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Abstract
Research on Self-Reconfigurable Modular Robots (SRMRs) has steadily increased during the

past decade. Their ability to change shape dynamically to adapt autonomously to their envi-

ronment combined with their inherent versatility and their robustness through redundancy

make them potentially well suited for a large variety of tasks. For example, the SRMR Roombots

from the Biorobotics Laboratory (EPFL, Switzerland) has been developed with the goal of

creating assistive and adaptive furniture able to locomote and self-adapt in everyday life envi-

ronments. This thesis contributes to the field of SRMR by designing algorithms and devising

strategies that address three major problems in the domain: self-reconfiguration, locomotion,

and user-interaction.

Despite significant efforts conducted in the domain of self-reconfiguration (SR), the current

approaches often rely on high level abstractions of the problem and perfect theoretical models

of the active units, neglecting the issues of bending and connection misalignment, making the

transfer of the considered method to the hardware platforms difficult, if not impossible. More-

over, the constructed structures can only be comprised of active modules (often of the same

type) instead of both active and passive units (i.e. units that possess no actuation capability

and that are only equipped with passive connectors compatible with the active units), which

tends to reduce the range of shapes that can be built using SRMRs. Taking into account these

limitations, we first propose incremental modifications of existing techniques to address the

SR problem. We extend the state of the art by proposing a novel hierarchical approach that

allows the integration of fully passive elements and that computes hardware friendly move-

ments which take into account torque limitation. We explore different ways of characterizing

and compensating some of the hardware imperfections such as the bending effects observed

in many materials and the alignment error during the connection and disconnection phases.

The ability of SRMRs to rapidly change their morphology make them a suitable tool to study

locomotion learning for various topologies. Methods using gait tables have been widely

used to manage predefined changes of topology but they cannot deal with unguided self-

reconfiguration, where the final structure into which the set of robots reconfigures into is

unknown beforehand. We propose a new algorithm that relies on the detection of bio-inspired

patterns in the structure combined with the use of symmetries to create a reduced control

network that allows a fast convergence towards a reasonably efficient gait in terms of internal

collision and forward speed. The Central Pattern Generator (CPG) network used for the

locomotion control offers additional robustness and smooth transition between gaits. We

demonstrate that our approach significantly outperforms a fully open control network by a
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factor of up to 10 in the first 30 iterations, making it particularly well suited for time critical

tasks in unknown environments.

With the steady integration of robots into everyday life environments, the question of the

interaction strategies and modalities becomes a central one. SRMRs bring the additional

challenges of an evolving morphology, both on-grid and off-grid, and a lack of anthropomor-

phic features. Classical interfaces often confine the user to use a fixed device such as a PC

to design a desired shape or to control a group of robots. In order to allow non-expert users

to exploit the full potential of SRMRs, we introduce more natural ways of interacting with a

group of SRMRs by abstracting away the complexity of SR and locomotion learning through

high level interaction strategies. We develop both a tablet-based interface in which the user

can arrange virtual structures made of SRMR in an augmented reality representation of a

room and a device-free interface based on the principle of embodied interaction in which

the user is tracked by external depth sensors and use pointing gestures to control groups of

robots. Additional feedbacks are given to the user via visual lighting of the grid setup and of

the modules themselves.

Key words: Self-reconfigurable modular robots, self-reconfiguration, locomotion, interaction

strategy, user-interfaces
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Résumé
Les Robots Modulaires Auto-Reconfigurables (RMARs) n’ont cessé de se développer au cours

de la dernière décennie. Leur capacité à changer de forme pour s’adapter à leur environ-

nement de manière autonome combinée à leur polyvalence et leur robustesse les rendent

potentiellement bien adaptés pour une grande variété de tâches. Parmi eux, les robots Room-

bots, développés au Laboratoire de Biorobotique (EPFL, Suisse), ont été créés dans le but de

construire des meubles assistifs et adaptatifs, en mesure de se mouvoir librement et de s’adap-

ter à des situations et des environnements de la vie quotidienne. La contribution de cette

thèse au domaine des RMARs réside dans le développement d’algorithmes et de stratégies

qui répondent à trois problématiques majeures : l’auto-reconfiguration, la locomotion, et

l’interaction avec l’utilisateur.

Malgré les efforts importants déployés dans le domaine de l’auto-reconfiguration (AR), les

approches actuelles se basent souvent sur des abstractions de haut niveau du problème et

considèrent des modèles théoriques parfaits des modules, en négligeant les questions de

flexion des matériaux et les erreurs d’alignement du mécanisme de connexion, ce qui rend le

transfert de ces méthodes vers les robots réels difficile, voir impossible. En outre, les structures

construites ne peuvent être constituées que de modules actifs (souvent du même type), au

lieu d’unités actives et passives (c’est à dire d’unités qui ne possèdent pas d’actuateurs, et qui

ne sont équipées que de connecteurs passifs compatibles avec les unités actives), ce qui tend

à réduire la gamme de formes qui peuvent être construites en utilisant les RMARs. Compte

tenu de ces limitations, nous proposons tout d’abord des modifications à des techniques

existantes pour résoudre le problème de l’AR. Nous étendons l’état de l’art en proposant une

approche hiérarchique qui permet l’intégration d’éléments entièrement passifs et qui calcule

des mouvements respectueux du système mécanique en prenant en compte la limite de

couple des moteurs. Différentes manières de caractériser et de compenser les imperfections

des robots réels, tels que les effets de flexion observés dans de nombreux matériaux, et l’erreur

d’alignement au cours des phases de connexion et de déconnexion, sont abordées.

La capacité des RMARs à changer rapidement de morphologie en fait un outil approprié pour

étudier l’apprentissage de la locomotion pour différentes topologies. Les méthodes utilisant

les tables de paramètres de locomotion pré-calculés ont été largement utilisées pour gérer

les changements de topologie prédéfinis, mais elles ne peuvent pas s’appliquer lors d’une

auto-reconfiguration arbitraire, où la structure finale en laquelle l’ensemble des robots se

reconfigurent, n’est pas connue à l’avance. Nous proposons un nouvel algorithme s’appuyant

sur la détection de sous-structures bio-inspirées combinée à l’utilisation des symétries afin
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de créer un réseau de contrôle plus optimal qui permet une convergence rapide vers une

démarche assez efficace en termes de collision interne et de vitesse d’avancement. Les Central

Pattern Generators (CPGs) sont des réseaux d’oscillateurs couplés que nous utilisons pour

le contrôle de la locomotion, car ils offrent une robustesse supplémentaire et une transition

continue entre les différentes démarches. Nous démontrons que notre approche surpasse

de manière significative celles utilisant un réseau de contrôle entièrement ouvert, ce qui la

rend particulièrement bien adaptée pour les tâches à forte contrainte de temps dans des

environnements inconnus.

Avec l’intégration progressive de robots dans des environnements de la vie quotidienne, la

question des stratégies et des modalités d’interaction devient centrale. Les RMARs apportent

un défis supplémentaire à cause de leur morphologie évolutive, et par leur manque de ca-

ractéristiques anthropomorphiques. Les interfaces classiques obligent souvent l’utilisateur

à utiliser un dispositif fixe, comme un ordinateur de bureau, afin de concevoir une forme

désirée ou pour contrôler un groupe de robots. Afin de permettre aux utilisateurs non-experts

d’exploiter pleinement le potentiel de RMARs, nous introduisons dans cette dissertation des

moyens plus naturels d’interaction avec un groupe de RMARs, en nous affranchissant de la

complexité de l’AR et de l’apprentissage de la locomotion par l’intermédiaire de stratégies

d’interaction de haut niveau. Nous développons à la fois une interface pour appareils mobiles

dans laquelle l’utilisateur peut organiser des structures virtuelles faites de RMARs dans une

représentation en réalité augmentée d’une pièce, et en proposant une interface basée sur

le principe de l’interaction directe dans laquelle l’utilisateur est suivi par des capteurs de

distance externes et utilise des gestes pour contrôler des groupes de robots. Des informa-

tions supplémentaires concernant l’état du système sont fournies à l’utilisateur grâce à un

éclairage des connecteurs placés dans l’environnement et des degrés de liberté des modules

eux-mêmes.

Mots clefs : Robots modulaires auto-reconfigurables, reconfiguration, locomotion, stratégies

d’interaction, interfaces utilisateur
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General Introduction

Objectives of this dissertation

THE world of robotics has evolved dramatically over the last decade. Robots have seen

their capabilities increasing, both in terms of mechanics and electronics but also in

terms of control. A growing number of robots are no more limited to lab spaces and are being

designed to be integrated in every day life environments. They should provide services, help,

and support to a wide variety of end-users, ranging from young children to elderly, all of them

having specific needs. These robots appear in many shapes and orders of complexity, from

the very advanced humanoid robots, such as Asimo [110], able to walk, run, and manipulate

objects, to the simpler vacuum cleaner robot Roomba [123], limited to a specific task. But the

complexity of these robots is often linked to their cost, which confines the most advanced

ones to lab’s environments. They are also often specialized into carrying out a specific set of

tasks, such as manipulating objects or exploring unknown environments. More and more

robots are being developed to support humans, such as the Keepon [145] robot, used for

example as an helper therapy for autistic children, or the RI-MAN robots [192], designed to

carry patients from their bed to their wheel chair. But these robots suffer from their high level

of specialization into a specific domain and are lacking the ability to adapt to the task to be

performed.

As opposed to this rise in complexity trend, the domain of reconfigurable modular robots has

emerged as a potential solution. Reconfigurable modular robots are simple interchangeable

units able to assemble to form a more complex structure to solve various more complicated

tasks. Among them, Self-Reconfigurable Modular Robots (SRMRs) are equipped with active

connection mechanisms allowing them to dynamically change shape to adapt to the user

needs or to the task to be performed.

The SRMR Roombots developed at the Biorobotics laboratory (EPFL, Switzerland) has been

designed to study three major challenges: (i) When being configured in chain or lattice

structures we use RB modules as a rapid prototyping set to study distributed locomotion

control in unknown terrains. (ii) The self-reconfiguration (SR) capabilities of RB support the

exploration of algorithms for self-organization, self-optimization and collaboration between

modules. (iii) The name "Roombots" refers to our goal of creating self-reconfigurable adaptive

furniture, i.e. furniture that can move and change shape thanks to reconfiguration using

1



General introduction

Figure 1 – Rendered picture representing the different aspects of the Roombots project. On
this illustration, a table is being constructed out of active modules and passives elements
(wooden color) evolving on a 2D grid (in dark grey). A set of modules is located out of the
grid and metamodules separate from the main group to perform off-grid locomotion. They
reattached to the grid using a sink mechanism included in the ground. A user is controlling
the process using a tablet device (illustration adapted from [238]).

dynamic connection mechanisms. RB are made for building reconfigurable living and working

environments that adapt to the current needs of human beings. Different research aspects

linked to the Roombots project are illustrated in Fig. 1.

In their current development state, SRMRs are still limited in terms of mechanical capabilities

(such as torque and weight support), connection mechanism efficiency (regarding the toler-

ance to misalignment and the connection strength), and their scalability to a large amount

of modules, with issues such as communication delays or module variability (inherent to

the building process). These limitations are seldom taken into account in the theoretical

contributions on locomotion and self-reconfiguration, making the transfer to the hardware

platforms tedious, if not impossible.

This thesis contributes to the field of SRMR by designing algorithms and devising strategies

that address three major problems in the domain: reconfiguration, locomotion, and user-

interactions. The main contributions of this dissertation can be summarized as follows:

1. In the domain of self-reconfiguration, we propose novel approaches tightly linked to

the hardware constraints to ease the transfer to the hardware platforms. We extend

the SR to heterogeneous structures composed of modules and fully passive elements to

accommodate for the heterogeneous aspects we envision with the assistive and adaptive

furniture of the RB project.

2



2. We describe efficient techniques to quickly relearn locomotion parameters after en-

countering an unknown event during a time critical task.

3. We introduce three novel interaction strategies that abstract away the complexity of

SR and locomotion learning and allow non-expert users to intuitively and naturally

interact with groups of modular robots.

In order to automatically change shape, SRMRs need a planner for finding the sequence

of moves and connection/disconnection actions to go from a starting configuration to a

goal configuration. One of our objectives is to develop simple generic algorithms (able to

be used with a large number of hardware platforms) to perform self-reconfiguration with

homogeneous sets of robots. We would like to additionally incorporate passive elements

(i.e. units without actuation) into this SR process, by providing a manipulation framework

for modular robots. Through this mean, we aim at improving the properties and the range

of structures that can be built by SRMR. One critical requirement that we imposed on our

techniques is the close relationship to the hardware constraints. In contrast with many

existing approaches, we want to reduce the reality gap between simulated solutions and their

porting to the hardware by incorporating built-in torque checking directly into our algorithm

and by carefully characterizing in hardware the connection phase and the bending effects of

our SRMR Roombots.

When a group of SRMRs have assumed a given shape, they also have the ability to go off-grid to

locomote freely in the environment. We would like to fully exploit the morphology-changing

capability of the SRMRs to perform locomotion or exploration tasks in unknown environments

but also in environments that can be dynamically modified by the user (home environments

for example). We want to provide locomotion schemes for fast gait generation to handle

rapidly changing configurations, these new morphologies being unpredictable because either

they have been generated on the fly by the user or independently by the robot to cope with

changes in the environment or in its own structure (after hardware failures for example).

The goal of having SRMR into every day life environments requires the development of nat-

ural and intuitive interfaces to be able to use the reconfiguration and the locomotion tech-

niques in a transparent way. We aim at proposing new ways of interacting with these non-

anthropomorphic platforms. In our approaches, we would like to place the end-user as the

center of the interaction by abstracting away the complexity of the control techniques inherent

to SRMRs.

Thesis outline

This dissertation is composed of four main parts.

The first part of this thesis (part I) introduces general concepts about modular robots. We

start by describing usual classifications used for the existing hardware platforms (section

3
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1.1) along with challenges in the domain of SRMR (section 1.2). In chapter 2, we describe

the main software and libraries that we used to validate our work and present in details the

experimental hardware platform Roombots (RB), that we used to apply our algorithms and to

characterize imperfections in the mechanics. Additionally we present the different hardware

studies we conducted in order to reduce the reality gap between the simulated results and the

hardware platforms, regarding the connection mechanism and the bending effects. A study of

exact inverse kinematic solutions for the Roombots platform is presented in Appendix A.

In a second part (part II), we describe in details the different approaches that have been

introduced to solve the SR problem and present the advances we made to the state of the

art. We start in chapter 3 by precisely defining the problem we are tackling (section 3.1) as

well as the related representations (section 3.1.1) and metrics (section 3.1.2). We introduce

complexity notions (section 3.2.1 and 3.2.2) and analyse how the fact of using group of modules

or metamodules impacts the performances of the reconfiguration algorithm (section 3.2.3).

We then present in chapter 4 existing methods to solve the SR problem, both heuristic based

(section 4.1) and exact (section 4.2). We describe the advances we made for both types

of approach (subsection 4.1.3 and subsection 4.2.3 respectively). After concluding that no

method exists to solve the problem of heterogeneous self-reconfiguration without relying

on specialized passive elements or modules, we propose our own approach (chapter 5) and

emphasize its strong coupling with the constraints imposed by many hardware platforms,

such as the torque limitation. It should be noted that the triggering of the reconfiguration

process using sensors information or behavioral analysis has not been considered in this work.

We investigate in a third part (part III) different techniques to provide an efficient and robust

locomotion capabilities for SRMRs, both on-grid (chapter 6) and off-grid (chapter 7).

The aspect of interaction with SRMRs is treated in part IV. We describe the advances we made

in the domain of mobile interfaces for a group of robots (chapter 8) and when considering

a fully embodied interface without external device (chapter 9). More preliminary work on

computer interfaces used to build arbitrary shapes and convert them automatically into

structure made of modular robot is presented in the appendix C along with a review of the

existing approaches to create interfaces for mixed team of humans and robots (appendix E).
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1 Background on Modular Robots

Self-reconfigurable modular robots are able to change their morphology to adapt to a given

task. Even if this ability might significantly decrease the performance of the system in compar-

ison with a monolithic (specialized) robot, it is particularly suited in the case of multiple tasks

assignment and not perfectly defined situations, such as planetary exploration or disaster

relief scenario (where human access is impossible), bringing both adaptability and versa-

tility to the system. Moreover, the fact of having a robot made of identical entities allows

fast repair procedure by interchanging modules, either within the same robot or between

robots. The overall system robustness is thus theoretically increased. In practice, SRMRs suffer

from the multiplication of the possible points of failures, e.g. the connection mechanism or

the interconnections between the degrees of freedom (that induces bending effects on the

entire module). Some of these limitations are linked to the constraints of weight and compact-

ness imposed on the system to allow one module to carry one or more units autonomously,

preventing the use of more robust material and larger connection mechanisms.

One example of application for self-reconfigurable robots is space exploration. There are

several reasons for this. Firstly, long term missions require self-sustainable systems, capable of

self-repair and self maintenance. Secondly, spatial exploration is always heavily constrained

in terms of volume and weight for devices that can be brought into space. Finally, given the

unknown environment and tasks requirements, the robotic system should be able to self-adapt

and perform multiple tasks autonomously.

We present in the first section the different types of existing architectures in modular robotics.

After briefly describing some examples of robots, we state the grand challenges that still need

to be overcome in this field [279].

1.1 Classification

There are several ways of classifying modular reconfigurable robots, depending on their

architectures, the nature of the units and the type of control of the reconfiguration and motion
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Chapter 1. Background on Modular Robots

processes [245].

First of all, modular self-reconfigurable robotic systems can be composed of replicas of the

same modules (homogeneous case) or can include different types of units (heterogeneous).

One might argue that the fact of having specialized units inside the system might decrease its

robustness and adaptability. Nevertheless, the gain in terms of performance might compen-

sate for this aspect, keeping in mind that the set of basic units should also be able to perform

the same tasks (at the cost of a loss of performance).

Classification between modular robots can also be done based on the architecture of the

resulting structures. If the units inside the final robot are arranged into a regular 3D grid, we

talk about a lattice architecture. In this case, the reconfiguration process is easier since the

set of possible moves is reduced to adjacent grid positions. The units can also be connected

together in a tree configuration. This chain architecture is computationally more challenging,

but allows for a richer set of reachable points in space. Finally, hybrid architectures are able

to use both lattice and chain structures, but also the environment to move and coordinate

actions between multiple sub-robots.

From the control point of view in the reconfiguration process, we can clearly distinguish

between deterministic and stochastic approaches. In the first case, the entire process can be

pre-computed and the position of the different units is known at any time. The convergence

time (i.e. the time to obtain the desired structure) can also be determined exactly. Most of the

time, this type of control is used for macro-scale systems (typically with units of size bigger

than the centimeter scale). On the opposite, for micro-scale systems, stochastic methods are

often well-suited. In this case, the connection and disconnection procedures are based on

statistical processes. The convergence time can be guaranteed only statistically, and bounds

are often used. Often, the environment is active, in the sense that it provides the energy (or

part of it) needed for the motion of the modules.

More than 80 different reconfigurable modular robotics platforms have been created during

the past 25 years [238]. From a hardware perspective, two main characteristics are often

used to classify these platforms: their degrees of freedom (number, direction,...) and their

connection mechanisms (type of connection, number of passive/active connectors,...). Among

others, well known platforms are the M-TRAN [183], the Superbot [222] and the Molecubes

[291].

1.2 Challenges

Various achievements have been made in the domain of self-reconfigurable modular robots,

both in terms of hardware and software. Robotic systems have been built and demonstrated

to be able to self-assemble, self-locomote, self-reconfigure and self-replicate [292]. Planning

algorithms able to control millions of abstract modules have been introduced [88]. Several

challenges remain to be solved to allow such systems to keep their promise.
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1.2. Challenges

Concerning the hardware, some key points still need to be addressed. The current modular

robotic units are often task specific in their design. Due to space constraints, some choices

have to be made on the kind of characteristics the module should exhibit. Another key evolu-

tion in the hardware domain is the self-replication ability. The module would be able to build

copies of itself from basic pieces or even from raw material to ensure real self-repair ability.

In terms of software, several ways could be explored to improve the current state of the art in

the field. First of all, even if we can control millions of abstract modules, integrating kinematics

data from the real hardware (through sensor information fusing) and taking into account fail-

ure (mechanical, electronic, communication,...) are still missing aspects. Moreover, being able

to recover from module failure and to handle the defective units inside the overall framework

are considerations that have to be included in the current implementations to create real

self-sustainable systems. Finally, if we envision a real multi-purpose set of modular robots,

efficient algorithms should be developed to determine the optimal shape for a given task.
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2 Software and hardware platforms

2.1 Simulation environments

In order to simulate our locomotion experiments, we used the physics based simulator Webots,

developed by Cyberbotics [275]. Webots is used to model, program and simulate mobile robots

in shared and complex environments. Webots is based on the Open Dynamics Engine (ODE)

physics engine [233] that allows for realistic and accurate physic simulations. This simulator

possesses several features that makes it well suited to simulate reconfigurable modular robots.

Among others, Webots offers a large number of possible scripting languages and the possibility

to write a specialized physics plugin to extend the capability of the software. Additionally,

different models can be easily built using the graphical interface that supports also the direct

importation of CAD shapes (for example, to provide precise collision checking).

The main drawback of this simulation platform for modular robots is the lack of scalability

when considering the number of connectors that can be handled during one simulation run.

This limitation is mainly impacting reconfiguration experiments when we increase the number

of modules. In order to alleviate this limitation, we also implemented our own simulation

environment based on Bullet Physics and Open Scene Graph (presented in chapter 5).

2.2 Experimental platform: Roombots

Roombots (RB) are self-reconfigurable modular robots developed at the Biorobotics labora-

tory (EPFL, Switzerland) with the ambitious goal of creating assistive and adaptive pieces of

furniture using the reconfiguration and locomotion capabilities of SRMRs. Among the exist-

ing modular robots, only a small subset incorporates a mechanism for self-reconfiguration

that allows modules to autonomously connect and disconnect like RB since the design of a

mechanism for self-reconfiguration in a compact way is already a challenge on its own [283].

RB are designed with the property that a single module can autonomously travel through

self-reconfiguration to any position on a 2-dimensional grid by a sequence of attachments
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(a) (b) (c)

Figure 2.1 – A single RB module (a). The three degrees of freedom of a RB module (b). The
current ACM design (c).

and detachments between the modules’ connection mechanism and the grid structure (i.e.

panels with regularly spaced connectors) and to overcome concave edges in 3 dimensions

with a minimum number of three degrees of freedom (DOFs). Contrary to RB, M-TRAN [180],

Molecubes [293], and ATRON [195] robots require more than a single module to change their

direction of motion on a 2D grid. More than one RB module is only needed to overcome

convex edges in 3-D configurations.

A Roombots module is composed of four half-spheres (see Fig. 2.1a for precise shape) linked

together using revolute joints with continuous rotation capabilities (depicted on Fig. 2.1b).

Using four-way symmetric compact Active Connection Mechanisms (ACMs, up to 10 per

module, illustrated in Fig. 2.1c) each RB module can autonomously connect and disconnect

from another module or from a passive connector embedded in the environment. The ACM is

genderless and non-back-drivable. This latter property is an advantage since it means that no

power is needed to maintain a given position, which prevents disconnection in case of power

loss. In the remaining parts of this thesis, we consider that only the most external connectors

of a module (C0X and C3X in Fig. 2.1a) are equipped with an ACM, the remaining eight being

completely passive. A RB module is controlled through wireless communication and contains

two 1200mAh Li-Po battery packs ensuring more than one hour of autonomy in full charge.

Each module is driven by a set of distributed embedded electronics. A single module weights

around 1.4kg and any of its joints can provide sufficient torque to lift at least one additional RB

module. Two RB modules assembled together using the connectors on the outer hemispheres

(C 0X and C 3X ) form a metamodule (MM). Four connection types can be defined (see Fig. 2.5),

inducing different kinematic properties and motion capability. A MM has a payload of around

500g on the most external connector (C3X, described in Fig. 2.1a). The upper limit for the

nominal torque of the two external DOFs of the RB module is around 4.9Nm whereas for the

middle DOF, it is around 3.6Nm. The main characteristics of the RB hardware are summarized

in Table 2.1. A detailed description of the hardware can be found in [238].
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2.2.1 Active connection mechanism

Hardware design

The design of an active connection mechanism (ACM) for self-reconfigurable modular robots

is a great challenge. The mechanism should be strong to lift several modules, compact to allow

an overall compact robot design, fast to allow fast reconfiguration sequences, flexible to allow

different orientations of connections, and genderless to avoid additional constraints on the

reconfiguration options. Furthermore an ideal ACM should only consume power during the

connection and disconnection process. It should not stick out during locomotion, should

support self-alignment of modules during the connection process and allow the modular

robot to be autonomous.

For the Roombots ACM design we evaluated several mechanisms and designs. One of the

most sophisticated designs is the ACM of M-TRAN I and II, based on a mechanical mechanism

of latches. Since only mechanical solutions match our requirements we as well based our RB

ACM design (Fig. 2.1c) on mechanical latches. As the M-TRAN III ACM, the RB ACM is inspired

by the work of Terada and Murata [258]. However, while the M-TRAN is only operating on a

regular 3-D cubic grid and thus can afford to feature separate male and female connectors, our

ACM is genderless. It is based on 4 latches that allow connections and disconnections within

1.7 seconds. A great advantage of the hermaphrodite latching mechanism is that only one side

of a connection has to be active to connect. Two ACMs are sufficient to support locomotion

through reconfiguration on a grid of passive connectors covering the floor, walls and ceiling of

a room (see chapter 6).

The RB ACM is designed to be non-reversible allowing the motor to be switched off while hold-

ing the connection. One of the reasons why we are able to reliably perform our reconfiguration

experiments is the self-alignment property of the latches.

ACM Characterization

References and contributions

This subsection is based on the following internship project:

E. Stavridis, "Design and Optimization of Active Connection Mechanisms (ACMs) for

Roombots modular robots", Internship Project, École Polytechnique Fédérale de Lausanne

(EPFL), 2013. Available at: http://biorob.epfl.ch/page-111200.html

My contributions were:

• general co-guidance during the project.

• proposed methods for the analysis of the data.
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The external contributions were:

• design of possible connection mechanism solutions.

• hardware experiments.

• analysis of the collected data.

We conducted a series of experiments (both qualitative and quantitative) to characterize the

actual version of our connection mechanism in terms of tolerance against misalignment and

distance from the goal connector. The qualitative experiments consisted in attaching with

different orientations a single Roombots module equipped with two ACMs (one for holding

and one for gripping) to a wall of passive connectors and gradually changing the motor angles

to evaluate when and why the connection mechanism would fail to connect to the grid (see

picture 2.2).

(a) The experimental
setup.

(b) A failed connection attempt.

Figure 2.2 – ACM characterization experiments. A single RB module is equipped with two
ACMs and connected to the grid using one them. The experiment consists in changing the
orientation of the module and then varying the motor angles before trying to connect with the
second ACM (adapted from [240]).

In order to further characterize the performance of the ACM design we conducted two different

quantitative experiments:

1. Gripping distance experiment: we placed one RB module vertically rigidly connected to

the wall using screws. The ACM is placed in the upper hemisphere of the module and a

target connector plate is kept parallel to it (see figure 2.3). We vary the distance between

the ACM and the target from 2mm to 7mm in steps of 1 mm.

2. Gripping performance experiment: we rigidly connected a single module to a wall of

connector in the horizontal orientation, so that the effect of gravity are maximized

(worst case scenario). We used forward kinematics to select the positions we considered

relevant to test during the experiment. We obtained a cloud of reachable solution that

we pruned using the previous qualitative experiment results and geometric constraints,

and we ended up with 45 cases to check. We repeated them 5 times for the two possible
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horizontal orientations. The ACM was able to grip on average 14 and 11 positions for

the two horizontal orientation, respectively.

Figure 2.3 – ACM gripping range characterization experiment. A single RB module is rigidly
fixed to a wall of passive connectors and we vary the distance between the connecting ACM
and the target connector, always keeping the ACM parallel to it. The distance varies from 2mm
to 7mm with a 1mm step (adapted from [240]).

We have shown that the current ACM generation can compensate for a misalignment of around

13◦ degrees in around the normal of the connector and 4mm in translation. Two new designs

were proposed to improve those characteristics.

2.2.2 Hardware transfer

In the domain of SRMR, hardware imperfections are inherent to all the developed platforms.

Among them, the effects of bending due to gravity are a major cause of failure during self-

reconfiguration. This problem arose already in the early stage of modular robots (see for

example the misalignment in the 3D self-reconfigurable structure proposed by Murata et al.

in 1998 [182]) and have been considered challenging since then. Various approaches have

been taken to cope with this issue, both in the hardware development and in the control

strategies. Some authors have proposed to improve the connection mechanism in order to

widen the connection range [238]. Others have equipped their modules with sensors (for

example infrared sensors [276]) and have applied iterative control methods to locate the

connection point and correct the misalignment. Different connection means have often been

used to ensure a more reliable connection process. For example, the connection mechanism

used in the Roombots module relied on the addition of permanent magnets (for the alignment)

coupled with mechanical latches. We have demonstrated that combining those two techniques

significantly improves the connection rate [238].

In this section, we present two approaches that we followed in order to reduce the reality

gap between our simulation and our robotic platform. The first approach is an attempt to

model the elasticity effect using a learning algorithm to derive a polynomial expression of

the deformation for the end connector of the unit. The second approach relies on the use of
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sensors (IMU and camera) to actively compensate for the misalignment during the connection

phase.

Modeling the elasticity effects

References and contributions

This section is based on the following master thesis project:

E Badri, "Elasticity compensation using explicit learning", Master’s thesis, École Poly-

technique Fédérale de Lausanne (EPFL), 2011. Available at:

http://biorob.epfl.ch/page-68157.html

My contributions were:

• general guidance during the project.

• proposed modeling methods.

The external contributions were:

• help with the hardware experiments.

• partial analysis of the results.

When studying the bending effects of a simple beam in 2D, we can notice that the correspond-

ing equation are expressed by a simple polynomial expression. The exact expression of the

deformation depending on the considered point in the body becomes more complicated

in 3D and does not exist in closed-form for complex shapes. In order to approximate this

deformation, we postulated that the elasticity in the end connector of a kinematic chain made

of several modular robots can be modeled on every main axis by a polynomial expression.

The coefficient of this polynomial expression can be derived using a regression algorithm

call Eureqa, developed by Schmidt et al. [223]. In this study, the chosen alphabet for the

regression was inspired by the study of the 3D theoretical expression of the deformation of an

homogeneous beam. Eureqa required both experimental data and simulated one to perform

the regression. We obtained the set of experimental data by using a motion capture system

and positioning the chain of robots in various configurations. The simulated data have been

obtained using a simplified model of the RB module to which we applied a Finite Element

Analysis method to simulate the deformation.

The results of this study were a bit inconclusive because of the dependencies between the

different causes of the deformation. First of all, the home-made gear boxes of the Roombots

modules suffer from a highly non linear backlash that introduced a high level of noise in the

experiments. Secondly, in real case scenario, the deformation is also induced by the bending
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of the connection at the basis of the chain, which is also non-linear and hard to predict.

Improving the connection procedure

References and contributions

This subsection is based on the following internship project:

E. Senft, "Misalignment compensation during the connection phase of the SRMR Room-

bots", Internship Project, École Polytechnique Fédérale de Lausanne (EPFL), 2013. Available

at: http://biorob.epfl.ch/page-111201.html

My contribution was:

• general guidance during the project.

The external contributions were:

• theoretical definition of the problem and derivation of a possible solution.

• implementation of the image analysis method.

• proof of concept experiments.

We proposed to equip the end effector of a RB metamodule with a regular camera augmented

with an IMU (see 2.4 for an illustration of the camera setup). We used a regular webcam (Cisco

VT) that we disassembled to integrate it into the ACM plate. The IMU was external to the

module for the testing. The metamodule iteratively approaches the target connection point,

using an IK loop to find the minimal changes in the Degrees Of Freedom (DOF) between the

two displacements of the chain. The target connector is equipped with two dots (blue and

red) that are tracked using the OpenCV library [37]. The red dot is used to find the X and Y real

coordinates of the chain while the blue dot serves as an indicator for the connection type. The

Z coordinate is fixed using the IMU. A movie of a proof of concept experiment is available at

[227]. We are currently working on integrating this procedure into our self-reconfiguration

frameworks.

2.2.3 Kinematic structure: case study of the Roombots module

In order to find the right set of angles to direct the ACM of a SRMR towards a goal connector

we need to solve the inverse kinematic problem corresponding to the kinematic chain of the

considered module or metamodule. Our goal is to be able to derive these angles given any

desired position and orientation of a chosen ACM, the unreachable cases being detected

by the algorithm.The ability of SRMRs to alter their morphology to adapt to the task to be

performed brings an additional layer of complexity when we have to derive inverse kinematics
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(a) Top view (b) Side view

Figure 2.4 – The camera setup adapted on an ACM plate. The camera is connected via a USB
cable to the main computer which performs the image processing. We could improve the
compactness and the integration of this unit by designing a custom made camera board.

solutions. Various approaches have been proposed to solve this issue, such as numerical

solutions based on Jacobian matrix computation [135], Newton-Raphson algorithm [51],

or neural network computation [257]. Numerical solutions often suffer from their lack of

robustness, in terms of convergence and completeness, and require a significant amount

of time to be computed. Closed form solutions present the advantage of being stable and

extremely fast to compute. Unfortunately, closed form solutions can not always be derived for

a given robot configuration. Automated methods have been proposed to find those closed

form solutions, such as the IKFAST algorithm [77]. The most commonly used tools rely on the

Denavit-Hartenberg parametrization method [269], but this method imposes the burden of re-

deriving the solution for any specific case considered, in addition of having to manually setup a

well suited referential frame system. The Product of Exponential (POE) formula is a geometric

formulation that offers an alternative to this parametrization. It has been widely used to study

kinematic solutions for classic robots [198, 202] and modular robots [185, 49, 142, 290, 284, 48].

