
Towards Enabling Probabilistic Databases for
Participatory Sensing

Nguyen Quoc Viet Hung #1, Saket Sathe ∗2, Duong Chi Thang #3, Karl Aberer #4

École Polytechnique Fédérale de Lausanne
1 quocviethung.nguyen@epfl.ch

3 thang.duong@epfl.ch
4 karl.aberer@epfl.ch

∗ IBM Melbourne Research Laboratory
2 ssathe@au.ibm.com

Abstract—Participatory sensing has emerged as a new data
collection paradigm, in which humans use their own devices (cell
phone accelerometers, cameras, etc.) as sensors. This paradigm
enables to collect a huge amount of data from the crowd for
world-wide applications, without spending cost to buy dedicated
sensors. Despite of this benefit, the data collected from human
sensors are inherently uncertain due to no quality guarantee from
the participants. Moreover, the participatory sensing data are
time series that not only exhibit highly irregular dependencies
on time, but also vary from sensor to sensor. To overcome these
issues, we study in this paper the problem of creating probabilistic
data from given (uncertain) time series collected by participatory
sensors. We approach the problem in two steps. In the first
step, we generate probabilistic times series from raw time series
using a dynamical model from the time series literature. In the
second step, we combine probabilistic time series from multiple
sensors based on the mutual relationship between the reliability
of the sensors and the quality of their data. Through extensive
experimentation, we demonstrate the efficiency of our approach
on both real data and synthetic data.

I. INTRODUCTION

Participatory sensing, where participants proactively report
their observations, has emerged as an important data collection
paradigm. In this paradigm, human acts as the sensors or
employs their own devices to perform sensing tasks. Examples
of these sensors include cell phone accelerometers, cameras,
and GPS devices. As the number of sensors owned by an
individual increases, participatory sensing is becoming popular.
The potential of participatory sensing is tremendous as it
can harness the wisdom of the crowd to collect data for
wide-ranging applications such as geotagging, environmental
monitoring, and public health. These applications would be
financially infeasible if traditional approaches using dedicated
sensors are applied. Although applications of participatory
sensing are abundant, it faces a serious problem from the in-
ferior quality of collected data. Data collected from individual
participants and their devices are inherently uncertain due to
low sensor quality, unstable communication channels or even
intent to cheat the system.

One of the most effective ways to deal with uncertain data
is to employ probabilistic approaches. In recent years there
have been a plethora of methods for managing uncertain data
[1], [2], [3], [4], [5], [6], [7]. These methods are typically
based on the assumption that probabilistic data is available;
however, this is not always true. Time-series data collected

from participatory sensing is an important example where data
processing is currently not widely applicable due to the lack
of probability values. In an effort to rectify this situation, we
focus on the problem of creating probabilistic time series from
given (uncertain) time series collected by participatory sensing.

One of the most important challenges in creating prob-
abilistic time series from time series is to deal with evolv-
ing probability distributions, since time series often exhibit
highly irregular dependencies on time [6], [8]. For example,
temperature changes dramatically around sunrise and sunset,
but changes only slightly during the night. This implies that
the probability distributions that are used as the basis for
deriving probabilistic data also change over time, and thus
must be computed dynamically. To this end, we identify and
adopt a novel class of dynamical models from the time-
series literature, which is known as GARCH (Generalized
Auto Regressive Conditional Heteroskedasticity) model [9].
We show that the GARCH model can play an important role
in efficiently and accurately creating probabilistic time series,
by inferring dynamic probability distributions.

Another important challenge in creating probabilistic data
from time series is how to deal with the sheer amount of
sensors. A community of sensors may contain hundreds or
thousands of nodes, which make it extremely difficult to handle
if we deal with the data from each sensor alone. To make
matters worse, the quality of the sensors are highly different.
For example, a sensor may suffer from internal problems
such as discharged batteries or external problems such as
bad weather, which renders it to function improperly. As a
result, the quality of the data collected from the sensors varies
from sensor to sensor and from time to time. To circumvent
these crucial problems, we propose a method to combine the
probabilistic time series from numerous sensors based on their
quality. By combining data from multiple sensors, we are
able to achieve higher accuracies than using a single sensor
alone. Our approach is based on an observation that there is
an inter-dependence between the reliability of the sensors and
their data. The quality of the data depends on the sensor that
produces them while the reliability of sensors depends on the
quality of the data they produce. As a result, we employ a
trust model where the trustworthiness of the sensors and their
data are measured concurrently and explicitly. More precisely,
each sensor is associated with a trust score, which shows its
accuracy. The data of the sensor is also assigned a trust score,

which represents its probability of correctness. These trust
scores provide us a meaningful way to combine probabilistic
time series from multiple sensors.

Our contributions and the outline of this paper can be
summarized as follows.

• Section II: We formally discuss the elements and
the problem we want to solve. We also provide an
overview of our approach to this problem. The ap-
proach requires realization of two components: com-
puting likelihoods and aggregating probabilistic data.
The former is responsible for generating probabilistic
time series from time series while the latter combines
probabilistic time series from multiple sensors.

• Section III: We adopt a novel approach to generate
probabilistic time series from sensor data. This ap-
proach models a reading from each sensor by a prob-
ability distribution. We employ this approach for its
ability to deal with evolving probability distributions.

• Section IV We propose an algorithm to effectively
measure the trust scores of both the sensors and their
data. The trust scores are computed based on the
mutually reinforcing relationship between the sensors
and the data they provide. Based on the trust scores
of the sensors and their data, we discuss a method to
combine the probabilistic time series from all sensors.

• Section V: We extensively evaluate our methods by
performing experiments on both synthetic and real-
world datasets. While the real-world datasets provide
a pragmatic view, the synthetic dataset provides dif-
ferent settings where the real datasets can not cover.

The remaining sections are organized as follows. Section
V demonstrates experimental results. Section VI summarizes
related works, before Section VIII concludes the paper.

