs in terms of marker content.
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multiple blocks. Moreover, combining this organization with an appropriate visualization

method, facilitates the choices of the user, when it comes to selecting the desired SBF structure.

A pertinent and sensibly chosen set of parameters, together with the right formalization of the

definition and the underlying structure have the potential to be a silver bullet.
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7 Conclusions

We presented a review of the work to date on the definition and construction of syntenic

blocks, pointing out the lack of a formal definition of syntenic blocks as well as the lack of

clear objectives for the tools designed to construct these blocks. The latter prevents us from

evaluating each tool in terms of its own performance; the former prevents us from establishing

a gold standard for evaluating the quality of syntenic blocks.

We evaluate the quality of a decomposition into syntenic blocks by defining new quality

measures applicable to all decompositions into syntenic blocks. We apply them to the output

of several synteny tools run on a dataset of 8 yeast genomes. This evaluation revealed very

different behavior, as well as some reassuring commonalities, among the tools on the same

dataset.

To remedy this situation, we proposed a simple set of homology-based criteria that

syntenic blocks should satisfy. These criteria do not identify unique solutions—we argued that

a range of solutions should remain, since the specifics of the application should influence the

selection of good blocks. We based our definitions on homologies, because syntenic blocks

are aimed at decomposing a genome into conserved regions (one of the few points on which

all researchers agree) and conservation is embodied in homologies.

Almost all existing synteny tools use genes as markers. Not only does such a choice

restrict the usable range of granularity, but, at least in the case of most eukaryotic genomes,

it discards most of the sequence data (close to 98% in the case of the human genome). A

sequence-based approach to the identification of markers, in the style of progressiveMauve or

Sibelia, makes more sense in today’s data environment. Among choices that a user should

be able to make are: (i) permissible degree of overlap of blocks; (ii) acceptable percentage of

dropped markers; and (iii) granularity. In addition, since the level of confidence in markers

will vary, these choices should be further refined by taking into account the contribution of

each shared, dropped, or included marker.

A first step towards integrating such features and capabilities in future synteny mining
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tools, we take the formal definition a step further, and investigate a subset of 4 genomes for

possible syntenic structures. We implement an algorithmic framework for detecting syntenic

regions, that is based on a variety of common intervals. This provides (i) structure for SBFs; (ii)

hierarchical organization for various levels of decomposition; (iii) addresses computational

challenges though its formalism (e.g. marker relatedness in a family-free context). To have

a functional definition, we relax certain constraints (i.e. by allowing a certain number of

mismatched markers in SBFs). The effect of the new constraints we test on SBFs over the 4

genomes and present promising results for identifying SBs with a minimal parameter set, that

are in the same time strongly interconnected through homology.

We have shown that the hierarchical organization of the SBFs addresses computational

challenges, offering concomitantly a convenient repertoire of genomic coverage by various

levels of SBFs for targeted comparative studies. Clearly, then, the next generation of tools needs

a hierarchical organization of blocks, a measure of significance for blocks based on strong

connections between markers in the same SBF, and user-defined (and application-motivated)

constraints and parameters, defined of a sensible manner.
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2009 – 2012 � Event organizer for Local Committee Lausanne of the International Association for 
� � the Exchange of Students for Technical Experience (IAESTE) 
2007 / 2010 � Short term volunteering camps in Portugal and Iceland with Service Civil 
� � International (SCI)

Interests and Hobbies

I train my systematic and structured thinking skills by practicing rock climbing and rowing within the 
frame of the university offered facilities as well as through the Swiss Alpine Club’s. These activities 
equally consolidated my sense of responsibility as a team player, improved focus, perseverance and task-
mastery through individual practice. I regularly dedicate time to organize get-togethers with friends or to 
discover my environment though various activities. Throughout the year, I plan several trips to enlarge 
my horizons by traveling and discovering new cultures and landscapes, via conferences (latest e.g. ISMB) 
or individual ones (e.g. Asia trip 2013). I practice sports regularly for a good mind-body balance. 
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Appendix

Publications

Ghiurcuta, C.G., and Moret, B.M.E., Evaluating synteny for improved comparative studies, Proc. 22nd 
Symp. on Intelligent Systems for Mol. Bio. ISMB’14, Bioinformatics (2014) 30 (12): i9-i18.
 

Presentations, Conferences and Workshops 

2014 July � International Society for Computational Biology (ISMB) Boston, MA, USA. 
� � � Travel award granted by NSF USA (84/202 awards & >1300 participants).
� � � Oral presentation in proceedings.
2014 Feb.� Swiss-French Meeting on Bioinformatics and Evolutionary Genomics 
� � � (ALPHY/PhyloSIB) Geneva, CH.
� � � Oral presentation.
2013 July� 54th Annual Short Course on Medical and Experimental Mammalian Genetics 
� � � Scholarship award for participation costs. The Jackson Lab,�Bar Harbor, ME, USA. 
� � � Poster presentation.
2013 May � Statistical Genomics and Data Integration for Personalized Medicine Ascona, CH. 
� � � Poster presentation.
2012 Oct.� Advanced Algorithms M.S. level course EPFL (Fall 2012)
� Guest lecturer for “Average case analysis of randomized algorithms.”
2012 June�� Symposium of Society for Molecular Biology and Evolution Dublin, IR. 
� � Poster presentation.
2011 Sept.� Scientific research plan writing, Swiss Institute of Bioinformatics Chandolin, CH.
2011 June� [BC]2 Conference Basel, CH. 
� � Poster presentation.
2010 Aug. � Quantitative imaging and modeling of biological processes 
� � � NBIC/SIB summer school, Amsterdam, NL.
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