000201709 001__ 201709
000201709 005__ 20190317000007.0
000201709 037__ $$aARTICLE
000201709 245__ $$aFull blow-up range for co-rotaional wave maps to surfaces of revolution
000201709 269__ $$a2014
000201709 260__ $$c2014
000201709 336__ $$aJournal Articles
000201709 520__ $$aWe construct blow-up solutions of the energy critical wave map equation on $\mathbb{R}^{2+1}\to \mathcal N$ with polynomial blow-up rate ($t^{-1-\nu}$ for blow-up at $t=0$) in the case when $\mathcal N$ is a surface of revolution. Here we extend the blow-up range found by Carstea ($\nu>\frac 12$) based on the work by Krieger, Schlag and Tataru to $\nu>0$. This work relies on and generalizes the recent result of Krieger and the author where the target manifold is chosen as the standard sphere.
000201709 6531_ $$acritical wave equation
000201709 6531_ $$ahyperbolic dynamics
000201709 6531_ $$ablowup
000201709 6531_ $$ascattering
000201709 6531_ $$astability
000201709 6531_ $$ainvariant manifold
000201709 700__ $$g210272$$aGao, Can$$0245741
000201709 773__ $$t.... 2014
000201709 8564_ $$uhttps://infoscience.epfl.ch/record/201709/files/1409.0672v1_1.pdf$$zn/a$$s217069$$yn/a
000201709 909C0 $$xU12235$$0252322$$pPDE
000201709 909CO $$ooai:infoscience.tind.io:201709$$qGLOBAL_SET$$pSB$$particle
000201709 917Z8 $$x178574
000201709 917Z8 $$x178574
000201709 917Z8 $$x178574
000201709 937__ $$aEPFL-ARTICLE-201709
000201709 973__ $$rNON-REVIEWED$$sSUBMITTED$$aEPFL
000201709 980__ $$aARTICLE