II. MODEL AND PROBLEM STATEMENT

In this section, we first describe the elements of our
problem. Secondly, we state the problem we want to solve
formally. Then, we give an overview of our solution to the
problem.

A. Model

We formally define the elements of our problem as follows.
Let D = {S1, S2, · · · , Sn} be a set of time series where a time
series Si = 〈ri1, ri2, · · · , rim〉 is a sequence of timestamped
values. Each timestamped values rij ∈ Si specifies a reading
collected by sensor i at time j. Since sensors are not reliable,
the raw data it provides at a timestamp may not be correct.
The expected true value may resides within a range where
each value in this range has a different probability to be the
expected true value, hence, a distribution. We use a probability
density function pj(Ri

j) to describe this distribution where Ri
j

is a random variable associated with the reading rij .

From the sensor data collected by participatory sens-
ing, we aim to generate probabilistic sensor data which
consists of various probabilistic time series. We denote
pD = {pS1, pS2, · · · , pSn} as a set of probabilistic

TABLE I: Summary of Notations

Symbol Description
Si A time series.
D A set of time series.
rit Raw (imprecise) value at time t of time series Si.
Rit Random variable associated with rit.

r̂it,E(Rit) Expected true value at time t.
pt(R

i
t) Probability density function of Rit at time t.

pD A set of probabilistic time series.
pSi A probabilistic time series.
Ωt A set of probability density functions at time t.

pt(Gt) An aggregated probability density function at time t
N (µ, σ2) Normal (Gaussian) probability density function

with mean µ and variance σ2.
G The aggregated time series.

time series where a probabilistic time series pSi =
〈p1(Ri

1), p2(Ri
2), · · · , pm(Ri

m)〉 constructed from a time series
Si is a sequence of probability density functions pj(Ri

j).

From the set of probabilistic time series pD, we
want to generate a combined probabilistic time series
G = 〈p1(G1), p2(G2), · · · , pm(Gm)〉. Each probability den-
sity function pi(Gi) ∈ G is aggregated from the set of
probability distributions provided by all sensors at timestamp t,
which we denote as Ωt = {pt(R1

t), pt(R
2
t), · · · , pt(Rn

t)}. We
provide a summary of notations used in this paper in Table I.

B. Problem statement

In this paper, we want to leverage the wisdom of the crowd
by combining all the sensor data to one probabilistic time series
G = 〈p1(G1), p2(G2), · · · , pm(Gm)〉 where Gj is a random
variable that represents all the data emitted by the sensors at
timestamp j. Formally, our objective is defined in Problem 1.

Problem 1. Inference of probability distributions Given a
set of time series D, the inference of probability distributions
is the identification of the probabilistic time series G =
〈p1(G1), p2(G2), · · · , pm(Gm)〉.

Problem 1 is basically about generating probabilistic data
from raw data and aggregating data from various sensors. We
provide an overview of our approach in the following.

C. Approach overview

Figure 1 represents an overview of our framework. We start
with the time series data collected by participatory sensing.
From the time series data, we generate probabilistic time series
data by means of the Computing Likelihoods component. As
shown in Figure 1, a probabilistic time series differs from a
time series in how we present the data at each timestamp.
While an exact value is used in a time series, a probability
distribution is used to approximate the expected true value at
each timestamp in a probabilistic time series. The output of
this component is a set of probabilistic time series, where each
sensor is represented by a probabilistic time series.

In order to leverage the wisdom of the crowd and handle
the huge amount of data from numerous sensors, we propose to
aggregate the probabilistic time series. To this end, we combine

all the probabilistic time series via the Aggregate component.
Since the sensors are not reliable, in order to aggregate the
probabilistic time series, we first need to measure the reliability
of the sensors and their data. We achieve this by computing
the trust scores of the sensors and their data. The higher the
trust score of a sensor, the more trustworthy the sensor is. The
Trust Assessment subcomponent in the Aggregate component
is responsible for calculating the trust scores of the sensors
while the Trust-based aggregation subcomponent takes the
trust scores and aggregates the probabilistic time series.

Following this general structure, our framework requires
the realization of the following components.

Computing Likelihoods. This component is responsible for
generating probabilistic time series from the sensor data. It
takes as input a set of time series from all the sensors and
returns a set of probabilistic time series. We achieve this
by adopting a dynamical model named GARCH. Although
GARCH model has been used widely, its interpretation and
application in this context is quite novel. For each time series
it takes, the GARCH model returns a probabilistic time series,
which contains a probability distribution at each timestamp. In
order to compute this distribution, the GARCH model needs to
measure two parameters: mean and variance. The detail of the
computation and the GARCH model are discussed in Section
III.

Aggregate. Given a set of probabilistic time series gener-
ated by the Computing Likelihoods component, the Aggregate
component combines all probabilistic time series into one
probabilistic time series. It consists of two subcomponents
Trust assessment and Trust-based aggregation.

• Trust assessment: This subcomponent takes a set of
probabilistic time series as input and assigns trust
scores to each sensor and its data. It achieves this by
concurrently measuring the trust score of the sensor
and its data. A distribution has a high trust score if
it is proposed by many reliable sensors. On the other
hand, the trust score of a sensor is high if the data it
provides also have high trust scores.

• Trust-based aggregation: Based on the trust scores, the
Trust-based aggregation component is able to aggre-
gate the probabilistic time series. Instead of treating
the sensors and their data equally, we apply a weighted
combination of the probabilistic time series based
on the trust scores. Consequently, the sensors with
high trust scores contribute more to the aggregated
probabilistic time series and vice versa.

The Aggregate component will be described in detail in
Section IV.

III. COMPUTING LIKELIHOODS OF SENSOR DATA

In this section, we describe the first component of our
framework: the Computing Likelihoods component which is
used to infer probabilistic time series from raw data. We adopt
a novel method named GARCH (Generalized AutoRegressive
Conditional Heteroskedasticity) model, which takes a time
series as input and returns a probabilistic time series.