We demonstrate in Appendix A how we can obtain the closed form solution for the IK of a

RB metamodule composed of two units using screw theory and a special decomposition of

the global IK problem into classical subproblems known as Paden and Kahan subproblems

[198, 131]. Our derivation is based on the study described by Murray et al [185].

2.2.4 Roombots working space study

Even if the algorithms that we are presenting in this thesis are platform-independent, a careful

study of the working space of the chosen hardware platform can significantly optimize their

performance. We briefly present in this section a kinematic study of the working space of two

possible Roombots active structures, a single module and a metamodule, that will be used

in the following reconfiguration and manipulation algorithms (subsection 4.1.3, subsection

4.2.3, and chapter 5).
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Single module

One single RB module can be represented by a kinematic chain composed of three revolute

joints (illustrated in figure 2.1b). The diagonal DOF allow the module to approach a vertical

surface in a parallel fashion to avoid collision. The main drawback of this DOF is the impos-

sibility for the module to follow a straight line on a grid. The number of possible positions

to which the C3X connector can connect on a regular planar grid is two. One of the main

disadvantages of the single RB module is the quite large amount of space needed to reach a

position.

Metamodule

The metamodule we consider is composed of two modules connected together using the

C3X connector from the first module and the C0X connector from the second module. Four

different kinds of connection are possible between the two modules depending on the relative

rotation of the second module around the z axis. The four metamodule types are illustrated

on Fig. 2.5 with their respective names. We consider a regular 2D grid composed of connec-

tor plates and count the number of connector states reachable by a fixed metamodule. A

connector is said to be reachable with a given orientation (connection type) if there exist an

inverse kinematic solution that allows the C3X connector of the second module to connect to

it without collision (internal and external) with the considered orientation. We obtained the

results presented in Table 2.2. We observed that none of the MM regular reachable space is a

subset of one other. Nevertheless, one MM type (PAR) obtains significantly worse results than

the three other. This can be explained by the redundancies in the resulting degrees of freedom

of the PAR type kinematic chain. In the following discussion we will use primarily PER type

when using metamodules, considering their reachable space is the widest on a regular grid.

As we can see, the reachable space of a metamodule is significantly larger than the single

module one (in a regular 2D grid, a metamodule is able to reach at least 19 positions against

only 2 for a single module). In the remaining part of our study, we favor the use of metamodules

as the basic manipulating active unit.
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Chapter 2. Software and hardware platforms

Figure 2.5 – The four different types of metamodules. The Roombots active connection
mechanism is a four way symmetric mechanism that allows connecting two units with four
different relative orientations. We considered that a module is equipped with two ACMs
placed at the bottom connector C0X and at the top connector C3X. The four different types
of RB metamodules are obtained by connecting the C3X ACM of the first module to the C0X
ACM of the second module with a relative rotation of π/2 for each type. They are called
respectively PARALLEL (PAR), SHEAR-S (SRS), PERPENDICULAR (PER), and SHEAR-Z (SRZ)
(corresponding to a relative rotation of 0, π/2, π, and 3π/2, respectively).

Table 2.1 – Hardware specifications of a Roombots module (table from [272]).

Specification Value

Degrees of freedom 3 (continuous rotational)
Outer motors Faulhaber 2342 012 CR
Inner motor Faulhaber 2232 012 SR
Outer gearboxes reduction 305:1
Inner gearbox reduction 366:1
Outer dofs speed (No load) 26.6 RPM
Inner dof speed (No load) 19.4 RPM
Outer dofs nominal torque 4.9 Nm
Inner dof nominal torque 3.6 Nm
Number of connection ports 10 (active or passive)
Active connection type 4-way symmetric genderless

mechanical latches
Overall dimensions 110x 110x 220 mm
Weight 1.4 kg
Communication Bluetooth
Energy source 4-cell LiPo battery, 1200 mAh

autonomy ∼1 hour
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2.2. Experimental platform: Roombots

Metamodule types

S.M. PAR SRS PER SR Z

2 19 38 43 35

Table 2.2 – The number of positions reachable by the different types of metamodules in a
regular 2D grid. The number corresponding to the single module (S.M.) is indicated for
reference.
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Introduction

THE field of modular robotics addresses the question of the design and control of robots

made of multiple units, called modules, able to connect together using a connection

mechanism to form more complex entities. Among these robots, self-reconfigurable modular

robots are able to autonomously change their morphology to better adapt to the task they

have to perform. This is done by re-arranging, adding or removing modules inside the main

structure (videos illustrating these processes can be found at [21]). The problem of finding

the sequence of actions required to go from one configuration to another is known as the

"reconfiguration problem". This problem is computationally challenging since the number

of possible configurations increases exponentially with the number of degrees of freedom

and the number of connectors in the structure. Hou et al [115, 116] have proved the NP-

completeness of the self-reconfiguration process, justifying the use of heuristic methods.

Several approaches have been proposed to tackle this issue. Most of them use an abstract

representation of the module, called the sliding cube model [280]. In this abstraction, the

modules are represented by cubes able to slide perfectly on the surface of the structure. Multi-

agent frameworks have addressed the question of self-adaptation of a modular structure

to real-world perturbations using a consensus-based approach [286] as well as reaching

and grasping objects using modular robots with evolving morphology [24]. Gradient based

methods use a bio-inspired technique similar to hormone driving mechanism: the modules

are guided towards their goal position according to a gradient function based on the distance

to the desired final position. Unfortunately gradient methods are prone to be trapped in local

minima, which might lead to deadlock situations. The use of scaffolding structures [243] and

strict building sequence [129] have been introduced to avoid these situations.

The self-reconfiguration process can also be viewed as a planning problem. Methods from

this domain, such as Markov Decision Process, can be used to create a complete and efficient

framework [89], taking into account the kinematics models of the real hardware. Theoretical

justifications and complexity analysis are, in this case, available in a more systematic way as

opposed to the heuristic based approaches. In order to reduce the complexity of the recon-

figuration problem, the notion of metamodules has been developed: instead of considering

isolated modules, groups of modules are used and controlled as the basic elements of the struc-

ture (see [236] for an example of simulated results and [6] for a review of the related complexity

analysis). While all the previously cited techniques were based on distributed frameworks,
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a very promising centralized method using graph theory analysis has been developed and

recently improved ([10] and [98]).

Those approaches considered a system with only active units. When a structure needs to be

built, it might be worth both in terms of structural properties (rigidity, weight distribution,

elastic behavior, shape,...) and manufacturing constraints (cost, time,...) to include passive

elements (i.e. elements without actuation). Such elements need to be manipulated by the

active units and placed in the final structure at the right time. Similarly, a defective module

can also be treated as a passive unit and be carried towards a maintenance area or can be

moved from the working environment. In addition to this new concept of passive pieces

inclusion, we are also interested in creating algorithms that are readily transferable to the

robotic platforms. Indeed, the previously described theoretical methods suffer from their lack

of realism when representing the robots in use. Among others, the effects of bending (due to

gravity), deformation, faulty connection or faulty units are often neglected. In this part, we

present novel approaches to tackle both the classical self-reconfiguration problem but also

the reconfiguration of heterogeneous structures including passive elements. We emphasize

our attempt to include more realistic characteristics to our framework such as bending effect

active compensation, connection mechanism characterization, or torque limitation.

This part is organized as follows. We first (in chapter 3) introduce the terminology we are going

to use throughout the part. We define precisely the problem we are going to tackle (section 3.1)

and review the state of the art in terms of complexity analysis (subsection 3.2.1 and subsection

3.2.2), representations (subsection 3.1.1), and similarity measurement (subsection 3.1.2). We

also present advances regarding the use of metamodules to reduce the complexity of the SR

problem (subsection 3.2.3). In section 4.1, we present existing heuristics based approaches

to solve the self-reconfiguration problem. In subsection 4.1.2 we focus on a very successful

framework inspired by the gradient mechanism. We present afterwards (section 4.1.3) our

extension of this technique in which we introduce close range strategies for the different units

and study their impact on the number of deadlocks situations. In section 4.2, we describe

exact approaches to solve the SR problem. We cover more in details the method introduced

by Fitch et al. [90] (subsection 4.2.2) based on Markov decision process, from which we took

inspiration to create our reward based reconfiguration framework (subsection 4.2.3). Finally,

in chapter 5, we present a novel hierarchical planner to solve the SR problem with passive

elements. Preliminary results on how the augmented self-reconfiguration problem can be

reduced to a multi-robots planning problem are presented in Appendix B.
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3 Background

3.1 Problem definition

A structure made of an homogeneous set of Reconfigurable Modular Robots (RMR), called

a metamorphic system [56, 55], has the ability to change the arrangement of its composing

modules to adapt to changes in the environment or to a task redefinition.

A configuration of RMR is uniquely characterized by the following parameters:

• The spatial arrangement of the modules (their coordinates in space with respect to an

absolute referential).

• The value of the different motor positions for every module.

• The state (connected or disconnected) of every connector/linking element (active and

passive).

A shape-configuration is defined by the geometrical arrangement of its composing elements

(i.e. by the geometrical volume it occupies). A shape-configuration can lead to several config-

urations.

The configuration space is the set of all possible configurations that can be assumed by a RMR

system.

The problem of reconfiguration or metamorphosis consists in finding the sequence of move-

ments (motor positions) of the different degrees of freedom of the constituting modules as well

as the related connection and disconnection of the linking mechanism to go from a configura-

tion A to a configuration B. When this process is done autonomously (i.e. without intervention

of an external operator) we referred to it as self-reconfiguration or self-metamorphosis.

Hybrid SRMR can use a substrate, meaning a structured environment with connection ports

(most of the time passive) to perform their self-reconfiguration. By extension, modules can
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Chapter 3. Background

also be considered as substrate during the process. If a structured environment is not used we

talk about on-site self-reconfiguration (for example in the case of M-TRAN [183] or Superbot

[222]). Otherwise, when an external substrate can be used (in the case of hybrid platforms like

Roombots [238] or Smores [74]), we qualify the process of off-site hybrid self-reconfiguration.

The self-reconfiguration process can be either homogeneous, when all the active robotic

units are the same during the reconfiguration process, or heterogeneous, when different

active units are used. We introduce a new type of self-reconfiguration called Augmented

Self-Reconfiguration (ASR). In this case, the configurations can be composed not only of active

units but also of passive unactuated elements only equipped with connecting ports compatible

with the active units. Those elements could be partially equipped with sensors.

In order to evaluate our approaches, we consider the following requirements that reflect

constraints found in real life scenarios:

1. The environment can change dynamically through the reconfiguration process. In

particular, obstacles can be added, removed or moved during the process.

2. The final structure can change dynamically through the reconfiguration process, mean-

ing that one or more of the characteristics of a configuration mentioned previously can

be modified.

3. The environment is not perfect: the effect of bending of the robotic units as well as

connection failures are taken into account in the proposed methods.

We further assume that all the active units considered are capable of local sensing: they can

detect a neighboring module as well as obstacles and passive elements (in terms of geometric

shape, position, and orientation).

3.1.1 Configuration representations

In order to encode a configuration of reconfigurable modular robots, different representations

techniques have been proposed. Among them, graph representations have a prominent use.

Hou et al. [116] introduced the C-Graph representation in which every node of the graph

corresponds to a module and every edge to a connection, labeled by a tuple indicating the

connector of the first module, the orientation of the connection and the connector of the

last module. The C-Graph is not directed, making it impossible to determine from the graph

which active connection was used for the connection. Freudenstein et al. [93] introduced

the concept of kinematics graphs to study mechanical mechanisms composed of links and

joints. Baca et al. [12] used a variation of kinematics graphs by introducing connection

ports to encode the ability of RMRs to connect and disconnect dynamically between each

other. A module is decomposed into a set of joints and links and the graph represents the

connection between those sub-elements through connection ports. The corresponding graph
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is directed, with every node representing a link and every edge a joint. A number at each sides

of the connection link indicates the number of the connection port used (a 0 indicated the

lack of connection). The type of joint (spherical or fixed connector) is represented using a

different type of connection line (single for spherical and double for fixed connector). This

representation fully (and uniquely) described any modular robot assembly. Those information

can be incorporated into an Assembly Incidence Matrix (AIM) [51, 50] to ease its use inside

numerical algorithms. For a system with Nl i nk links and N j oi nt joints the corresponding AIM

is a (Nli nk +1)× (N j oi nt +1) matrix in which every value ai j indicates the port number joining

link Li to joint J j . The extra line in the AIM contains the type of joint and the extra column the

type of link (prismatic, spherical or no link). The advantage of using a graph representation

for a RMR structure is the ability to afterwards use the powerful tools developed in Graph

Theory [101]. A reconfiguration graph [76] can also be used to represent the SR process. In this

graph the nodes represent configurations of the structure and the edges linking two nodes,

an action (often atomic, i.e. involving only one degree of freedom) allowing to go from one

configuration to the other. A cost can be attached to the transition.

3.1.2 Similarity measurement between configurations

The ability to quantify the level of similarity between two given configurations is a key as-

pect when considering structures that will evolve over time. In order to guide this evolution

and to measure the degree of matching between an intermediate configuration and a goal

configuration, several metrics have been introduced. Baca et al. [12] proposed to use the

AIM representation to quantify the difficulty of moving from one configuration of RMR to an-

other. To do so, they identified repeatable assembly patterns inside the AIM between growing

structures in order to reduce the complexity of the displacement planning. Hou et al. [116]

proposed to use their C-Graph representation to encode the self-reconfiguration problem as a

graph matching and graph similarity problem. The authors demonstrate that the complexity

of the SR is linked to the number of matching nodes and connections between the initial

and the final structure. Despite the similarities between SR and graph similarity, even if the

initial and final graphs are acyclic the SR is still NP-Complete contrary to the polynomial

time solvable matching problem. Nelson [187] also compared the initial and final configu-

rations using graph matching theory. Castano et al. [45] considered static structures only

(in comparison with Chen et al. [50]) and represented them with only directed graphs. This

graph only representation allows them to equal the matching of two configurations with the

isomorphism search problem (in comparison with [263, 182] for example). This representation

can additionally manage loops and modules with multiple connection ports. The directed

graph representing a multi-port module can be unambiguously interpreted since it has no

automorphism [139]. Park et al. [203] compared approaches using spectral decomposition

of incidence matrices, classic isomorphism finding, and the 3DLL method using linked lists

to identify identical configurations. Pamecha et al. [199] and Chiang et al. [53] proposed to

introduce cost functions to quantify the difficulty to go from a given configuration to another

one considering a geometrical representation of the structures. They introduced different
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metrics (mainly the Hausdorff distance and the optimal assignment metrics [54]) and showed

how those metrics can be applied in the domain of SR. The authors differentiate between

single module motions and branch motions where the metrics have to be minimized to create

the driving force for the reconfiguration or to minimize the overall effort, respectively. In order

to find similarities between graph representation of SR structure, Asadpour et al. [10, 9] intro-

duced the notion of graph signature as a unique identifier allowing for a fast isomorphism test

between structures (the method of computation of this graph signature was further improved

by Golestan et al. [99], see subsection 4.2.1). The structure is represented by a labeled graph

(undirected for hermaphrodite connection mechanisms and directed otherwise) in which

the nodes are the modules and the edges are the connections between them. The label is

uniquely computed based on the two connectors attached in the connection as well as the

relative rotation between the modules.

3.2 Evaluation metric and complexity analysis

3.2.1 General concepts of complexity

We present in this section an intuitive explanation of several complexity concepts. For a formal

definition of these notions, please refer to [175].

A decision process is a problem that can be binary answered. The main classes of decision

process are the following:

• The class P of decision problems contains those that can be decided in polynomial time.

• The class N P contains the problems for which any answer can be verified (not found) in

polynomial time.

• An N P − compl ete problem is an N P problem to which any other N P problem can be

reduced to in polynomial time.

• A problem A is NP-hard if there is an N P − compl ete problem B reducible to A in

polynomial time.

3.2.2 Optimality and complexity

A reconfiguration sequence is optimal if it minimizes the number of connections and discon-

nections needed to transform the initial structure I into the final structure F. The problem of

SR is intractable, considering that both the state space, i.e. the possible configurations that

can be created using a number n of modules, and the actions space, i.e. the set of actions

that can be performed by the modules at each time step, grow exponentially with the number

of active units considered. It has been proven to be NP-Complete [116, 115] for chain type

30



3.2. Evaluation metric and complexity analysis

modular robots using a reduction of the problem to the 3-PARTITION problem (known to be

NP-Complete). As a consequence, the optimal solution for SR cannot be found in polynomial

time.

To be closer to the hardware constraints, the optimality of the SR can also be measured using

different criteria:

• The time needed to perform the task.

• The energy consumption, which is tightly linked to the angular displacement of the

modules and the torque applied to the module.

• The number of modules needed to perform the task .

In the case of Augmented SR, the notion of complexity becomes more a multivariate criterion

based on the following parameters:

• The ratio between active units and passive units (in case of shape configuration for

example, when those numbers are left open).

• The spatial placement of the passive and active units in the configuration.

• The relative placement of the initial configuration with respect to the final one.

3.2.3 Granularity analysis: use of metamodules

In order to tackle the NP-Completeness of the SR problem, a variety of heuristics has been

developed. To improve the time complexity of those heuristics and to limit the motion

constraint of their platform, a large number of authors considered using metamodules (i.e.

structures composed of several active units) as the basic active blocks of their reconfiguration

algorithm. First introduced by Kotay and Nguyen [144, 189], the metamodules have been

shown to lead to more efficient SR planning. Nguyen et al. [189] achieve a O(n) in time

SR and Prevas et al. [212] a O(n2), with n corresponding to the number of modules in the

structures. The main robots considered were the Crystalline [273] and the Telecube [249]

platforms. Depending on the hardware constraints (mainly the strength of the module) for

the Crystalline platform, the following time complexity was achieved (n corresponds to the

number of modules in the structure):

• O(n2) for constant strength [221, 271].

• O(n) for linear strength [6].

• O(
�

n) for linear strength and increasing velocities [218] (2D case).
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• O(logn) time for linear strength and acceleration [7] (using O(n logn) atomic moves)

(2D and 3D case).

Metamodules specific to a given hardware platform have been devised (i-Cube [270], Crys-

talline [221], Atron [60], uniform modular robots [212], and cube style MR [271]). The main

drawback of these designs is that they are tightly linked to a given platform or type of platforms,

making it difficult to extend the follow up theoretical contribution on planning. To alleviate

these constraints, Dewey et al. [76] proposed a generic and ideal metamodule design called

pixel. By extending the work of Abrams et al. [3], the authors defined a single movement

primitive (in this case, the ability for a module to be created or destroyed at any point of the

structure) to eliminate local constraints (i.e. the constraints linked to the module hardware).

The authors proved that this metamodule configuration was holonomic and demonstrate that

any practical system could be reduced to the pixel system. They derived from this result a class

of practical metamodules to remove the local constraints (generalization of [189, 75, 243]). In

the system, the motion is ensured by transferring modules between the different metamodules

while enforcing global constraints such as connectivity or stability. The goal of the approach is

to construct a reconfiguration graph based on those metamodules in which two nodes are

adjacent if and only if there exist a single motion primitive between those configurations. The

authors proved that their planner was complete and effective. Metamodules can be used to

create equivalent structures for different types of hardware platforms, making possible to

use universal algorithms developed for a given class of platforms for a metamodule build of

different hardware elements. Kurokawa et al. [149] demonstrated that 8 M-TRAN modules

were equivalent to a 2D Crystalline module. Aloupis et al. [5] showed the equivalence in

terms of class of modules between M-TRAN, SuperBot, Molecube, and Roombots (used in a

given metamodule configuration allowing contracting and protracting motion) and the Crys-

talline/Telecube platforms. This result allows to apply the same time complexity results as the

ones mentioned previously, without having to consider the intrinsic complexity of the specific

hardware platforms. One major drawback of this approach is that it considers structures

impossible to build with the current hardware (58 modules in [5] for example, which exceed

the torque limitation of any current modular robot). Moreover, as pointed out by Hou et al.

[116], the complexity analysis neglects the hardware constraints such as bending, connection

failure, and dynamical effects during the moves. A promising work exploring fault tolerance in

self-reconfiguration using metamodules has been conducted by Christensen [57].

3.3 Conclusion

We presented in this chapter the foundation of the SR problem in terms of terminology,

complexity analysis, and structure representation. In the next chapter we describe the state of

the art related to SR algorithms, both those based on heuristics approaches (section 4.1) and

those based on exact approaches (section 4.2), and introduce the advances we made in both

domains.
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4 Self-reconfiguration of homogeneous
structures

Using autonomous self-reconfigurable robots to create arbitrary structures is an idea that

has been widely studied in the past decades. Many approaches have been proposed and

hardware developments have followed. Unfortunately, those theoretical approaches often fail

when transferred to existing robotic platforms because they consider almost perfect physical

systems. In this chapter, we present first a state of the art of the heuristics based methods used

to solve the SR problem (section 4.1) and give more details regarding the gradient approach

(subsection 4.1.2) introduced by Stoy et al [243], that has been used to develop our own

reconfiguration framework (subsection 4.1.3). We introduce in section 4.2 different exact

methods relying on abstract mathematical models allowing a more systematic complexity

analysis and ensuring the termination of the process in a given number of moves. We focus

(subsection 4.2.2) on a framework describe by R. Fitch [90] that inspired our implementation

of a reward based reconfiguration algorithm (section 4.2.3).

4.1 Heuristic approaches

4.1.1 Stochastic methods

Chirikjian [55] defined the concept of metamorphic systems. The author introduced four

main constraints regarding the design of the basic units for a SRMR system: (i) the modules

need to be homogeneous to ease the planning process, (ii) the shape of the modules should

allow an efficient filling of the space, (iii) a single module should be self-sufficient in terms of

movement (it should be able to locomote autonomously over adjacent modules), and finally

(iv) every module should be equipped with an active connection mechanism to allow multiple

units to act as a single kinematic entity. A hierarchical set of rules is used to complete the 2D

self-reconfiguration process of hexagonal shaped modules actuated using alternating opposite

polarities on their faces. The SR rules includes the preservation of the structure connectivity,

the conservation of the total number of modules, the synchronous motion of one module per

time step, and (intuitively) the impossibility for a unit to move in an occupied spot. The SR

process is guided using a cost function quantifying the amount of changes required to go from
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one configuration to another, using single action steps.

Murata et al. [181] proposed a 2D stochastic self-reconfiguration algorithm based on the

diffusion technique augmented with a leaking factor. In order to spread the value of the

fitness function among the different modules, the authors used an analogy with a water

reservoir system: every module is a reservoir connected to its neighbors and the level of water

between the units will equilibrate as time passes (meaning that the value of the fitness will be

propagated throughout the structure). To avoid overflow when the value of the fitness changed

(the total volume of water is then not conserved), the authors introduced a leaking factor into

the diffusion equation. The authors listed several advantages of using homogeneous units

in a SRMR systems: (i) the robustness of the system against failure (fault tolerant and low

maintenance cost thanks to self repair capability), (ii) high adaptivity to the environment, and

(iii) cost efficiency using the mass production aspect. Penrose [205] in 1959 already pointed

out the necessity of having parts with shapes allowing for an easy and complementary pairing

when designing mechanical units for self-organization. Murata et al. introduced a 2D modules

named fracta using magnetic connection to achieve SR. Their design was guided by simplicity

to ensure the reliability of the actions of the system. Every unit can have up to 12 different

connection states, depending on the type and the number of connections established by the

module. A transition diagram to represent the possible change of the connection states of a

unit is introduced, where a node corresponds to a given connection state and an edge to a

possible transition between two states (a more complex cost function could have been used,

like the required energy for example). The distance between two states is measured using a

cost function simply defined as the minimal number of edges between the two states. The

authors used the unit type and the types of its neighbor to describe a whole shape by strings of

connection types. This representation is not unique. The authors also introduced a similarity

measure between modules’ states based on the current type of unit in comparison with the

final type and with the neighboring units’ types. This measure is used to define the moving

strategy. To communicate those values between the units, a diffusion field with an additional

leak constant is introduced. This technique proved to be efficient but suffers from deadlocks

and is not complete (due to its stochastic aspect).

Murata et al. [182] introduced the first 3D SRMR and associated planning technique. The

authors classified the different types of studies conducted in the field of modular robots as (i)

purely theoretical work (cellular automata [188, 152] and swarm intelligence [18]), (ii) RMR

(Yim [282], Hamlin et al. [104]) and (iii) 1D/2D SRMR. They introduced an homogeneous 3D

SRMR unit composed of a cube with connecting arms attached on its six sides. At the end of

each arms an ACM is implemented. The authors pointed out the two main difficulties to go

from 2D to 3D systems, namely the effect of gravity and the geometrical constraints imposed

by the use of the third dimension as opposed ot the 2D case. They used symmetries to simplify

their design and took inspiration from their previous work on fracta [181]. They are the first

ones to use MM to achieve pair-wise movement of their unit (one unit rotates another unit to

its destination). By doing so, they conformed to the constraint of self-sufficiency mentioned

34



4.1. Heuristic approaches

by Chirikjian [55]. They listed several requirements for hardware design. In order to describe a

shape they use connection types lists. The SR algorithm is based on relaxation process [97]

and Markov random field [97]. The algorithm was implemented in a distributed and parallel

way but only tested on a single structure, on which it showed good performance.

Tomita et al. [263] developed a new self-assembly and self-repair method for the 2D fractum

system based on the bio-inspired nucleation method. They stressed the advantages of ho-

mogeneous systems (both in terms of hardware and software) over heterogeneous ones in

terms of replaceability, reduction of production and maintenance cost, design freedom, and

scale extensibility. They pointed out the analogy with the cells of living organisms that share

and store the same genetic information. They proposed a distributed approach consider-

ing system homogeneity and local communication between the units. They introduced a

method to locally describe the goal shape of the SR process. The concept of self-repair is also

introduced as a mean to ensure the self-sustainability of the robotic system. The notion of

self-reproducing systems was introduced by Von Neumann in 1966 [188], but those concepts

were difficult to implement using real mechanical systems. A significant amount of work has

been conducted in this field, mainly on the theoretical level ([278, 153], and references within).

Concerning hardware development of self-replicating systems, Penrose [205] proposed a brick

model to simulate the metabolism of living organisms. Ichikawa [119] extended this work

to create the first 1D self-reproducing robot. Kokaji [141] introduced his "fractal machine"

composed of a triangular units and Chirikjian et al. [54] proposed a hexagonal unit equipped

with three servo motors to change its shape and a connection mechanism to attach to adja-

cent units. Pamecha et al. [200] also proposed a square unit using sliding mechanism for its

displacements. Ueyama et al. [268] introduce the CEBOT robot, an hexagonal 2D unit able

to self-reconfigure. Few 3D systems have also been proposed [281, 143, 182]. Regarding the

assembly process, Lindenmayer [162] developed a mathematical model of the development

of living organisms, called L-system based on cell division, but the model was difficult to

transpose to real hardware because of the impossibility to provide self-replicating capabili-

ties to the units. A self-assembly model has been proposed by Thompson et al [260], but it

cannot be applied due to unrealistic connection mechanisms. Applicable and more realistic

methods have been proposed by Chirikjian et al. [54] and Beni [18]. The authors use their

previously developed 2D fractum unit [181]. A fractum unit is composed of six connecting

arms, each equipped with either permanent magnets or electromagnets (female and male

arms, respectively). They used changes in polarity of the electromagnet to perform three basic

actions: change the connection type between two units, cut the connection, and move a unit

on a substrate made of other units. They modeled every units as a circle with six branches

(corresponding to the arms). The global configuration was described using list of connections

types (twelve in total, corresponding to the arrangements of the arms), to encode the state of

the connection between the units. The process of self-assembly was driven using random mo-

tion. A unit would evaluate the difference between its connection state and the goal state and

move randomly if the difference is not null. The frequency of the movement is proportional to

the magnitude of the difference between the connection states. This process was well suited
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for small structures with symmetries (97% of success for a 10 unit symmetrical structure) but

suffered from low success rates when considering larger unsymmetrical structures.

4.1.2 Gradient based approach

In this subsection, we present in details the SR method proposed by Stoy [243] in 2006. The

idea of this approach is to use an automatically generated cellular automata to control the

growth of a modular structure made of ideal cube units. The growth is guided from seed

modules using three different types of gradients. This method does not rely on planning

procedure explicitly, by introducing non-deterministic building sequences. The main issue

encountered when using such techniques is the difficulty of ensuring the convergence of

the algorithm. Indeed, gradient based methods are prone to local minima issue. To solve

this problem, Bojinov et al [23] have introduced the idea of functional properties of the final

structure: there is no need to build exactly the final configuration and it is sufficient to create

a similar structure in terms of functionality. Another way is to impose a strict order in the

construction of the structure [129]. Stoy uses a scaffolding technique to avoid local minima.

The CAD model is approximated by a structure made of cubes, itself approximated by basic

substructures constituting the "skeleton" on the configuration.

Cellular automata

In [243], cellular automata (CA) are used to represent the desired structure to be build by the

modules. The most difficult part in designing CA is the creation of the right set of local rules

that will lead to the final configuration. K. Stoy [243] proposes an automatic method to create

these rules from the CAD representation. The four main required steps of this part can be

summarized as follows:

1. Approximation of the CAD model: the 3D model is filled with cubes.

2. Scaffolding: building blocks are used to further approximate the previous structure,

avoiding deadlocks and local minima in the process. This step will ensure built-in

convergence of the algorithm.

3. Numbering: each cube is given a unique ID in the final structure.

4. Rules generation: a rule is generated for each neighboring pair of modules (i , j ). The

rule will look like: the CA in the direction �i j should change its state to s(i ) if it is in the

state s( j )

The final cellular automaton is composed of all of these rules. The initial state, called the

wandering state, is chosen different from any already existing state.
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Reconfiguration

The reconfiguration procedure is composed of the following three elements:

1. State propagation

At the beginning of the reconfiguration procedure, each module is initialized using the

same copy of the CA. One module will be randomly chosen to be the seed and will be

given a state among the available states. The structure will then evolve according to the

CA rules. If needed a module is able to attract wandering modules. When a module fills

a position, it becomes a seed. If this position is part of the final structure, the module is

considered as finalized. The process ends when all the rules have been fulfilled.

2. Gradient generation

A concentration gradient is used to attract the wandering modules into unfilled posi-

tions. The seeds act as sources which emit a simulated chemical in all the neighboring

directions. The range of this emission can be controlled. The value of the gradient will

be propagated using message passing between neighboring modules. The non-source

modules will compute the concentration of the gradient at their position using the

following formula:

cmodule = max
i∈R

(ci )

where R is the set of received values from the neighboring modules.

In order to avoid unnecessary moves to locate the sources, a vector gradient (VG) is used.

The value of the gradient will be made locally available by computing VG as illustrated

on figure 4.1.

Figure 4.1 – The computation of the vector gradient. The considered module is the white
one. The hatched module is the neighbor with the maximum concentration. v is the vector
gradient of this module and x and y forms a regular base. r is the resulting vector for the
considered module: �r =�v +�y (adapted from [243])

.

3. Connectivity check

One strong constraint in the self-reconfiguration process is to maintain the connectivity

of the structure. Disconnection during the process might lead to falling modules and

thus damaged hardware. Moreover, disconnected groups of modules might form. These

groups will not be able to reconnect, leading to deadlock situations. Since the different

modules can move asynchronously and simultaneously, some rules are required to
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ensure the connectivity of the structure. The only modules which are static are the

finalized one, which form a connected structure. They can thus become the sources of a

new gradient, called the connection gradient (CG). This gradient is propagated the same

way as the concentration one. The following set of rules is introduced to define when a

module can move without any risk of connectivity break:

• The concentration of the CG in the module and its neighbors is strictly greater

than zero. Indeed if the concentration of the CG in the module is equal to zero it is

considered as a wandering module, i.e. a module that is currently moving.

• The fact of moving this module doesn’t change the CG in the neighboring mod-

ules. This means that the module has no influence on the connectivity of the

substructure.

• Module is not a source.

Stoy [243] proves by induction that these rules are sufficient. Using this checking proce-

dure, several modules are allowed to move at the same time. The only strong limitation

introduced by this connectivity constraint is that sources cannot be removed from the

structure during the process. As a consequence locomotion through reconfiguration is

impossible.

Experiments

In order to perform the experiment in a simulated environment, the modules were consid-

ered as perfect cubes able to move in a regular 3D grid (lattice system). Each module has

6 hermaphrodite connectors and can sense its neighbors. It can also freely slide over the

surface of the structure and around neighboring units. The simulated system is thus more

powerful than current hardware. Furthermore the connection/disconnection sequences are

not considered. During each time step, the module does the following:

• Process received messages.

• Send messages to neighbors.

• Move if possible.

The experiments consisted of making an initial squared structure to reconfigure into a disk

and then into a sphere. The experiments illustrate the almost linear dependency between

the reconfiguration time and the number of modules in the structure. The evolution of the

total number of moves was also shown to be faster than linear. In all the cases the system

converged to the desired shape. Finally, the majority of local messages was used to propagate

gradient in the structure.
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Conclusion

K. Stoy [243] presented a new approach in the domain of self-reconfigurable modular robots

based on a cellular automaton to represent and generate the final structure and several

gradients to guide the modules into the final position.

One of the strong contributions of the article is the development of a complete framework for

performing reconfiguration: the desired structure is created using a CAD software and can

be directly converted into a configuration to be reconfigured into. The use of a scaffolding

structure ensures the convergence of the process.

