Plasma turbulence in the tokamak scrape-off layer

F.D. Halpern1, S. Jolliet1, B. LaBombard2, J. Loizu1, A. Mosetto1, M. Podesta3, P. Ricci1, F. Riva1, J. Terry2, C. Wersal1, S. Zweben3

1École Polytechnique Fédérale de Lausanne
Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne, Suisse
2Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA

Theory of Fusion Plasmas
Joint Varenna-Lausanne International Workshop
1 Sept 2014, Varenna, Italy
Scrape-off layer physics crucial for magnetic fusion

Heat load to PFCs, rotation, impurities, L-H transition...

How do we develop 1st principles understanding of SOL dynamics?
Simple problem: inner wall limited (pol. ×-section)
Ballooning turbulence with $k_\theta \rho_s \approx 0.1 \sim 1 \text{cm}^{-1}$
Gaussian in near SOL, intermittent in far SOL
Fluctuation level $\mathcal{O}(1)$, skewed PDF
Power balance \rightarrow exponentially decaying profiles

\[\nabla \cdot \Gamma_\perp + \nabla \cdot \Gamma_\parallel = 0 \]

Turbulence

Sonic flows towards PFCs
Some of the questions that must be addressed...

✓ What mechanism sets the turbulence levels?
✓ What instability drives the perpendicular transport?
✓ What is the qualitative effect of finite T_i?
✓ How does the SOL width change with parameters?
✓ Can we reconcile theory, simulations, and experiments?
✓ What are the effects of neutrals? [C. Wersal, P-22 Thursday]
✓ How is toroidal rotation generated in the SOL? [Loizu, PoP 2014]
× Is SOL transport related to the density limit? [LaBombard, NF 2005/08]
× How is the SOL coupled with the closed flux surface region?
A tool to simulate SOL turbulence

Global Braginskii Solver (GBS) [Ricci, PPCF (2012)]

- Drift-reduced Braginskii equations
 \[\frac{d}{dt} \ll \omega_{ci}, k_{\perp}^2 \gg k_{\parallel}^2 \]
- Evolves \(n, \phi, V_{||e}, V_{||i}, T_e, T_i \) in 3D
- Global, flux-driven, no separation between equilibrium and fluctuations
- Power balance between plasma outflow from the core, turbulent transport, and parallel losses
- Scalable \(\rho_\star \) up to medium size tokamak (e.g. TCV, C-Mod)
Drift-reduced Braginskii equations to describe the SOL

\[
\frac{\partial n}{\partial t} = -\frac{\rho^*}{B} [\phi, n] + \frac{2}{B} [nC(T_e) + T_e C(n) - nC(\phi)] - n\nabla_\parallel v_{\parallel e} - v_{\parallel e} \nabla_\parallel n
\]

\[
\frac{\partial \tilde{\omega}}{\partial t} = -\frac{\rho^*}{B} [\phi, \tilde{\omega}] - \nu_{\parallel i} \nabla_\parallel \tilde{\omega} + \frac{B^2}{n} \nabla_\parallel j_{\parallel} + \frac{2B}{n} C(p) + \frac{B}{3n} C(G_i), \quad \tilde{\omega} = \nabla^2_\perp (\phi + \tau T_i)
\]

\[
\frac{\partial}{\partial t} \left(v_{\parallel e} + \frac{m_i}{m_e} \frac{\beta_e}{2} \psi \right) = -\frac{\rho^*}{B} [\phi, v_{\parallel e}] - v_{\parallel e} \nabla_\parallel v_{\parallel e} + \frac{m_i}{m_e} \left[\nu j_{\parallel} / n + \nabla_\parallel \phi - \frac{\nabla_\parallel p_e}{n} - 0.71 \nabla_\parallel T_e - \frac{2}{3n} \nabla_\parallel G_e \right]
\]

\[
\frac{\partial v_{\parallel i}}{\partial t} = -\frac{\rho^*}{B} [\phi, v_{\parallel i}] - v_{\parallel i} \nabla_\parallel v_{\parallel i} - \frac{2}{3} \nabla_\parallel G_i - \frac{1}{n} \nabla_\parallel p
\]

\[
\frac{\partial T_e}{\partial t} = -\frac{\rho^*}{B} [\phi, T_e] - v_{\parallel e} \nabla_\parallel T_e + \frac{4}{3} \frac{T_e}{B} \left[\frac{7}{2} C(T_e) + \frac{T_e}{n} C(n) - C(\phi) \right] +
\]