Recall that a probabilistic time series pS is a set of prob-
ability distributions pS = 〈p1(R1), p2(R2), · · · , pm(Rm)〉
where each probability density function pi(Ri) describes a
distribution where the expected true value r̂i resides. The
GARCH method models pi(Ri) by a Gaussian probability
density function N (r̂i, σ̂

2). The function is specified by two
parameters: an expected true value r̂i and a variance σ̂. We first
discuss the method to predict the expected true value r̂i using
the AutoRegressive Moving Average (ARMA) model. Then,
we descibe the GARCH model [9] to compute the variance
σ̂. Finally, we provide a unified algorithm to compute the
probability density function pi(Ri) using both ARMA and
GARCH model.

Predicting expected true values. The expected true values
can be predicted using the AutoRegressive Moving Average
(ARMA) model [9], which is commonly used for predicting
expected values in time series [10]. Given a time series S, a
reading at timestamp i can be modeled by the ARMA model as
ri = r̂i+ai, where r̂i is the expected true value and ai follows
a normal distribution N (0, σ2

a). Then, the expected true value
r̂i at time i can be calculated from its past values as follows:

r̂i = δ0 +

p∑
j=1

δjri−j +

q∑
j=1

γjai−j , (1)

where p ≥ 0, q ≥ 0 are respectively the autoregressive and
moving average orders, δ1, . . . , δp are autoregressive coeffi-
cients, γ1, . . . , γq are moving average coefficients, δ0 is a
constant, and i > max(p, q). Interested readers can consider
[9] for a detailed discussion on the ARMA model.

Inferring variances. As the ARMA model models a reading
ri at time i as ri = r̂i +ai, we can then define the conditional
variance given all the information available until time i− 1 as

σ2
i = E(a2

i |Fi−1), (2)

where E(a2
i |Fi−1) is the variance of ai. Then, based on the

GARCH model, we can measure the variance as a linear
function of a2

i as:

ai = σiεi, σ2
i = θ0 +

h∑
j=1

θja
2
i−j +

s∑
j=1

λjσ
2
i−j , (3)

where (h, s) specifies the model orders, εi is a sequence of in-
dependent and identically distributed (i.i.d) random variables,
θ0 > 0, θj ≥ 0, λj ≥ 0,

∑max(h,s)
j=1 (θj + λj) < 1. Regarding

the model orders, we set h = 1, n = 1 following common
practice as it is very hard to specify the model order for higher
order GARCH model[9].

We adopt the GARCH model to calculate the variances for
its ability to deal with evolving probability distributions. More
precisely, through the variable ai, we are able to capture the
high variance at timestamp i. Moreover, we can also model
the changing trend in the time series where a high variance at
timestamp i leads to a high variance at timestamp i+ 1.

Algorithm. We describe the detail of the approach to compute
the probability density function in Algorithm 1. ARMA model
is used to compute the expected true value r̂t in Step 3

Computing
likelihoods

Aggregate

Trust
assessment

Trust-based
aggregation

t1

v

2 3

t1

v

2 3
…

t1

v

2 3

ˆ

t1

v

2 3

Fig. 1: Architecture of the framework.

while the GARCH model is used to calculate σ̂2
t in Step

4. Regarding the complexity of the algorithms, the estima-
tion steps (step 1 and 2) constitute the main part as its
complexity is mainly affected by them. Their complexity is
respectively O(m · max(p, q)) and O(m) for ARMA model
and GARCH model.

Algorithm 1 Inferring r̂t and σ̂2
t using GARCH.

Input: A time series Si, ARMA model parameters (p, q) and
scaling factor κ.

Output: Inferred r̂t, inferred variance σ̂2
t

1: Estimate an ARMA(p, q) model on Si and obtain ai.
2: Estimate a GARCH(1, 1) model using ai’s
3: Infer r̂t using ARMA(p, q)
4: Infer σ̂2

t using GARCH(1, 1)
5: return r̂t, σ̂2

t

IV. AGGREGATING MULTIPLE SENSOR DATA

In practice, a community of sensors contains thousands of
sensors, which makes it extremely difficult to deal with if we
take into account the time series from each sensor separately.
As a result, we need to combine the time series emitted from
the sensors. Moreover, by combing the data from the sensors,
we can leverage the wisdom of the crowd to obtain a higher
accuracy for the combined data. One naive approach is to
combine the probabilistic time series from the sensors without
considering the reliability of the sensors. However, as the
quality of the sensors are not the same, this approach misses
an important information. To this end, we propose a method to
combine probabilistic time series based on the trust scores. The
trust scores are used to measure the reliability of the sensors
and the quality of their data.

The Aggregate component takes as input a set of proba-
bilistic time series pD = {pS1, pS2, · · · , pSn}, which are the
results of the Computing Likelihoods component. It returns an
aggregated time series G = 〈p1(G1), p2(G2), · · · , pm(Gm)〉
where pj(Gj) is the aggregated probability density func-
tion. The aggregated probability density function pj(Gj) at
timestamp j is computed from the set of probability density
functions Ωj = {pj(R1

j), pj(R
2
j), · · · , pj(Rn

j)} provided by
the sensors at timestamp j. In the following, we first discuss
our approach to compute the trust scores of the sensors and
their data. Then, we explain how to aggregate the probabilistic
time series based on the trust scores.

A. Measuring trust score of sensor data

Given a set of probability density functions of all sensors
at timestamp j: Ωj = {pj(R1

j), pj(R
2
j), · · · , pj(Rn

j)}, we
need to estimate a trust score αi

j for each probability density
function pj(R

i
j) ∈ Ωj . In order to compute the trust scores,

we consider two factors:

• Similarity of distributions: distributions which are sim-
ilar to each other should have higher trust scores. The
reason is that similar distributions reinforce each other
which makes them have a higher chance to be correct.
For example, if 5 out of 8 distributions are similar, we
tend to consider these 5 distributions correct based on
majority rule. Although there may be minor difference
between them, the differences may come from small
errors in transmission, etc., which can be ignored.