One weak point of this work is the lack of hardware consideration. The algorithm uses a perfect

model of a module without taking into account the connection/disconnection procedure.

The case of two modules trying to fill the same position has also been eluded. Moreover the

message passing between the units is considered perfect, without any loss. Finally, theoretical

analysis is missing for the convergence induced by the scaffolding method.

4.1.3 Our approach
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• the analysis of the results.

• the implementation of the framework.

This section describes the current implementation of our reconfiguration framework for the

RB platform. We took inspiration from the work done by K. Stoy [243] and developed a gradient

based approach to solve the reconfiguration problem. We provide here a summary of the main

steps of the methods followed by suggested improvements and their expected influence. A

more detailed description of our framework can be found in [236] and [239].

Current implementation

The problem that we are trying to tackle is the reconfiguration of several metamodules (MM)

into a final shape. This reconfiguration through locomotion takes place in a structured

environment, i.e. with embedded connectors in the floor, ceiling, and walls, to which modules

can attach. MM are the basic units considered in our case. Each metamodule is equipped

with only two active connection mechanisms, one at in the bottom hemisphere of the first

module (C0X, called afterwards the foot connector), and one in the top hemisphere of the

second module (C3X, called the head connector afterwards). They are guided towards their

final position using a force field approach. MM are able to broadcast messages between each

other to acquire the necessary knowledge about their surroundings (neighbors, obstacles,

...). To perform the basic moves leading to the final position, a precomputed look-up table

composed of shape-transitions (motor angles) is used by the MM along with a precomputed

collision cloud to avoid self-collision and collision with other MM. The moves are done in a

fully asynchronous fashion, allowing several MM to reconfigure at the same time. An overview

of the framework is presented on Fig. 4.2.

Metamodule shape and initialization At the beginning of the algorithm the metamodules

are randomly placed on a 2D structured environment made of passive connectors. The MM

are attached by their foot connector. They are restricted to be in five different shapes during the

reconfiguration process: I ,L,S,U and 3D−S (see Fig. 4.3). The motors angles representing the

transition between these shapes are stored in a database (motion planner database depicted

in Fig. 4.2) and used when needed by the MMs.

Reconfiguration through locomotion During the reconfiguration process, the MMs go

from one shape to another using the precomputed transition database. They use only two

active connection mechanisms (one at the top of the MM and one in the foot) which are

alternatively connected to the ground. After each move the MM checks the current state of its

neighborhood and requests the precomputed collision cloud corresponding to the desired

shape to shape transition. It also broadcasts its position to the neighboring MMs, via the world

controller.
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Figure 4.2 – Overview of our gradient based reconfiguration framework. The framework is
composed of two main blocks, the low level hardware specific block (depicted in blue) and the
high level hardware independent block (depicted in green). They are linked together using
a message passing library (in yellow). The hardware specific part of the planner is used to
precompute the required moves to achieve shape to shape transition (kinematic planner) and
to store them in a database (motion planner). In the high level part, the seed controller is
computing the gradient for the different positions on the grid (gradient controller) and it is
deciding on the next move to perform based on this value (grid controller). The transition
angles to go from the current position to the goal position in a collision free fashion are
determined by querying the motion planner database. The state of the world (i.e. the position
of the modules, the state of the final structure, and the state of the seeds) is managed by a
centralized unit (world controller).

Seeding mechanism In order to guide the MMs during the reconfiguration process, goal

positions have to be defined. These final positions will be the seeds of the shape and play the

role of attractors. To ensure the feasibility of the building procedure, a bottom-up approach is

imposed: different levels are defined in the final shape and the corresponding seeds are only

available when the seeds positions in the previous level have been filled. The seeding and

leveling are provided by the user.

Gradient In the framework, the MM knows its absolute position in the 3D grid as well as

the position of the active seeds and the one of its neighbors. The MM can thus compute the

vector force corresponding to the different seeds. The neighboring modules are included

in the computation as repulsive sources. Three approaches have been tested regarding the

influence of these modules:

1. The greedy approach: the neighboring MMs do not have any influence and the modules

tend to go straight to the seeds. The collisions are prevented by locking modules which

are too close from each other before deciding which one should move first.

2. The slope approach: we consider a gradual decrease of the influence of the neighbor
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Figure 4.3 – The five metamodule shapes used in our SR framework. From left to right: I-, L-,
3DS-, S- and U-shape (adapted from [235]).

(a) A box like structure (4
MMs).

(b) A chair like structure (6
MMs).

Figure 4.4 – The two goal shapes used to test our gradient based reconfiguration framework.
The two shapes are placed in a structured environment equipped with connectors (white
circles).

modules with the distance. Only the metamodules in the range of the considered MM

will have an influence. This approach is similar to the temperature test introduced by De

Rosa et al. [75] in their shape sculpting framework via hole motion: the probability of a

hole appearing depends on the distance between the site and the closest point on the

perimeter of the target geometry, modulated by a decay factor.

3. The step approach: the MMs are given the same influence in the whole range of the

considered MM. This was intended to minimize collisions between MMs by enforcing a

kind of minimal distance policy.

Results We performed several experiments in simulation using up to six metamodules. The

goal shape was either a box-like structure (composed of four MMs) or a chair (with six MMs).

We repeated the experiments with the four different types of MMs to analyze their kinematic

abilities. We counted the number of deadlock situations (i.e. when the MMs were not able
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to build the final shape), the amount of collisions and the overall number of moves needed

to complete the reconfiguration task. Each experiment was repeated either three times (for

the box shaped final structure) or four times (for the chair-like goal structure) with randomly

shifted MMs initial positions. The seeding procedure has been generated by hand. We varied

the seeding order for the chair setup using three different strategies: (i) the seeds correspond-

ing to the legs of the chair are given in circular order, followed by the two seeds corresponding

to the back of the chair (one after each other); (ii) compared to (i), the seeds for the legs are

given in a cross-wise order; (iii) all seeds for the leg are given at the same time followed by the

two seeds corresponding to the back of the chair (also at the same time). All the experiments

were conducted with the four types of MMs (Fig. 2.5) and the three different gradient strategies.

We recorded the number of deadlocks, the number of collisions, and the number of moves

needed during the experiment. Those results are summarized in Table 4.1, Table 4.2, and

Figure 4.5.

Table 4.1 – Four MMs box assembly: numbers refer to the number of collisions (CL). Deadlocks
(DL) are indicated by ∗. Table columns indicate three different strategies: greedy, slope, and
step function for the force vector estimation. Rows show the four different metamodule
configurations (PER, PAR, SRS, SRZ). Three sets of experiments per configuration are shown,
with the initial position of the MMs randomly shifted. The number of collisions happening in
deadlocks are excluded from the collision counting (adapted from [236]).

greedy slope step DL CL

PAR 4∗ 0 0∗ 0∗ 2 12∗ 0∗ 2 2∗ 6 4
PER 5∗ 0 2∗ 1∗ 1 0 0 1 0 3 2
SRS 0 0 0 0∗ 3 5 0 0 1 1 9
SRZ 0 1 0 0 0 0 1 0 0 0 2

DL 4 4 2 10
CL 1 4 5

Table 4.2 – Deadlocks (DL and ∗) and collisions (CL, numerical values) for the reconfiguration
into a 6 metamodule chair-like structure. Four experiments for each combination of MMs
types and gradient strategies are performed with different seeding orderings (adapted from
[236]).

greedy slope step DL CL

PAR 0∗ 0∗ 1∗ 3 7∗ 1∗ 1∗ 0 9∗ 2∗ 1∗ 2∗ 10 3
PER 1 6 0∗ 8 2 1 2 1 5 1 1 1∗ 2 28
SRS 0∗ 2 1 0 1∗ 1∗ 1 0∗ 8 7 0 6 4 25
SRZ 0 0 2 0∗ 0∗ 2 0 3 2 0∗ 1∗ 4∗ 5 9

DL 6 7 8 21
CL 25 12 30

The most relevant observation we made was that metamodules of type SRS and PER were
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(a) 4 metamodule cube (b) 6 metamodule chair

Figure 4.5 – Bar plot showing the average number of moves four or six metamodules (PAR, PER,
SRS, SRZ type) need to build a cube or chair-like structure, respectively. Each bar represents
one experiment (repeated 3 and 4 times for the box shaped final structure and the chair-like
structure, respectively). Colors indicate the force-field strategies (greedy, slope, step function).
(a) Building a box from four MMs is the easiest task of both, with 20 moves required on average.
PAR metamodules perform the worst on average, while the SRZ metamodules perform better
on average. The greedy strategy tends to result in the least amount of necessary moves. (b)
The chair structure is more complex to build and the results show that the step strategy needs
longer to assemble. Only the PAR and SRS metamodules type succeed to complete the chair
with this strategy. The slope strategy performs very well in both successful cases (for PER and
SRZ metamodules) (adapted from [236]).
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more successful on average at building the considered structure than the three other types. In

terms of gradient strategy, we observed in the more complex case of the chair that the step

strategy leads to a larger number of moves whereas the slope strategy performed better than

the two others on average. The greedy approach tends to dominate only for the simpler case

of the 4 MM box. In terms of seeding strategies, we did not observe significant differences

between the three approaches we proposed. Nevertheless, our results tend to show that

optimizing the seeding recipe in comparison with a random choice of the seeds placement

reduces the number of deadlocks.

4.1.4 Conclusion

The technique that we presented partially matches the requirement we specified in section

3.1:

1. Dynamic environment: since the computation of the different moves takes into account

a local sensing of the environment (for other modules and for obstacles), it is possible

to add or remove objects from the setup on the fly.

2. Final structure changes: the final structure can also be changed as long as seeds are

defined in the added parts.

3. Realistic environment: the active units are considered as perfect (no bending included

or failed connections). However failure of some modules can be handled as a special

case of adding obstacles into the environment.

This method presents the advantage of being scalable in terms of number of modules. The

centralized aspect can be weakened using local communication between the units instead of

a central entity managing the state of the world.

One of the main weaknesses of our approach is the possibility of ending into a deadlock

situation. We have however observed that the strategies we proposed tended to reduce the

number of deadlock situations, especially for the more complex cases.

4.2 Exact approaches

4.2.1 Graph isomorphism

As we have described before (subsection 3.1.1), structures composed of modular robots can be

represented by graphs. The SR process can be viewed as the convergence of the initial graph

representing the initial structure towards the graph corresponding to the final desired state.

Golestan et al [99] proposed an improved version of the method introduced by Asadpour et al.

[10, 9] to perform SR for chain type modular robots using graph invariant. The configuration

of the structure is captured using a graph in which a node corresponds to a module and an
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edge to a connection (undirected for genderless connection mechanisms, directed otherwise).

On top of this representation, the authors proposed to use a transition graph where nodes

correspond to a given configuration of the structure and edges to actions. They used the

notion of graph signature (GS) introduced in [10] as an isomorphism invariant to encode the

3D structure of a configuration. GS is computed using a modified Depth First Search method

on the labelled graph of the structure. They sped up the computation of this invariant by

using the notion of power centrality [25] in case of symmetric modules. GS is used by the edit

distance metric to guide the search towards the final configuration together with the RRT [156]

planning method to determine the possible actions at each time step. The authors presented

encouraging results for the M-TRAN (with four, eight, and twelve modules structures) and

SuperBot (with four and eight modules structures) platforms, with a significant decrease of

the required computation time to find the first valid solution to the SR problem.

4.2.2 Markov decision process

Reconfiguration planning can be defined as the problem of finding the sequence of module

moves to go from a configuration A to a configuration B.

In [90], Fitch et al. developed a flexible reconfiguration framework allowing the use of different

kinematic models. In this article, the main idea is to represent the reconfiguration problem as

a path planning problem directly inside the kinematic action space of the considered modules.

This work is a follow up of a previous paper [88] where they developed their Markov Decision

Process (MDP) formalism, not in the native kinematic space but for an abstract model of

sliding cubes [280]. Many authors use the concept of metamodule (a group of two or more

modules assembled together) to reduce the number of kinematic constraints in the problem

(as presented in subsection 3.2.3). The authors [90] have chosen not to use MM to exploit the

possibility of dynamic grouping during the reconfiguration process. A method taken from the

field of reinforcement learning (MDP) is used to represent their path planning problem and to

solve it using dynamic programming [220]. A navigation function is defined and updated as

modules move. The module kinematics will be implemented through the transition function

of the MDP. The algorithm allows locomotion through reconfiguration: the goal shape is made

of convex or non convex elements and the modules move to fill this shape, which can then be

shifted. This framework also takes into account obstacles in the way.

The MDP planning is composed of two main elements: a connectivity checking procedure

and the actual planning using a global navigation function. We first describe the connectivity

checking method and the formulation of the planning problem as a MDP. Finally we present

how the MDP has to be modified to integrate the module kinematics.
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Connectivity graph

Before a module is allowed to move, we have to ensure that it remains connected with the main

structure. In graph theory, the notion of articulation nodes fits perfectly with this situation. An

articulation node in a graph is defined as a node whose removal would lead to a disconnected

graph. It would then seem natural to check for the "articulation modules" before moving

and to consider them as locked. The main problem with this technique is that checking for

simultaneous removal of modules inside the structure is much more challenging. The authors

propose a local method based on the definition of connecting cycles. For each potentially

moving module, a connectivity graph composed of the adjacent modules is built. Then a

local search is done to find existing paths between all the nodes of the connectivity graph

without including the considered module. If a path exists between them these nodes form

a connectivity cycle and the module can be moved. The depth of the search is fixed at the

beginning but can be increased if required. The overall process relies on a message passing

procedure between adjacent modules. The modules along the path of a moving module are

locked. This locking corresponds to a synchronization of the modules to prevent collisions. If

two modules want to fill the same position, the moving one is chosen at random. Since this

process is local, many modules can move asynchronously at the same time.

Planning using Markov Decision Process

The planner is based on a value function updated continuously to take into account topological

changes within the structure. This function is used to globally guide the modules towards the

final configuration. A general MDP is a sequential decision making method composed of four

main elements:

• A state set S: all the possible states of an agent.

• An action set A: all the possible actions that can be taken by an agent.

• A transition function T : a function mapping the state-action space into the state space.

• A reward function R: a function mapping the action space into R or N.

Most of the time, the goal of an agent is to find the set of actions (known as the policy) that

lead to maximum reward. The transition function can either be deterministic or stochastic,

known or unknown. If T is known, then the MDP can be solved in polynomial time [165] in

the number of states using dynamics programming.

In the case of the abstract module representation (sliding cubes model), S corresponds to the

set of faces, A is composed of two actions (see Fig. 4.6), and the reward is −1 for each move

(the best policy will tend to favor fewer moves). The value function is stored in a distributed

fashion. Each module only stores the value of its connectors and updates it using the message

passing process when a neighboring module state changes.
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Chapter 4. Self-reconfiguration of homogeneous structures

Figure 4.6 – The action space A for the abstract modules (adapted from [88]).

Module kinematics

The main novelty introduced by Fitch et al [90] is the use of module kinematics in a built-

in fashion inside the previous MDP formulation. As a consequence the complexity and

convergence analysis can directly be applied to the modified formulation. The MDP will

be adapted as follows. The abstract state set and action set are replaced respectively by the

real possible joint angles and the connector state. The new state space is determined by the

transition function: if the state is reachable, then it will be added to S.

The new action space is based on the kinematic model of the robots. The actions are gener-

ated iteratively by incrementing the different joint angles of the module. More precisely the

following algorithm is used, for a single module move:

1. Given the actual state of the module, its lattice position, the value of its joints, use

forward kinematics to compute connectors position.

2. Iteratively generate the set of actions:

• Permute the degrees of freedom (i.e. increment or decrement their value of a

multiple of π
2 ).

• If no connection is possible, the configuration is discarded.

• Otherwise a collision checking is performed.

Some moves require the use of two modules (for example, when a convex edge needs to

be overcome using Roombots modules). The additional required module is called a helper

module. In this case the previous algorithm is modified by considering the joint angles of both

modules. Since this algorithm is exponential in the number of considered joint angles it is

more suited for lattice systems.

Results

The authors presented two examples of self-reconfiguration for structures made of Superbot

modules: a nine modules line shape evolving into a box shape and a eight cube like structure

reconfiguring into a goal shape specified by a given bounding volume.
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Conclusion

Fitch et al. [90] present a reconfiguration framework based on a path planning method directly

into the kinematic space of the considered modular robotic units.

The contribution of this paper is twofold. Firstly, the authors have refined the usual sliding

cube abstraction to directly include the kinematic constraints of the robots. Their framework,

beyond the fact of being more realistic in terms of hardware representation, allows the use of

virtually any modular platforms which kinematics model is known. Secondly they managed to

provide a strong theoretical justification and analysis of the problem, showing the expected

complexity of the reconfiguration process using their algorithm. By using a Semi Markov

Decision Process, they ensure that the Markov property holds, i.e. that the future states of the

system will only depend on its present state.

One of the main weaknesses of this article is the lack of real hardware experiments. The authors

use "hardware in the loop" composed of communication and computation boards to simulate

the distribution of tasks, the message passing and the actual computational power of a real

modules (see [150]). Nevertheless, the complexity of the reconfiguration process often comes

from the mechanical parts (backlash, elasticity effects, ...) and the connection/disconnection

procedure (misalignment, incomplete connection, ...). The algorithm does not take into

account possible failures of modules that might then be obstacles during the process. Loss

of messages and corrupted data are also ignored. Finally, the complexity of the algorithm for

generating the action space (which is in fact a brute force approach) might become prohibitive

when dealing with chain or hybrid type modular robots.

4.2.3 Our approach

References and contributions

This section is based on the following master thesis project:

M. Stöckli, "Reconfiguration algorithm for adaptive furniture", Master’s thesis, École Poly-

technique Fédérale de Lausanne (EPFL), 2012. Available at:

http://biorob.epfl.ch/page-81014-en.html

My contributions were:

• general guidance to develop the implementation of the framework.

• proposed evaluation metrics.

The external contributions were:

• analysis of the results.

• implementation of the framework and critical thinking on the underlying concepts.
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This section present our implementation of a reward based reconfiguration algorithm using a

simplified Markov Decision Process (MDP) inspired by the previously described method by

Fitch et al. [90]. We provide here a summary of the main steps and results.

Implementation

The basic kinematic units considered in our approach are the metamodules composed of

two Roombots modules. They evolve into a finite 3D normalized grid. We define a simplified

MDP where the set of state corresponds to the set of available connectors in the structured

environment (excluding the metamodules connectors), the set of actions is determined on

the fly using an inverse kinematic solver, and the transition are defined depending on whether

or not a collision occurs between two states. An overview of the framework is presented on

Fig. 4.7.

The goal position of every active units has to be specified beforehand as it impacts on the

computation of the reward map. At each time step, the active units try to maximize their

reward. In case of collision, the next best action is tested. The reward is computed taking into

account three main factors: (i) we want to minimize the number of steps so every action has

a reward of −1; (ii) we also want to favor longer moves so we add a "bonus" to the reward

depending on the distance between the goal connector and the current position; (iii) we do

not want to visit the same connectors several times, so we penalize the already visited states.

Figure 4.7 – Overview of the reward based reconfiguration framework. As for the gradient
based framework, the reward based framework is composed of two main blocks, the low level
hardware specific block (depicted in blue) and the high level hardware independent block
(depicted in green). They are linked together using a message passing library (in yellow). The
hardware specific part of the planner is used to compute on the fly the required move to
achieve posture to posture transition (kinematic planner). In the high level part, the reward
map manager computes the reward map taking into account the reachable connectors and
the desired final position of the modules (off-line computation step).

Testing and results

We tested this approach in three different setups:
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1. 2D Grid: a 13 by 13 connector grid in which we vary the connection type to the goal

connector and the initial position and orientation of a single metamodule (see figure

4.8), reaching a total of 24 different runs.

2. 3D Box: we place a 6 by 6 by 6 box with connectors on the surface. Two metamodules

have to reach predefined goal positions. We only vary the connection type to the goal

connector and the initial position and orientation of one of the two metamodules (see

figure 4.9), reaching a total of 24 different runs.

3. 2D grid with a narrow passage: connectors are removed from the previous 2D grid to

form a channel between the goal positions and the initial positions of four metamodules

(see figure 4.10).

Figure 4.8 – 2D terrain of 13 by 13 connectors (white circles) and one RB metamodule (adapted
from [242]).

The success rate of the algorithm reaches 100% but we observed a non negligible number of

failed moves (i.e. moves leading to a collision): on average, 1.22 and 0.92 failed moves appeared

per minimal required move (read from the reward map) for the 2D and 3D experiments,

respectively. The computation time required for the reward map grows exponentially with the

number of connectors considered.

Conclusion

The technique that we presented partially matches the requirements we specified in section

3.1:

1. Dynamic environment: since the computation of the different moves takes into account

a local sensing of the environment (for other modules and for obstacles), it is possible

to add or remove objects from the setup on the fly.

51



Chapter 4. Self-reconfiguration of homogeneous structures

Figure 4.9 – 3D terrain with a box equipped with connectors (white circles) and two RB
metamodules (adapted from [242]).

2. Final structure changes: the final and initial position of the modules have to be fixed at

the beginning of the run otherwise the reward map needs to be recomputed.

3. Realistic environment: the active units are considered as perfect (no bending included or

failed connections). Failure of some modules will lead to an unfilled goal position. If an

extra number of modules has been provided, the goal position needs to be re-attributed

and the reward map recomputed.

The main weakness of this approach is the need for a precomputed step corresponding to the

computation of the reward map. This step is computationally demanding and not scalable in

the number of connectors composing the grid. Since the grid topology has to be adapted, this

approach also suffers from being unable to integrate modules connectors as potential anchor

points during the process.

4.3 Conclusion

In this chapter we have presented existing approaches to solve the self-reconfiguration prob-

lem of homogeneous modular robots.

Regarding heuristics approaches, we have described our own framework based on a spatial

gradient acting as a force field to guide MMs into predefined seeds positions in the final

structure. Our method takes inspiration from the technique introduced by Stoy et al [243]

in 2006. The gradient approaches are inherently scalable in the number of modules that
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Figure 4.10 – 2D terrain with a narrow passage and four RB metamodules (adapted from [242]).

can be controlled asynchronously and it opens the way for large structures building. In our

framework, the world controller is the only centralized element, but it could also be replaced by

a message passing mechanism between the units present in a certain neighborhood. A locking

mechanism could be locally introduced to prevent discrepancy in the world description

for the different modules. The major issue with the gradient based approaches is that the

termination of the process is not guaranteed for arbitrary initial and final positions of the units.

The definition of the seeds in the structure is a complex task since it requires an a posteriori

knowledge of the motion of the units before reaching the target position. We extended previous

works by incorporating hardware kinematics in a decoupled fashion in to the SR loop and

we have shown that the fact of introducing different interaction strategies between the units

and selecting the type of connection between the units to maximize the available workspace

tended to reduce the number of deadlocks. Nevertheless in all the presented heuristics based

approaches, including ours, only perfect units were considered, making it difficult to transfer

such an algorithm to the hardware. Similarly, no strategies have been developed to cope with

the failure of a unit or of one motor, since all the moves are precomputed.

In comparison, the exact approach introduced by Fitch et al [90] in 2010, offers a proof of

termination as well as strong theoretical tools for the analysis of the reconfiguration process,

in terms of complexity and optimization. The fact of integrating directly the kinematics

of the modules inside the process to select the available moves for the units as well as the

hierarchical organization of the framework (with a clear decoupling between hardware specific

parts and high level parts) brings flexibility and robustness to the method. Our adaptation of

this technique allows us to provide a complete framework for reconfiguration with built-in

convergence thanks to the ordered attribution of the final positions to the different units.

Nevertheless, the preprocessing step in the algorithm to compute the reward map, that we

introduced to simplify the overall method, impaired the flexibility of changing the goal position

or the units initial states.
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All the methods presented in this chapter suffer from their lack of consideration of the hard-

ware imperfections. In our methods, we have taken care of creating hierarchical imple-

mentation with a clear decoupling of the hardware specific parts, like the inverse kinematic

computation or the collision handling, but we still considered fully working units, perfect

connection and disconnection processes, and no bending effects in the modules, conditions

that are seldom observed in current hardware platforms. In addition, few methods have been

proposed so far to handle passive pieces in addition to the active units as part of the final struc-

tures. In the next chapter, we present a novel approach to self-reconfiguration including fully

passive elements equipped only with connectors matching the ACM of the active units. Our

proposed method enforces a strict decoupling between hardware and high level control, and

introduces several additional check points regarding the matching between simulation and

hardware, based on an on-the-fly torque computation. We focus on a simple planning method

based on the A� algorithm, and on the high level motion planning technique RRT-Connect

[146].
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5 Augmented self-reconfiguration

As we have seen in the previous chapter, several approaches have been developed to solve the

self-reconfiguration problem with homogeneous active units considered as perfect. These

methods are promising but they are also prone to lead to results not transferable to the hard-

ware. The goal of this chapter is twofold. We first describe a novel hierarchical manipulation

framework allowing to transport passive unit in arbitrary terrains with embedded connectors

(section 6.2). We show how we integrate hardware constraints at the core of the algorithm to

ensure a better match with the robotic platforms. We afterwards demonstrate the efficiency of

our method in various simulated experiments (subsection 7.6).
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5.1 Passive object manipulation and transport

References and contributions

This section is based on the following publication:

S. Bonardi, M. Vespignani, R. Moeckel and A. J. Ijspeert. Collaborative Manipulation

and Transport of Passive Pieces using the Self-Reconfigurable Modular Robots Roombots,

IEEE International Conference on Intelligent Robots and Systems, 2013.

My contributions were:

• theoretical development and conceptual ideas.

• algorithm implementation and testing.

• control script for the hardware experiments.

The external contributions were:

• building of the test setup.

• some of the illustrations of the manipulation process.

5.1.1 Introduction

Modular robots, as opposed to monolithic ones, are composed of several homogeneous or

heterogeneous units (often referred as modules) to improve the overall flexibility, adaptability

and robustness of the structure to specific tasks in unknown environments. This modularity

comes with the challenge of collaboration between the different modules to form the optimal

configuration for a specific task.

Self-reconfigurable modular robots can create a large variety of kinematic structures depend-

ing on the applications. One possible use of this versatility is the creation of manipulators

able to autonomously locomote in the environment using embedded connectors and to adapt

to the object to be carried. Using their self-reconfiguration capabilities, these robots can

efficiently move inside a structured environment and dynamically change shape to handle

changes in the tasks (e.g. additional objects to be handled) or in the surroundings (e.g. new

obstacles). Possible applications for such a system could be the automated construction of

arbitrary structures or fully automated warehouses where modular robots are used to carry

and store objects in shelves (for example, as a complement of the successful solution proposed

by KIVA systems [253]).

Our self-reconfigurable modular robot Roombots (RB) has been designed to be used as build-

ing block for adaptive pieces of furniture able to move, self-assemble and self-reconfigure.

Using the reconfiguration capabilities of RB, we can study distributed locomotion control as
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5.1. Passive object manipulation and transport

well as self-organization and collaboration between modules [239].

Figure 5.1 – Two metamodules (two RB modules connected together) on a 2D grid collabora-
tively manipulate a L-shaped object (in green) equipped with passive connectors. The object
is transported thanks to a sequence of manipulations and of metamodule on-grid locomotion.

A single RB module can autonomously travel to any position on a 2-dimensional grid by

a sequence of connections and disconnections between the modules’ active connection

mechanisms (ACMs) and the grid structure (i.e. panels with regularly spaced connectors) and

overcome concave edges in 3 dimensions.

In order to achieve our goal of furniture that can change shape to adapt to the user’s needs,

we have to be able to design efficient structures in terms of physical properties and cost.

That is the main reason why we envision robotic furniture composed not only of active RB

modules but also of passive elements, with the RB modules acting both as manipulators and as

components of the structure (an example of the manipulation and transport phase of a passive

element is presented in Fig. 5.1). In this application, a set of RB modules needs to perform

on-grid locomotion to pass along passive objects. In comparison to the methods presented

in Chapter 4, we have to add the constraint of manipulation of a fully passive unit into the

SR process. The locomotion through reconfiguration of the different units on a substrate of

connectors is similar to the classic SR problem, but the handling of the elements constrains

the modules to collaborate to achieve their task.

In order to build a heterogeneous structure using RB, we design a manipulation and transport

framework that can be generalized to different self-reconfigurable modular robots able to use

passive connectors to locomote. The requirement for environments equipped with connectors

can be partially relaxed considering the off-grid locomotion capabilities of the RB platform

[210]. Our goal is to find the sequence of motor movements and connections/disconnections

for a group of active units to collaboratively carry a set of passive objects from an initial

position to a final one in an arbitrary 3D non regular grid with obstacles (illustrated in Fig.

5.2).

In section 5.1.2 we review some successful approaches in the field of objects manipulation

and structures building using mobile and modular robots. We then describe our manipulation

architecture in section 5.1.3. We test our approach in simulation and describe afterwards a

proof of concept experiment using the RB hardware (section 5.1.4).
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Figure 5.2 – Example of a manipulation and transport scenario: three metamodules have
to carry an L-shaped object (in blue) with connectors, from a point A to a point B . This
requires (i) that the metamodules move by sequentially attaching and detaching to and from
connectors in the environment (represented as black circle, randomly made available on the
grid plates), (ii) that they attach to and manipulate the object, and (iii) that they collaborate to
bring the object to the target position B .

5.1.2 Related work

Manipulation and transport of objects using mobile platforms equipped with robotic arms is

a well studied research area. However using reconfigurable modular robots for manipulation

of passive objects has been scarcely explored so far. Terada et al. [258] proposed a complete

framework to build arbitrarily layered structures using a specialized manipulator with four

Degrees Of Freedom (DOF) and specific building blocks. The robot uses inch-worm locomo-

tion on the structure and occasionally rotation to change direction. The sequence of moves of

the robot is controlled using a gradient approach and a local negotiation via blackboard to

avoid collisions between several manipulators. One of the main limitation of this approach

is the need for active connection mechanisms on the external faces of the elements being

carried around, as opposed to the arbitrarily shaped fully passive elements we are considering.

Additionally, the limited degrees of freedom of the manipulator constrain the structure to be

built in a layered fashion as opposed to the fully 3D manipulation problem we are tackling.

Another very successful approach has been proposed by Petersen et al. [207]. The authors use

mobile units to grab specially designed elements to build an arbitrary structure from a high

level representation. The path chosen by the robots to go from the supply spot for passive

elements to the goal position is determined using a depth-first search algorithm coupled with

a set of rules to prevent inaccessible positions. The task of manipulation is simple since it

mainly consists in deposing the piece in the given spot with a rotation of a one DOF actuator.

In this case the complexity of the manipulation is shared between the manipulator and the
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design of the element. The main difference with our method is that we can easily transform

everyday life objects into movable objects simply by adding passive connector plates to them

and connect active units in a plug and play fashion. This aspect brings more flexibility in the

type of structures that can be built using the manipulation and transport method we present.

Groß et al. [102] presented a framework in which several Swarm Bots modular robots [178]

collaborate to move an object from one position to another on a flat terrain. The modular

aspect comes from the fact that the wheeled robots used can dynamically connect between

each other using a gripper based mechanism, to form larger chains able to move bigger objects

using traction. The main strength of the approach used in this paper is the careful experimen-

tal validation of the transportation task. The main limitation of the proposed approach is the

difficulty for the platform used to locomote in irregular 3D environment (limitation to almost

2D terrain) as well as the use of pure traction to move the object. Several studies have been

conducted in the domain of automated truss assembly using modular robots [285, 111], but

they are limited by the fact that the robots cannot physically attached the passive elements

to the structure. A framework using aerial swarm robots has been introduced by Lindsey

et al. [163] but the method suffers from the need for specialized elements and the limited

payload of the aerial vehicles. In the factory floor model proposed by Galloway et al [94]

specialized tiles composed of a manipulator arm made of CKbots modules, an elevator unit,

and a guiding mechanism for the truss elements, are being designed. Trusses are fully passive

elements that are manipulated by the robotic arms and attached together using nodes. One

of the main limitation of this approach is that any change in design in the structure requires

the deconstruction and reassembly of the total structure. A stochastic control method for

multi-robot collaborative task has been proposed by Napp et al. [186] and demonstrated on

the problem of the assembly of truss structures using this factory floor tile system. Another

promising control approach using truss climbing robots and specialized elements has been

proposed by Yun et al. [288]. In our approach we neither impose a specific design or structure

in the arrangement of the manipulator or of the connector substrate nor require specialized

passive elements or active units. In addition, the active units are part of the built structure

and can be used to increase the potential for adaptation of the final structure that is not

restricted to a 2D or 3D grid layout. As we have seen in the previous chapter 4, a large number

of successful approaches have been developed to achieve displacement of modular robots to

form arbitrary structures [244, 98, 90] but they only consider active units as building blocks.

In this chapter we proposed a manipulation framework using self-reconfigurable robots to

manipulate fully passive elements in an arbitrary 3D environment equipped with connectors.

The only constraints on the elements are the need for at least two anchor points compatible

with the active units and a weight that does not exceed the payload of the active units.

5.1.3 Hierarchical planner

The task that we are solving is to find the complete sequence of motor angles and connection-

s/disconnections for a set of active elements to collaboratively bring a set of passive elements

from an initial to a final position. We assume that the passive elements are not actuated and
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that they have to be always connected to at least one active unit during the transportation

task. The former requirement arises from the need of maintaining the element at a given

position before the next active unit connects to it. An equivalent solution would be to design

holders at predefined points to store the pieces between two handling actions. Nevertheless

we prefer to consider solutions that would require the least amount of extra facilities to solve

the task we defined. The world (i.e. the available connectors and the obstacles, their position

and orientation) is supposed to be known. The information about the shape and available

connectors of the passive elements are also assumed to be known beforehand. No parallel

motion with multiple active units is considered. As a consequence, the weight of the passive

element should not exceed the possible payload of one active unit.