\[
+ 2 \left\{ T_e \left[0.71 \nabla_\parallel v_{\parallel i} - 1.71 \nabla_\parallel v_{\parallel e} \right] + 0.71 T_e (v_{\parallel i} - v_{\parallel e}) \frac{\nabla_\parallel n}{n} \right\} + D_{\parallel T_e} (T_e)
\]

\[
\frac{\partial T_i}{\partial t} = -\frac{\rho^*}{B} [\phi, T_i] - v_{\parallel i} \nabla_\parallel T_i + \frac{4}{3} \frac{T_i}{B} \left[C(T_e) + \frac{T_e}{n} C(n) - C(\phi) \right] +
\]

\[
+ 2 \left\{ T_i \left(v_{\parallel i} - v_{\parallel e} \right) \frac{\nabla_\parallel n}{n} - \frac{2}{3} T_i \nabla_\parallel v_{\parallel e} - \frac{10}{3} \frac{T_i}{B} C(T_i) + D_{\parallel T_i} (T_i) \right\}
\]

+ Sheath BCs consistent with PIC simulations [Loizu, PoP (2012)]
Parameters, normalizations, coordinates

- Coordinate system: $(\theta, r, \varphi) \rightarrow (\text{poloidal}, \text{radial}, \text{toroidal})$

- Equations expressed in normalized units:
 - $L_\perp \rightarrow \rho_s$
 - $L \parallel \rightarrow R$
 - $\nu \rightarrow c_s$
 - $t \sim \gamma^{-1} \rightarrow R/c_s$

- The dimensionless code parameters are as follows:
 - $\rho_* = \rho_s/R$
 - $\nu = e^2 n R / (m_i \sigma \parallel c_s)$
 - $\beta_e = 2 \mu_0 p_e / B^2$
 - $q \approx (r/R) B_\varphi / B_\theta$

- Simplified notation in analytical expressions:
 - $p_0 = \langle p \rangle_t, \ t \gg \gamma^{-1}$
 - $L_p = -\langle p/\partial_r p \rangle_t$
Poloidal cross sections showing SOL turbulence
Modes saturate due to pressure non-linearity

We observe in simulations [Ricci, PoP (2013)]:

- Mode saturation caused by local pressure non-linearity

\[\partial_r p_1 \sim \partial_r p_0 \rightarrow \frac{p_1}{p_0} \sim \frac{\sigma_r}{L_p} \]

- Radial eddy length is mesoscopic [Ricci, PRL (2008)]

\[\sigma_r \approx \sqrt{L_p/k_\theta} \]

- Turbulent flux dominated by radial $E \times B$ convection

\[\Gamma_1 = \rho_*^{-1} \left\langle p_1 \frac{\partial \phi_1}{\partial \theta} \right\rangle \]
Saturation model yields $E \times B$ turbulent flux

Gradient removal hypothesis

$$\frac{p_1}{p_0} \approx \frac{\sigma_r}{L_p}$$

$$\Gamma_1 \approx \rho_\star^{-1} \langle p_1 \partial_\theta \phi_1 \rangle$$

$$\partial_t p = -\rho_\star^{-1} [\phi, p]$$

$$\partial_\theta \phi_1 = \gamma \left(\frac{p_1}{p_0} \right) \left(\rho_\star L_p \right)$$

$$\Gamma_1 \sim p_0 \left(\frac{\gamma}{k_\theta} \right)_{\text{max}}$$
Self-consistent prediction of pressure gradient length

In steady state, $\nabla \cdot \Gamma_1$ balances parallel losses $\sim \nabla_{\|} \cdot (p v_{\|} e)$, hence

$$L_p \approx \frac{q}{c_s} \left(\frac{\gamma}{k_\theta} \right)_{\text{max}}$$

- Results in iterative scheme to predict L_p self-consistently:
 - Compute $\gamma = f(L_p, k_\theta, \rho_*, q, \nu, \hat{s}, m_i/m_e)$
 - Vary L_p until LHS = RHS using secant method
Excellent agreement between theory and simulations

L_p predicted using self-consistent procedure [Halpern, NF (2014)]

![Graph showing the comparison between L_p predicted using the self-consistent procedure and the simulation results. The graph shows a strong linear correlation with an R^2 value of 0.94. The data points fall closely along the line of best fit.](image)