• Reliability of sensors: we observe that a reliable sensor
tends to provide correct information. As a result, a
distribution which comes from a reliable sensor should
have a higher trust score.

Numerically, we can estimate the trust score of distribution
pt(R

i
t) by taking into account the above factors as follows:

αi
t =

∑
j=1..n,j 6=i βjs

i,j
t∑

j=1..n βj
(4)

where βj ∈ [0, 1] is the trust score of sensor j and si,jt ∈ [0, 1]
is the similarity score of two probability density functions
pt(R

i
t), pt(R

j
t). The domain value of αi

t is [0, 1] where the
higher value of αi

t, the higher chance that the distribution
pt(R

i
t) can reflect exactly the true value at timestamp t. Note

that αi
t = 1 means that all the distributions are the same

(∀j 6= i, si,jt = 1), whereas αi
t = 0 means that all the trust

scores of other sensors are zero (∀j 6= i, βj = 0).

Intuitively, Equation (4) models the relationship between
distribution pt(Ri

t) and its neighbors (the distributions in Ωt).
If it is similar to a neighbor distribution which is provided
by a reliable sensor, it should receive a high trust score. On
the other hand, the trust score of distribution pt(R

i
t) should

be low if the distribution is significantly different from the
neighbors or the trust scores of the neighbor’s sensors are low.
For example, when the trust score of the neighbor’s sensor is
0, although the two distributions are very similar si,jt ≈ 1, the
neighbor distribution pt(R

j
t) does not contribute to the trust

score of distribution pt(Ri
t).

In order to compute Equation (4), we need to calculate
the similarity between two distributions and the trust scores
of the sensors. In the following, we first discuss the method
to measure the similarity between the distribution. Then, we
describe our approach to compute the trust scores of the
sensors.

Similarity of distributions. Regarding the first task, we em-
ploy the Kullback-Leibler(KL) divergence. The KL divergence
between two probability density functions p and q is measured
as follows:

KL(p ‖ q) =

∫
p(x)log(

p(x)

q(x)
)

The divergence value between two distributions is non-negative
but it is asymmetric. As a result, to use it as a measure, we
employ the following symmetric variation and define it as the
dissimilarity between two distributions:

dist(p, q) = KL(p ‖ q) +KL(q ‖ p)

However, as Equation 4 takes the similarity of the distri-
butions as input, we need to calculate the similarity be-
tween two distribution from the KL divergence. To this
end, consider a set of distributions at timestamp t Ωt =
{pt(R1

t), pt(R
2
t), · · · , pt(Rn

t)} provided by the sensors, the
similarity score between two distributions can be computed
as follows:

si,jt = 1− dist(pt(R
i
t), pt(R

j
t))

distΩt

(5)

where distΩt
is the diameter of the distributions in Ωt. The

similarity score between the distributions takes a value in [0, 1]
where the higher the similarity score, the more similar between
the distributions. Note that si,jt = 1 means the two distributions
are the same, where si,jt = 0 only means the two distributions
are the least similar pair in the set.

Estimating trust scores of sensors. We observe that a sensor
that provides more correct data tends to be more reliable.
Based on this observation, we can compute the trust scores of
the sensors based on the trust scores of the data they provide.
As a result, the trust score of a sensor can be calculated as
follows:

βj =

∑m
k=1 α

j
k

m
(6)

Or informally we can say that the trust score of a sensor
is measured by the average of the trust scores of all the
distributions it provides. The domain of βj is [0,1]. A high
value of βj represents the high reliability of sensor j. Note
that βj = 1 means that the sensor provides all distributions
with trust scores equal to 1, whereas βj = 0 means that the
sensor does not provide any distribution with positive trust
score.

Algorithm. We observe that there is an inter-dependence
between Equation (4) and Equation (6). More specifically, in
order to compute the trust score of a sensor βj , we need
to know the trust scores αi of the distributions it provides.
Nevertheless, estimating the trust score of a distribution αi

requires knowing the trust score of the sensors. There is a
mutually reinforcing relationship between the sensor and the

data it provides. As a result, we leverage the relationship
between them via an iterative algorithm that maintains and
updates the trust scores of the sensors and the distributions.
We discuss the detail of the iterative algorithm in Algorithm
2.

Algorithm 2 Iterative Algorithm to Compute Trust Scores.
Input: A set of probabilistic time series pD =
{pS1, pS2, · · · , pSn}, a termination condition ∆

Output: A set of trust scores αit, βj .
1: // Initialization
2: β0

1 = 0.5;...;β0
n = 0.5

3: q = 1
4: while ∆ do
5: for l = 1..m do
6: for i = 1..n do
7: αi,ql =

∑
j=1..n,j 6=i β

q−1
j m

i,j
l∑

j=1..n β
q−1
j

8: for j = 1..n do
9: βqj =

∑m
k=1 α

j,q
k

m

10: q = q + 1

Algorithm 2 takes as input a set of probabilistic time
series pD = {pS1, pS2, · · · , pSn} and returns a set of trust
scores for the data and the sensors. We first initialize the
trust scores of the sensors to 0.5 in Line 1. The algorithm
iterates between two phases: estimating the trust scores of the
sensors and the data. In order to estimate the trust score αi,q

l
of the data at iteration q, we use the trust scores of the sensors
βq−1
j which are estimated in the previous iteration (Line 5-

7). Then, in the second phase, we use the trust scores of the
data αi,q

l to estimate the trust scores of the sensors βq
j in

this iteration (Line 8-9). We continue the iteration until the
termination condition ∆ is satisfied. Note that we can reverse
the computation by estimating the trust scores of the sensors
βq
j before estimating the trust scores of the data αq

i . However,
this requires an initialization of the trust scores for all the
distributions, which is not feasible if the time series is long.
Regarding the termination condition ∆, in most of the cases,
we want to stop the algorithm when the changes of the trust
scores between two iterations are negligible.