We decomposed the handling task into four main elements, (i) a low level kinematic planner,

(ii) a motion planner, (iii) a path planning algorithm, and (iv) a handling method. Each of these

components is incrementally added into the next one. This decomposition brings flexibility

in terms of hardware platforms by decoupling the kinematic constraints from the high level

planning.

Figure 5.3 – Overview of our hierarchical manipulation framework. The kinematic planner
generates forward and inverse kinematics solutions for a specific type of chain. The motion
planner provides collision free motion and hardware friendly movements using a torque
estimation routine. The path planner, finds the complete sequence of moves and connection-
disconnection to go from one initial structure state to a final one. Finally the handling planner
defines the connection points between the passive element and the active structures handling
it. It also defines the postures of the active structures and their connection type to the grid.
Those elements are connected in a bottom up scheme.

Level 1: kinematic planner

Any assembly of Roombots modules and passive elements can be viewed as a set of kinematic

chains. Despite the torque restriction on the actual version of the RB hardware (the fact

that one metamodule composed of two RB modules can only lift one passive element), we
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used a very general representation of the kinematic chain of the structure to allow future

generalizations. One module is represented by a 3 rotational DOF chain with 10 connection

points. We derive the inverse kinematic solution using the iterative damped Levenberg-

Marquardt algorithm [170] provided in the Rigid Body Dynamic library [86]. This algorithm,

also called damped least-square (DLS) method, is an iterative minimization method close

to the Gauss-Newton algorithm and the gradient method, but generally more stable. Using

this technique, we can impose a complete final posture for any chain or tree configurations.

Passive elements can be easily integrated into the structure as pure sets of connection points.

Level 2: motion planner

In order to find a collision-free path between two postures of a considered structure given

by the previously mentioned kinematic planner, we use a variation of the classical Rapidly-

exploring Random Trees (RRT-Connect [146]) motion planning algorithm available in the Open

Motion Planning Library [73]. The search for a possible path is done using a discretization of

the movement of the chain: instead of considering a continuous movement from a posture

A to a posture B, we consider several intermediate static postures that lead from A to B. The

validity of every intermediate posture is evaluated using the following two conditions:

1. The posture is collision free: we use the exact model of the hardware module and passive

elements to compute the collision manifold of any structure.

2. The posture does not lead to impractical stress constraints on the motors. We compute

for every posture candidate an approximation of the resulting torque on each motor

and check whether this value is inferior to the nominal torque of the motor. We consider

two different torque estimates, corresponding respectively to the worst case scenario

(denoted by T w ), and to a more reasonable estimate (denoted by T r ) of the needed

torque to achieve a move. To compute T w , we project each pivot point (corresponding

to each motor) on the plane perpendicular to the gravity force and multiply this value by

the distance L between this projected point and the projection of the center of mass of

the remaining segments on the same plane: T w
motori

= mi ∗ g ∗Li (mi corresponding to

the mass of the remaining segments in the direction of the lever). This computation gives

a crude upper-bound estimate of the real torque applied to the motor and neglects both

the friction and the dynamics during the movement, since we consider a completely

rigid structure and a fine grain discretization of the movement of the robot leading to an

almost static analysis. This overestimation considers that the degrees of freedom are

perpendicular to the gravity vector and it will favor moves that prevent over-stressing

the hardware. The computation of T r is similar, but instead of projecting the pivot point

on the gravity plane, we compute the lever arm, d , as the perpendicular distance from

the motor rotation axis to the line along the gravity force. Let L be the line defining the

motor axis, Q the pivot point, and −→u the vector corresponding to the rotation axis of the

motor. We have L : −→r (t ) =Q + t−→u . Similarly, let M be the line defining the force axis, P
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the application point of the force, and −→v the force vector. We have M : −→s (t) = P + t−→v .

We obtain the following relationship:

d = |(−−→PQ).(−→u ×−→v )|
‖−→u ×−→v ‖ (5.1)

We consider that the gravity force is applied to the last pivot point of the chain. We

obtain:

T r
motori

= mi × g ×di (5.2)

T r is preferred to T w because it is less restrictive and allows for a more realistic control

of the torque limit of the different motors.

Additional constraints on the posture, such as orientation constraints for a carried object, can

easily be added.

Level 3: path planner

The goal of this planner is to find the complete sequence of moves and connection/discon-

nection to go from one initial structure state (i.e. position, orientation, type of connection

and posture) to a final one. The problem of finding a path on a 2-D grid can be viewed as

a path-finding problem in a graph. The sequence of grid positions to go from the initial

position to the final one is generated using the A� algorithm, a popular algorithm for solving

path planning in 2-dimensional grids [105]. This algorithm is based on the evaluation of a

cost function f which takes into account the distance from the start position and a heuristic

estimate of the distance to the goal position (often chosen to be the distance to the goal along

a straight line).

∀s = (x, y) ∈Gr i d f (s) = g (s)+h(s) (5.3)

where g (s) corresponds to the distance from the start position to the current position and h(s)

corresponds to an estimate of the distance to the final goal. h is defined in our case as the

Euclidean distance from the current position to the goal position, in order to favor paths with

fewer and longer moves.

The search space S is composed of connector position p and orientation o as well as type of

connection c (there are four main types of connections since the ACM is four ways symmetric):

∀s ∈ S s = (p,o,c) with p and o ∈ℜ3 and c ∈ [0..3] (5.4)

For each state space in S, a neighborhood of reachable states is computed based on the previ-
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Figure 5.4 – The four different virtual chains. The passive element is represented by a square
with wavy lines and the green circles correspond to the passive connectors.

ous motion planner. This computation is done inside a sub-routine which can be modified

to integrate further constraints, such as a minimal length required to the next connector or a

blocked degree of freedom.

Level 4: handling planner

In order to handle a passive element, we need to define two main parameters: (1) the con-

nection points between the element and the handling active structures, (2) the postures of

the active structures and their connection type to the grid. We use the notion of virtual chain

(VC) to tackle this problem. A virtual chain is defined as a movable structure composed of

at least one active unit and one passive element. A structure is said to be movable if it is not

blocked (i.e. with elements around that would prevent movement) and if it possesses at least

one active unit. We define four basic types of virtual chains (illustrated in Fig. 5.4) depending

on the number of active units they are composed of. We assume that the passive element is at

first not connected to the active units.

The displacement of one passive element e from a state A ∈ S to a state B ∈ S is planned as

follows:

1. Depending on the number of active units available, we form the widest (in the sense

of the wider kinematic space) virtual chain among the four types by connecting virtual

active units to e. For example, virtual chain of type 3 would be favored over virtual chain

of type 2. The choice of the connectors on the passive element is made so that the length

of the total virtual chain is maximized.

2. Once the algorithm decides on a given VC, it considers the passive element as a fixed

point and it uses the motion planner previously defined to find the possible grid connec-

tion states (called Savai l able ) for the active unit closer to the final position of the passive

element.

3. The algorithm sorts the available active units based on the distance from their current
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connection point to the center of the passive element. The available units configuration

is fixed, meaning a metamodule cannot split to form two single modules.

4. The algorithm computes the path from the current position of the active units to the

closest grid connection state in Savai l able to determine if the structure is reachable

using any of the active units. It iterates over the states in Savai l able until it finds a path

or we switch to another active unit. If no solution is found, it changes the type of virtual

chain and restart the process from step 1.

5. If the passive element is reachable the algorithm can now compute the set of connector

states towards the final state B . The path planner described in subsection 5.1.3 is used

with an adapted version of the torque limit constraint to provide motors angles and

connection states from A to B . The torque limit is only applied to the final posture

of the active units in the final position of the chain. The validation function contains

an extra constraint to ensure that any selected state is reachable by at least one active

unit, tested in sorted order according to their Euclidean distance to this grid state. This

validation is based on the path planner from subsection 5.1.3 including the complete

set of constraints on the collision and the torque limit. The final state of the connected

active unit is integrated as an obstacle to the collision world to ensure a collision free

path for the second moving unit.

6. If the final state is not reachable using the current VC we switch to a smaller type and

repeat from point 1.

The main steps of this manipulation routine are illustrated in Fig. 5.5.

5.1.4 Experimental results

We consider, for our experiments, a centralized implementation of the above method, but a

fully distributed version could be achieved, if we still consider that the map of the environment

is known by every active unit beforehand. We conducted two main experiments in simulation

to test our framework. In a first experiment, we quantify the impact of the complexity of the

terrain (number of available connectors in the world and inclination of a connecting plane)

on the handling process. In the second experiment, we propose to test the influence of the

torque limitation on the result of our framework.

Using the RB hardware, we illustrate one step of the handling algorithm we presented earlier

using one passive element and two metamodules.

Terrain description and metrics

We test our approach using our own simulation environment based on Open Scene Graph

[41] and Bullet Physics [70]. We consider the same terrain template for all the experiments
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5 – The main steps of the manipulation routine, with one passive element and two
metamodules (labelled 1 and 2 in (a)). The connector are indicated by small white circles.
The passive object is modelled as a green L-shaped element (labelled A in (a) in its initial
position). The red transparent element in the different images represents the desired final
state of the passive object and the virtual state of the active units (for example labelled 3 in
(b)). In (a) we present the initial configuration of the terrain. The final position of the passive
element is displayed in transparent red (labelled B). In (b) the red connectors correspond to
the Savai l able set (labelled 4 and mentioned at step 2 in the previous description) determined
using the closest metamodule as active unit (labelled 2). (c) and (d) show respectively an
intermediate state to get to the chosen connector (in red, labelled 5) by the first metamodule
and the connection of the first metamodule to the passive element. (e) depicts the position of
the virtual chain when checking the available connection point (red connectors) for the second
metamodule (step 5). (f) and (g) show respectively an intermediate state to get to the chosen
connector (in red) by the second metamodule and the connection of the second metamodule
to the passive element. Finally, (h) represents the final move of the second metamodule to
place the passive element into its final position and orientation.
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(depicted in Fig. 5.2) composed of several initially perpendicular planes and a maximum

of 458 connectors. The connectors are numbered using their coordinate in the regular grid

of unit equal to the smaller dimension of the RB module (0.11m) . In order to speed up the

simulation, we approximate the shape of a RB hemisphere using a sphere of diameter 0.055m

tangent to the connector plates and a set of spheres of diameter 0.009m placed on the rig of

the shell (see Figure 5.6 for an illustration). Those spheres would be tangent to the sphere

of diameter 0.128m corresponding to the outer shape of the RB hemisphere. They prevent

unrealistic moves (for example, a continuous rotation in the ground), while being resource

friendly in terms of collision detection.

Figure 5.6 – The collision shape considered for a RB hemisphere. This shape corresponds to
the union of a sphere tangent to the connector of the hemisphere and centered at the joint
origin and of five spheres centered on each rib of the half-sphere and tangent to the outer
sphere in which the hemisphere is included (represented on this picture by a transparent
layer).

We consider the following quantities as an evaluation of the efficiency of the algorithm:

• Successful reaching or not of the final position.

• Number of moves needed to reach the final position: a move is considered as the se-

quence of motor positions between two connections. The number of moves corresponds

to the number of connections.

• Average angular displacement of the active units for the completion of the task, com-

puted using an estimate of the real time needed to perform a move assuming a constant

angular velocity.

• Average torque used during the process and per move.

• The number of modules used to carry out the task (when applicable).
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(a) p=0.4 and α= π
4 (b) p=0.6 and α= π

4

(c) p=0.8 and α= π
4 (d) p=0.8 and α= 3π

4

Figure 5.7 – Examples of terrain with various probability p and slope α. Connectors are
represented by orange circles and only one metamodule is represented at position (0,0).

Experiment one: terrain complexity

Setup We use in this experiment two metamodules and a single passive cube-shaped object.

We vary the number of connectors per terrain by introducing a probability p which determines

whether a connector in the regular grid is available or not. We choose four values for p (0.2, 0.4,

0.6 or 0.8) and we randomly generate a set of 50 terrains per value of p by varying the angle of

two of the main planes of the terrain (angle α depicted in Fig. 5.2) in the set {pi /4; pi /2;3pi /4}

radians as well as the final object position and orientation. Examples of terrains are illustrated

in Figure 5.7.

Results The results are summarized in Fig. 5.8 and Fig. 5.9.

Throughout the simulated experiments described in subsection 5.1.4, we observed that the

chosen VC was always of type 3. This can be explained by the significantly bigger working

space offered by the metamodule in comparison with the single module. We postulate that

the use of the chain of lower type would arise only when considering a transport task in
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Figure 5.8 – Box-plot representing the number of moves for one metamodule during the
successful runs of the algorithm for the different values of p.

Figure 5.9 – Box-plot corresponding to the average of the modulus of the angular displacement
for one metamodule during the successful runs of the algorithm for the different values of p.

which the active units would be allowed to let the passive object on the ground, disconnect

and reconnect to reach a previously inaccessible position (due for example to low hanging

obstacles) and take back again the object.

Since the number of impossible worlds generated when the probability p was equal to 0.2

was too high to compare it to the other cases, we chose to discard the results related to this

value. Some unsolvable worlds include those with no existing path to the final position (too

spaced connectors) or with a passive object placed below the slope (when α is equal to 3π
4 ),

in such a way that the passive element is inaccessible without creating collisions. Similarly,

when the passive element is situated close to one of the inclined surfaces, the complexity of

the manipulation task increases. Given the degrees of freedom of the RB platform considered

for the tests, we can discard some of the generated terrains considering they cannot be solved

using the kinematic chains involved. Finally, the overall success rate of the algorithm was

around 97% for all the solvable worlds generated. The reason for failure in some of the solvable

worlds is due to the robot kinematic that prevents some moves in the given configuration of

the terrain.

We can see on Fig. 5.8 that the number of moves required to reach the final position increases

with the decrease in the number of connectors. This can be explained by the need for the

active units to go back and forth on some positions before being able to reach a position with
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the correct orientation for the next step. When considering a sufficiently large number of

connectors the effect of the heuristic function selected for the path planning (described in

subsection 5.1.3) can be observed, with a significant decrease in the number of moves needed

to reach the goal (the average number of moves to perform the manipulation task was 11 per

metamodule). Nevertheless, the average angular displacement per metamodule (depicted in

Fig. 5.9) remains almost constant for varying p. This can be related to the previous observation

about the number of moves, since more small moves will be equivalent to less large moves in

terms of angular displacement.

We also observed that the value of the angle α has no significant effect on the success rate or

on the number of moves required. A possible explanation would be that the variation of the

angle α does not induce a fundamental change in the topology of the terrain when moved.

This topological stability of the terrain coupled with the randomness of the final position of the

object, does not favor a given strategy in terms of number of moves or movement amplitude.

Experiment two: torque limitation

The goal of this experiment is to analyze the impact of the torque limitation imposed on the

motors of the active units on the number of moves needed to reach a given position as well as

on the corresponding average angular displacement per move.

Setup We use the same experimental terrain as the one used in our first experiment except

we only consider the first plateau (that lies on the ground) as our grid setup. We do not vary the

number of connectors since it would have a correlated effect with the torque value on the size

of the moves (fewer connectors imposes larger moves). We choose two values for the torque

for each type of motors: a low value corresponding to a fifth less than the nominal torque, and

a value equal to the nominal torque of the motor (which will serve as a control case). We must

stress out that the torque estimate T r , even if more realistic than T w , remains an upper bound

of the actual torque, so that any moves generated with any of those three selected value will

require a strictly lower torque than the nominal torque of the motor (neglecting the friction

effects and the dynamics of the movement). We only consider one metamodule of type PAR

placed at position (0,0) on the grid and having to reach the connector (12,5) with the same

orientation and type of connection. We choose as nominal torque values 5N m and 2.5N m for

the diagonal joints and the central one, respectively and 4N m and 2N m for the lower torque

values. We repeated the experiment ten times for both torque values to take into account the

variability of the solutions resulting from the IK solver. The results are summarized in Fig.

5.10.

Results We observe that the number of moves needed to reach a position is higher when

considering a lower value of the torque for the joint (Fig. 5.10a), which can be explained by

the necessity for the active units to restrain the amplitude of its movements (this trend can be
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(a) Average number of moves. (b) Average angular displace-
ment per move (in radian).

(c) Average inter-connector dis-
tance per move (in meter).

Figure 5.10 – The different results from the torque experiment. The number of moves tends
to be higher for lower torque values (a) which correlates with an overall smaller angular
displacement (b). However, the motion of the metamodules on the grid in terms of distance
between two consecutive connections is almost stable between the two torque values (c)
which tends to indicate that the higher torque value allows for more direct moves than the
lower one.

seen in Fig. 5.10b). Overall, the distance between two consecutive connectors part of the path

to reach the goal connector is almost the same for both torque value (Fig. 5.10c). It means

that the torque constraint impacts the type of move itself, since the decrease in the average

angular displacement induces a lower amplitude of the overall movement.

Hardware results

We tested our framework using RB hardware modules (this experiment can be seen at [1])1:

we use a metamodule placed on a 2D grid to grab a passive cube of 0.11m edge-length with

connection plates on every side and hand it over to another metamodule attached to a grid

of connectors placed above the first one (the setup is depicted on Fig. 5.11). The passive

element is placed at its initial position in a holder that allows easy picking and avoid sliding of

the passive element. The element is also maintained in position using small magnets. The

positions of the metamodules have been computed using the planner described in section

6.2. The experiment is performed in open-loop and the environment is fully known. In order

to facilitate the alignment between the active connection mechanism and the connectors

on the passive object and on the grid, we equipped every ACM and passive connector with

small magnets. The magnets are used for guidance only and the connection/disconnection

sequence is performed using the grippers of the ACM.

Results During the hardware experiment, we observed that the elasticity in the metamodule

structures (at the level of the joints and the level of the ACM connected to the grid) induced

a significant error in the final position of the connecting surface. That is the reason why

we added magnets to provide the compensation needed to achieve a successful connection

1It should be noted that the two metamodules were remotely controlled at low speed to avoid dynamic effects.
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Figure 5.11 – The experimental setup: one metamodule is connected to the grid (number 1)
above the second metamodule (number 2). A passive element (black cube, labeled as 3) is
maintained in position using a magnet. Metamodule 2 will grab the passive element and hand
it to the first metamodule.

between the passive element and the metamodule ACM.

5.1.5 Conclusion

We presented in this chapter a complete collaborative manipulation and transport frame-

work using self-reconfigurable modular robots to handle passive elements in a structured

environment equipped with connectors. Our method is based on a hierarchical planner that

uses the notion of virtual kinematic chain to compute way-points and collision free paths.

We also included an on-line computation of the applied torque to the different motors of the

active units to favor hardware friendly moves. Our approach proved to be robust and efficient

in arbitrary simulated environments, with a success rate of around 97%. An example of a

manipulation step using two RB metamodules and one cube-shaped passive element has

been successfully demonstrated in hardware.

5.2 Conclusion

In this chapter, we presented a novel approach to handle passive elements using SRMR. We

proposed a hierarchical manipulation framework enforcing a strict decoupling between hard-

ware specific elements and high level platform independent parts. Our low level kinematics

planner is based on the Levenberg-Marquart IK algorithm that provides a generally more sta-

ble and fast convergence than a classic Newton Raphson approach (although it could also be

improved to make it complete, using for example the method mentioned in [247, 248]). Colli-

sion detection is provided by the RTT-Connect algorithm and we further prune the valid states
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by introducing a torque estimate for the different move, ensuring more hardware friendly

movements.

We tested our method in simulated environments for various conditions. We investigated

the influence of the number of available connectors in the terrain on the number of moves

and average angular displacement (which we proposed as an estimate of the energy needed

to perform a move). We noticed that the fewer connectors the fewer and larger the moves.

We also checked the impact of two different torque limitation higher bounds and noticed

that the higher the torque the longer the moves (in terms of average angular displacement of

the different joints). We presented a proof of concept of manipulation with the RB hardware

platform using a cube with six connectors and a two metamodules. In Appendix B, we describe

our preliminary results demonstrating how the augmented self-reconfiguration problem can

be reduced to a multi-robots planning problem using our previously define hierarchical

manipulation framework and a deconstruction procedure based on centrality measurements

in graphs.
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Conclusion

SELF-RECONFIGURATION is a very challenging problem for modular robots, considering

the extremely large search spaces resulting from the number of connection ports and

degrees of freedom available in the modular structures considered. Throughout this part, we

have seen how those constraints forced researchers to come up with novel solutions to be able

to fully exploit the great flexibility of SRMR.

We have first precisely defined the problem of self-reconfiguration, as well as the related

tools and metrics to evaluate the complexity of an approach and its efficiency. The use of

metamodules has been described in details since they can be used to build a theoretical

optimal planner for SR, but at the cost of the transferability to actual hardware platforms due

to its lack of realism.

Among the different methods proposed to provide SR capability to groups of SRMR, two main

categories can be distinguished.

The first one comprises the techniques relying on heuristics while the second one includes the

methods supported by exact approaches. The heuristics based techniques are very diverse,

ranging from genetic algorithms to hormone based control. We focused on a very promising

and scalable approach based on the gradient attraction mechanism. In this method, the robots

are guided towards seed positions (or attractors) in a fully distributed fashion. We described

our own contribution based on the work by K. Stoy [243]. We introduced different strategies

to manage the close range interaction between the units and show how they impact on the

number of deadlock situations and collisions. Our proposed method tends to decrease the

number of deadlocks for complex structures but we would need more large scale experiments

to fully validate this point. The scalability of the method comes at the cost of completeness

since no built-in convergence can be ensured with arbitrary dense goal structures.

The exact approaches are supported by theoretical results that guarantee the completion of

the task and provide complexity measurements. One of the most promising techniques has

been proposed by R. Fitch et al. [90] and rely on a Markov Decision Process formulation of

the SR problem with a hierarchical planner decoupling the hardware kinematics from the

high level planning process. We simplified this approach and introduced a reward based

reconfiguration framework using metamodules as basic active units. We have demonstrated
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that our technique was efficient in complex environments. Nevertheless the simplification we

made comes with the requirement of an exponentially complex (in the number of available

connectors) pre-computing step and the necessity of fixing at the beginning of the algorithm

the final desired position of the different units.

Both categories were comprised of methods relying on simplified versions of the hardware,

abstracting away the imperfections of the different platforms, such as bending effects or

connection misalignment. None of them were also able to consider heterogeneous systems

composed of fully passive elements and active units. We filled this gap by proposing a novel

manipulation framework based on a hierarchical planner decoupling hardware specific rou-

tine from the high level planning function. We integrated a built in torque estimation into

our motion planner to further close the gap with the hardware. We tested our approach on

terrains with various complexities and investigated the impact of the torque on the number of

moves needed to complete the task and on the average angular movements. We have shown

that the smaller the number of connectors or the larger the torque limit value the longer the

moves (in terms of average angular displacement). We introduced preliminary results showing

how the augmented self-reconfiguration problem can be reduced to a multi-robot planning

problem using the manipulation planner that we proposed.

We briefly presented different studies we conducted in hardware to try to close the gap

when porting our algorithm to the experimental platform. We described an exploratory

work on the characterization of the elasticity effects in a metamodule. We show how we could

compensate for connection misalignment using a low end camera integrated in a module

as one of the connector. We finally mentioned a study we conducted to better evaluate the

performance of our connection mechanism. Those approaches still need to be integrated into

our reconfiguration planners to be tested and evaluated.
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Introduction

SELF-RECONFIGURABLE modular robots can dynamically change their topology which

makes them suitable platforms to be used as rapid prototyping tools to study locomotion

in and adaptation to unknown environments. In addition to this off-grid locomotion capability,

hybrid self-reconfigurable modular robots can use embedded connectors in the environment

to perform locomotion through reconfiguration, also referred as on-grid locomotion.

This adaptation capability brings additional challenges in terms of locomotion control of the

resulting structure, since the morphology of such a structure might not be known beforehand.

One successful approach to control the locomotion of modular structures are bio-inspired

Central Pattern Generators (CPGs) [121], a network of coupled oscillators that allows to gener-

ate complex locomotion behaviors with a reduced set of control parameters. One of the main

difficulties when using CPGs is the design of the best suited network for a given morphology.

This step is most of the time based on trial and error and can quickly become time-consuming

for large irregular structures. In order to find the most suited set of control parameters for

the CPG network, optimization methods, such as Powell’s Method [211] or Particle Swarm

Optimization [136, 209], can be used [210]. In these methods, the time required to optimize

the gait of a structure is highly correlated to the number of parameters to optimize.

In this part, we first present (chapter 6 ) an efficient planner to perform locomotion through

reconfiguration using movement primitive and the well-known D� algorithm. We present

hardware results supporting our work using a single RB module. We then describe (chapter 7 )

an automated method to generate reduced control networks for the locomotion of arbitrary

structures made of modular robots for time critical applications.
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6.1 Introduction

The problem of on-grid locomotion can be viewed as a sub-case of the SR problem, in which

the robotic structure has to reach a given position in space, either on embedded connectors

in the environment or using the connectors of its composing modules as substrate. The

main difference between the approach we proposed in this section and the SR frameworks

described in part II is that there is no high level coordination manager to take into account

multiple active units and the order in which to build a final structure. On the contrary, the

previously mentioned SR frameworks can also be used for locomotion through reconfiguration

but add an additional degree of complexity in comparison with the method we propose in this

chapter. In the following experiments, we propose to control a single RB module through a

hierarchical, online running locomotion-through-reconfiguration planner based on the D�
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algorithm [241] and composed motor primitives. A state-of-the-art reconfiguration planner

that takes the kinematics of modular robots into account has been presented by Fitch et al. [90]

in simulation (see subsection 4.2.2 for a detail review of this approach). However, this planner

has not yet been demonstrated on real hardware. In fact, most hardware experiments so far

have been using pre-computed reconfiguration sequences [180, 132]. The major advantage of

our online planner over these techniques is that we can take into account online changes of

the environment and incorporate readings from sensors.

We start by presenting in section 6.2 the RB movement planner allowing a RB module to

reach any position on a 2-D grid. We then describe in section 6.3 experimental results, both

simulated and using the actual RB hardware.

6.2 Planner

The goal of our planner is to compute a path (not necessarily optimal) on a 2-D grid from a

start (S) to a goal (G) position. We built a hierarchical planner based on D�, a well established

low-level path planning algorithm [241]. On top of it we added a high level planner which

transforms the path computed by D� into a sequence of basic movement primitives. In section

6.2.1 we describe the algorithm used to compute the shortest path inside our 2-D grid. In

section 6.2.2 we define the motor primitives alphabet on which we base our high level planner

presented in section 6.2.3.

6.2.1 Low level planner

The problem of finding a path on a 2-D grid can be viewed as a path-finding problem in a

graph. We consider a grid in which regular obstacles can be inserted but we assume that

the dimensions of the grid are constant and the positions of the obstacles are fixed. One

popular algorithm for solving path planning in 2-dimensional grids is the A� algorithm [105].

Unfortunately, this algorithm is not really efficient at managing movable obstacles: a re-

planning of the path is executed each time an obstacle is added or moved. Since we would

like to allow moving obstacles (e.g. to represent other moving modules), we decided to use

the D� algorithm [241] which can be viewed as an evolved version of the A� [140]. A detailed

comparison between A� and D� can be found in [166].

6.2.2 Motor primitives

In order to ease the control of a RB module, we introduce a set of basic moves called motor

primitives. Our goal is to perform locomotion through reconfiguration by using a sequence

of attachments and detachments of the module on a 2-D grid. Although a RB module can

contain up to 10 ACMs, in our experiments we consider only one ACM per outer hemisphere

(H0 and H3, represented in Fig. 2.1a). When a RB module is connected to a grid using the
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Atomic motor primitives

P 0
1 P 0

2 P 0
3 P 0

4

τ (0,1) (0,1) (1,0) (1,0)

ρ π −π
2

π
2 −π

Table 6.1 – The four different atomic motor primitives for H0 connected to the grid.

ACM in H0 or H3, it can only move in one of two directions (Fig. 6.1b). These two orthogonal

directions form a coordinate system, the relative coordinate system (Ri
r el ), where i is either 0

or 3 and corresponds to the connected hemisphere.

Atomic motor primitives

We define an atomic motor primitive (AMP) as a set of motor angles allowing the module to

translate by a distance of one unit of the grid. The translation is represented by a vector τ. The

direction of this translation is parallel to one of the axis of Ri
r el . During an AMP the two relative

coordinate systems are inverted (R0
r el becomes R3

r el and vice versa), and an absolute rotation

ρ between them takes place. An AMP is fully characterized by the couple (τ,ρ). We define

four different AMPs valid when H0 is connected to the grid and their equivalent when H3 is

connected. The main difference between P 0
i and P 3

i is the order in which the motor angles

are sent to the module. The AMPs will be denoted by P j
i with i ∈ [1..4] and j ∈ {0,3}. The four

AMPs for H0 connected to the grid are summarized in Table 6.1.

Composed motor primitives

We introduce a set of composed motor primitives (CMP), defined as the concatenation of one

or more AMP, to simplify the planning of the sequence of motor primitives to move from the

start to the goal position. We define eight CMPs, that represent the motor primitive alphabet,

to cover the eight direct neighbour cells (A-H shown in Fig. 6.3a) on a flat grid. The sequence

of AMP composing the CMP alternate between P 0
i and P 3

i , following the connection and

disconnection of the two RB hemispheres.

For each CMP we defined the notion of a spanning area (SA), which corresponds to the grid

positions crossed by the module during the execution of this CMP. This notion will be used

later for checking obstacle avoidance.

6.2.3 High-level planner

We introduce a high level planner to find the sequence of CMPs required to follow the path

found by the low-level planner. From the set of grid positions found by the low level planner,
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the high level planner computes the sequence of CMPs allowing the module to follow the

path toward the final position. Using the low level planner, we are able to find the set of grid

positions that needs to be crossed to reach the final position.

The main steps of this high-level planner can be summarized as follows:

1. Find the shortest path C = (c0,c1, ...,cn) to the goal position using the low-level plan-

ner (c0 is the initial position, cn the final position and ci∈[1..n−1] are the intermediate

positions).

2. For every point ci ∈C starting from the initial position, use the CMP that follows direc-

tion ci ci+1.

3. For every selected CMP, check whether its spanning area intersects with an obstacle.

• If yes, compute the set of neighbouring positions of ci+1 and select the reachable

one (denoted as Nr ). For every point in Nr :

– Modify the initial path to incorporate this new point.

– Find the new CMPs matching this new path.

If no points lead to a valid sequence, go back to the previous location ci−1 and

repeat the process.

• Otherwise, continue.

The process ends when the goal position has been reached.

6.3 Experimental results

6.3.1 Hardware experiments

We extensively tested the RB hardware performing both locomotion through reconfiguration

experiments on horizontal and vertical grids as well as RB modules performing a transition

between horizontal and vertical grids (see Fig. 6.2 for an illustration). Movies can be found

on the Roombots website [2]. We concentrated first on open-loop experiments: RB modules

are PID position-controlled through relative position sensors at each joint but no additional

sensors for example for sensing the alignment of a module with the grid have been used.

We tested all sequences to reach all neighbouring positions on a horizontal 2-dimensional grid

shown in Fig. 6.3a. Fig. 6.1 shows snapshots from the CMP sequence A. For locomotion on a

horizontal 2-D grid the RB hardware is sufficiently reliable. The design of the ACM supports

the modules during reconfiguration to overcome elasticity in the joints and connectors as well

as backlash in the gear boxes and supports self-alignment of a module with the grid without

the need of additional control or sensing. We had only 1 out of 20 connection trials failed
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(a) Single RB module. (b) Initial position. (c)

(d) Connection and disconnection. (e) Position B. (f)

(g) Connection and disconnection. (h) Position A. (i)

Figure 6.1 – Composed motor primitive A (white arrows indicate the 2 possible directions of
movements): (a) RB module on a 2-D grid. (b), (d), (e), (g), and (h) illustrate the RB module
following CMP A. (c),(f), and (i) show the relative referential and CMP alphabet for RB module
configuration in (b), (e), and (h), respectively.
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(a) Initial position. (b) (c) (d)

(e) (f) (g) (h) Final position.

Figure 6.2 – By a well coordinated sequence of DOF movements that we calculated using
inverse kinematics a single RB module can approach a concave corner and climb a wall. This
experiment was done in open loop. We could not climb further than position (h) because of
elasticity effects in the RB hardware.

(success rate of 95%) where the gripping range of the ACM was not sufficient to overcome

elasticity in the module’s joints. This was typically because the ACM that was supposed to

form a connection with the grid was slightly rotated with respect to the grid so that only one

or two of the four ACM grippers could grip into a hole on the grid while the other grippers

collided with the grid.

When climbing on vertical surfaces the connection process fails more often since gravity

is bending the modules due to the elasticity in the joints, RB shells and connectors. To

improve the performance and further increase the success rate, we are currently working

on an improved RB design featuring less elasticity in the joints and a bigger ACM gripping

range. We are also working on bending detection using infrared distance sensors and active

compensation.

6.3.2 Planner results

In order to test our planner, we performed three different types of experiments in a simulated

environment representing a 20× 20 regular 2-D grid. The initial condition of the module

(orientation, values of the degrees of freedom,...) is the same in all the experiments.

In the first experiment, we exhaustively tested the planner by trying to reach all the positions

around the initial position of the module, within a range of 2 grid units. We did not include

any obstacles on the grid. The success rate for this experiment was 100%.