GBS sims.: $\rho^{-1}_* = 500–2000$, $q = 3–6$, $\nu = 0.01–1$, $\beta = 0–3 \times 10^{-3}$
Dominant instability depends principally on q, ν, \hat{s}, T_i/T_e

- Build instability parameter space using reduced models
 → gradient removal theory, linear dispersion relations
- Verify results using GBS non-linear simulations [Mosetto, PoP (2013)]

Which instability drives \perp transport?
- Inertial/Resistive Ballooning modes/Drift Waves?
Dominant instability depends principally on \(q, \nu, \hat{s}, T_i/T_e \)

- Build instability parameter space using reduced models
 - \textit{gradient removal} theory, linear dispersion relations
- Verify results using GBS non-linear simulations [Mosetto, PoP (2013)]

- Which instability drives \(\perp \) transport?
 - \textit{Inertial/Resistive Ballooning modes}/Drift Waves?
Presence of RBMs verified in TCV SOL sims

- $(\tilde{n}, \tilde{\phi})$ phase difference, joint $(\tilde{n}, \tilde{\phi})$ pdf [Halpern, NF (2014)]

Curvature-driven, non-adiabatic mode \rightarrow RBMs
Addition of finite T_i weakens adiabatic coupling

- Analysis extended to include T_i effects [Mosetto, PoP (submitted)]
- Joint ($\tilde{n}, \tilde{\phi}$) pdf in GBS sims with $\tau = 1, \tau = 4$

RBM component is enhanced by finite T_i
SOL width in RBM regime scales with ρ_\star, q

- SOL width obtained analytically with RBMs [Halpern, NF 2013/14]:

$$\gamma_b = \sqrt{2/(\rho_\star L_p)}$$

$$L_p = q \left(\frac{\gamma}{k_\theta} \right)_{\text{max}}$$

$$k_b = \sqrt{(1 - \alpha)/(\nu \gamma_b)/q}$$

- Our simple model leads to a dimensionless scaling:

$$L_p = \left[2\pi \rho_\star (1 - \alpha)^{1/2} \frac{\alpha_d}{q} \right]^{-1/2}$$

Machine size

$\alpha = q^2 \beta/(\rho_\star L_p)$

Electromagnetic effects

$\alpha_d = \nu^{-1/2}(\rho_\star L_p)^{1/4}/q$

Collisionality vs connection length
Parallel dynamics physics in agreement with simulations

- Verify saturated RBM theory with GBS EM simulations
 - $\rho_*^{-1} = 500$, $\beta_e = 0-3 \times 10^{-3}$, $\nu = 0.01-1$, $q = 3, 4, 6$

(Contours of L_p given by theory, symbols are GBS simulations)
GBS simulations confirm size-scaling up to TCV size
Dimensionless scaling follows GBS simulation data

Comparison carried out over wide range of parameters \((\rho_*, q, \beta, \nu)\)
Good agreement with SOL width measurements

\[L_p \approx 7.2 \times 10^{-8} q^{8/7} R^{5/7} B_\phi^{-4/7} T_{e0}^{-2/7} n_{e0}^{2/7} (1 + T_i/T_e)^{1/7} \text{ [m]} \]

Exp. data:
- G. Arnoux
- I. Furno
- J.P. Gunn
- J. Horacek
- M. Kočan
- B. Labit
- B. LaBombard
- C. Silva
Good agreement with SOL width measurements

\[L_p \approx 7.2 \times 10^{-8} q^{8/7} R^{5/7} B_\phi^{-4/7} T_{e0}^{-2/7} n_{e0}^{-2/7} (1 + T_i/T_e)^{1/7} \text{ [m]} \]

Exp. data:
- G. Arnoux
- I. Furno
- J.P. Gunn
- J. Horacek
- M. Kočan
- B. Labit
- B. LaBombard
- C. Silva
Good agreement with SOL width measurements

\[L_p \approx 7.2 \times 10^{-8} q^{8/7} R^{5/7} B_\phi^{-4/7} T_{e0}^{-2/7} n_{e0}^{2/7} (1 + T_i/T_e)^{1/7} \text{ [m]} \]

Exp. data:
G. Arnoux
I. Furno
J.P. Gunn
J. Horacek
M. Kočan
B. Labit
B. LaBombard
C. Silva
Intermission