B. Trust-based aggregation

After the previous step, we have acquired a set of trust
scores for the distributions and the sensors. Given the distri-
butions at a timestamp t, we need to generate an aggregated
distribution that can both represent the distributions and the
reliability of the sensors. To this end, we first need to model
the relationship between the the aggregated distribution and the
distributions at timestamp t. Based on this relationship and
the trust scores, we can generate the aggregated distribution
effectively.

Relationship between aggregated and constituent random
variables. Since the aggregated distribution at timestamp t is
generated from the distributions at the same timestamp, the
random variable Gt which models the aggregated distribution
should be computed from the random variables Ri

t of the
distributions. Another observation is that the contribution of
the random variables Ri

t to Gt is different. Intuitively, a
distribution which has a higher trust score contributes more

to the aggregated distribution. It comes from the fact that the
distribution with the higher trust score can express the true
value at timestamp t better.

Based on these observations, we can model the relationship
between the aggregated and constituent random variables as a
weighted sum as follows:

Gt =

∑n
i=1 αiR

i
t∑n

i=1 αi
(7)

Compute aggregated probability density functions. Given
the random variables of the distributions at timestamp t, we can
compute the aggregated random variable at the same timestamp
based on Equation 7. Let MRi(.) be the moment-generating
function[11] of the random variable Ri. Since G is the linear
combination of independent random variables R1, R2, ..., Rn,
its moment-generating function is as follows:

MG(x) =

n∏
i=1

MRi(αix)

However, recall that in our GARCH model, the random
variable Ri at timestamp t models a normal distribution
N (r̂, σ̂2). Since Ri is a normal distribution N (r̂i, σ̂

2
i), its

moment-generation function MRi is as follows:

MRi(x) = exp(r̂ix+
σ̂2
i x

2

2
)

Therefore, we have

MG(x) =

n∏
i=1

exp(r̂iαix+
(σ̂2

i)2α2
ix

2

2
)

= exp(x(

n∑
i=1

αir̂i) +
x2

2
(

n∑
i=1

αiσ̂
2
i))

However, this equation has the same structure as the
moment-generating function for a normal random variable
N (

∑n
i=1 αir̂i,

∑n
i=1 αiσ̂

2
i). From the uniqueness property of

moment generating functions, G must be a normal ran-
dom variable which follows the following normal distribution
N (

∑n
i=1 αir̂i,

∑n
i=1 αiσ̂

2
i)).

As a result, from the distributions generated in Sec-
tion III and the trust scores generated in Section IV-A, we
are able to generate an aggregated distribution pt(Gt) =
N (

∑n
i=1 αir̂i,t,

∑n
i=1 αiσ̂

2
i,t)) at timestamp t. Applying

this approach for other timestamps, we are able to
generate an aggregated probabilistic time series G =
〈p1(G1), p2(G2), · · · , pt(Gt)〉 from the data collected from the
sensors.

V. EXPERIMENTAL EVALUATION

This section presents a comprehensive experimental eval-
uation of the proposed method using both real-world and
synthetic datasets. The results show that the presented ap-
proach supports generating probabilistic data effectively and
efficiently. We proceed as follows: we first discuss the datasets
we use for the experiments. Then, we report the results of
computing likelihoods, computing trust scores and aggregating
probabilistic data.

A. Datasets

In our experiments, we use two types of data: real-world
data and synthetic data. While the real-world data shows us a
pragmatic view of the real settings, the synthetic data provides
different settings which the real-world dataset cannot cover.

Real-world Data. We relied on two real-world datasets cov-
ering different domains where participatory sensing can be
applied. (1) Campus: this dataset contains temperature readings
collected from a real sensor network deployed on the EPFL
university campus. The dataset is built over twenty five days
and includes about eighteen thousand samples. It is referred in
this paper under the name campus-data. (2) Moving Object:
the dataset contains about ten thousand GPS readings collected
over five and a half hours from 192 cars in Copenhagen,
Denmark. Each log entry contains the time and both the x-y
coordinates. In this dataset, which we refer as car-data, only
the x-coordinate is used in the experiments.

TABLE II: Summary of Datasets

campus-data car-data
Monitored parameter Temperature GPS Position

Number of data values 18031 10473
Sensor accuracy ± 0.3 deg. C ± 10 meters

Sampling interval 2 minutes 1-2 seconds

An important observation regarding the real-world datasets
is that the car-data dataset is smoother than the campus-
data one. This is expected as cars always follow a predefined
path of roads and highways, which makes the changes in x-y
coordinates smooth. We summarize the important properties
of the real dataset in Table II.

Synthetic Data. In order to evaluate our proposed method in
various scenarios, we generate a synthetic dataset to be able to
control the parameters. At each timestamp, we first generate a
true distribution which we assume to best model the expected
true value for this timestamp. Then, at the same timestamp,
we construct a normal distribution for each sensor which is
assumed to present the readings collected from the sensor. The
normal distribution is constructed from the true distribution by
adding a small difference to the mean of the true distribution.
By applying this method to all the timestamps, we are able to
generate the synthetic dataset.

B. Evaluations on computing likelihoods

In this experiment, we want to analyze the running time
of the Computing Likelihoods component (i.e. the GARCH
model). In order to fairly measure the performance of the
GARCH model, we use the two real-world datasets (campus-
data and car-data) and vary the length of the time series from
30 to 180.