In the second experiment, we generated a single squared obstacle of a dimension randomly

chosen between 1 and 15 grid units that we randomly placed on the grid. The start and goal
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(a) (b)

Figure 6.3 – (a) shows the grid with Roombots module. The eight nearest neighbour cells are
labelled with letters A-H. In (b) an example of planning result is depicted: the goal position, G ,
is reached from the start position S using the CMPs C , H , G and B (in red) based on the path
found by the D� algorithm (in black). The hatched area represents an obstacle in the grid.

position of the module were randomly chosen as well. We generated and tested 300 worlds.

The success rate of the planner is 100% for worlds that contain at least a solution. The worlds

for which the planner was not able to find a path are in fact worlds with no existing path

between the initial and the final position (see Fig. 6.4a for an example of such a world).

In the third experiment, we fixed the number of obstacles, their dimensions and their position

(as illustrated in Fig. 6.4b) and we randomly chose the start and goal position of the module.

We performed 300 trials. The success rate of the planner was 70% on average. The worlds in

which no paths were found correspond to those where either the goal position or the start

position of the module were at the boundaries of an obstacle and/or of the world so that the

module could not leave or reach this position due to kinematic constraints of the RB module.

Although we successfully presented climbing experiments with the real hardware, the planner

is currently not capable of using motor primitives for approaching or getting away from walls.

Thus all initial and final positions with a distance of less than one cell from an obstacle or

world boundary cannot be reached or left with the current state of the planner. We will be

able to increase the success rate once we include the same motor primitives in the planning

process that we use to approach and leave obstacles for overcoming concave corners. Other

world configurations where the planner failed to find a path included those where the initial

position of the RB module was placed so that its two possible directions of motion where

blocked by an obstacle and/or by the border of the grid, as illustrated in Fig. 6.4a.

6.4 Conclusion

Roombots are designed with the property that a single module can fully autonomously travel

through self-reconfiguration to any position on a 2-dimensional grid with a minimum number

of three degrees of freedom. We presented a simple but effective online locomotion-through-
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(a) A world with no path (b) The fixed world with obstacles

Figure 6.4 – Worlds used during the experiments. I and F are the initial and final position of
the module, respectively. The hatched areas represent the obstacles. (a) illustrates a world in
which no path can be found. The red arrows indicates the path found by the D� algorithm. (b)
depicts the fixed world used in the third set of experiment with an example of initial and final
positions for which no path was found by the planner.

reconfiguration planner based on the D� algorithm and composed motor primitives that is

closely linked to the real hardware and allows steering RB modules on a grid by simply giving

a goal position. This method can be generalized to various hybrid platforms as well as to

metamodules, after characterizing their kinematic ability. We presented experimental results

illustrating the reliability of RB moving on 2-dimensional grids.
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7.1 Introduction

In this chapter, we propose an automated method to generate reduced control networks for

the off-grid locomotion of arbitrary structures made of modular robots, instead of considering

a fully connected network with many parameters. In this work we consider structures that are

neither fully linear (i.e. being composed of modules connected only in a open chain) nor fully

cyclic (i.e. being composed of modules connected only in closed chain). Our approach is based

on the decomposition of the robotic structure into morphologically relevant sub-structures,

like body and limbs, and on the automated identification of bio-inspired articulation joints

inside the structure. The number of optimization parameters is further reduced using ex-
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isting symmetries in the structure. This method can be applied for self-recovery and fast

re-optimization after structural changes due to hardware failure or voluntary morphological

modifications, for example. A test situation could be the deployment of self-reconfigurable

modular robots in an unknown environment where they would quickly need to re-learn some

efficient gaits after reconfiguring during a time-critical task.

Our work is driven by the two following hypotheses:

• Hypothesis 1: the use of bio-inspired functional patterns and symmetries to generate

the architecture of a CPG network controller for locomotion significantly increases the

speed of convergence towards an acceptable1 solution in terms of forward velocity and

collision, compared to using a fully open CPG network.

• Hypothesis 2: the quality of the solution (in our case the velocity after convergence

and the potential internal collisions between modules) is not significantly modified in

comparison to a fully open optimization.

This chapter is organized as follows. In section 7.2, we review the existing approaches for

controlling modular structures with dynamically changing morphologies. We then introduce

in section 7.3 the basic control architecture used in this work. Afterwards we describe our

method to find relevant sub-structures inside any modular configuration (section 7.4) and

explain how a reduced control network can be generated based on this differentiation and on

the concept of distance-based symmetry (section 7.5). We validate our approach using three

structures in simulation (section 7.6) and discuss our results (section 7.7) before concluding

(section 7.8).

7.2 Related Work

Modular robots offer the advantage of morphology that can change depending on external

factors (e.g. changes in the environment) or internal ones (e.g. sudden hardware failure). This

flexibility brings an additional challenge in comparison with monolithic robots in terms of

design of efficient controllers. Moreover the increase in the number of degrees of freedom with

each module added to the structure makes it difficult to hand-design specific gaits. Monolithic

robots can also have to cope with a change in their morphology due to hardware issues,

requiring as a consequence a re-design of their locomotion controller. The optimization of the

set of parameters to generate efficient locomotion is often time consuming.

Since the early work by Yim [282] on the caterpillar locomotion of Polypod robots, several

approaches have been proposed for the control of the locomotion of structures made of

modular robots. For example, Shen et al. [228] proposed a hormone based method to control

1In our case, acceptable means capable of moving at a reasonable velocity above some minimum threshold.
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the locomotion of CONRO robots, Stoy et al. [246] used role-based control and cellular

automata, and Yu et al. [287] described a consensus based approach for the locomotion

control of 2D modular robots. CPGs, implemented as systems of coupled oscillators, have

been applied for locomotion control by several researchers for distributed locomotion control

and various techniques have been investigated [121, 167, 168, 72, 237]. The main drawbacks

of the presented approaches is that they consider a fixed morphology and require the manual

design of the CPG network, which might prove to be a tedious task for large structures. Some

authors [231, 28, 164] used evolutionary methods and co-evolution to make the robot discover

its own morphology, or used genetic algorithms to evolve possible gaits for given structures

[133]. Those methods are often computationally demanding and time consuming, making

them difficult to transfer on-board and on-line. More recently, accelerated learning methods

have been investigated [62, 59, 61] based on a distributed and morphology independent

learning process. The main difference with our approach is that we propose to optimize

beforehand the control network itself instead of approximating the learning reward for the

different possible actions. Christensen et al. [58] described a control framework to generate

full body behavior based on the decomposition of the structure into bio-inspired parts (like

muscle or bones) with pre-defined function (e.g. muscles can contract). The control is then

done at the level of those sub-parts, abstracting away their individual components. Although

this approach is similar in essence to our method, the main difference is that we propose an

automatic detection of bio-inspired joints and symmetries in any arbitrary structure instead

of considering predefined structures built from known sub-parts.

7.3 Control Framework

We test our techniques on a simulated model of our self-reconfigurable modular robot Room-

bots (RB) [238]. Compared to other SRMR, we chose to use RB because of the large variety of

gaits that can be obtained with few modules, thanks to their three degrees of freedom capable

of both oscillation and continuous rotation.

We considered as locomotion controller a network of coupled non-linear oscillators mimicking

the Central Pattern Generators (CPGs) found in many vertebrates [121]. The control inputs

for this CPG are the amplitude Ai , the offset Xi , and the phase lags ψi j of each oscillator

i connected to oscillator j . We use one common frequency for all oscillators (ν = 0.2 Hz,

according to [177]), bi-directional couplings follow the rule such that ψi j = -ψ j i and all

coupling weights are set to 2. We set the CPG output to produce oscillatory joint angle

signals. The coupled phase oscillators are implemented by the following coupled differential

equations:
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φ̇i = 2π ·ν ·∑
j

wi j · r j · sin
(
φ j −φi −ψi j

)
(7.1)

ṙi = ai (Ai − ri ) (7.2)

θi = ri · sin
(
φi

)+Xi (7.3)

where i and j are the indexes of the oscillator, θi is the oscillator output controlling the position

set point of the Degree Of Freedom (DOF) number i , ri is the signal amplitude, and φi the

phase. Each oscillator i has a maximum of three parameters that are subject to optimization:

the desired amplitude Ai , offset Xi and the phase lag ψi j to the following neighbor j . More

information about CPGs can be found in [121].

In order to find the most efficient gait for each structure, we use a population-based algorithm

based on Particle Swarm Optimization (PSO) [136, 63] to generate the set of CPG control input

parameters. In this work, we used simulated gait optimization in the simulation software

Webots [275].

7.4 Body/Limb Finder

In many vertebrates, the body and limbs are clearly differentiated and play different roles

in the chosen locomotion strategy. In order to benefit from this definition of specific sub-

structures, we developed an automatic centralized algorithm, called Body/Limb Finder (BLF),

to automatically identify body and limbs in an arbitrary modular structure. This structure

is represented as an undirected graph in which each node represents a module and each

edge represents a connection between two modules (as illustrated in Fig. 7.2 top right). The

main idea of our approach is that the removal of the body from a given structure will lead to

several disconnected elements that represent the limbs. Additionally, the body can be further

decomposed into a linear part (or chain part) and/or a cyclic part. A cyclic part is defined as a

closed loop of connected modules. The actuation strategy will vary depending on the type of

body part considered. In the scope of our bio-inspired control approach, we have introduced

a set of rules to identify relevant articulations within the structure: we are able to differentiate

between spines, hips, knees and ankles. A special control pattern for each of those units will

be introduced in section 7.5. We first present the theoretical aspects related to the detection

of those different elements inside a given structure and then describe the validation of our

method using a statistical approach.
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7.4.1 Theory

Body/Limbs differentiation

The BLF algorithm is primarily based on the notion of bi-connected components (bcc). A

bi-connected component of a graph is a graph with no articulation vertices, meaning no

vertices that, if removed, would lead to a disconnected graph. The BFL algorithm is composed

of three main steps (illustrated in Fig. 7.1):

Step 1: decomposition into bi-connected components We first obtain the different com-

ponents of the graph. This gives us the linear parts (i.e. bcc composed of less than 2 nodes)

and the cycles (i.e. bcc composed of strictly more than 2 nodes), if any.

Step 2: finding the cyclic parts of the body We use the following rule to find the cyclic parts

of the body. The cyclic parts of the body correspond to groups of modules that are fully linked

together, meaning that at least two paths exist between any pair of the group. For each cycle

found at step 1, we check the connectivity of the graph resulting from the removal of this cycle:

if the remaining graph is still connected then the cycle is not part of the body.

Step 3: finding the linear parts of the body For this step we consider the different nodes

which compose the 2-nodes bcc found at step 1. We select the nodes using the following rules

(the 2 conditions have to be validated):

i Clustering power: if the removal of the node leads to a number of components for the

remaining graph strictly greater than 2 then the node is a linear part of the body2.

ii Articulation: the node must be an articulation of the graph.

After that, we calculate the shortest path between the selected nodes and we include it in the

linear part of the body (minus the intersection with the nodes found at step 2). The limbs are

the disconnected components remaining after the removal of the previously found body.

Articulation rules

Spine Every joint inside the linear part of the body is part of the spine, except for hip joints.

We chose to consider the cyclic parts of the body as unactuated.

2We need to impose this condition because of the case of "long" linear limbs: in a linear limb composed of
strictly more than 2 nodes, the central node has a clustering power of 2 and is an articulation, but it is not part of
the body.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7.1 – The different steps of the body limbs finder illustrated on struct10 (a), a structure
with 10 modules used later in our experimental validation. (b) We start by converting the robot
structure into an undirected graph in which each node represents a module and each edge
represents a physical connection. (c) At step 1, we detect the bi-connected components (bcc)
in the graph and sort them depending on the number of nodes they contain. (d) At step 2,
we detect whether the previously found cycles (i.e. the bcc containing more than 3 nodes)
are part of the body by testing if their removal leads to a disconnected graph: since we obtain
4 sub-graphs after the removal of bcc4, it is part of the body. (e) At step 3, we detect in the
remaining bcc the articulation nodes, indicated with an A, and check whether they lead to
more than two sub-graphs or not (f and g): since the removal of those articulations leads to
only two sub-graphs, they are not part of the body.
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Hip

• A hip joint can belong either to a limb or to the body.

• A hip is a joint at the frontier between a limb and the body. This joint must therefore

have at least one neighboring joint being part of the body.

• We want a hip joint to be as proximal as possible, which means that a hip joint defined

as part of the body will be preferred over a hip joint belonging to a limb.

Knee

• A knee joint must be part of a limb. There is only one knee per limb.

• A knee joint is at the center of the limb, between the pod and the hip (we define the pod

as the most distal joint of the limb).

• If a hip joint and a foot joint are connected to each other with only one additional joint,

no knee joint can be defined in the limb.

• If possible, a knee joint should be at equal distance from a foot joint and a hip joint. If

such a joint cannot be found, we would choose the more proximal joint situated at the

center of the limb as the knee joint.

Ankle The rules to define an ankle joint are the same as the one describing a knee joint but

considering the limb is starting at the knee joint. There is only one ankle per limb.

This set of rules, as well as the result from the BLF algorithm, is illustrated on Fig. 7.2 on a test

structure with 9 modules shaped as a quadruped. The unclassified degrees of freedom are

considered as locked.

7.4.2 Results

Since the notion of body is difficult to define and to characterize, we manually evaluated

the "recognition rate" of our algorithm applied to twenty randomly generated structures.

The number of modules per structure varies from 12 to 32. We considered the RB modules

presented in section 7.3 as a test platform, but our method could be applied to other modular

robots. Given that the goal of our method is to improve the locomotion control of a structure,

we discarded unusable structures, for example, the ones with no limbs at all. The results

matched our manual tagging for all the tested structures (see Fig. 7.2 for an example).
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Figure 7.2 – Top left: A quadruped structure composed of 9 RB modules. Top right: the
corresponding graph representation, used in the BLF. Bottom left: the detected body and
limbs. Bottom right: the articulations detected using the set of rules described in subsection
7.4.1.

7.5 Automatic Generation of Reduced CPG Networks

In this section, we describe the rules applied to design the control network of a modular

structure using the coupled oscillators introduced in section 7.3 depending on the results from

the BLF. Additionally, we introduce the notion of distance-based symmetry using a labeling

function for the connection between modules and show how those symmetries can be used to

further reduce the number of parameters in the control network.

7.5.1 Articulation network

The CPG network we derive from the articulations found using the BLF is inspired by the

typical bone connection network present in many vertebrates (for example, the knees are

usually connected to the hips and the hips to the spine). Each spine, hip, knee and ankle joint

is driven by a single oscillator. The other degrees of freedom are considered as locked. We also

assume that only the linear parts of the body are actuated (the cyclic parts being blocked) and

that each spine is composed of a single joint (the most central one of the linear part, tie being

solved at random) driven by a single oscillator. If more than one linear part is present in the

body, each is controlled using a single oscillator. The parameter boundaries for the amplitude

of an oscillator depend on the type of articulation. The coupling rules between the oscillators
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are the following (illustrated in Table 7.4):

• The spine oscillators are fully coupled together.

• The hip oscillators are fully coupled together. They are further coupled to the closest

spine oscillator in the structure.

• The knee oscillators are only coupled to the corresponding hip oscillator (the one

located in the same limb). If no hip is present in the limbs, the knee oscillator will act as

a substitute and the same hip coupling rules will apply to it.

• The ankle oscillators are only coupled to the corresponding knee oscillator (the one

located in the same limb).

Using this technique, the maximum number of parameters depends only on the number of

limbs in the structure and is independent from the number of modules per limb. We consider

only three parameters for each oscillator: the amplitude, the offset and the phase shift between

the different oscillators. In this formula, we also consider bi-connected connection between

the oscillators. If n represent the number of limbs, ns the number of spine oscillators, and nh

the number of hip oscillators, the number of parameters Pr educed can be computed as follows:

Pr educed =
n∑

i
2(δa

i +δk
i +δh

i )+2×
nh∑

i
(δh∈Bod y )+2ns

+
n∑

i
2(δa

i +δk
i )+nh(nh −1)+ns(ns −1)+

nh∑

i
2(δs

i ) (7.4)

where δa
i , δk

i , and δh
i equal 0 or 1 depending if the limb i contains an ankle, a knee or a hip,

respectively, δh∈Bod y equals 0 or 1 depending if the hip is inside the body or not, and δs
i is

equal to 0 or 1 if the hip is connected to a spine or not.

For a fully open network controlling a structure with m joints, each of them represented by

one oscillator coupled to its closest neighbor, the total number of parameters Popen is equal to

Popen = 2×m +
m∑

i
(δc

i ) (7.5)

where δc
i is the number of connections between oscillator i and its neighbors.

7.5.2 Distance-based symmetry

In order to further reduce the number of parameters required in our control network, we

use geometrical symmetries between the limbs in the structure. If two limbs are considered

symmetric, the corresponding oscillators share the same amplitude and the same offset (the
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phase shift remaining open to avoid restricting the possible gait patterns). To capture the

geometrical organization of a given structure, a label for the connection between modules has

to be defined. The label expresses the physical relationship between modules by encoding

the source connector, the destination connector and the rotation between the 2 modules. We

propose to use Cantor polynomials as a labeling function. Cantor polynomials are the only

polynomials of degree 2 bijective from N2 to N. They are defined by the following formulas:

f :
N2 �−→ N

(a,b) → [(a+b)2+3a+b]
2

(7.6)

and

g :
N2 �−→ N

(a,b) → [(a+b)2+3b+a]
2

, (7.7)

where ∀(a,b) ∈N2 f (a,b) = g (b, a).

In order to obtain a bijection from Nn to N we only need to compose f or g by itself. In the

case of the RB platform, we need to associate a unique integer to any given set of 3 values

representing respectively the source connector (we called it a), the destination connector (we

called it b) and the type of connection (we called it c). Thus, the labeling function that we are

going to use is defined as follows:

l :
N3 �−→ N

(a,b,c) → [( f (a,b)+c)2+3 f (a,b)+c]
2

We can now associate any tuple (sour ce,desti nati on, t y pe) with a unique positive integer.

The only issue with this labeling system is that we have to take into account the orientation of

the connection (a bijective function cannot be symmetrical and, as a consequence, if we switch

the source connector and the destination connector, the computed label will be different).

The RB platform is equipped with 10 connection ports. Nevertheless the connectors placed on

one outer hemisphere are equivalent considering a rotation of π/3. Similarly those two hemi-

spheres can also be flipped (which corresponds to flipping the module) without modifying the

functional characteristics of the connection. As a consequence the range for the connection

ports is reduced to [0..4] instead of [0..9].
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The distance-based symmetries in a structure are determined using the information provided

by the body/limb finder applied to the graph representing the structure and labeled using the

previously mentioned labeling function. Only limbs of the same length are compared. The use

of symmetries inside the structure is coupled with the information about the localization of

the joint with respect to the body. The connections between modules are sorted into different

groups depending on their distance from the body. The labels of the connection inside

each limb are iteratively compared among groups: only fully identical limbs are considered

symmetric.

7.6 Experimental Results

We considered three RB structures as test cases to evaluate our method. The first structure

is a quadruped made of 5 modules with all limbs symmetrical (called quad5-sym, shown in

Fig. 7.3 on the left). The second structure is the same quadruped but with a limb connected to

the spine with a different orientation, so that only 3 limbs are now symmetric (called quad5-

unsym, depicted in Fig. 7.3 on the right). The last structure is a pseudo random asymmetric

structure made of 10 modules (called struct10, shown in Fig. subfig:struct10webots). The first

two structures were chosen to represent bio-inspired structures, with the distinction between

fully symmetric and partially symmetric one. We decided to use struct10 to test our method

on a much larger structure in which no intuitive gait could be engineered and also for which a

fully open optimization requires a significant amount of time to converge.

Figure 7.3 – Two of the three test structures: quad5-sym (left) and quad5-unsym (right). The
difference between the two structures is that one of the modules (the one at the bottom right
of the picture) is connected using a different orientation.

We compare an optimization of the parameters of the corresponding CPG network for each

structure in the following four conditions:

1. Fully open optimization (FO): all the parameters of the network are considered open.

One oscillator per dof is used. For each oscillator the amplitude is only constrained to

[0;π].

2. Body Limbs Finder reduced network (BLF): we use the technique described in subsec-
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tion 7.5.1 to generate a reduced network for the structure. The amplitude parameter is

constrained depending on the type of articulation considered (see Table 7.1).

3. BLF network and symmetry finder (BLF-SYM): additionally to using the reduced net-

work generated by the BLF, we consider symmetries as described in subsection 7.5.2 to

further decrease the number of parameters to optimize. The amplitude parameter is

constrained depending on the type of articulation considered (see Table 7.1).

4. Symmetry finder (SYM): we applied distance-based symmetries between the limbs

to reduce the number of parameters in the fully open CPG network controlling the

structure. This step requires the use of the BLF to determine body and limbs in the

structure, but, contrary to the previous case, no specific network structure is derived

from this detection.

In terms of search space, the BLF, BLF-SYM, and SYM cases are sub-sets of the FO case. The

number of parameters for each structure in the different cases are summarized in Table 7.2.

The parameters used for the PSO optimization for each case can be found in Table 7.3. The

corresponding CPG networks are depicted in Table 7.4.

Table 7.1 – The boundaries for the amplitude parameter depending on the type of articulation
considered.

Spine Hip Knee Ankle
Min 0 0 0 0
Max 2

3π
π/2

π/6
π/6

Table 7.2 – The number of optimized network parameters for the three case structures in the
four different conditions. The number in parenthesis indicates that the network is the same as
one previously defined, and as a consequence, that it was not used.

quad5-sym quad5-unsym struct10
FO 44 44 90
BLF 21 21 26
BLF-SYM 15 17 (26)
SYM 26 30 (90)

We ran the PSO optimization twenty times with different initial random populations for the

three structures quad5-sym, quad5-unsym, and struct10. For the latter, only the FO and BLF

networks were tested, since no apparent symmetries are present in the structure. The fitness

function f chosen for the optimization process takes into account the displacement of the

structure and penalizes collisions between modules:

f = d

ttot al
×c (7.8)

where d corresponds to the displacement of the robot during the total experiment time ttot al
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Table 7.3 – The fixed parameters for the PSO optimizations for the different structures.

Parameters quad5-(un)sym struct10
No. particles 80 160
No. iterations 800
maximum velocity 0.6
social factor 2.05
cognitive factor 2.05
constriction factor 0.729
exp. duration ttot al 30s

and c is a penalization factor used in case of self-collision equal to 0.001 if there is a collision

and 1 otherwise. c was determined experimentally.

At each iteration and for each of the twenty optimization runs, we only consider the solution

with the highest fitness. We then computed the mean value of these sets of twenty best

solutions and repeated the process for the three structures considered. The results are depicted

on Fig. 7.4.

In order to compare the results of the best particles obtained at each iteration using the

different network topologies, we performed single factor ANOVA tests (we tested the ho-

moscedasticity of the residuals using the Levene’s test and we assumed they were normally

distributed). The results are summarized in Table 7.5.

7.7 Discussion

Our first hypothesis was that the fact of using a reduced CPG network generated using bio-

inspired rules would significantly reduce the number of iterations needed to obtain an accept-

able gait for a given structure. As we can see in Table 7.5, the solutions generated using the

reduced CPG network dominated the fully open population at least to the 30th iteration for

the quad5-sym and quad5-unsym structures. For the bigger structure, we can clearly notice

that restricting the search space by introducing automatically generated prior knowledge and

boundaries to the parameters positively impacts the results: the fitness values are significantly

better up to the 200th iterations and the convergence is significantly faster. We also observed

that out of twenty runs of the struct10 FO cases, we only obtain four valid solutions that

converge to a set of parameters that did not induce self-collisions, emphasizing the need

for a more robust method. If we select those solutions and compare them to four randomly

chosen solutions from the BLF set, we observed that the BLF solutions are significantly better

at the beginning of the optimization process (until iteration 71) before being dominated by

the FO solutions (as illustrated in Fig. 7.5), which remains consistent with our first hypothesis.

Similarly, we observed in all cases that no significant differences could be found between our

three proposed methods and the standard FO case at convergence, which remains consistent

with our second hypothesis.

99



Chapter 7. Off-grid locomotion

Table 7.4 – The different CPG networks for the three tested structures. In the fully open
case, the circles represent the generic oscillators. For the BLF and BLF-SYM cases, the limbs
are represented in green, the body in orange, and the shape coding is as follows: the spine
oscillator are circles, the hip oscillators are squares, the knee oscillators are hexagons, and the
ankle oscillators are crosses. For the BLF-SYM and SYM cases, the symmetric oscillators are
indicated with the same stripe type.

Structures FO BLF BLF-SYM SYM

quad5-
sym

quad5-
unsym

FO BLF

struct10

The reduced networks seems to be less sensitive to local minima resulting from the complex

optimization landscape, as illustrated on Fig. 7.4c. The results we obtained are as expected,

since reducing the search space is known to have a positive effect on the speed of convergence,

but through our study, we managed to validate our hypothesis and to quantify for how many

iterations it is still valid.

One typical test situation for our method would be some hardware failure of a self-modular

robot during a time critical mission: the robot is then forced to reconfigure into a new shape

and to re-learn how to move. It can, for example, connect to a remote cluster service to ask for

new possible gaits but it cannot wait until the full convergence (meaning hours of computation

for large structures). A similar scenario could involve a monolithic robot having to deal with a

change in its morphology after some hardware issue. Our approach could be used in those two

cases to characterize the new configuration of the robot and to propose corresponding reduced
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Table 7.5 – Iteration number after which no significant difference (with a p − value < 0.05)
can be found between the samples of best individuals corresponding to the four network
topologies. The values marked with a star indicate the iteration number before which no
significant difference (with a p − value < 0.05) can be found between the samples of best
individuals. The three numbers correspond to the three structures, respectively, from left
to right, quad5-sym, quad5-unsym, and struct10. Before this iteration number, the ordering
between the different network topologies can be seen on Fig. 7.4. None means that the two
samples tested were not significantly different. X means that the test was not performed
because the networks were not tested.

BLF BLF-SYM SYM
FO 32/96/202 30/88/X 80/224/X
BLF - 92/None/X 57/84∗/X
BLF-SYM - - 35/82∗/X

CPG networks to speed-up the optimization of the gait. With our proposed technique, after

only five iterations (around one minute of optimization on average on our computer cluster3)

we manage to provide a gait with a fitness value of 0.017, 0.024, and 0.016 (BLF, BLFSYM, and

SYM) against only 0.005 in the FO case for quad5-sym (at least 3 times less on average, as

depicted on Fig. 7.6). Similarly, for the quad5-unsym, the fitness after five iterations is almost

an order of magnitude bigger with the reduced network (minimum 0.017) in comparison with

the fully open case (0.002), as illustrated on Fig. 7.7. Similar trends are can be observed at

iterations 25, 50 and 100 (5, 10 and 20 minutes of computation, respectively), as shown on Fig.

7.6 and Fig. 7.7. The solutions found in the FO case in the early exploration phase were often

heavily penalized because of the self-collision induced by the large boundaries set for the CPG

parameters.

We can also observe on Fig. 7.4a and 7.4b that the reduced networks generated using the

distance-based symmetry technique (SYM) obtain better results relatively to the two other

reduced networks (BLF and BLF-SYM). This can be explained by the fact that the amplitude

for the oscillators has larger boundaries than in the two other cases. A qualitative analysis of

the resulting gait showed that in the SYM case, as well as on the FO case, the structure tends

to rely much on almost rolling movement of some joints to increase its momentum. On the

contrary, in the BLF and BLF-SYM cases, the structure tends to have a smaller amplitude of

oscillation and favor animal-like displacement of the limb, making the obtained gaits more

hardware friendly. The different solutions are illustrated in the video attachment.

Regarding the portability of the solutions to the hardware platform, we set the parameters of

the simulation environment according to the results of a work that used meta-optimization on

the RB robot in order to reduce the reality gap between simulation and hardware [177]. This

should ensure that the gaits we obtained in this study remained consistent when transferred

to a hardware platform.

3Our cluster is composed of forty 2.00GHz quad-core Intel Xeon E5504 processors.
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7.8 Conclusions and Future Work

In this chapter, we proposed an automated method to generate a reduced CPG control network

for the locomotion control of modular robots. We based our approach on the recognition of

bio-inspired patterns in the structure playing the role of spine, hip, knee or ankle. Each of

them are driven by a single oscillator with particular boundaries for the optimization param-

eters and specific coupling rules with the neighboring oscillators, with the goal of reducing

the optimization time needed to find acceptable gait. We further reduced the number of

parameters required in the optimization by automatically considering the existing symmetries

in the structure.

By comparing the results obtained with three different structures, two quadrupeds and one

pseudo-random structure composed of 10 modules, we noticed that our method leads to

significantly better results during the first iterations, making the goal of re-optimizing a

locomotion strategy (for example to cope with an unexpected change in the morphology of

the robot due to a hardware failure) online and on-board a reachable goal.

Despite our method being generic, our preliminary study involved a restricted number of

structures and was focused on a particular robotic platform. We are planning in the future to

further extend our work to different types of modular robots and to increase the number of

modules per structure to emphasize the gain induced when using our method.
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(a) Quad5-sym

(b) Quad5-unsym

(c) Struct10

Figure 7.4 – The mean value of the fitness function over twenty runs for (from top to bot-
tom) the quad5-sym, the quad5-unsym structure, and the struct10 structure. The results are
displayed in semi-log scale.
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Figure 7.5 – In black, the mean value of the fitness function for the four optimization runs of
the struct10 structure in the FO cases in which no collisions were observed in the optimization
best solution. In red, the mean fitness value of four randomly chosen optimization solutions
in the BLF case.

Figure 7.6 – The mean fitness values and standard deviation at iteration 5, 25, 50, and 100 for
the different network topologies applied to the quad5-sym structure.

Figure 7.7 – The mean fitness values and standard deviation at iteration 5, 25, 50, and 100 for
the different network topologies applied to the quad5-unsym structure.
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Conclusion

HYBRID SRMRs have the ability to use embedded connectors in the environment to per-

form a kind a locomotion through reconfiguration, via connection and disconnection

of their docking mechanisms. They can additionally freely locomote off-grid using various

strategies. In this part we have illustrated both aspects and proposed efficient approaches to

tackle the locomotion problem.

We have first described (Chapter 6) a novel planning method to perform on-grid locomotion

through reconfiguration based on composed motor primitives and the well known D� plan-

ning algorithm. Our technique was demonstrated using simulation of the RB platform but also

through proof of concept hardware experiments using hardware modules. Our planner proved

to be robust and we demonstrated the ability of a single RB module to reach any position on a

2D grid, fully autonomously.

In Chapter 7, we have tackled the issue of re-learning off-grid locomotion parameters under

time-critical situations. A test situation that we are considering is a structure made of several

robots and deployed in an unknown environment to perform a time-critical task. At a given

point these robots, while locomoting using a known set of parameters, have to reconfigure into

a not previously known shape to cope with an unexpected change in the environment or with

some hardware failure. The resulting shape after reconfiguration was unknown beforehand,

removing the opportunity of using gait look-up tables. We use Central Pattern Generators

(CPGs) for the control of our modular structures and the population based optimization

technique Particule Swarm Optimization (PSO) for finding our set of control parameters.

Our strategy for this fast relearning of the locomotion parameters is to identify bio-inspired

patterns such as body and limbs and articulation degree of freedom (such as spine, hip,

knee, and ankles) to reduce the number of degree of freedom to consider in the locomotion

parameter search. Additionally we proposed to use symmetries in the structure to further

reduce the number of parameters to optimize, since two symmetric oscillators share their

amplitude and phase. Our goal was to increase the speed of convergence towards a reasonable

solution in terms of forward speed and internal collision. Using those reduction techniques we

were able to generate reduced CPG networks for three different structures made of simulated

RB modules, two quadruped like structures with five modules and one arbitrary random

structure made of 10 modules. We proved that our method significantly outperformed the gait

resulting from the fully open network in the first few iterations. Our method can be apply with
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any arbitrary structures (except the fully linear or cyclic ones) and can be adapted to various

optimization techniques and control methods.

In the long term goals of the RB project, the locomotion techniques we developed in this part

will allow a quick, robust, and efficient deployment of the different robotic structure in the

environment, as well as a strong capability to adapt to unknown and unexpected changes.
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Introduction

SELF-RECONFIGURABLE modular robots are composed of several independent units

working together to achieve a particular task. They are different from more classical

bio-inspired and anthropomorphic robots since they do not necessarily exhibit traits that

would allow for an intuitive way of interaction (such has a head with cameras or hands with

embedded tactile sensors). We can wonder whether it makes the design of control interfaces

and interaction strategies easier or on the contrary more complex. The needs for a natural way

of interacting with such robots is growing, especially if we envision to deploy them in everyday

life environments, as it is the case in the Roombots project. When considering interaction

inside homes or public spaces, we have to keep in mind that the proposed interaction solution

should be non-intrusive but also easy to handle for non-experts or people with disabilities.

Our search for natural interaction strategies was guided by three main scenarios, tightly linked

to the ultimate goal of the Roombots project of building assistive and adaptive pieces of

furniture, but still applicable for various existing robotic platforms.

In a first scenario, called the building scenario, the user would like to design a particular shape

to be constructed by the robot. For example, the user has in mind the building of a table with a

unusually shaped table-top and he/she has to shape it and this shape has then to be transform

into an interpretable file to serve as an input to one of the previously define reconfiguration

frameworks (chapters 4 and 5).

For our second scenario, we imagine a user who needs to arrange a complete room with

furniture made of modular robots. This scenario is called the arrangement scenario. The user

can use the shapes that he/she design in the building scenario and should be able to place

them in a room to have a better idea of its global arrangement. The user should also be able to

freely move into the room to create the desired arrangement.

A last scenario, referred as the direct control scenario, would be when the user needs to indicate

to a given robot or group of robots where to move or what action to perform. This control can

be done for robots connected to a structured environment or for robotic structures performing

off-grid locomotion.