- We discussed a theory describing SOL turbulent dynamics
 - Turbulent saturation mechanism
 - Non-linear instability driving \(\perp \) transport
 - SOL width scaling with plasma parameters
 - Verified with non-linear simulations
 - Compared against data from several machines
- Some experimental data disagrees with theory

Carry out detailed comparison with these experiments
An ideal testbed for simulation-experiment comparison

- Inner-wall limited Ohmic C-Mod discharges [Zweben, PoP (2009)]
- $R = 0.67 \text{m}$, $a = 0.20 \text{m}$, $B = 2.7, 3.8 \text{T}$, $\kappa = 1.2$
- Density scan at each value of B
- Characterize C-Mod SOL turbulence using GPI diagnostic, and compare with GBS results
 - Low β, no T_i or \tilde{B} diagnostics \rightarrow simple electrostatic, cold ion model
 - $\delta D_\alpha D_\alpha$, pdf moments, τ_{auto}, L_r, L_θ, v_r, v_θ, $P(k_\theta)$, $P(\omega)$

Very stringent test!
Gas-puff imaging of C-Mod SOL

Phantom 710 high-speed camera at 400’000fps [S.Zweben, J.Terry]
δD_α/D_α diagnostic for GBS

Using DEGAS modeling of GPI emissivity, model D_α fluctuations

- Emissivity locally parametrized as \(E \propto T_e^\alpha n_e^\beta \), use H656 line
- Fluctuations modelled as \(\delta D_\alpha/D_\alpha \approx \alpha(T_e, n_e) \tilde{T}_e + \beta(T_e, n_e) \tilde{n} \)

- Simulate finite GPI resolution (3 × 3mm + 2.5μs smoothing), B-field tilt respect to sensors (8mm poloidal smoothing)
$\delta D_\alpha/D_\alpha$ synthetic diagnostic results

- Left to right: \tilde{n}, $\delta D_\alpha/D_\alpha$, $\delta D_\alpha/D_\alpha$ (diode), $\delta D_\alpha/D_\alpha$ (full)

High k_θ modes strongly damped by smoothing
Large $\delta D_\alpha / D_\alpha$ fluctuations, skewed PDF

- $\delta D_\alpha / D_\alpha$ level increases with SOL, $\sim 30\%$ in far SOL
- Skewness $\sim 1 \rightarrow$ blobs (?)
- Moment profiles robust with plasma parameters
Large $\delta D_\alpha / D_\alpha$ fluctuations, skewed PDF

- $\delta D_\alpha / D_\alpha$ level increases with SOL, $\sim 30\%$ in far SOL
- Skewness $\sim 1 \rightarrow$ blobs (?)
- Moment profiles robust with plasma parameters

Quantitative comparison using shaded area (GPI sensors)
GBS agrees with [Zweben PoP 2009] within error bars

- Compare GBS radial/poloidal average against GPI data
- Shot-to-shot variation indicated with error bars
- GBS gives good match for $\frac{\delta D_\alpha}{D_\alpha}$ and higher moments
- Previous gyrofluid simulations gave $\frac{\delta D_\alpha}{D_\alpha} \approx 5-10\%$
Typical spatial, temporal turbulent scales give reasonable agreement

- Compute τ_{auto}, L_{rad}, L_{pol} using 2 point correlations functions C_{ij}

$$C_{ii}(\tau_{auto}) = \frac{1}{2}$$

$$L = 1.66 \frac{\delta x}{\sqrt{-\ln C_{ij}(t = 0)}}$$

- Good match for $L \sim 1.5\text{cm}$, τ_{auto} underpredicted by ~ 2
Propagation velocities

- Obtain v_{rad}, v_{pol} from time lag that maximizes correlation between two neighboring points separated by $\delta_x \rightarrow v = \delta_x / \tau$
- Good agreement in $v_{rad} \rightarrow$ poloidal mode structure
- Large mismatch in $v_{pol} \rightarrow$ resolution smoothing in GBS data?
Spectral power vs wavenumber of $\delta D_\alpha / D_\alpha$

- From FFT of $\delta D_\alpha / D_\alpha$ in θ, then average over r, t
- Significant drop at $k_{pol} = 125 \text{m}^{-1}$ high k due to smoothing
- Unsmoothed $\delta D_\alpha / D_\alpha$ has same power law scaling as GPI
Spectral power vs frequency of $\delta D_\alpha / D_\alpha$