The experimental results are shown in Table III. We can ob-
serve that the running time of the GARCH model is low which
makes it suitable for online and realtime applications. Another
interesting observation is that the running time increases as we
increase the length of the time series. However, the increase in
running time is slower than the increase in time series length.
For example, when the length of the time series increases 6

TABLE III: Running time of the GARCH method (log2(s))

Time series length campus-data car-data
30 0.1314 0.1205
60 0.1543 0.1419
90 0.182 0.1653

120 0.2092 0.1874
150 0.2379 0.2104
180 0.2634 0.2333

times from 30 to 180, the running time of the GARCH model
only doubles. In summary, the results conclude the fact that the
computation of our GARCH model is efficient for real-world
datasets.

C. Evaluations on computing trust

In the following experiments, we want to analyze the
Trust assessment component in different aspects, including
computation time, convergence, effects of outliers, and effects
of distance.

Computation time. In practice, data from the sensors are used
in various applications which require immediate response. As
a result, the computation time to calculate the trust scores
is critical to the performance of these applications. In this
experiment, we want to analyze the running time of our
algorithm with different settings. More specifically, we vary
the number of sensors from 10 to 30 and the length of the time
series from 100 to 400. The experimental result is illustrated
in Table IV.

A significant observation is that the running time increases
linearly with the increase in the length of the time series. For
instance, when the number of timestamps triples from 100 to
300, the computation time also increases three times despite
of the change in the number of sensors. On the other hand,
when the number of sensors increases, the running time does
not increase linearly. The reason is that we need to measure
the similarity between every pair of distributions provided by
the sensors. As the number of sensors increases, the number
of pairs increases significantly.

Effect of outliers. In this experiment, we want to analyze
the accuracy of the proposed algorithm in computing the
trust scores. To this end, we generate some outliers (sensors
which data are completely different from the rest) among the
sensors. In reality, some sensors may produce data that are
completely different from other sensors. The reason is that
their communication channels are blocked by buildings, walls
or their processing units have severe problems. In these cases,
applications or methods that use the data provided by these
spammer sensors may produce incorrect results. By increasing

TABLE IV: Running time of Algorithm 2 (ms)

#Sensors #Timestamps
100 200 300 400

10 1848 3665 5499 7395
20 21256 23708 35613 46953
30 61066 123155 183260 245790

the percentage of outliers in the network of sensors from 10 to
50%, we want to verify our hypothesis that the outliers receive
low trust scores. The experimental results is shown in Fig. 2.
The X-axis and the Y-axis represents the percentage of outliers
and the trust score, respectively.

Fig. 2: Accuracy of the algorithm

A key observation is that the outliers and normal sensors
can be clearly separated. At each value of the percentage
of outliers, the normal sensors which always have high trust
scores while the outliers always have lower trust scores. This
distinction shows that our algorithm is able to distinguish be-
tween normal sensors and outliers. Another interesting finding
is that the trust scores of normal sensors are still higher than
the outliers even the percentage of outliers is high (40 or 50%).

Effects of distance between distributions.. In the previ-
ous experiment, we have demonstrated the accuracy of the
algorithm when calculating the trust scores of the sensors.
In this experiment, we want to analyze the accuracy of the
algorithms regarding the trust scores of the data i.e., the
distributions. Recall that in order to construct the synthetic
dataset, we first generate a true distribution at each timestamp.
Based on the true distribution, we generate the distributions of
the sensors by adding small differences to the mean of the
true distribution. Now after generating the synthetic dataset,
we rank the distributions at a timestamp by how close it
is to the true distribution. The closer a distribution to the
true distribution, the higher rank it receives. After running
Algorithm 2, we calculate the rank of the distribution again
where the distribution with the higher trust score has the higher
rank. The experimental result is shown in Fig. 3, in which we
vary the distance between the distributions (0.02 and 0.2). The
X-axis is the correct ranking (w.r.t true distribution), while the
Y-axis is the estimated ranking (w.r.t trust score).

Each point in the two plots of Fig. 3 represents a distri-
bution located by the ranking of the distribution before and
after running the algorithm. As a result, there may be many
distributions that could have the same true rank and estimated
rank. We illustrate this factor by the size of the point: the
larger the point is, the more distributions that have the same
true rank and estimated rank at that point.

Intuitively, the closer the point to the diagonal, the better
since it shows that the true rank of a distribution measured
before and the estimated rank measured after running the
algorithm are nearly the same. This means the algorithm is able
to assess the trust scores of the distributions correctly. A key
observation from Fig. 3 is that the number of points located
near the diagonal is significantly high. This shows that our

Fig. 3: Effect of distance between distributions on the accuracy of computing trust

algorithm is able to estimate the ranks of the distributions cor-
rectly, i.e., the trust scores of the distributions are also correct.
We also observe that by increasing the distance between the
distributions, the number of points located near the diagonal
increase. Therefore, it shows that the accuracy of our algorithm
increases if the differences between the distributions are high.

D. Evaluations on aggregating distributions

We now analyze the performance of our aggregating com-
ponent via the following experiments.

Effects of heterogeneity level. As mentioned in previous
section, quality of the sensors are different from one sensor
to another. As a result, the data generated by the sensors are
also different i.e., the heterogeneity level among the sensors
are high. In this experiment, we want to analyze the effect
of heterogeneity level to the performance of our proposed
method. More specifically, we vary the difference between the
means of the distributions and the mean of the true distribution
from 1 to 20. The experimental result is shown in Fig. 4.
The X-axis is the relative difference between the two means,
whereas the Y-axis is the distance against the true distribution.

Fig. 4: Distance to true distribution w.r.t percentage of
change in mean

An interesting observation is that the distance to the true
distribution increases as the difference increases. This can be
explained as follows: since we increase the difference between
the means of the distributions of the sensors and the mean of
the true distribution, the distributions of the sensors become
deviating from the true distribution. As a result, the more
different between the distributions and the true distribution,
the more different between the aggregated distribution and

the true distribution. Therefore, the distance between the true
distribution and the aggregated distribution increases as the
difference increases.