In this part, we are going to present the advances we made to the state of art in the domain

of interaction with a group of modular robots. We will examine in each chapter a particular
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solution we propose for the above mentioned scenarios. For all of them the two main questions

we are trying to answer are the following:

1. What would be an intuitive and natural way to interact with a group of modular robots

in a given situation?

2. How can we capture and measure the efficiency and the effectiveness of an interaction

strategy?

This part is organized as follows. Since our results and solutions for the first scenario are

still at a early stage, we decided to move our study to the appendix C. The first chapter

(chapter 8) of this part present the solution we derived to propose an interaction strategy

allowing the user to freely arrange a complete room with furniture made of modular robots.

We describe an evaluation of our solution based on a medium scale user study conducted

on a representative sample of potential users. In a second chapter (chapter 9) we explore a

device free control interface to solve the direct control scenario. We will finally conclude on

the different strategies we have developed to tackle this challenging issue. To go beyond the

interaction paradigms that we described in this part we present in appendix E a critical review

of the existing approaches to create interfaces for mixed team of humans and robots, that

can be used to pave the way for a collaborative framework involving heterogeneous teams of

robots and human inside an everyday life environment.
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8.1 Introduction

Mobile devices such as smart-phones or tablets have recently become more and more popular.

The field of robotics in everyday life could benefit from these technologies by using them

as a platform for human-robot interaction (HRI). Modular robots are aiming at achieving

robustness and versatility by using basic elements as building units for more complex struc-

tures able to autonomously adapt to changes in the environment [279]. The Roombots (RB)

project aims at designing and controlling modular robots to be used as building blocks for

adaptive furniture able to self-reconfigure, self-assemble, and self-locomote [239]. Through

this, Roombots are meant to become robots for everyday life which defines a broad user group

including people with no background in the field of robotics.

To make Roombots attractive and usable for a broader range of people, we designed a new

interface for potential end-users. For the arrangement of furniture, a mobile device such as

the iPad allows the user to intuitively interact with the environment while walking around

the room to change perspective. This matches one of the main tasks that we envision users

to perform: arranging furniture in a room according to the user needs. Thus, an interface

should not only allow this arrangement but further let the user pre-visualize the result, with

the different Roombots units performing the required moves in a simulated representation of

the room. To improve this pre-visualization aspect, Augmented Reality (AR), in which virtual

objects are superimposed to a real view of the environment, can be used. As a first step towards

this goal, a preliminary version of such an interface was developed [22] and evaluated in a

user study.

This chapter is organised as follows: we start by describing our hypotheses and the related

works in the field. We then briefly describe our application before presenting the outline of

the user study we conducted. Results are afterwards presented in both a quantitative and

qualitative way. Finally we discuss our findings, conclude our main results and give an outlook

to future work.

8.2 Theory and hypothesis

We conducted a user study to evaluate our approach of using the iPad as a platform for HRI.

Additionally, we aimed at exploring how participants experienced the interaction and used the

application. We further expected insights into the usability of this first version of the interface

to refine it in the future.

We were particularly interested in finding out how far participants took advantage of the

mobility of the device and walked around the room to change their perspective while arranging

the robotic furniture through the interface. This topic addresses a main challenge in HRI

research: how a single user can operate distributed mobile robots. We focus here on the

human factor rather than on the technical aspects.
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A second topic originates from the particularity that robots are physically embodied and share

the same space with humans. This creates one of the main differences between interacting

with a robotic technology and a traditional human-computer interface. We addressed this

aspect by using an augmented-reality environment in which abstract virtual representations

of adaptive furniture were used. Augmented reality enables a direct interaction within the real

world and enhances it with computer-generated sensory inputs.

8.2.1 Augmented reality

Augmented Reality (AR) allows virtual objects to be combined with a real world representation.

The three key characteristics of AR have been identified to be: (1) combining real and virtual

images, (2) the virtual imagery is registered with the real world, and (3) real time interaction

of both virtual and real objects [11]. During the last decades, research in AR focused on the

development of techniques to provide such a user experience. Applications of AR can now

be found in various domains such as medicine [30] or games [208]. With the sophistication

of mobile devices the new field of mobile AR has emerged with its own challenges. The

main limitations of current mobile devices for AR are the limited input/output options, the

screen size and the graphical/computational power [20]. AR has often been opposed to pure

virtual reality (VR) mainly in the domain of medical training and has shown to lead to a

better perception of the task [30, 14], especially when coupled with haptic feedbacks. An AR

based approach has recently been used as a new interaction technique to increase safety for

industrial robots [191]: the user can pre-visualize the moves of a robotic arm and display

information regarding the current state of the motors using a head-mounted display.

For our case study, we thus formalize the following hypothesis:

Hypothesis

The use of augmented reality eases the placement of virtual pieces of furniture using the iPad

and improves the user experience. The precision of this arrangement and the completion time

will also be positively affected.

8.2.2 Mobility

Contrary to classical wearable AR devices, such as head-mounted displays, mobile AR units are

held in hand instead of being head mounted. This tends to increase peripheral view but greatly

challenge the input/output design strategy [107, 108]. When using a mobile device, the fact

that the user does not have both hands free induces more constraints on the interface design

[134]. Nevertheless mobile AR has recently been used in the domain of room arrangement in

the CMAR project [8]. In this project, multiple people can collaborate to arrange a room by

dragging virtual representations of the furniture displayed on a mobile phone on a printed floor

plan of the room. The collaborative aspect was emphasized in this study while participants’

ability of moving was reduced since they had to remain seated in front of the table holding the

AR marker. Some applications are also using the motion of the device itself as an input method
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[20, 52]. It has been shown that even if the use of device motion leads to faster translational

displacement of the virtual object, participants tend to be slower during the rotation phase

of the object [20]. Additionally, the use of a small screen tends to negatively impact presence

but the ability to move with these devices can compensate this effect [118]. To the best of

our knowledge no user study has been conducted to evaluate the effect of the mobility of the

participant in a room arrangement task.

So we postulate the following hypothesis:
Hypothesis

The ability to move in the room, as opposed to having a fixed standing point, improves the

precision of the furniture arrangement and decreases the completion time.

8.3 Application and setup

Our iPad application (see Fig. 8.1a for an illustration) allows placing two different types of

furniture (tables and chairs) inside a room, to move and rotate them as well as to change

their color (between five possible choices). The room configuration of our lab experiment

is illustrated in Fig. 8.1b. An external device has been used to track the user inside the area

delimited by a tape frame on the floor. The application is completely marker free. The required

data regarding the experiment (number of actions, final placement of the furniture, ...) were

recorded. More details about the technical aspects of the application can be found in [22].

8.3.1 Tracking system

In order to track participants during the experiment we used the Kinect sensor. We used the

open source library Nestk [43] to estimate the position of the participants’ body joints. This

tracking library requires a calibration procedure to reduce ambiguities regarding the user

orientation. The position of the iPad was estimated to be equal to the position of the user’s

neck, plus 30cm in the direction of the normal vector of the plane containing the torso and

the two shoulders of the user. The computed position was sent in real time by WiFi to the iPad

via a BSD socket with the UDP connectionless protocol. The overall precision obtained using

this approximation is around 10cm on average (computed by comparing 10 measured values

with computed ones). One of the main limitations of this method is the impossibility to detect

a change in the iPad’s position if the user does not move, for example by extending her arms. A

second restriction was that the user had to stay in a predefined area determined by the field of

view of the Kinect (about 3×2.50m). The orientation of the iPad was obtained directly using

the iPad Inertial Measurement Unit (IMU).

8.3.2 Implementation

In order to render the different virtual elements of our application we used the open source

graphics toolkit OpenSceneGraph (OSG) [42]. In the virtual condition, the virtual environment
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(a) The application

(b) The experiment room

Figure 8.1 – A screenshot of the application is depicted in (a). The user can choose between
five different colors (top row) for two types of furniture (chairs and tables, depicted in the
bottom row). The room used during the experiment is shown in (b). The tape on the floor
delimited the area where the participant could move in the dynamic modality. The stand
where the iPad was fixed during the static condition can be seen in the back of the room, near
the wall.

was fully constructed and rendered using OSG. In the augmented reality condition, virtual

objects needed to be superimposed to the real time camera view. The camera view was
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managed using the Objective-C language. This view was added as a sub-view of the window

along with the OSG scene that was rendered in another sub-view of the window, placed on top.

8.3.3 Interactions

The application is composed of two main elements (depicted in Fig. 8.1a): (1) the view of the

room in the background (either purely virtual or augmented) and (2) two Head Up Displays

(HUD). The lower HUD allows the user to create and delete pieces of furniture using a single

tap. The upper HUD can be used to change the furniture color and to check the state of the

WiFi connection between the iPad and the Kinect software. The user can select and deselect

pieces of furniture using a single tap and translate them using one finger once they are selected.

The furniture can also be rotated using two fingers.

8.4 Method

In order to test our hypotheses we conducted a 2×2 laboratory experiment with 24 subjects.

We defined the following manipulations:

1. The nature of the room representation:

• Virtual representation (V): the room is modeled by a pure 3D environment.

• Augmented Reality representation (A): the iPad camera is used to display the

room and the virtual pieces of furniture are superimposed to this view (see Fig.

8.1a).

2. The ability to move:

• Static (S): the iPad is fixed on a stand facing the room. It can be rotated to have a

different angle of view of the room but it cannot be translated.

• Dynamic (D): the participant can freely move inside the delimited area of the room

(Fig. 8.1b) holding the iPad in her hands.

The experiment was a within-subject design, where each participant performed two of the

four conditions (SV, SA, DV, and DA). Subjects performed the two respective conditions they

were assigned to in a counterbalanced way to handle order effects and keeping one of the two

modalities constant (row or columns in Table 8.1). The control group was composed of users

in the "static" condition using a virtual representation of the room (modalities S and V).

8.4.1 Participants

We recruited 24 subjects among students of different levels (bachelor, master, phd) and staff

members (post docs, assistants, administrative staff). People were invited to participate in a
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Table 8.1 – The four different groups of participants.

Room representation

Virtual (V) Augmented (A)

Ability to move

Static (S) SV SA

Dynamic (D) DV DA

one-hour session to evaluate a new software application. The mean age of participants was

27.3 and 8 of the 24 participants were women. We collected no data on participants’ cultural

background or other demographic factors.

8.4.2 Task and procedure

The main goal of the study was to gain knowledge about the effective use of the user’s ability

to move (opposition between static and dynamic conditions) and about the suitable accuracy

of the environment representation. We designed the following task to test these aspects: the

user was asked to create a circle of 10 chairs, two of each color, and place a table in the middle

(see Fig. 8.3). The room was completely empty and no instructions about the size of the circle

or the color order were given. In this task, we tested the space perception and the accuracy of

the relative positioning of virtual object.

8.4.3 Protocol

Participants were brought to the experiment room, given a short introduction to the project

and asked to sign a consent form, to agree being videotaped during the interaction and

recorded while the post-interview took place. Participants were shortly introduced to how the

application was working and given about one minute to become familiar with it. They were

explained the basic operations of the software, e.g. how to create, move, rotate, select or delete

a piece of furniture. This try-out always took place using a virtual representation of the room

(Virtual) and while the iPad was fixed on a stand (Static). Each subject performed the task in

each of their two respective conditions. No special instructions were given to participants

regarding precision or completion time. After this, participants were asked to complete a

questionnaire which was integrated in a qualitative semi-structured interview.

8.4.4 Measures

Dependent variables We identified five main dependent variables:

• The completion time, measured from the first interaction with the interface to the last
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(a) Virtual view

(b) Augmented view

Figure 8.2 – Virtual (a) and augmented (b) representations of the room with two chairs.

one.

• The number of errors participants made in the final arrangement (e.g. additional

piece of furniture or wrongly colored chair).

• The number of actions and their types (e.g. rotations, translations, selections,...)

• The position of the user during the experiment (in the dynamic condition).
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Figure 8.3 – This picture depicts the circle of chairs (C) with the table (T) in the middle used in
the task. Static virtual objects are represented by black rectangles.

• The precision of the final arrangement. We estimated the precision of the arrangement

considering both the overall placement of the chairs in a circle (as a global error mea-

surement, denoted by pg ) and the regularity of the positioning of the furniture with

respect to each other (as a local error measurement, denoted by pl ). To evaluate the

deviation from a perfect global arrangement (circle) we computed the ellipse fit based

on a mean squared error algorithm taking the position of the chairs center as data points.

The ratio between the long and the short axis of this ellipse captures the deformation

of the global placement. The local precision error pl takes into account the standard

deviation of the distance between the chairs and their centroids (σ(dcc )) as well as the

distance between the centroid of the group of chairs and the table center (dct ):

pl =σ(dcc )+dct (8.1)

Questionnaire After performing the task, participants were asked to fill a questionnaire

during the interview part. The questionnaire assessed using Likert scales people’s previous

expertise with tablets and smart-phones as well as with 3D object manipulation. The goal

was to check whether participant’s expertise impacted how the task was solved and how the

device was interacted with. The questionnaire further addressed aspects such as ease of use,

usefulness and learnability of the application. One questionnaire per group was created since

some questions were specific to one condition (for example the ease of manipulation of the

stand). Common questions included a relative evaluation of the task (difficulty, clarity and

entertainment aspect) and a global appreciation of the experience.
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8.5 Results

The mean and standard deviation related to the local precision error, the global precision error,

and the completion time are summarized in Table 8.2. We performed a two factors ANOVA

with the room representation (virtual or augmented) as first factor and the mobility (static or

dynamic) as a second factor. The data of the control group (SV) are compared against those

obtained in the other conditions. Results are described in more details below.

Table 8.2 – The mean and standard deviation of the local precision error, the global precision
error, and the completion time for the four modalities.

Modalities

V A

S D S D

Local precision pl (m)
M .73 .55 .81 .60

SD .26 .29 .39 .13
Global precision pg

M 1.23 1.13 1.19 1.12
SD .19 .069 .10 .081

Completion time (s)
M 194.13 225.64 185.76 229.38

SD 102.31 151.96 67.61 69.97

8.5.1 Effects of the room representation

In our first hypothesis, we postulated that using augmented reality would improve the user

experience, increase the precision of the arrangement, and decrease the completion time. Our

data does not support this hypothesis. There is no significant difference in terms of precision

for the room arrangement (F (1,46) = .65, p = .42 and F (1,46) = .57, p = .45 for local and global

precision respectively) . With the same factors, no significant difference was found regarding

the completion time (F (1,46) = .006, p = .94).

8.5.2 Effects of the ability to move

In hypothesis 2, we argued that the ability to move would positively impact both the com-

pletion time and the precision of the room arrangement. We found that there was a main

effect of the mobility on both the local precision (F (1,46) = 5.86, p = .0196) and the global

precision (F (1,46) = 5.94, p = .0187). No significant difference has been found between these

two modalities in terms of completion time (F (1,46) = 1.57, p = .22).
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8.5.3 Interaction effects

We did not observe interaction effects between the two factors for the two types of precision as

well as for the completion time: as illustrated in Fig. 8.4 the augmented and virtual conditions

do not impact the trend observed for both the local and global precision errors between the

dynamic and the static condition.

Figure 8.4 – The upper figure depicts the means and confidence intervals for the mobility and
the representation factors for the local precision error pl . The same indicators for the global
precision pg error are shown in the lower graph.

8.5.4 Qualitative study

For all the illustrations of this section (Fig. 8.5) the legend is as follows1: for the static condition,

the pink star represents the position of the stand on which the iPad was placed; the circles

and the square represent respectively the chairs and the table. The color inside these shapes

1In black and white printed versions the color gradients mentioned go from dark to light grey.
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indicates the order in which the furniture were placed, starting from dark red to white. The

position of the participant at every 0.1s is represented by stars colored continuously from red

to yellow (as represented by the color scale in Fig. 8.5) following the time evolution.

Subjects’ trajectory types for the dynamic modality We represented the trajectory of the

participants during the task based on their tracked position. A classification of the displace-

ment types of the participants can be made, based on four main criteria:

1. the overall surface covered.

2. the number of control points and interaction points. A control point is a position where

the user stands not for interacting with the furniture but to check the current status

of the arrangement. On the opposite, the user stops on an interacting point to place,

translate or rotate a piece of furniture. These points have been determined by cross-

checking the data from the log files and the videos of the different experiments. We can

thus distinguish between displacement phase and action phase.

3. the ratio of inner and outer points. Inner point are located inside the ellipse used to

define pg whereas the outer points are outside the ellipse.

4. the speed of the displacements.

Based on these criteria we identified trends in the trajectory of the participants that we

classified into three main categories: the Small category (see Fig. 8.5a), the Medium category

(see Fig. 8.5b), and the Large category (see Fig. 8.5c). In the Small category, the user mainly

remains at the same position and only uses one external point at the end of the experiment

for checking the arrangement. In the Medium category, several interaction and observation

points can be observed, mainly inside the ellipse but also outside. The available moving area

is not fully used. Finally, in the Large category, several interaction and observation points can

be seen as well as an exhaustive use of the space. We observed in addition that the participants

who performed the two dynamic conditions (DV and DA) remain consistent in their strategy.

For the two modalities tested in the dynamic condition the repartition between these three

categories are summarized in Table 8.3.

We observed that most participants (10/12 and 11/12 in the DV and DA group, respectively)

effectively used the available space. Nevertheless no significant differences were found in

terms of completion time, precision, or number of actions between those groups.

Perception of depth, distance and alignment As previously mentioned, we observed a

significantly higher deformation of the ellipse (pg ) in the static experiment than in the dynamic

one (see Fig. 8.5f for an illustration): the user tends to place the table too far away and has a
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(a) Small (b) Medium (c) Large

(d) Strategy 1 (e) Strategy 2 (f) Depth perception

Figure 8.5 – In the Small category (a), the user mainly remains in the middle of the circle of
chairs at the same position and only uses one external point at the end of the experiment for
controlling the arrangement. In the Medium category (b), several interaction and observation
points can be observed, mainly inside the ellipse but also outside. The grey surface is not fully
used. Finally, in the Large category (c), several interaction and observation points can be seen
as well as an exhaustive use of the space. In (d), a common strategy for furniture placing is
depicted: the participant face the area where s/he would like to add a piece of furniture and
do a few steps backward to have a better view. (e) shows the "outside" strategy: the participant
stays outside the circle of furniture and only move at the end to control the placement. (f)
illustrates the depth perception issue in the static condition (the pink star represents the
position of the stand on which the iPad was attached).
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Table 8.3 – The repartition of the participants based on their displacements during the task.

Categories

Small Medium Large

Groups

DV 2 1 9

DA 1 5 6

distorted perception of the depth inside the room. The fact that both AR and VR conditions

were equally affected is consistent with previous studies mentioning a similar bias in the

perception of distance between these two representations [251]. Some of the classical issues of

AR [79], such as the distance estimation and the alignment difficulty, have also been reported

by the participants during the interview session.

Furniture placement We observed that participants tend to go away from the position they

want to place the furniture in while facing it (see Fig. 8.5d). Another commonly observed

strategy was to adopt an external point of view during the task: the participant would stay

outside the circle of chairs and only change position to have a different perspective or to

control their placement (see Fig. 8.5e).

Regarding the order of placement for the furniture, there were no significant differences

between subjects starting with the table and subjects starting with the chairs, but most of

the participants (20/24 and 19/24 in the static and dynamic condition, respectively) placed

the table first. We can infer that they needed a fixed point as a guiding cue to place the other

pieces of furniture.

Additionally, many participants mentioned during the interview that they have often been

annoyed by already placed furniture in the static case because those were blocking their view

of the room (see Fig. 8.6 for an illustration).

8.6 Discussion

The analysis of our questionnaire revealed that the participants preferred the dynamic con-

dition over the static one (10 among 12). This preference is supported by the significantly

better results they obtained in terms of precision but no correlation has been found with

the completion time or the number of actions. Moreover, 9 participants among 12 declared

having preferred the augmented representation of the room but no significant differences

have been observed between virtual and augmented representation. It can be explained by the

fact that the task involved a very simple environment without any dynamic elements. Several

participants mentioned during the interviews that they would tend to favor the augmented
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(a) The iPad screenshot (b) The representation

Figure 8.6 – An example of blocked view: the participant placed first chairs in front the stand
(a) and then experienced difficulties to complete the circle of chair mainly because of the
obstructed view (b).

reality environment because it was more "realistic", especially regarding the lighting condition.

Unfortunately, the current state of the application did not allow the use of more complex

environments.

We have noticed that the strategy to place furniture greatly varies between the participants.

Nevertheless a commonly observed behavior was that participants tend to stay at a given

position while interacting with a given piece of furniture. This tendency, coupled with the fact

of taking one or two steps back before placing the furniture can be explained by the restricted

angle of view provided by the iPad camera. In the questionnaire, 16/24 participants declared

that the field of view of the camera was not big enough to comfortably complete the task.

We observed that the previous quantitative results remained the same when considering 2

groups of subjects classified using a median split based on their expertise. These results are

further supported by the replies in the questionnaire: the intuitiveness and the ease of learning

of the application have a mean rating of 3.68/4 while its ease of use has been evaluated to

3.59/4 on average. We conclude that the application was sufficiently intuitive to balance the

difference in expertise between the participants. In addition, the participants were asked

whether they found the software frustrating or confusing and more than 3/4 strongly rejected

this statement (meaning it was rated 0/5 in the questionnaire). We observed the same rating

regarding the responsiveness of the application. The overall number of errors is also low (3

errors in the final arrangement among all the different experiments performed).

Many participants mentioned during the interview session that a 2D top view of the room

would have been helpful to check the arrangement. This feature is available in many archi-

tecture software (see for example Sweet Home 3D [252]) and is often coupled with a 3D view
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for rendering only. The main reason why we discarded this option is that our application is

meant to be used in any existing room (with already placed furniture inside), meaning that

the environment is unknown before the start of the furniture placement activity. Indeed the

relevant features of the room will be tracked in order to reconstruct the corresponding model

of the room used in the application. On the opposite, the 2D view is well suited for not yet

existing buildings or for completely known environments.

8.7 Conclusion and future work

Revisiting our initial hypotheses, our study has shown that participants took advantage of

being able to move inside the environment and performed significantly better in term of

precision during the task. We can conclude that mobile devices are more suited for arrange-

ment tasks and preferred to fixed devices such as desktop PCs. Nevertheless the data that we

collected did not lend any support to our first hypothesis regarding the level of details in the

room representation: no differences were observed between a pure virtual representation of

the room and the use of an augmented reality environment. This last statement might be due

to the simplicity of the task we considered for this study, mainly regarding the integration of

dynamical objects inside the scene. We nonetheless observed that allowing the user to move

inside the environment while using augmented reality to integrate virtual elements enhanced

the user experience and eased the interaction between users and virtual artefacts.

Although our results were somewhat inconclusive regarding the effect of augmented reality, we

believe that they were greatly influenced by the technical limitations of the current version of

the interface. We are thus planning to improve our software to offer a more natural inclusion of

the pieces of furniture in the environment (for example by adding shadows). Further study will

then be needed in a more dynamical and unknown environment to ascertain the preference

of the users regarding the type of representation.

In order to remove the need for an external device to track the user, we investigated a new

way of detecting the user position using only points of interest in the image and a SLAM like

algorithm called PTAM [137, 138]. Our preliminary results shows that we can efficiently draw

a stable augmented scene inside the environment without relying on external sensors. More

details are given in appendix D.
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References and contributions

This chapter is based on the following publication:
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• general guidance to develop the different parts of the framework.

The external contributions were:

• the implementation of the framework.

• the development of the electronic parts.

• critical thinking on the more suitable interaction strategies to implement.

The Roombots modules have been designed with the objective of creating adaptive furniture

for home environments. Modules would perform both on-grid reconfiguration but also off-

grid locomotion to match the user’s needs. Up to now we have mainly considered three

different ways of interacting with RB: (i) for lab’s experiments, we are sending commands

using a custom-made ASCII protocol; (ii) to build or to control a structure composed of several

modules, we developed different GUI running on a PC (see appendix C for a presentation

of the building GUI); (iii) we introduced a new tablet-based interface allowing non-expert

users to quickly and efficiently arrange virtual pieces of furniture made of modular robots

in an augmented reality rendering of a room (see chapter 8). All these methods come with

limitations when considering the envisioned use cases of the RB: the first one is restricted to

expert user, while the second one requires the user to stay in front of the computer, preventing
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her/him to freely move in the environment while arranging it; as for the last one, the user needs

to carry an external device with him to interact with the robots. We would like to introduce a

more intuitive way of interacting with the group of modular robots using physical gestures for

selection and control of the robots, but also by relying on visual sensory feedbacks to provide

information to the user on the state of the system. The proposed interface uses Kinect depth

sensor to track the user and detect where she/he is pointing at, removing the need to carry an

extra device. The visual feedbacks are provided via LED rings installed on the two diagonal

degrees of freedom of the RB modules (see Fig. 9.1b for an illustration) as well as by LED plates

mounted directly on the grid setup. The test setup that we consider is a grid with a vertical

plane where two Roombots modules are connected (see Fig. 9.1a for an illustration).

We first present the structure of the tracking framework (section 9.1) and then we give an

overview of the interaction strategies we developed (section 9.2).

9.1 Tracking framework

The overall architecture of the tracking framework can be seen in Fig. 9.2. There are two main

tracking routines that have to be developed to ensure a proper user experience. First of all

we need to detect the position of the grid in the environment using the depth sensors of the

Kinects. Afterwards we need to robustly track the user to be able to detect where she/he is

pointing at.

In order to track the environment, we have to decide on the number of Kinects that we

are going to use as well as on their placement (position and orientation) in the room. By

evaluating the interference between the different sensing units and considering the resulting

space covered by the tracking, we found a trade-off with two Kinects, one near vertical pointing

at the grid setup and one almost horizontal and pointing at the user.

The two kinects sensors need to be "synchronized" to construct a unified 3D coordinate

system. This step is done using an extrinsic calibration routine relying on two main steps: (i) A

coarse calibration in which the user has to manually1 align the cloud of point coming from

the two kinects using a 3D visualization; (ii) A precise calibration performed using a variant of

the Iterative Closest Point algorithm [19].

After having a coherent point cloud, we need to detect the user. To do so we use the skeleton

tracker provided by the NiTE middleware [213] of the OpenNI framework [194]. To improve

the quality of the tracking we apply median filtering on the input of the skeleton tracker and

a weighted average running average filter on the determined joint positions. The pointing

gestures are detected by considering the head to hand vector as the direction of interest.

1It should be kept in mind that this step only has to be performed once by the user, and, as such, does not imply
an overload for her/him.
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(a) The grid setup

(b)

Figure 9.1 – (a) The setup being tracked is composed of a grid with a vertical panel and two
Roombots modules connected to the horizontal plane. (b) A single RB module equipped with
two LED rings, lighted in red (adapted from [197]).

9.2 Interaction strategies

In order to provide visual feedbacks to the user and improve the usability of the interface, we

designed two LED-based systems (with four colors LEDs) equipping both the RB modules, as

rings on the two diagonal degrees of freedom, and the grid, as additional tiles that superim-

posed to the existing connectors. The LED rings can exhibit three main behaviors: (i) Constant

lighting with a single color; (ii) Breathing effect where the intensity of the LEDs increases and

decreases periodically; (iii) Turning effects, in which the LEDs are lit one after the other to

simulate the movement of the degree of freedom of the RB module. The user can select or
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Figure 9.2 – Overview of the natural interface. Two main units comprise the interface: a
tracking unit (green, red, and purple squares) and a visual feedback unit (visualisation unit in
light orange). The tracking unit relies on two Kinect depth sensors to detect the state of the
grid (in red) and to track the user (in green). The output of those two blocks are combined
to give a coherent interpretation of the state of the system and to dispatch the appropriate
command (in purple). Those instructions are then sent to the visualisation unit which will
directly command the robotic platform and the grid board to provide visual feedback to the
user (adapted from [197]).

deselect a tile by pointing at it for more than two seconds. By this mean the user provides to

the system the starting grid position and the end grid position that can be used as an input to

one of our locomotion through reconfiguration framework (see for example chapter 6). An

complete example of interaction with the framework can be seen at [196].

9.3 Conclusion

In this chapter, we presented a novel and natural way of interacting with a group of modular

robots. We tracked both the environment and the user using two depth sensors provided by

two Kinects camera and performed skeleton detection to determine the pointing gestures

of the user. To enhance the user experience and to enrich the interaction modalities of our

framework, we designed and implemented visual feedback LED rings and tiles to equip our

RB modules as well as the grid. A first test has been conducted inside our lab and proved to be

convincing in terms of robustness of the tracking and ease of use of the application.
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THROUGHOUT this part we have examined various interaction strategies to solve the

scenarios that we considered as being archetypal to the problem encountered when

using modular robots.

For our building scenario, we proposed to let the user build a 3D shape in a rendering interface

using cubes aligned with a 3D grid. The created structure was then converted, using a perfect

matching algorithm from graph theory, into a structure made of RB modules. This converted

shape can be used as an input for one of the reconfiguration frameworks we described in

chapter 4 and 5. Although our proposed solution is still at a early stage and we have not yet

fully evaluated it, we believe it will prove to be a valid approach to solve the problem at hand.

To tackle the arrangement scenario we developed and evaluated an interface for tablet, in

which the user can place virtual pieces of furniture into an augmented reality view of the

actual room. We have shown trough a user study involving 20 participants that the ability

to move inside the room was a significant improvement in comparison with being fixed in a

given position, as it is the case for PC based interface. The ease of use and the intuitiveness

of our solution positively impacted the user experience. To alleviate the burden of having to

rely on an external device to track the user while performing the arrangement task, we briefly

presented a recent advance we made using a SLAM like algorithm called PTAM [137, 138], that

allows us to draw a stable scene in an augmented reality setting with only one camera video

stream as input.

Finally, we proposed to solve the direct control scenario using a Kinect based interface tracking

the user pointing gesture. This physical embodiment of the interaction with both the robots

and the humans interacting directly in the same space without external devices, was coupled

with a LED-based visual feedbacks both on the robots and on the grid setup. Our preliminary

tests show the robustness of the tracking and the ease of use of the interface.

All our proposed solutions are complementary in the scope of modular robots integrated in

everyday life environments. Furthermore, we have seen how they can be used to bridge the

approaches we proposed for locomotion and reconfiguration of SRMR by providing to the

user an intuitive and natural mean of exploiting the true potential of SRMR without having to

consider their related inherent complexity.
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SELF-RECONFIGURABLE modular robots have been created to bring flexibility and adapt-

ability to the world of robotics by dramatically changing the paradigms in place so far

for solving a task or react to an unknown environment. But they are still mostly confined to

lab environments, where perfectly controlled conditions bias the control techniques devel-

oped. Furthermore they still suffer from hardware limitations, such as bending effects and

connection misalignment. Simulations and abstract models are often developed to study self-

reconfiguration and locomotion problems, but few have really taken into account the inherent

imperfections of the hardware platforms. Similarly, self-reconfiguration and locomotion are

most of the time considered separately when it comes to create interfaces to control a set of

modular robots. With the democratization of robots into our societies and their ever growing

use in everyday life environments for services and assistance, a new opportunity to exploit

the advantages of SRMR arose. In this dissertation we shed light on the necessity of offering

to non-expert users a complete, robust, and natural control over any sets of modular robots,

abstracting away the complexity linked to shape changing and gait learning.

Our contribution is threefold:

1. We proposed novel and generic self-reconfiguration techniques with built-in hardware

constraints consideration, such as torque limitation and an exploratory connection

misalignment compensation technique in hardware.

We described a self-reconfiguration technique based on a gradient based approach

inspired by the work of K. Stoy [243]. Instead of scaffolding techniques to ensure a

built-in convergence, we introduced different low level interaction strategies between

the actives units to avoid deadlock situations. We have shown that our strategies tend to

reduce the number of deadlocks, especially for more complex structures.

We modified an approach by R. Fitch et al [90] originally based on a full Markov Decision

Process formulation of the SR problem. We derived a reward based reconfiguration

framework that simplifies the overall approach and keeps the built-in convergence

aspect of it but at the cost of a computationally demanding precomputing step.

We extended the classical self-reconfiguration towards what we refer as augmented

self-reconfiguration to include fully passive elements (which can potentially be damaged

modules) into the SR process. We proposed a novel manipulation method using SRMR
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(a very recent work by Cohen et al. [64] introduced a planner for manipulation tasks

using a set of robotic arms) based on an efficient, yet simple, hierarchical centralized

approach to perform manipulation of fully passive pieces in arbitrary 3D environments.

We described preliminary results on how the augmented SR problem can be reduced to

a multi-robot path planning problem. By integrating these external passive elements in

the final structure of the SR process, we have opened the way for creating a significantly

larger set of shapes, increasing at the same time the range of tasks that SRMR can carry

out.

We have demonstrated the influence of the torque limitation on the number of moves

(defined as the displacement between two connection and disconnection phases)

needed to reach a position on a regular grid, showing that a lower torque value in-

duces a larger number of moves of smaller angular displacement.

2. We developed innovative control methods to provide efficient locomotion strategies,

both using connectors embedded in the structured environment (on-grid locomotion

through self-reconfiguration) but also completely off-grid.

We described a simple, yet robust, planner based on composed motor primitives to

perform locomotion through reconfiguration. In comparison with existing approaches,

such as [88], we fully tested our approach on our self-reconfigurable modular robot

Roombots through various hardware experiments including 2D grid locomotion through

reconfiguration and concave edge overcoming (followed by wall-climbing).