- From FFT of $\delta D_\alpha / D_\alpha$ in t, then average over t, $r = 2 \pm 0.2\text{cm}$
- GPI measurements and GBS show same asymptotic behavior
Summary and outlook

- Towards first principles understanding of SOL width:
 - ✓ Non-linearly saturated RBMs, enhanced with T_i effects
 - ✓ SOL width scales with ρ_\star, q, collisionality
 - ✓ Simple analytical scaling agrees with experimental data

- Detailed comparison between GBS and C-Mod discharges
 - ✓ L_p, $\delta D_\alpha/D_\alpha$ pdf moments, L_{rad}, L_{pol}, v_{rad}, $P(\omega)$, $P(k_{pol})$
 - × τ_{auto}, v_{pol} → under/overpredicted by factor ~ 2

- Next: 2 L_p’s profile structure using 2014 C-Mod discharges
 - ▶ More advanced simulation model → T_i, shaping
 - ▶ Mirror langmuir probe → high res. profiles, (n, ϕ) phase
Thank you for your attention!
Properties of the SOL

- $L_{fluc} \sim \langle L \rangle_t$
- $n_{fluc} \sim \langle n \rangle_t$
- Collisional magnetized plasma
- Low frequency modes $\omega \ll \omega_{ci}$
- Open field lines
Sheath BCs from kinetic approach [Loizu, PoP (2012)]

- **COLLISIONAL PRESHEATH (CP)**
 - Quasi-neutral, IDA holds
 - Potential drop $\sim 0.5 T_e$ over $\sim L$
 - Ions accelerated to $v_s = c_s \sin \alpha$

- **MAGNETIC PRESHEATH (MP)**
 - Quasi-neutral, IDA breaks
 - Potential drop $\sim 0.5 T_e$ over $\sim \rho_s$
 - Ions accelerated to $v_s = c_s$

- **DEBYE SHEATH (DS)**
 - Non-neutral, IDA breaks
 - Potential drop $\sim 3 T_e$ over $\sim 10 \lambda_D$
 - Ions accelerated to $v_s > c_s$
Extra slides: Summary of the BC

\[
\nu_{\|i} = c_s \left(1 + \theta_n - \frac{1}{2} \theta_{T_e} - \frac{2\phi}{T_e} \theta_{\phi}\right)
\]

\[
\nu_{\|e} = c_s \left(\exp(\Lambda - \eta_m) - \frac{2\phi}{T_e} \theta_{\phi} + 2(\theta_n + \theta_{T_e})\right)
\]

\[
\frac{\partial \phi}{\partial s} = -c_s \left(1 + \theta_n + \frac{1}{2} \theta_{T_e}\right) \frac{\partial \nu_{\|i}}{\partial s}
\]

\[
\frac{\partial n}{\partial s} = -\frac{n}{c_s} \left(1 + \theta_n + \frac{1}{2} \theta_{T_e}\right) \frac{\partial \nu_{\|i}}{\partial s}
\]

\[
\frac{\partial T_e}{\partial s} \approx 0
\]

\[
\omega = -\cos^2 \alpha \left[(1 + \theta_{T_e}) \left(\frac{\partial \nu_{\|i}}{\partial s}\right)^2 + c_s (1 + \theta_n + \theta_{T_e}/2) \frac{\partial^2 \nu_{\|i}}{\partial s^2} \right]
\]

where \(\theta_A = \frac{\rho_s}{2 \tan \alpha} \frac{\partial x A}{A}\), and \(\eta_m = e(\phi_{mpe} - \phi_{wall}) / T_e\). [Loizu et al PoP 2012]
Resistive ballooning modes destabilized by EM effects

- Starting from reduced MHD, obtain simple dispersion relation

\[
\gamma^2 \left(\nu + \frac{\beta e_0 \gamma}{2 k^2} \right) = 2 \frac{R}{L_p} \left(\nu + \frac{\beta e_0 \gamma}{2 k^2} \right) - \frac{k^2_{\|}}{k^2_{\perp}} \gamma
\]

- Neglecting ideal ballooning mode, the resistive branch gives

\[
(\gamma^2 - \gamma^2_b) k^2_{\perp} = -\gamma \left(\frac{1 - \alpha}{q^2 \nu} \right)
\]

and we identify \(\gamma \sim \gamma_b = \sqrt{2R/L_p} \) and \(k_b \sim \sqrt{(1 - \alpha)/(\nu \gamma_b)/q} \)