Effects of outliers. In this experiment, we want to find
out the effects of the outlier sensors to the performance of
our Aggregating component. We measure the accuracy of
our approach by comparing the distance of the aggregated
distributions to the true distributions. The experimental result
is illustrated in Fig. 5. The X-axis is the percentage of outliers
among all sensors, while the Y-axis is the distance against the
true distributions.

Fig. 5: Distance to true distribution w.r.t percentage of
outliers

An interesting observation is that the distance against the
true distribution increases as the number of outliers increases.
This phenomenon is expected and can be explained as follows:
as the number of outliers increases, they are able to pollute
the data provided by correct sensors. However, as we expect
correct sensors to provide distributions that are similar to the
true distribution, the data provided by outliers will make the
aggregated distribution different from the true distribution.
Therefore, the more outliers, the more different between the
aggregated distribution and the true distribution.

VI. RELATED WORK

There is a large body of work about data stream (e.g.
time series, sensor data), such as data compression [12],
indexing [13], and pattern matching [14]. Whereas, our work
studies about estimating the true value of data provided by
sensors. In the following, we review the work in probabilistic

databases, probabilistic data stream, and participatory sensing
that is close to our research.

Probabilistic Databases. Recently, there has been a plethora
of research on probabilistic databases including concepts and
foundations [15], [16], [17], query processing [4], [18], [19],
[20], and indexing schemes [21], [22]. The main reason for this
is the considerable potential benefit of applying probabilistic
databases to other domains. For example, an application of
probabilistic database to the named entity resolution problem
[23] has speed up the recognition process of the New York
Times article corpus significantly. However, these applications
require that probability values associated with the data are
available, which is not always correct. One approach to solve
this problem is proposed in [24] where the authors construct
probabilistic databases by inferring probability distributions
and building views containing probability values. While the
main goal of [24] is to deal with indexing techniques and query
processing on probabilistic databases for a single sensor, the
main goal of this paper is to develop a probabilistic model for
multiple sensors in participatory sensing.

Probabilistic Data Streams. Another domain related to prob-
abilistic databases is probabilistic data streams[22], [25],
[26], which has received a significant attention recently. A
systematic approach to generate probabilistic data streams is
discussed in [8] by Tran et al.. However, the framework in [8]
only focuses on RFID data instead of generic data streams.
In [7], Ré et al. introduce a query processing framework for
probabilistic data streams. Then, an access method to improve
the efficiency of query processing on probabilistic data stream
is proposed in [22]. Another approach to query processing
for probabilistic data streams is proposed by Cormode and
Garofalakis in [6]. This approach employs hash-based sketch
synopsis structure to process aggregate queries for probabilistic
data stream. While the work in [8] also focuses on creating
probabilistic data streams, our approach is different as we take
into account the quality of the sensors in the process.

Participatory sensing. In recent years, there has been an
increased interest on participatory sensing due to the increasing
number of personal sensors such as smartphones, GPS devices,
and cameras. Participatory sensing campaigns often recruit
participants to provide measurements on a particular region
or a population. The examples of these campaigns include
monitoring traffic [27], measuring the level of pollution [28],
or documenting quality of roads[29]. As the quality of the
sensors are unknown beforehand, many methods to assess the
quality of the sensors and find the correct data (truth finding)
have been proposed. These truth finding methods aim to find
the correct data from the readings provided by the sensors.
An approach to tackle truth finding in participatory sensing
is proposed in [30] where the authors employ the Expec-
tation Maximization algorithm to estimate the correct data.
Although our proposed approach also estimates the quality of
the sensors, our approach is different from [30] as we focus on
generating probabilistic databases instead of finding the correct
values from the data. It is noteworthy that participatory sensing
is quite similar to crowdsourcing, in which data are provided
by multiple workers. Each worker also has a “trust” score that
reflects the quality of his answers. In this sense, we could apply
answer aggregation techniques [31] from the crowdsourcing

setting to our setting. However, we should be careful about
the main difference of input data between the two settings.
That is, data provided by workers are multiple-choice answers;
whereas, data provided by sensors are real values.

VII. APPLICATIONS

In this section, we tentatively provide a list of applications
that can be built on top of our model.

Guidance for data repair. Poor data quality cannot be avoided
when collecting data from sensors. In practice, we often
employ human knowledge from users to improve the quality
of collected data. Since the amount of dirty data might be
far more than one can expect a user to handle, techniques
for minimizing user effort become necessary. Intuitively, to
minimize user effort, we should suggest the most uncertain
data to user. To quantify the uncertainty of data, one can apply
the probabilistic model proposed in this work.

Adaptive data acquisition in resilience systems. The reli-
ability of participatory sensing is subject to different factors
that impact the availability and accuracy of the results, the
first one being the mobility of the sensing nodes. The high
energy consumption of sensors compared to the actual battery
of the device may also push the users to set more conservative
policies, not submitting data. And finally the actual internet
connection of the device may suffer from loss of network
connectivity.

To address these issues, we need to implement a resilience
system for potential improvements of data quality. A core
feature of such system is detecting the above unexpected situ-
ations. One can leverage our probabilistic model to implement
this feature. For example, if a sensor data has probability
distributions of consecutive timestamps that have high vari-
ances, it means that it might contain imprecise readings. As
a consequence, it alerts us that the sensor that provides data
could be in unexpected situations.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we build a systematic model to manage
uncertain data from participatory sensors. We define the notion
of probability distribution for a time series as the backbone
of our approach. Most importantly, our probabilistic model
allows the capture of the dynamic and uncertain nature of
participatory sensing data. Our approach involves two steps.
In the first step, we convert raw data from single sensor into
probabilistic data by using GARCH methods. In the second
step, we unify probabilistic data from multiple sensors by using
trust-based aggregation. Finally, we presented a comprehensive
experimental evaluation of each of the two steps, indicating
that the approach is applicable for real-world datasets and
allows for effective and efficient management of participatory
sensing data.