We have additionally shown how the detection of bio-inspired patterns and the use of

symmetries in a given structure could allow us to generate reduced Central Pattern Gen-

erator control networks, that would lead to a faster convergence towards an acceptable

gait. Once again we were concerned by how cope with potential hardware failure or

unexpected changes in the environment during a time critical task, potentially falsely

detected by imperfect sensors. Our approach differs from those using gait-tables or clas-

sical CPG networks control with predefined structures (see for example [148]) because

we are able to deal with topologies unknown before the reconfiguration process and to

quickly provide new control parameters, thus widening the range of possible structures

that can be considered and allowing for a fine grain adaptation to the task uniquely

constrained by the objective to be achieved and the reconfiguration capabilities of the

active units, and no more by the available control scheme.

3. We explored various interaction strategies with modular robots to capture their speci-

ficities and allow non-expert users to exploit their full potential. We first designed

building interfaces providing a way to the users to create new shapes using cubes in a 3D

computer based environment. We provided a conversion algorithm to directly convert

any built shape into structures made of modular robots that can be used as an input

for our SR or locomotion methods. Considering the next step of home arrangement,

we designed and evaluated a tablet interface that lets the user place virtual pieces of

furniture into an augmented reality rendering of the room. We recently alleviated the
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need for an external tracking device using a SLAM like algorithm, called PTAM [137, 138],

which should further enhance the user experience. We pushed forwards the concept of

device free interfaces by developing a gesture based interface, with a tracking relying

on the Kinect depth sensors, as well as an LED-based visual system allowing the user

to direct the modular robots on the grid and to receive visual cues of the system state.

This physical embodiment of the interface should improve the ease of use and the

acceptability of our techniques.

All our approaches have been guided by our vision of modular robots being used as assistive

and adaptive pieces of furniture. We have derived a set of strategies allowing any non expert

user to use a set of modular robots to its full potential via intuitive and natural interfaces, and

relying on robust and efficient locomotion and self-reconfiguration techniques.

Future challenges

Although our global approach advances the state of the art in reconfigurable modular robotics,

many challenges still remains to be tackled.

One of the main advantages of SRMR lies in their capabilities to morph onto different shapes

to adapt their topology to the task to be performed or to the user needs. But up to now, we

have mainly considered a triggering of the SR process by the user himself. The next step to

further improve our system and its integration into home environments would be to rely on

sensors inputs, both to trigger the SR process but also to guide it towards the most optimal

shape to solve the considered task. These sensors inputs could be produced using behavioral

analysis of the users in their environment.

Modular robots are naturally well-suited for decentralized approaches since they provide a

set of computing units that can be linked together using message passing techniques. Our

methods are all centralized to keep them as simple as possible, but this comes at the cost of

robustness against electronic failure. Nevertheless, these techniques can be extended and

modified to accustom with partially or fully distributed implementations. For the scenarios

we had in mind, namely the deployment of groups of robots into home environments, we

considered that the robustness aspect related to computation did not represent a major

concern.

We have proposed a reduction technique for the augmented SR process that we are planning to

test extensively with the integration of our preliminary results on a more realistic connection

procedure. This integration should mainly impact the time needed to build a given structure,

since the visual analysis of the images coming from the camera device requires a low motion

speed to avoid motion blur effects. Additionally the approach to the goal connector needs to

be constrained to favor a straight line motion.

Finally, we have yet to test our global approach with real end users and various modular
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robotic platforms to evaluate and, most probably iterate over, our interaction strategies and

the underlying methods for locomotion and self-reconfiguration.
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A Kinematic structure: case study of the
Roombots module

A.1 Screw theory

The POE formulation of a kinematic chain with n joints is the following [185]:

k=n∏

k=1
eξkθk go = g f (A.1)

where:

go and g f are the initial and final pose (position and orientation) of the end effector.

ξi is the twist corresponding to joint i . If joint i is revolute then ξi = (−wi ×qi , wi ) with wi

being a unit vector in the direction of the joint axis and qi an arbitrary point on the joint axis. If

joint i is prismatic then ξi = (vi ,0) with vi being a unit vector in the direction of the translation.

In order to simplify equation A.1, we use two main properties of the twist [290]:

1. Position preservation: if a point p is on the axis of a revolute twist, then eξkθk p = p.

2. Distance preservation: for any point p and q , we have ‖eξkθk (p −q)‖ = ‖p −q‖

The POE formulation can be reduced into three main subproblems with known solutions [198,

131, 185] (note that additional subproblems can also be derived, such as the one presented in

[142]):

1. Subproblem 1: Rotation about a single axis

Let ξk be a zero pitch twist and q and p two arbitrary points in R3. The subproblem 1

can be written

eξkθk p = q (A.2)
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Figure A.1 – The naming conventions used to apply the POE formula to a RB metamodule.
qi∈[1..6] corresponds to the rotation point of the joint i . ξi∈[1..6] is the twist for joint i . q̃1

and q̃6 are the projections of q1 and q6 on the plane xO y and the plane define by ξ5 and q5,
respectively.

2. Subproblem 2: Rotation about two subsequent axis

Let ξ1 and ξ2 be two zero pitch, unit magnitude twists with intersecting axis and q and

p two arbitrary points in R3. The subproblem 2 can be written

eξ1θ1 eξ2θ2 p = q (A.3)

3. Subproblem 3: Rotation to a given distance

Let ξk be a zero pitch twist, q and p two arbitrary points in R3, and δ ∈ R3 with δ > 0.

The subproblem 3 can be written

‖q −eξkθk p‖ = δ (A.4)

The solutions to these subproblems are given in [185], at page 100, 102, and 103 respectively,

with the corresponding restriction on their validity.
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A.2 Roombots metamodule IK

We define Gi = g f g−1
o qi and G = g f g−1

0 . Solving the IK problem for the end connector C 3X of

the second module of a RB metamodule consists in solving the following equality:

k=6∏

k=1
eξkθk go = g f ⇔

k=6∏

k=1
eξkθk =G (A.5)

We first consider ξ6 fixed. Equation A.5 is reduced to:

k=5∏

k=1
eξkθk =G (A.6)

We start by finding angle θ3:

We apply q4 on both sides of equation A.6 and we obtain:

k=5∏

k=1
eξkθk q4 =Gq4 ⇔

k=3∏

k=1
eξkθk q4 =G4 (A.7)

We then subtract q1 and apply the norm to both sides:

k=3∏

k=1
eξkθk q4 =G4 ⇔

k=3∏

k=1
eξkθk q4 −q1 =G4 −q1 (A.8)

k=3∏

k=1
eξkθk q4 =G4 ⇔ eξ1θ1 eξ2θ2 (eξ3θ3 q4 −q1) =G4 −q1 (A.9)

‖
k=3∏

k=1
eξkθk q4‖ = ‖G4‖⇒‖eξ3θ3 q4 −q1‖ = ‖G4 −q1‖ (A.10)

Which reduces the problem to subproblem 3.
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Appendix A. Kinematic structure: case study of the Roombots module

For angle θ2 we have:

Let’s define p1 = eξ3θ3 q4 −q1. Applying q̃1 and norm to both sides of A.8 leads to:

eξ1θ1 (eξ2θ2 p1 − q̃1) =G4 −q1 − q̃1 (A.11)

and

‖eξ2θ2 p1 − q̃1‖ = ‖G4 −q1 − q̃1‖ (A.12)

Which reduces the problem to subproblem 3.

For angle θ1, θ4, and θ5 we reduce the problem to subproblem 1. We have:

For θ1:

eξ1θ1 p2 =G4 (A.13)

where p2 = eξ2θ2 eξ3θ3 q4

For θ4:

k=5∏

k=1
eξkθk =G ⇔ eξ4θ4 eξ5θ5 = eξ−3θ−3 eξ−2θ−2 eξ−1θ−1G (A.14)

Applying q6 we obtain:

k=5∏

k=1
eξkθk =G ⇔ eξ4θ4 q6 = e−ξ3θ3 e−ξ2θ2 e−ξ1θ1Gq6 (A.15)
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A.2. Roombots metamodule IK

Figure A.2 – The definition of the new problem to determine θ6. P is the plane define by q6

and ξ6. z(P )
f is the unit vector corresponding to the rotation axis of the twist ξ6. B f is the base

frame corresponding to the desired connector position and orientation, Bi is the initial frame
of connector C 3X of the second module. pi and p f are the projection of the bases Bi and B f

origins on the plane P , respectively.

Finally, for θ5:

k=5∏

k=1
eξkθk =G ⇔ eξ5θ5 = e−ξ4θ4 e−ξ3θ3 e−ξ2θ2 e−ξ1θ1G (A.16)

Applying q̃6 we obtain:

k=5∏

k=1
eξkθk =G ⇔ eξ5θ5 q̃6 = e−ξ4θ4 e−ξ3θ3 e−ξ2θ2 e−ξ1θ1Gq̃6 (A.17)

In order to deduce the value of θ6 we derive the new following problem. Let’s denote by θ6 the

rotation angle around zP
f (previously named q6) and β the rotation angle around O f p f . The

problem we need to solve is the following:

Find θ6 and β such that:

eξ6θ6 eξββBi = B f (A.18)

We apply first p f to equation A.18:

eξ6θ6 p f = B p f (A.19)

where B = B f B−1
i
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We obtain subproblem 1.

We apply pi to equation A.18:

eξββpi = e−ξ6θ6 B pi (A.20)

Which is equivalent to subproblem 1.

The main limitation of this approach is that a closed form solution might not exist for more

complex structures, such as the kinematic chains we are going to consider in the following

chapters. That is the main reason why we decided to use a numerical method based on the

Levenberg-Marquart algorithm [170].
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B Reconfiguration of heterogeneous
structures

In Chapter E, we introduced a novel method for the manipulation of passive objects using

SRMR. This method is used as one of the main building blocks of a complete framework to

allow the construction and deconstruction of arbitrary heterogeneous structures made of

passive elements and active units. The problem we aim at solving is the self-reconfiguration

of a group of modular robots robots into a structure that includes both active units and fully

passive elements. In this chapter we show how the augmented self-reconfiguration problem

can be reduced to a multi-robots planning problem and we present a theoretical procedure to

perform this reduction.

B.1 Starting configuration

The planning of the reconfiguration process depends on the type of configuration considered.

In the case of shape configurations, we reduced the constraints on the placement of the

different units but we need a method to convert this defined volume into a set of units (passive

and active). We define an alphabet of passive elements and virtual kinematic chains (KC) to

fill the structure. The final configuration is filled using the widest kinematic chains that can

be created using the available module in the initial configuration. The configuration is filled

using a greedy approach starting from the module closer to the connectors inserted in the

structured environment and using the virtual kinematic chains sorted accorded to the size of

their kinematic space. If only the initial or the final configuration is fully defined, we use the

existing units as alphabet for the fitting.

B.2 Kinematic chain identification

We consider a structure composed of active and passive units evolving in a structure envi-

ronment equipped with connectors. To identify kinematic chains (KC) in the structure, we

use the concept of sub-isomorphism in graph. Two graphs G and H are isomorphic if there

exists a bijection from the set of vertex of G to the set of vertex of H such that two adjacent
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vertex in G are also adjacent in H . For two graphs G1 and G2, the sub-graph isomorphism

problem consists in determining whether a graph G1 contains a subgraph that is isomorphic

to G2. In our case, we want to be able to identify sub-graphs that corresponds to virtual

kinematic chains inside the structure. The sub-graph isomorphism problem has been proven

to be NP-complete [67]. We consider two different algorithms with exponential complexity to

solve this problem: the VF2 algorithm [68] and the McGregor’s algorithm [172]. They are both

implemented in the Boost Graph library [229].

B.3 Representation

The final configuration of the active and passive units is represented by two undirected graphs.

The first graph, called the connection graph (similar to the C-Graph mentioned in subsection

3.1.1), represents the physical connection between the units and the structured environment:

one node corresponds to one unit and one edge to a physical connection. We differentiate

between active and passive units using two different colors (attribute) for the nodes. The

connectors in the structured environment are also represented as node in the graph with a

different color. The second graph, called the density graph, is a fully connected weighted graph

in which each node corresponds to a unit or to a connector. For this graph, the weights are the

Euclidean distances between the two center of mass of the connected units. For each graph

we introduced a metric, respectively the level and the isolation for the connection graph and

the density graph respectively, that will be later used to define an ordering in the assembly

process. They are defined as follows:

1. The isolation, I , of a node captures the geometric occupancy of the space near a unit.

It can be seen as a kind of voxel density measurement. It reflects the reachability of

the units and its ability to move in its surrounding environment (the more isolated a

node is, the easier it is for it to move). To account for those aspects, we explore the

notion of centrality in graph [29], widely used for real world networks study (see [29]

and references within). We investigate different expressions for the isolation of a node

using the notion of centrality measure in graphs. We can compare different notions of

centrality: the degree centrality [92], named DC , and the sub-graphs centrality, named

SC , introduced by Estrada et al [84]. The DC allows for a local definition of the density

influenced only by the nearest neighbors connectivity. It corresponds to the marginals

of the adjacency matrix of the considered graph. The SC additionally takes into account

the sub-graphs including the selected node, with a decreasing weight with respect to

the size of the sub-graph. It has been used in various real world applications [83], and

prominently in molecular chemistry to study the protein folding process [84]. Their

formal definitions are as follows: let G = (V ,E ) be a graph of order N and A the associated

adjacency matrix. Let v1, v2, ..., vN and λ1,λ2, ...,λN be the eigenvectors and eigenvalues
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associated to A and wi j be the weight on the edge between node i and j . We have:

∀i ∈ E DC (i ) =∑

j
ai j =

∑

j
wi j (B.1)

and

∀i ∈ E SC (i ) =
N∑

j=1
(vi

j )2eλ j (B.2)

2. The level, H , of a node: to ensure that the final configuration can be physically con-

structed, we have to ensure that the units are placed following a bottom up approach

starting from the structured environment connectors. The level of a node corresponds

to the shortest distance between the connectors inside this set and the node. The level

of a node is close to the definition of closeness centrality [92], except we only consider

the set of embedded connectors as starting point for the measurement of the distance

(as opposed to the complete set of nodes).

B.4 Disassembly planning

The usual approaches for planning the building of a given structure using SRMR take as an

input the final shape of the structure that we would like to construct, the initial position of the

different active units, as well as the potential obstacles in the working space. A plan for the

moves of the different units is then computed using various heuristics or exact approaches

(as presented in chapter 4). These techniques are well suited for homogeneous structures,

but lack the aspect of collaborative manipulation of passive objects. To cope with this issue

we proposed to a use technique similar to the one developed to solve automated assembly

and disassembly of industrial products [154]. In our case, instead of trying to reach the

final configuration starting from the initial one, we "de-construct" sequentially the final

structure depending on the available kinematic chains we have previously identified in both

configurations. We assume that the assembly and disassembly processes are reversible. This

assumption is reasonable considering that no blocking actions are performed by the units

during the process. Several approaches have been introduced to find the sequence of steps

that would lead to the disassembly of the structure but none have been applied to the self-

reconfiguration problem. Precedence graph (see Lambert 2003 [151] for a general review) have

been proposed based on liaison matrices that encode the physical relationship between the

different parts of an object (for example, two plates linked by a screw). An early approach

to obtain those precedence graph has been developed by Laperrière et al. in 1991 [154].

More recent techniques include semantic planning [157], Petri nets [179], Octrees [173], and

manipulation primitives nets [259].

Our problem differs from the one tackle in the previously cited contributions in the sense that

we not only have to take into account the initial structure but also the final arrangement we
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would like to achieve. We propose to capture the precedence constraints in both structures

by introducing a measure of the voxel density around the units coupled with a measure of

distance between the units and the closest anchor point in the structured environment. The

method to define the different disassembly and assembly action or tasks, to be performed at

each step is described in the following section.

B.5 Task definition

In order to schedule the different tasks that the active units will have to perform, we use the

previously introduced metrics, isolation and level, both on the final and initial configuration.

At each step of the procedure, we maintain two lists containing the available units in the initial

configurations, Li , and the required units in the final configuration, L f . The lists are filled as

follows: at each step k, we compute the indexes H and L for all the nodes, and

• In the final configuration, we sort the nodes by increasing order of level and then, by

increasing number of isolation. In other words, the first elements in Lk
f will be the

bottom layer of the final structure and the less isolated ones (meaning the most difficult

to reach) will be included first. We then identify the potential KC using the sub-graph

isomorphism introduced in subsection B.2. We only allow KC to contain units with

consecutive levels. We compute an average value of the isolation of the KC equals to the

average of the isolation of the single units and sort the KC based on this indicator.

• In the initial configuration, we sort the nodes by decreasing order of level and then, by

decreasing order of isolation. Intuitively, it means that the first elements of Lk
i will be

in the "top" layer of the initial structure, sorted according to the amount of free space

in their surroundings. We add another constraint to the nodes in the Li list to ensure

the structural consistency of the initial configuration after the removal of the node: we

simulate the disconnection of the node and check whether the structure is still stable

using an approximate model of the structure (a physical simulation). At the end Lk
i

contains the units that can move at step k.

In order to allow for the reuse of kinematic chains during the reconfiguration, we create in

the structured environment a zone in which the units that are currently not used but that

can still move (and that might prevent the access to more internal units in the structure) can

go and play the role of reserve units or "helper" units. We called this space the Helper zone,

abbreviated Zh . This zone is defined using the previously introduced metrics by choosing the

connectors with the highest isolation index. After the filling of the two lists, we compare the

elements of Lk
i and Lk

f and try to match them. Among the units in Lk
i we match the KC that

could be used to fill the corresponding position in Lk
f using the planner that we previously

developed. If no match is found (meaning that either there are no units that could be matched

to the KC or that the planner was not able to find the path to the final position), the units are

added to the helper zone. We then update the list Lk
i and start again the matching process. If
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there exists a match between a unit in Lk
i and in Lk

f we compute the required path towards

the final configuration. We then switch to the next matching KC. The matching will then also

be checked also taking into account the helper units. The process continue as long as Li is

not empty: at the end all the units should either be in L f or in Zh . A unit or a KC with the

highest level in the structure at step k and with a high isolation (allowing it to move) in the

final structure can also be considered as an helper unit.

One of the main drawbacks of this method is that the structured environment should be large

enough to be able to create an helper zone.

The previous method output at each step a list of units that should reach a given position

and orientation. At each step, the initial and final configuration are updated, but the timing

between the actions (moves, connection, and disconnection) leading from one step to the

next still need to be defined. Now that we have derived at each step the required task to be

performed, we need to find the optimal scheduling between them in terms of time constraint.

Using our hierarchical manipulation planner and the aforementioned decomposition tech-

nique we manage to abstract away the constraints and complexity linked to the joint manip-

ulation of passive elements and their inclusion into an heterogeneous structure. This way

we have shown that the ASR problem can be reduced, at each step, to a "classic" multi-robot

planning problem to which we can apply existing algorithms. We present some of them in the

next section.

B.6 Task scheduling

The planning algorithm that we have presented in the previous section relies on the A�

algorithm. Many planning techniques have been proposed to find a near optimal scheduling

of one or multiple units [155, 157]. A planning algorithm can be evaluated using three main

criteria [204]: completeness (if one solution exists, then the algorithm will find it), complexity,

and optimality (the algorithm output the optimal solution). The methods for planning of

multiple units fall in two main categories: coupled methods that often rely on a complete

search algorithm like A� to achieve completeness and optimality, and decoupled methods that

combines single states from the different units to create a complete plan. Unfortunately, it has

been shown [114] that the motion planning of multiple units is a PSPACE-Hard problem. The

configuration space grows exponentially with the number of robots and the search performed

by the centralized algorithms underlying the coupled methods quickly becomes intractable.

Methods have been introduced to reduce the search space (e.g. probabilistic roadmaps [250]),

but they are lacking scalability. To tackle this issue, the decoupled methods sacrify optimality

and completeness for the sake of complexity. In these methods, the planning of the motion

is done at the level of each individual robotic unit and then combined to ensure collision

free paths. Those methods can be either centralized or decentralized. A recent distributed

decoupled approach introduced by Peasgood et al [204] has been shown to be scalable (with a
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complexity linear in the number of moving units) and complete. It is based on a multiphase

planning using a topological graph and spanning tree representation of the problem. Another

approach [95] propose a new sensor-based Path Planner based on Voronoi Graph. The method

has been shown to be fast for both local or global motion planning and able to take into account

new obstacles included in the terrain. Other successful tasks scheduling methods include

[289, 16, 44].

B.7 Conclusion

In this section we presented preliminary results on a method to reduce the problem of aug-

mented self-reconfiguration to a multi-robot path planning problem. To do so, we introduced

a deconstruction planning algorithm based on the notion of centrality in graph theory. This

reduction relies on the use of the hierarchical planner that we introduced in section 5.1. This

planner is applied on a discretization of the problem based on the creation of two lists of

modules at each step, one corresponding to the positions (i.e. the position and orientation

active units and potentially the passive elements) to be filled in the final structure, the other

containing the available active units in the initial configuration at a given step.
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In this part, we tackle the problem of designing an easy to use 3D interface for building pieces

of furniture made of Roombots modules. We explore the different possibilities for simplifying

the problem without restraining to much the capabilities of the modules. We present an

intermediate solution where a 3D regular grid is used with cubes as basic units. Algorithms for

converting the cube structure into a real Roombots shape are presented. A complete designing

application incorporating all these elements is fully described.

C.1 Introduction

The Roombots project aims at designing adaptive furniture able to self-reconfigure and lo-

comote. A Roombots (RB) module has three degrees of freedom (DOF) and ten connectors.

Several modules can connect together using an active connection mechanism to form a

meta-structure (also called shape).

Due to the complexity of the RB module, the building of shape can become tedious for a

non expert user. To ease this process and allow fast prototyping, small replica of the real

module were built (figure C.1). These mockups use a passive magnetic connection mechanism

to connect to each other. Despite this simplification in the connection mechanism, the

complexity induced by the three degrees of freedom remains. The goal of this part is to

proposed a new interface to allow a fast assembling of a RB structure for lay users.

This chapter is organized as follows. In a first section (section C.2) we define more precisely

the problem we are trying to tackle. We then describe some related works in the field of space

filling and designing tools, with a particular focus on techniques and softwares applied and

used in modular robotics (section C.5). In section C.6 we describe our proposed solutions. We

then present the actual implementation of our software (section C.7) . Finally (section C.8) we

mentioned some possible improvements to the current design after concluding.
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Figure C.1 – A structure made of mockups.

C.2 Problem definition

In this section, we aim at giving an overview of the different possibilities that could be consid-

ered when designing an end-user interface for building purposes. We start by identifying the

basic elements of the assembled structure. For each of them we briefly describe the proposed

solution and present some of the related pros and cons. We then examine the possible type of

interfaces we could consider for our problem.

C.3 The basic elements

Several options can be considered for the basic elements of the interface: spheres, cubes,

roombot modules or lines. We present each of them in this section.

C.3.1 Spheres and cubes

It might be the most intuitive structure to consider. The user will build the desired configura-

tion by using cubes or spheres, which can be viewed as “half” a roombot module.

• Pros

– Easy to manipulate

– Good representation of the structure for the user

• Cons

– Requires an algorithm to convert it into a “true” roombot structure

– The user might end up building impossible structure (in this case, we need a

“recommender” system to modify or help the user modifying the structure)

150



C.3. The basic elements

C.3.2 Roombots module

We could also use directly the entire roombot module (or a slightly modified/simplified

version).

• Pros

– The full “potential” of the roombots module (degrees of freedom, size, ...) can be

used

– The structure can always be created

– The user can create richer structures

• Cons

– More complicated for the user

– More difficult to implement

C.3.3 Lines (sketch mode)

We could imagine that the user only have a very rough idea of the structure she wants to create.

In this case, she might not be willing to use precise shapes like spheres, cubes or roombots

modules, but only draw some sketch of the shape she would like to design.

• Pros

– Easy to use

– No complex interface (basic drawing tool in 3D)

• Cons

– The final structure might be difficult to imagine for the user

– An algorithm need to be used to convert this drawing into a valid roombots struc-

ture

C.3.4 Conclusion

The structure that seems to best fit our need, both in terms of complexity to manipulate and

time to implement, would be the cube or sphere unit. Indeed it is not too far from the real RB

module, as opposed to the line sketch, but induces a valuable simplification in comparison

with the use of RB shaped elements.

151



Appendix C. Computer based interfaces

C.4 The interfaces

After selecting the type of basic elements we want to use, we need to choose the type of

interface.

C.4.1 Single layer

In this type of interface, the user build the structure starting from a 2D grid (representing the

ground), as shown in figure C.2. At each action of the mouse corresponds a unique result:

insertion or deletion of a object. An example of such an interface can be tested at [122].

(a) The empty grid (b) We add one element by clicking
on the desired grid square

(c) Another element can be added
on top of the previous one

(d) An example of final structure

Figure C.2 – The process of building a simple structure (screenshots from [122]).

• Pros

– Clear mouse interaction

– Not too hard to implement (existing code can be re-used)

• Cons

– The user can not build the structure from any point (see figure C.3 for an example)

– The user can not copy/past multiple elements
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Figure C.3 – This structure can only be built by removing a module (after steps C.2b and C.2c
in figure C.2). Screenshot taken from [122].

C.4.2 Multiple layer/3D grid

This solution can be viewed as an extension of the previous one: instead of having only one

layer (equivalent to the ground), we consider multiple layers which create a kind a 3D grid

inside the space. The user can switch between the different layers to put a basic element at

any position in the 3D grid.

• Pros

– More flexible than the previous one

• Cons

– Might be less intuitive to use

– The user is still limited by the 3D grid

C.4.3 “Free” interface

In this kind of interface, the user can place the elements wherever she wants inside the space.

The possibilities of the interface are the following:

• Drag/Drop elements

• Align elements (with respect to symmetry axis, external objects,..)

• Display reachable connectors (hover events)

• Allowing rotation of multiple parts

• Multiple elements selection (as well as copy/past actions)

As for the previous interfaces some advantages and drawbacks can be enlightened:

• Pros
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– Highly flexible

• Cons

– Hard and long to code

– The representation in a 3D space might be difficult to apprehend for the user

C.4.4 Conclusion

The natural interface for the design of a structure would be the "free" interface, since the user

is not limited in her creation. Nevertheless the complexity of the representation might become

an hindrance in the process. As a consequence, we have chosen to start by implementing

a single layer interface which can then be extended in a multilayer architecture in a pretty

straightforward way.

C.5 Related works

We have previously described the basic elements and the type of interface we were planning

to use to tackle our problem. The final structure will be represented as a 3D volume made

of basic regular units. The problem of fitting RB modules inside this volume can be seen as

a packing problem. In this section we first review existing methods to efficiently solve the

bin-packing problem as well as the space filling problematic. We then review existing software

in the field of design tools for modular structure.

C.5.1 Packing and space filling problems

Our problem is similar to two famous computational optimization problems: the bin-packing

problem and the space filling problem. Indeed, on the one hand, we could think of letting the

user design a volume in 3D and use the algorithm to fill this volume with the RB modules. On

the other hand, we could imagine having to fold an already existing RB structure inside a given

volume optimally, i.e. by maximizing the filling ratio.

The packing problem can be defined as finding the best arrangement of a set of objects inside

a given volume in the sense of the minimization of the unoccupied space. The items can be

homogeneous (uniform packing problems) or heterogeneous. If we impose a perfect packing

(i.e. with no gaps), the problem is called a tessellation or tilling problem. An extension of the

basic packing problem consists in optimizing the number of containers (in size and/or in num-

ber) to carry a given set of objects. This problem is particularly relevant in stocks management.
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The three dimensional packing algorithms can mainly have two goals. Starting with a given

set of items (referred as I ) and a given volume to be filled (referred as V ), the algorithm has to

maximizing the occupied volume in V . It can also have to minimize the number of containers

required to carry the set I . Unfortunately, these two classical combinatorial optimization prob-

lems have been shown to be strongly NP-hard ([81]). Several heuristics have been proposed

to tackle this issue. A pattern based method using a tree search approach developed in [40]

has proved to be fast on large scale problems but also to exhibit a good filling ratio. Another

approach uses multi-faced building process to improve the filling factor of the algorithm

([161]). Exact methods have been presented to solve this problem (see for example [171]), but

the computational explosion leads to very poor time performance.

The problem of space filling is widely studied in the domain of biology: proteins folding

mechanisms allow a fast change in property as well as a huge gain in space. Similar technique

have been applied to modular robotics. In [13] for example, the authors use Hamiltonian path

method to fill space with a lattice type modular robots composed of tetrahedral units.

C.5.2 Existing software

We briefly present the main existing solutions related to the creation of 3D structures using

basic units as building blocks.

The LEGO Digital Designer

This software has been developed by the Lego firm. The user can use a set of existing Lego

pieces to build her structure. She can also copy/paste, drag and drop elements and manage

multiple shapes in the same environment. The interface is really intuitive and user-friendly.

Unfortunately, this software is not open source and is developed for Mac and Windows plat-

forms only. Some demos can be found at [158] (in the “get started” section).

Figure C.4 – The Lego designer software (adapted from [158])
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An open source software: LDraw

LDraw [124] offers almost the same functionalities as the “official” Lego designer. Nevertheless,

its interface seems to be more similar to professional CAD design tools: multiple views, tree

structure for the description of an object, ... This leads to a less intuitive software, not very

well suited to lay users. Moreover the development of the linux libraries seems to have been

stopped in 2004 whereas the windows equivalent is still being maintained.

Figure C.5 – The LDRAW application (adapted from [124]).

IMOROD

A previous project called IMOROD aimed at designing a 3D interface to allow users to create

a structure composed of modular robots. The elements chosen for the interface were the

YAMOR module [176]. This software was more intended for expert user and lab environment.

More detailed information regarding this project can be found in [96].

Figure C.6 – IMOROD: the simulation environment for the YAMOR robots (adapted from [96])

VUG

V.U.G stands for Virtual Universe Generator [85]. This open source project aims at proposing

an easy to use user interface for virtual world creation. The user is able to create and modify

the different elements of the world (objects, robots, ...) as well as its intrinsic properties (physic

laws,...). Objects can be added or removed. The user can also move in the world and interact
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with it.

Figure C.7 – The VUG software: a manipulator is represented inside a house environment
(adapted from [85]).

Conclusion

We have seen that several solutions exist both in terms of algorithm for the theoretical aspects

of our problem but also from a practical point of view, with multiple design softwares. The Lego

designer seems to be a really mature solution regarding the aspect of user-friendliness. LDraw

and VUG are promising but, whereas the first one is complicated to apprehend because of its

CAD like interface, the second one is still at a development stage. IMOROD was a great tool for

expert users but lack the ease of use we are looking for with our interface. Consequently, we

plan on using an interface similar to the Lego designer, but considering a very limited amount

of possible pieces (mainly cubes and/or a few passive elements).

C.6 Proposed solution

In this section we present a possible solution to the problem of constructing in a 3D envi-

ronment, a structure made of RB modules. As we have seen in the previous sections, we will

consider that the constructed structure is made of regular identical cubes aligned in a 3D grid.

We will first describe how the created structure is represented using a planar graph (section

C.6.1). Then we explain the two main solutions we have explored to perform the conversion

between the cube structure and the RB shape (sections C.6.2 and C.6.3). Finally we describe

the recommender system that assist the user in the building process of the RB structure

(section C.6.4).
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C.6.1 Roombots structure representation

The built structure is composed of cubes connected together. A natural representation of this

shape is to use a graph with a node corresponding to a cube and a vertex to a connection

between two cubes. An example of such a representation is presented in figure C.8.

C.6.2 First solution: biconnected components

Algorithm

We consider in this section that the following assumptions hold:

1. The cubes can be moved only in a Cartesian 3D grid

2. Only face to face connections are allowed

We need first a characterization of a valid cube structure. For now, the only requirement that

will be imposed on it will be to have an even number of cubes. Nevertheless we will also use

the following rule to identify problematic nodes:

If a node contains more than 2 isolated nodes 1 in its neighborhood (level 1) then the structure

is invalid

Now, we need an algorithm to convert the cubes into modules. We can propose a first method,

based on graph theory notions. It can be decomposed into 7 main steps.

1. Check the structure validity

2. Find body and limbs in the structure

This step is based on a previous work done on body/limbs recognition in RB structures.

More details can be found in [26].

3. Compute the distance to the body for each spheres

If no body has been found in the structure, we consider that each sphere is at a distance

0.

4. Find the bi-connected components (bcc) of size 2 2

5. Create distance based groups of bcc

The distance of a component to the body is defined as the mean distance of its modules.

A group contains all the bcc at the same distance from the body.

1A node is said to be isolated if and only if it is connected to one or less other nodes
2see [27] for definitions
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6. Make pair with the components in the group furthest from the body

This step ends when all the components in the group have been used. In case of tie, a

random selection mechanism is used.

7. Remove the previous bcc from the initial structure and go back to step 2

If there are no more cubes the algorithm stops.

The major issue is that the structure build by the user might be impossible to convert into a

roombots structure. For example, consider the structure presented in figure C.9 (represented

in 2D for convenience and without connections for the sack of readability). As one can see,

the number of module is valid, but the structure can not be created due to the circled part.

Several options can be considered in order to tackle this issue:

1. Ask the user to modify the structure

The system can point out which part of the structure is invalid using the rule previously

defined.

2. Modify the structure automatically based on:

(a) Symmetries preservation: one module can be added or removed to maintain or

increase the global number of symmetries

(b) Shape preservation: try to apply a transformation (dilation, refinement,...) which

preserves the global shape of the structure

Tests and results

Generating random graphs In order to test the algorithm, we needed to generate random

graphs. We used one of the randomized graph generators implemented in the igraph library

([120]): the Erdös-Rényi graph. More details about this type of graphs and their properties can

be found in [27].

Results We tested the algorithm on randomly generated graphs. The number of nodes

cannot be controlled but we nevertheless imposed a minimum size of 20 nodes. We eliminated

unconnected graphs as well as graphs with an odd number of nodes. We also took into account

the number of invalid structures (as defined by rule 1 in the previous report). The results are

the following: for 1000 valid structures the algorithm was able to make pairs with the nodes in

∼ 90% of cases.

The remaining cases are "impossible", meaning that a pairing for the structure cannot be

found. One example of such a structure is represented in figure C.10.
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Conclusion Despite the good results exhibited by this solution, it lacks simplicity and fast

execution time for large structures. As a consequence, we looked for a more direct method in

the field of graph analysis and computational graph theory.

C.6.3 Second solution: perfect matching

The RB modules are made of two cube-like parts connected together by a central degree

of freedom. Considering the previous representation, it would seem consistent to convert

two cubes linked together into a RB modules. More formally, we are looking for a matching

between the graph Gi , representing the structure made of cubes, and the final graph G f ,

composed of node corresponding to a real RB module. Each node in G f should correspond to

two connected nodes in Gi . The problem of finding a set of edges without common vertices in

a graph is known as the matching problem. The matching is said to be perfect if every vertex of

the graph is incident to one and only one edge of the matching [27]. This concept is illustrated

in figure C.11.

The existing matching algorithms can also deal with weighted connections in the graph: the

goal is then to find a perfect matching while minimizing or maximizing its overall weight. This

problem can be solved for bipartite graphs using the Bellman-Ford algorithm or the Hungarian

algorithm with a complexity of O(C 2log (C )+C N ) where C is the number of connections and

N the number of nodes in the graph. For non bipartite graphs, algorithms with a complexity

of O(
�

C N ) have been proposed (see [174] for example).

Since this method is already efficiently implemented in the classical graph analysis libraries,

we decided to chose it to solve our conversion problem.

C.6.4 Recommender system

In order to guide the user in the building of the desired structure, we propose a basic recom-

mender system. It will be based on the following rules, which will be checked throughout the

construction process:

1. In order to be built, the structure has to be composed of an even number of cubes.

2. In case of disconnective cycles 3 (DC) the user will be proposed two solutions:

• Add node(s) to the DC in the direct neighborhood of the isolated nodes. In order

not to break the first rule, two nodes has to be added. We try to ensure that we

neither introduce nor break the symmetry of the structure by placing these two

nodes the furthest away from the isolated nodes and from each other.

3A set of nodes in a graph will be said to be "disconnective" if its removal would lead to isolated node(s), i.e. to
node(s) with no connections.
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• Remove isolated node(s) until a perfect matching is found. This solution might end

up breaking the symmetries in the structure. We thus prefer the previous option.

C.6.5 Conclusion

We have explored in this section the ways of converting the constructed structure made of

cubes into a shape composed of real RB modules. After proposing our own algorithm based

on previous work, we presented a solution from the computational graph theory field which

allows for faster results. Finally we proposed some possible rules for our recommender system.

We describe in the next section the actual implementation of our design software.

C.7 Implementation

In this section we describe the implementation of the designing software we proposed to

incorporate all the previously defined features. After briefly reminding the interface require-

ments, we present our solution. We then summarize the code structure after giving a short

introduction to 3D designing applications architecture.

C.7.1 Requirements and proposed solution

The goal of the interface is to provide an easy to use 3D environment to build a structure made

of cubes and visualize its equivalent in RB modules. The user should be able to see in real

time how the changes on the cube structure impact on the RB representation, to rotate the

constructed structure, to zoom in and out and to save and load structures.

We propose to create an application composed of two views and a side panel. The first view

will be the construction view, in which the user can build in an invisible 3D grid her structure

starting from a single cube. The second view represents the structure made of a rendered

version of the RB modules. It will be dynamically generated each time the user modify the

building view. The side panel will store the already built structures in a list like way. The

general organization of the interface can be seen in figure C.12.

C.7.2 Code structure

General structure of a 3D designing application

Most of the time, a 3D modeling application is composed of 3 main elements:
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• The physics engine:

This module is used to simulate physics models (gravity, velocity,...). Several physical

engines exist: PhysX (proprietary, by Nvidia), Newton (closed source), Bullet (open

source),...

• The 3D engine:

This module is mainly used to render the different graphical elements. As for the

previous module, there exists plenty of different 3D engines: Ogre3D (open source

LGPL), Open Scene Graph (open source),...

• The GUI library:

The GUI library is used to design the interface of the application (widgets, buttons,

layouts, ...).

Most of the time, a wrapper is used to facilitate the use of the physics engine functions with

those provide by the 3D engine. It should be kept in mind that the wrapper is, in a lot of

cases, a work done by “volunteers”. Thus, only a part of the functionalities of the 3D engine is

available through it. The 3D engine can use two main types of graphical libraries: OpenGL

(open source and cross-platform) or DirectX (windows specific).

Example: the molecubes simulator

The molecubes project ([256]) is a modular robotics project aiming at designing cheap and

easy to use robotics modules. The molecubes team has developed an advanced simulator to

manipulate and control created structures. The following elements were used: Ogre3D as a 3D

engine, PhysX as a physic engine NxOgre as a wrapper and CEGUI as a GUI library.

Choices for our application

We have chosen a free opensource 3D engine optimized for OpenGL called Open Scene Graph

([66]). The main reasons why we decided to use this application are the stability and the

cleanliness of the code, the optimization for OpenGL and its great portability. For the windows

manager we used the Qt framework ([69]) for the richness of its features and its stability. For

now we do not use a physics engine since our application is mainly intended as a designing

tool. For the sake of consistency, the application and all the library used are written in C++.

For the graph analysis, we have used the Lemon library ([160]) because of its efficiency.

Structure

The overall structure of the code is depicted in figure C.13.

The application is composed of three main blocks: the Input/Output module, the Graph

module and the View module. They are linked together inside a main application called the
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MainWindow of the software.

Input/Output module This class manages the loading and saving of the built structure. The

configuration is saved into an xml file listing the position of the different faces of the cubes in

the 3D space.

Graph class The conversion of the cube structure into an undirected graph and its analysis

are done in this module. The main function called the perfect matching routine of the lemon

library. The detection of isolated node and odd configuration is also handled by this module.

Unfortunately, due to time constraints, the recommender system was not fully implemented

and only a basic checking can be performed, without real interaction with the user.

View The view is composed of two main elements:

1. The OpenGL representation: the structure is represented by a set of basic elements

(cube, lines, ...) on the screen.

2. The Interaction Handler: this module manages all the interaction between the input

devices (mouse and keyboard) and the 3D representation. Their is one interaction

handler for each view.

C.8 Conclusion and future works

C.8.1 Conclusion

In this chapter, we have described a new interface to easily build structure made of Roombots

modules. We use an intermediate representation made of cubes to simplify the process. This

structure is then converted into a configuration made of real RB units by using a perfect

matching algorithm applied to the graph equivalent of the cube structure. We have designed

a complete software which allows the user to create the desired shape, interact with it and

visualise the equivalent RB configuration in real time.

C.8.2 Discussion and future work

On a theoretical and analytical level, several aspects still need to be investigated.

Firstly, the fact of restricting the building of the structure to a 3D grid restrains the capability

of the modules and, as a consequence, the possible shapes that can be created out of them.
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This constraint could be partially lifted if the size ratio of our structure would not be taken into

account. Indeed, any structure can be approximated up to a certain precision by increasing

the number of cubes. Nevertheless this granularity increase does not preserve the overall size

factor of the object, since the RB modules have fixed dimensions.

Secondly, the perfect matching technique use in this project does not take into account the

future use intended for the structure. For example, we might think of designing the resulting

structure so that it would be easy to build using the current reconfiguration algorithm already

developed at BioRob ([236]). Similarly the locomotion of the RB shape depends on the orien-

tation of the different modules and the type of connections between them. These information

are currently not included when performing the conversion from the cubes configuration to

the RB shape.

In terms of software functionality, we can identify some natural extensions and improvements

of the current version.

If we intend to create a tool for designing real piece of furniture, we need to provide to the user

the ability of managing several structures at the same time. We should also allow her to place

the different configuration inside a virtual environment, as it is done in the VUG framework.

To create the shapes, it might definitely be useful to be able to drag, drop and copy existing

pieces of structure to ease the creation process. Including passive elements would also allow

for more variety in the resulting configuration.

The recommender system should also be improved to handle more difficult cases. A measure

of the complexity of the building process for the given shape has to be developed as well as

a similarity measurement between structures, so that a structure difficult to build could be

approximated by an easier similar one.
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(a) (b) (c)

Figure C.8 – The three representations of the structure: the cube structure (a), the correspond-
ing graph with the perfect matching shown in red (b) and the created Roombots structure
(c).

Figure C.9 – The spheres structure

Figure C.10 – An “impossible” structure
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Figure C.11 – Illustration of graph matching. For a) and c) no perfect matching exists (adapted
from [277])

.

Figure C.12 – A screenshot of the proposed interface. On the left, the panel displays the
saved configuration. The left view shows the cube structure and the right view the rendered
structure.
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Figure C.13 – The structure of the 3D assembler code
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D Mobile control interface for modular
robots

References and contributions

This section is based on the following semester project:

L. Girod, "Mobile control interface for modular robots", Semester Project, École Polytech-

nique Fédérale de Lausanne (EPFL), 2014. Available at:

http://biorob.epfl.ch/page-110120-en.html

My contributions were:

• general guidance during the project.

• proposed SLAM like method (PTAM).

The external contributions were:

• implementation of the method.

• test of the method and possible improvement.

The initial goal of this project was to improve our previously developed tablet interface (de-

scribed in chapter 8) by removing the need for an external tracking device. We found an

already developed augmented reality software by Klein at al. [138, 137] to demonstrate the

efficiency of their SLAM like method called PTAM (Parallel Tracking and Mapping). PTAM is

similar to SLAM algorithms: it initially recognizes points of interest in the pictures and con-

struct an estimate of the camera position and orientation called keyframe; at each frame the

algorithm tracks the displacement of these points of interest and create a new keyframe. The

position of the camera is corrected using probabilistic methods. One of the main limitation of

PTAM is the restriction to a unique map of points of interest that confines the algorithm to

work on a limited area. An extension of this algorithm called PTAMM (Parallel Tracking and

Multiple Mapping) [46] proposed a solution to this problem by managing a multiple maps. We
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used an easier approach to the problem by triggering the rendering of the scene only when

the probabilistic score corresponding to the confidence interval of recognizing the point of

interest was high enough. In other words, we only draw the AR scene when there is a high

probability that we are pointing in the direction of the scene.
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E Collaborative interface for mixed
team of humans and robots

References and contributions

This section is based on a personal project conducted during the "Autonomous Robots"

course in 2011. We received guidance from our supervisors, José Nuno Ferreira Maia Pereira

and Professor Alcherio Martinoli

In this chapter, we review the different aspects of Human Robot Interaction (HRI) in the

domain of coordination of mixed team of humans and robots. We explore the different existing

metrics in this domain and emphasize the need for common, task independent metrics. We

insist on the aspects of coordination and cooperation and present a possible taxonomy for the

evaluation in this domain. We describe also some high level implementation in the domain

of multi-agent systems and analyse examples of real world applications. We investigate the

concept of autonomy and awareness and mention a new approach for designing collaborative

architectures. Finally, we present some social implications induced by these mixed teams of

humans and robots, such as trust, cognitive models or roles playing.

E.1 Introduction

The field of Human-Computer Interaction (HCI) has been extremely active in the past ten

years, allowing great progresses in the domain of interaction of humans with computer-based

technologies but also in the one of social studies, with the implication of these interaction in

our everyday life. Most of the time these studies have been performed in a situation of one

to one interaction between a single robot and a human. The control of groups of robots has

also greatly evolved and matured since its early days and it is now possible to drive efficiently

swarms of robots to achieve particular tasks. Nevertheless much fewer work has been done

in the study of mixed team of humans and robots, both at the level of the control and at the

level of interaction, cooperation and coordination. The domain of Human Robot Interaction

has often been reduced to a particular case of HCI, neglecting the differences induced by the

implication of the devices in the real environment (in terms of perception of the robots for
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example) and the underlying social issues. As the robots became more and more autonomous

and efficient, this branch has tended to specialise by affirming its differences. Nonetheless,

most of the studies have been made in this field considering the humans as external to the

task (like supervisors) rather than as a member of the team.

In this work we investigate a more general architecture in which not only the number of robots

and humans is not limited to one but also the team is made of humans and robots interacting,

collaborating and cooperating together to achieve a particular task.

In the first section (section E.2) we describe the possible metrics that can be applied to this

problem. Then (section E.3) we discuss the implementation of such system both in terms

of abstract architecture and concrete applications. The notion of autonomy and the related

concept of awareness are explained in section E.4. Finally, we explore in section E.5 the social

implication of such an heterogeneous system.

E.2 Metrics

The notion of metrics is crucial in many domains as it allows evaluation of methods as well as

comparison between them, but also a prediction of the system performance, effectiveness

and robustness. In HRI, the main difficulty is often the task dependency of the measurement:

a metric can be well suited to a particular task but meaningless in another context.

The newly used mixed human/robots teams in HRI raise a major issue in term of evaluation.

At a high level, three main criteria are often used to evaluate these formations. The autonomy

can be defined as the capability of a system to analyse, plan, make decisions, communicate,

or achieve goals (a task, for example). The robustness of a system corresponds to its ability

to achieve its goals when facing uncertainty and disturbances (noise, perturbations,...). The

stability can be seen as a subcategory of the robustness which represents the ability of a system

to maintain its behavior in face of disturbances. For example, a team of robots able to maintain

their formation over time might be considered as stable. Finally, the efficiency of a system

corresponds to its performances given some criteria like number of successful missions or the

time to completion. Unfortunately these metrics are intrinsically task dependent, leading to

domain dependent measurements and thus restraining the comparison opportunity. That is

the main reason why common metrics are needed.

E.2.1 Common metrics

Even if the definition of a global, task independent metric remains a difficult problem, it has

been shown ([91]) that common metrics can be constructed. Three main categories can be

created depending on the point of view we want to consider: the system (humans and robots)

as an entity, the robots alone or the humans alone.
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System

The robots and the humans are evaluated as a team ([4]). The quantitative measurement

of the team can be done using two main criteria: the effectiveness, which corresponds to

the percentage of successful missions of the team, and the the efficiency, which measures

the time to completion1 of the task. These measures can be completed using subjective

rating: the overall impression of “easiness” in the performing of the mission for example (no

brusque interruption, no long immobilisation time,...). The use of mixed initiative can also

be quantified: the percentage of request for assistance from the robots or from the humans,

the interaction effort (mainly from the human to work with the robot, [193]), i.e. the right mix

of competencies of the team members, and the correct leveling of the autonomy of the team

mates.

Humans

To evaluate the performance of the operators in HRI, different factors can be taken into

account. The situation awareness (SA) has been shown to be critical for decision making

in dynamic systems management and highly related to the notion of workload (see [82] for

example of tools to measure SA and [130, 226] for the implication of SA in the decision making

process and workload evolution). The workload of the operators is almost always related to

the need for tele-operation of the robots: most of the time the workload decreases with the

need for tele-operation (see [78, 130, 225] for examples of workload measure). Finally, the

accuracy of mental models often plays a major role in HRI. The main domain of application of

this measurement is the Search and Rescue problem, in which a mixed team of humans and

robots has to perform a rescue operation in a rugged terrain. It has been shown ([184]) that

better representation of the environment by the humans can be achieved by cooperating with

other fellow humans to explicit and improve the situation model.

Robots

The robots performance depends on multiple factors. The self-awareness of the robot, i.e.

its ability to know its own capabilities can become crucial in many situations. A self-aware

robot will be able to recognize the case in which a human is needed and, on the contrary,

avoid the need for monitoring otherwise. This capability can be qualitatively measured using

three main evaluators: the intrinsic limitation of the robots (at the level of the hardware), for

example the type of sensors, the self-monitoring capacity (the ability to evaluate its current

status and state), and finally the capacity to detect, recover and isolate fault.

1This measure can be further refined using other measurements
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E.2.2 Coordination and cooperation

When we have to consider mixed team of robots and humans, the notions of cooperation and

coordination have to be considered carefully.

Most of the time the cooperation in a team is measured using the neglect tolerance ([100, 193])

or the fan-out ([71]) criteria. The neglect tolerance (NT) corresponds to the maximum duration

between two human interventions before the performance goes under a certain threshold

(see figure E.1).

Figure E.1 – The neglect tolerance criterion

The fan-out (FO) estimates the number of robots that can be controlled by a human without a

decrease of the global performance under a certain threshold.

The main issue with both FO and NT is the fact of considering team of homogeneous robots,

which considerably limits the versatility of the resulting group. Nevertheless, the framework of

NT can be extended ([274]) to take into account the heterogeneity among the robots and to

measure the coordination demand in the team. The cooperation effort in the team depends

not only on the capacities of both humans and robots but also on the global coordination

capacity of the team (see figure E.2).

(a) For the hu-
mans

(b) For the
robots

(c) For the
team

Figure E.2 – Capacity in a mixed team: to evaluate the performance of a team, one has to take
into account not only the capacities of the human (E.2a) or of the robots (E.2b) alone, but also
the capacity of the team as a whole (E.2c) considering the additional abilities than can emerge
from the cooperative and collaborative behaviors (double sided arrows).

The robot autonomy has a direct impact on the decision making load ([15]) of the team: in the

case of multiple robots, the humans often have to shift attention from one robot to another

one leading to a degradation of the situation awareness. The average demand on human

attention for each particular robot can be measured ([71]): most of the time an increase in the

autonomy of the robot leads to an increase in the duration of the neglect tolerance time.
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A new criteria based on the NT can be introduced to better capture the coordination between

the different team mates when strong coordination is needed: the coordination demand

([274]). Both the NT and the FO are not very well suited for tightly cooperative tasks because

they are based on a sequential division of the control task. The coordination demand can be

formally defined as

C D =
∑

OT

N T

where OT corresponds to the time devoted by the human to synchronize (with) the robots.

It measures the time devoted to cooperation during a given task. This criteria can be further

extended to the case of sub-team inside a global group, where robots and humans can decide

to form a subgroup to perform a given sub-task.

E.2.3 Taxonomy

Different taxonomies exist in HRI. We present three main categories which are particularly

relevant to our problem (see [159] and references inside).

Autonomy level

we can differentiate between autonomy as the amount of time the robot carries a task inde-

pendently from the intervention time, which is the percentage of time the operator needs to

operate the robot.

Interaction ratio

it corresponds to the level of interaction between robots and humans (for example, one robot -

one human, multiple robots - one human, human team - one robot,...).

Team composition

in this domain, different measures exist. The human-robot ratio gives an idea of the relative

proportion of humans and robots in the team. The notions of homogeneity and heterogeneity

are the basic considerations for this criterion.

To characterise the task, three main factors can be taken into account. The criticality measures

the potential harm that can be caused to the humans, the robots or to the environment in case

of failure. The time corresponds to the synchronous or asynchronous aspect of the interaction

between humans and robots. The space is the indication of the physical proximity of humans

and robots: do they perform their action in a co-located area or remotely.
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E.2.4 Implied design

The previous indicators can greatly influence and shape the design of the control architecture

and of the interface in the team.

For example, in the problem of search and rescue, it has been shown ([184]) that several

guidelines must be followed when designing a HRI protocol. Firstly, the awareness must be

enhanced by improving the quality of the spatial information given to the operators to allow a

better grasp of the robots immediate surroundings. Secondly, the cognitive load of the humans

need to be lowered, by fusing the different information before transmitting them to the users

and only displaying important information. Thirdly, the use of multiple windows should be

avoided and finally the system should assist humans in the choice of the right modalities to

consider from the robots as well as to chose the appropriate autonomy level.

E.3 Implementation

In order to effectively design a control architecture for a mixed team of humans and robots,

two main approaches can be considered: the centralised and decentralised one. Neverthe-

less, the former tends to suffer from major drawbacks: lack of scalability, multiple points of

failure possible,... On the contrary, the use of a distributed system to abstractly represent a

team of human and robots leads to robust task execution in dynamic environment, with no

centralized bottlenecks or points of failure. We explain in the following subsections the use of

the abstraction concept of Multi-Agent Systems (MAS) to achieve this decentralised control

architecture and present examples of applications of teamwork frameworks.

E.3.1 Multi-agents systems

The integration of humans in robots teams make the classical approach, like the Adaptive

Agent Architecture ([147]), difficult to use, not only because of the strongly heterogeneous

aspect of the resulting groups but also considering the lack of teamwork implementation in

this case. The notion of team programming ([261, 262]) has been developed to integrate team

behavior into multiagent framework. The SharedPlans ([103]) and joint intentions ([65]) theory

have been used along with the frameworks of coordinate agent ([125, 254, 255]) to extend and

adapt the existing architecture to deal with heterogeneous teams of humans and robots ([214]).

Policy based methods ([31]) are also used, as they allow the regulation of dynamic system of

heterogeneous entities without requiring cooperation ability between the group members.

One of the most promising approach in the MAS domain is the work done by Tambe and

Pynadath in the developement of the Teamcore architecture ([214]). In this framework, the

major improvement over classical approaches ([219, 125, 127, 232, 17]) is the use of proxies to

access the different agents. It allows a reuse of the same rules in the team even if the members

change, as it considers the different agents as black boxes. The main challenges are to manage

the role between the heterogeneous agents and to coordinate the level of planning needed
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(at the level of the agent and at the level of the team). Most of the time, an agent coordinator

is used to handle this task. The role of coordinator can be shifted from on agent to an other

one. In this context, an agent can be viewed as a proxy with team work capability (using the

STEAM teamwork model, [254]) and adjustable autonomy (due to the team work capacity, the

agent can defer some decision making to other agents depending in the circumstances). Thus

the architecture itself, through the proxies, can adapt to the needs and performances of the

agents (for example, a difference in response time). More globally, dynamic plan alteration

are made possible by combining the adaptive properties of the agents. Finally, the possibility

of reusing specialized proxies as building blocks of the application ([106, 117, 126]) make the

efficiency of a newly created team much higher.

E.3.2 Examples

The Teamcore ([214]) architecture has been applied in various domains. In simulation, an

evacuation rehearsal has been represented where the different agents were in charge of the

control of the helicopters for the evacuation of the civilians, planning the route (avoiding the

obstacles but also locate possible enemy threats) and reacting to the commander inputs. This

experiment was useful to illustrate the power of the proxy abstraction layer considering the

heterogeneity of the agents in terms of architecture and code (all of them ran on different

architectures and were coded in different languages): without any modification of the agents,

Teamcore was able to successfully achieve the mission. This architecture has also been tested

in a real environment with a team of humans. It was in charge of organizing the meetings

of a team of researchers (planning the meetings, informing of possible delay,...). In this

example the challenge was to take into account the different role played by the lab members,

their heterogeneity and their numbers (the experiment has been performed in a large team).

Moreover the group was also composed of multiple subgroups and the coordination of the

common tasks was also needed. This example has inspired other possible applications in

different domains (e.g. Electric Elves, [47]).

The notion of policy has been successfully implemented in the KAoS architecture ([215]).

This framework is compatible with many mobile agent environment platforms and allows,

in one of its extension called Kaa ([35]), the use of adjustable autonomy and policy learning.

Concrete examples of application of policies to the robotic field can be found in the domain

of space exploration (the NASA personal satellite assistant,[36], or the simulation of space

exploration, [230]) and search tasks with joint activity constraints ([33]). Some metrics have

been proposed in these cases to evaluate the policies: the survivability (ability to maintain

effectiveness when facing unforeseen events), the predictability (correlation between human

judgment of predicted behaviors in comparison with actual behaviors) or safety (capacity of

preventing certain classes of dangerous actions or situations) for example.
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E.4 Autonomy and awareness

The notion of autonomy (subsection E.4.1) is often used to classify robots and, most of the

time, different types of scales can be used. The awareness (subsection E.4.2) concept also

plays a crucial role in HRI. Finally, being able to adapt the design of the implementation by

using the intrinsic requirements of the joint activity is the purpose of a new approach called

co-active design, that we present in subsection E.4.3.

E.4.1 Autonomy

The autonomy of robots can be measured in various ways. The example of guidance in an

unknown environment illustrates quite well the different levels of autonomy. The first level

is the tele-operation level ([201]): the robot has no autonomy and the operator has to fully

control it (speed of the wheel, orientation of the camera,...) to complete the task. The second

level, called waypoint control ([71, 190, 201, 267]), consists in giving to the robot only positions

in space where it has to go (like checkpoints) and let it manage its behavior in between. The

autonomy in this case can also be compared to the one corresponding to the prescribed

behavior strategy ([184]): the human select a type of behavior for the robots according the

environment and to the situation. If we increase the level of autonomy of the robots and allow

for different level of individual autonomy, it has been shown that the efficiency of the team

increases only if the robots are able to cooperate ([274]), even if the workload on the humans

was inferior. This classification can be qualified of “human centered” because we mainly

consider the autonomy of the robots in terms of differences for the humans operator or team

mates.

Another way of comparing the autonomy in a more “team centered” manner is as follows

([169]). The tele-operation remains the first level of autonomy. The second one is called

safe mode: the robot has the authority to protect itself from the environment if the operator

commands are evaluated as dangerous. In the next level, or shared control level, the robot can

choose its own path in response to the global direction of the human. Finally, the last level is

the full autonomy one: the robot react to high level input (“Go search this area” for example)

without the need to be operated by a human at any moment.

Systems in which the robots autonomy can be dynamically changed to adapt to the situation

have also been studied ([169]). The notion of mixed-initiative is used in this case: the auton-

omy can be shifted between humans and robots depending on the environment. The robots

are always responsible for the low level task and the human of defining the high level goals,

but the robots behavior can be overridden if the humans infer some possible outcomes in the

environment. A similar idea supports the concept of adjustable autonomy ([34]). It is based

on an optimal allocation of the task based of the capabilities of the agents and of the humans.

This allocation can also be made adjustable depending on the context.
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E.4.2 Awareness

The concept of awareness plays a crucial role in HRI. It has been first defined in [80] for two

entities collaborating synchronously on a given task: the awareness is the understanding

that one of the entity has of the presence, identity and activities of the other. However in

HRI, the situations might differ from this one because interactions can take place between

several robots and humans. Moreover the relationship between humans and robots is not

symmetrical because of the intrinsic limitations of robots in terms of free will, cognitive skills

and autonomy. The awareness can be decomposed into five different categories depending

of the perspective chosen. The human-robot awareness is the understanding the humans

have of the environment, status, identity and activities of the robots, as well as the certainty

of this understanding. The human-human awareness is similar to the previous one except

we consider human-human interaction. The robot-human awareness corresponds to the

robots’ understanding or knowledge about the human that is needed to understand the

commands given and to shape the activity depending on human need or status. The robot-

robot awareness take into account the possible command one robot can be given by other

robot and the collaboration/coordination plans needed to dynamically reaffect task among

the robots. The human or robot overall awareness of the mission is the last type of awareness

we can consider. It corresponds to the understanding of the goals of the joints activities but

also the ability of measuring the progress towards these goals.

E.4.3 Co-active design

The previous approaches can be seen as autonomy centered in the sense that the main concern

for the design of the system is either to compensate the low capabilities of the robots using

tele-operation or to reduce the humans work load by increasing the autonomy of the robots.

Some authors ([128]) have adopted a more team-work centered approach ([32]). Key concepts

in this method are the notions of group participatory action and interdependency: instead of

seeing the global goal as a sequence of individual tasks performed by the different actors, a

global activity is considered. In this activity, collective obligations ([87]) emerge of the needed

joint actions. This leads to design requirements which are going to shape the implementation

of the robots proportionally to the interdependence needed in the joint activity. For example, if

the users inputs are needed to improve the navigation task, then the corresponding algorithm

should be able to incorporate them.

E.5 Social interaction

The relationships between human and robots have always been difficult to define and to anal-

yse. Robots can be considered as true members of a team ([169]) or only as active information

sources ([184]). The humans might need to be willing to accept robots initiatives and “trust”

the system to ensure true integration of the robots inside the team.
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E.5.1 Roles

Different roles can be played by the humans in an interaction with a robot. They can act

as a supervisor and be in charge of one or more robots. She need then to have a global

understanding of the mission. In the operator role, the interactions will depend on the level

of autonomy defined. The human need to be aware of the status of the robot as well as its

surroundings. Finally, as a team-mate, the human need to understand the restriction in the

robots capabilities to be able to interact optimally with it.

In an interaction, a human migh assume multiple roles for a given robot. Several people can

also interact with a robot and play different roles. The type of interaction and the role played

by the humans in it can determine or model the design of the interface between humans and

robots.

In human teams, the roles of the different team mates evolve depending on the information

obtained or elicited about the different members (capacities, behaviors,..). The direct applica-

tion of role theory to HRI has shown ([39]) that robots often have the role of tools in a team

and scarcely the one of peers, and even less often the one of leaders. Nevertheless, robots

capabilities can exceed those of a human in some cases (mainly for low level functions). The

main limitation of the robot comes from its difficulty to recover from failure and to adapt to

changes in the environment. Role shifting is useful in this case to compensate these limitations

or failures and ensure a more optimal modulation of the level of autonomy in terms of robots

initiative.

A robot should also be human-aware to improve its reactivity and its performance in the team.

This aspect will be dependent on both the autonomy of the robots and the role played by

the humans ([224]). The robots will be able to construct a “user model” to tune its behavior

according to the humans it interacts with (mainly by using monitoring).

E.5.2 Trust and social behavior

Trust can be defined as the disposition to firmly rely on a person or thing ([35]). It is based

on a judgement of competence, benevolence and compliance. Different studies have shown

([169]) that a key concept to ensure trust between team members is a basic understanding of

the action of the others members (the incomprehension leading to frustration). In HRI the

humans need to be able to understand and predict the robot responses to accept it as a team

member. If this aspect is important for the human, it can also be relevant and helpful for robots,

as they will be able to anticipate and better respond to human behavior or needs. For example

the robots could detect the level of stress or workload of the user and adjust accordingly their

level of autonomy (for a more complete study of the change in robots behavior in response to

human state, see [216, 217]). It has also been shown that it is possible to ensure comparative

results in a task between expert and novice humans by allowing the robot to adjust its level of

autonomy.
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E.5.3 Fluency in the task

Some authors ([113]) have imagined to give to the robot a cognitive architecture based on

anticipation and perceptual simulation to improve the interaction between humans and

robots. It allows the robots to adapt dynamically to its human “colleagues”. It has been shown

that the more the robot is able to anticipate the human needs the more the human expects a

full coordination with the robot ([112]). In order to decrease the reaction time, anticipatory

simulation (a predicted response of the human counterpart is used as a simulated reply) and

Hebbian inter-modal reinforcement learning (a neural network using the Hebbian’s rule) are

used. This new architecture leads to better results in all tests performed. The learning curve of

both the humans and the robots is similar. The notion of fluency captures the high level of

coordination and adaptation of agents who perform a joint action. In all the tests performed,

the level of fluency was higher for the team in which the robots were driven by the previous

cognitive architecture.

E.5.4 Anthropomorphic behavior

The way humans consider the robots is highly dependant on the robots capabilities (in terms

of adaptation, evolution but also considering the available means of communication with it)

and less on their appearance. For example, it has been observed in a search and rescue task

that humans were prone to adopt anthropomorphic behavior ([184]) even with non human

like robot: they make eye contacts with the robot, try to incite him to follow them using gesture

and also maintain personal space etiquette. In the case of the previous cognitive architecture,

the human interacting with the robot tends to give it human attributes (sex, eye,..) and to have

a more self-deprecated attitude ([113]).

E.5.5 Computational Cognitive models:

Some works ([264, 265]) have been done in the field of computational cognitive models applied

to HRI. The main hypothesis is that the fact of having a basic and identical representation and

reasoning mechanism will lead to a better collaboration. To a certain extent, we could say that

a system should be able to act “naturally” in order to improve the “compatibility” with the

humans. As a consequence the robots should accommodate to their human counterparts in

such a way that the team can exploit optimally the capabilty of the two “worlds”. The main

“cognitive skills” that have to be mastered by the system are of different orders. Firstly, the

robots have to appropriate the knowledge representations characteristic of the problem. For

example, if we consider a guiding problem on a map, the spatial representation will induce a

spatial reasoning. The representation of the problem will have to be adapted to the method

used for solving it. Secondly, the system should be able to learn to recognize and anticipate

its team-mates behaviors, as well as to elicit and determine their different capabilities to

better react and adapt to the situation. Finally some features have to be mastered in specific

domains: the permanence and tracking of objects [234] and the gestures recognition [206]
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for example. More high level considerations can be taken into account. Humans are able to

switch between different perspective depending on the situation (from spatial to social for

example,[264, 265, 38]). Our capacities of anticipation and temporal reasoning also play a

crucial role in our ability to perform a given task. An interesting experiment that requires the

use of several of these skills is the problem of Hide and Seek [109, 266]. This kind of experiment

allows to develop computational cognitive models of high-level human cognitive skills that

will be used as reasoning mechanisms for robots.

E.6 Conclusion

The overview given in this chapter illustrates both the complexity of the HRI field and the

promising perspectives it can offer in the domain of coordination of mixed teams. We have

seen that different metrics exist to measure the efficiency of a coordination task and that the

implementation of this collaborative aspect into a complete architecture can be made possible

by using an abstract representation based on a multi-agent system. We have also investigated

the notions of autonomy and awareness, showing that both are fundamental in this domain,

but also that the emergent aspect of co-active design can influence the implementation of the

control architecture and of the robots in the early stages of the system conception. Finally,

we have described the social aspects related to this problem, by pointing out that the more

robots capacities are similar to human ones or accordingly adapted, the more robots will be

considered as team-mates and not as simple tools in the group.
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