Our work opens up some potential research directions.
While this paper focuses on combining probabilistic data
from multiple sensors, our techniques, especially trust-based
aggregation method, can be applied for prediction tasks. For
example, one would like to predict the future outcomes based
on historical data. There are different prediction methods,

each of which produce a different probability distribution. To
improve the prediction performance, we can combine these
distributions via the proposed algorithm.

ACKNOWLEDGMENT

The research has received funding from the EU-FP7 EINS
project (grant number 288021), the EU-FP7 PlanetData project
(grant number 257641), and the OpenSense project.

REFERENCES

[1] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Evaluating probabilis-
tic queries over imprecise data,” in SIGMOD, 2003, pp. 551–562.

[2] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking queries on uncertain
data: a probabilistic threshold approach,” in SIGMOD, 2008, pp. 673–
686.

[3] N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic
databases,” JVLDB, pp. 523–544, 2007.

[4] D. Olteanu, J. Huang, and C. Koch, “Sprout: Lazy vs. eager query plans
for tuple-independent probabilistic databases,” in ICDE, 2009, pp. 640–
651.

[5] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar,
“Indexing multi-dimensional uncertain data with arbitrary probability
density functions,” in VLDB, 2005, pp. 922–933.

[6] G. Cormode and M. Garofalakis, “Sketching probabilistic data streams,”
in SIGMOD, 2007, pp. 281–292.

[7] C. Ré, J. Letchner, M. Balazinksa, and D. Suciu, “Event queries on
correlated probabilistic streams,” in SIGMOD, 2008, pp. 715–728.

[8] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. Shenoy, “Proba-
bilistic inference over rfid streams in mobile environments,” in ICDE,
2009, pp. 1096–1107.

[9] R. H. Shumway and D. S. Stoffer, Time series analysis and its
applications. Springer-Verlag, 2000.

[10] D. Tulone and S. Madden, “Paq: Time series forecasting for approxi-
mate query answering in sensor networks,” in EWSN, 2006, pp. 21–37.

[11] C. M. Grinstead and J. L. Snell, Introduction to probability. American
Mathematical Soc., 1998.

[12] N. Q. V. Hung, H. Jeung, and K. Aberer, “An evaluation of model-based
approaches to sensor data compression,” TKDE, pp. 2434–2447, 2013.

[13] N. Q. V. Hung and D. T. Anh, “An improvement of paa for dimension-
ality reduction in large time series databases,” in PRICAI, 2008, pp.
698–707.

[14] ——, “Combining sax and piecewise linear approximation to improve
similarity search on financial time series,” in ISITC, 2007, pp. 58–62.

[15] L. V. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian,
“Probview: a flexible probabilistic database system,” TODS, pp. 419–
469, 1997.

[16] N. Dalvi and D. Suciu, “Management of probabilistic data: foundations
and challenges,” in PODS, 2007, pp. 1–12.

[17] A. Jha and D. Suciu, “Probabilistic databases with markoviews,” in
VLDB, 2012, pp. 1160–1171.

[18] C. Mayfield, J. Neville, and S. Prabhakar, “Eracer: a database approach
for statistical inference and data cleaning,” in SIGMOD, 2010, pp. 75–
86.

[19] R. Akbarinia, P. Valduriez, and G. Verger, “Efficient evaluation of sum
queries over probabilistic data,” TKDE, pp. 764–775, 2013.

[20] M. Dylla, I. Miliaraki, and M. Theobald, “Top-k query processing in
probabilistic databases with non-materialized views,” in ICDE, 2013,
pp. 122–133.

[21] B. Kanagal and A. Deshpande, “Indexing correlated probabilistic
databases,” in SIGMOD, 2009, pp. 455–468.

[22] J. Letchner, C. Re, M. Balazinska, and M. Philipose, “Access methods
for markovian streams,” in ICDE, 2009, pp. 246–257.

[23] M. Wick, A. McCallum, and G. Miklau, “Scalable probabilistic
databases with factor graphs and mcmc,” in VLDB, 2010, pp. 794–804.

[24] S. Sathe, H. Jeung, and K. Aberer, “Creating probabilistic databases
from imprecise time-series data,” in ICDE, 2011, pp. 327–338.

[25] T. Chen, L. Chen, M. T. Ozsu, and N. Xiao, “Optimizing multi-top-k
queries over uncertain data streams,” TKDE, pp. 1814–1829, 2013.

[26] R. Cheng, T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, G. Tra-
jcevski, and A. Zufle, “Managing uncertainty in spatial and spatio-
temporal data,” in ICDE, 2014, pp. 1302–1305.

[27] P. Zhou, Y. Zheng, and M. Li, “How long to wait?: Predicting bus arrival
time with mobile phone based participatory sensing,” in MobiSys, 2012,
pp. 379–392.

[28] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen,
E. Howard, R. West, and P. Boda, “Peir, the personal environmental
impact report, as a platform for participatory sensing systems research,”
in MobiSys, 2009, pp. 55–68.

[29] S. Reddy, K. Shilton, G. Denisov, C. Cenizal, D. Estrin, and M. Sri-
vastava, “Biketastic: sensing and mapping for better biking,” in CHI,
2010, pp. 1817–1820.

[30] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher, “On truth discovery in
social sensing: A maximum likelihood estimation approach,” in IPSN,
2012, pp. 233–244.

[31] N. Q. V. Hung, N. T. Tam, L. N. Tran, and K. Aberer, “An evaluation
of aggregation techniques in crowdsourcing,” in WISE, 2013, pp. 1–15.

	Introduction
	Model and Problem Statement
	Model
	Problem statement
	Approach overview

	Computing likelihoods of sensor data
	Aggregating multiple sensor data
	Measuring trust score of sensor data
	Trust-based aggregation

	Experimental Evaluation
	Datasets
	Evaluations on computing likelihoods
	Evaluations on computing trust
	Evaluations on aggregating distributions

	Related Work
	Applications
	Conclusions and Future Work
	References

