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Abstract
The conventional wisdom is that aggressive networking
requirements, such as high packet rates for small mes-
sages and microsecond-scale tail latency, are best ad-
dressed outside the kernel, in a user-level networking
stack. We present IX, a dataplane operating system that
provides high I/O performance, while maintaining the key
advantage of strong protection offered by existing ker-
nels. IX uses hardware virtualization to separate man-
agement and scheduling functions of the kernel (control
plane) from network processing (dataplane). The data-
plane architecture builds upon a native, zero-copy API
and optimizes for both bandwidth and latency by dedi-
cating hardware threads and networking queues to data-
plane instances, processing bounded batches of packets
to completion, and by eliminating coherence traffic and
multi-core synchronization. We demonstrate that IX out-
performs Linux and state-of-the-art, user-space network
stacks significantly in both throughput and end-to-end la-
tency. Moreover, IX improves the throughput of a widely
deployed, key-value store by up to 3.6× and reduces tail
latency by more than 2×.

1 Introduction
Datacenter applications such as search, social network-
ing, and e-commerce platforms are redefining the require-
ments for systems software. A single application can con-
sist of hundreds of software services, deployed on thou-
sands of servers, creating a need for networking stacks
that provide more than high streaming performance. The
new requirements include high packet rates for short mes-
sages, microsecond-level responses to remote requests
with tight tail latency guarantees, and support for high
connection counts and churn [2, 14, 46]. It is also im-
portant to have a strong protection model and be elastic
in resource usage, allowing other applications to use any
idling resources in a shared cluster.

The conventional wisdom is that there is a basic mis-
match between these requirements and existing network-
ing stacks in commodity operating systems. Conse-
quently, some systems bypass the kernel and implement
the networking stack in user-space [29, 32, 40, 59, 61].
While kernel bypass eliminates context switch overheads,
on its own it does not eliminate the difficult tradeoffs be-
tween high packet rates and low latency (see §5.2). More-
over, user-level networking suffers from lack of protec-
tion. Application bugs and crashes can corrupt the net-
working stack and impact other workloads. Other sys-
tems go a step further by also replacing TCP/IP with
RDMA in order to offload network processing to special-
ized adapters [17, 31, 44, 47]. However, such adapters
must be present at both ends of the connection and can
only be used within the datacenter.

We propose IX, an operating system designed to break
the 4-way tradeoff between high throughput, low latency,
strong protection, and resource efficiency. Its architec-
ture builds upon the lessons from high performance mid-
dleboxes, such as firewalls, load-balancers, and software
routers [16, 34]. IX separates the control plane, which
is responsible for system configuration and coarse-grain
resource provisioning between applications, from the dat-
aplanes, which run the networking stack and application
logic. IX leverages Dune and virtualization hardware to
run the dataplane kernel and the application at distinct
protection levels and to isolate the control plane from the
dataplane [7]. In our implementation, the control plane
is the full Linux kernel and the dataplanes run as pro-
tected, library-based operating systems on dedicated hard-
ware threads.

The IX dataplane allows for networking stacks that op-
timize for both bandwidth and latency. It is designed
around a native, zero-copy API that supports processing
of bounded batches of packets to completion. Each dat-
aplane executes all network processing stages for a batch
of packets in the dataplane kernel, followed by the associ-
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ated application processing in user mode. This approach
amortizes API overheads and improves both instruction
and data locality. We set the batch size adaptively based
on load. The IX dataplane also optimizes for multi-core
scalability. The network adapters (NICs) perform flow-
consistent hashing of incoming traffic to distinct queues.
Each dataplane instance exclusively controls a set of these
queues and runs the networking stack and a single appli-
cation without the need for synchronization or coherence
traffic during common case operation. The IX API de-
parts from the POSIX API, and its design is guided by the
commutativity rule [12]. However, the libix user-level
library includes an event-based API similar to the popular
libevent library [51], providing compatibility with a
wide range of existing applications.

We compare IX with a TCP/IP dataplane against Linux
3.16.1 and mTCP, a state-of-the-art user-level TCP/IP
stack [29]. On a 10GbE experiment using short mes-
sages, IX outperforms Linux and mTCP by up to 10× and
1.9× respectively for throughput. IX further scales to a
4x10GbE configuration using a single multi-core socket.
The unloaded uni-directional latency for two IX servers
is 5.7µs, which is 4× better than between standard Linux
kernels and an order of magnitude better than mTCP, as
both trade-off latency for throughput. Our evaluation with
memcached, a widely deployed key-value store, shows
that IX improves upon Linux by up to 3.6× in terms of
throughput at a given 99th percentile latency bound, as it
can reduce kernel time, due essentially to network pro-
cessing, from ∼ 75% with Linux to < 10% with IX.

IX demonstrates that, by revisiting networking APIs
and taking advantage of modern NICs and multi-core
chips, we can design systems that achieve high through-
put and low latency and robust protection and resource
efficiency. It also shows that, by separating the small sub-
set of performance-critical I/O functions from the rest of
the kernel, we can architect radically different I/O sys-
tems and achieve large performance gains, while retain-
ing compatibility with the huge set of APIs and services
provided by a modern OS like Linux.

The rest of the paper is organized as follows. §2 mo-
tivates the need for a new OS architecture. §3 and §4
present the design principles and implementation of IX.
§5 presents the quantitative evaluation. §6 and §7 discuss
open issues and related work.

2 Background and Motivation
Our work focuses on improving operating systems for ap-
plications with aggressive networking requirements run-
ning on multi-core servers.

2.1 Challenges for Datacenter Applications

Large-scale, datacenter applications pose unique chal-
lenges to system software and their networking stacks:

Microsecond tail latency: To enable rich interactions be-
tween a large number of services without impacting the
overall latency experienced by the user, it is essential to
reduce the latency for some service requests to a few tens
of µs [3, 54]. Because each user request often involves
hundreds of servers, we must also consider the long tail of
the latency distributions of RPC requests across the data-
center [14]. Although tail-tolerance is actually an end-to-
end challenge, the system software stack plays a signifi-
cant role in exacerbating the problem [36]. Overall, each
service node must ideally provide tight bounds on the 99th
percentile request latency.

High packet rates: The requests and, often times, the
replies between the various services that comprise a
datacenter application are quite small. In Facebook’s
memcached service, for example, the vast majority of
requests uses keys shorter than 50 bytes and involves val-
ues shorter than 500 bytes [2], and each node can scale to
serve millions of requests per second [46].

The high packet rate must also be sustainable under
a large number of concurrent connections and high con-
nection churn [23]. If the system software cannot handle
large connection counts, there can be significant impli-
cations for applications. The large connection count be-
tween application and memcached servers at Facebook
made it impractical to use TCP sockets between these two
tiers, resulting in deployments that use UDP datagrams
for get operations and an aggregation proxy for put op-
erations [46].

Protection: Since multiple services commonly share
servers in both public and private datacenters [14, 25, 56],
there is need for isolation between applications. The use
of kernel-based or hypervisor-based networking stacks
largely addresses the problem. A trusted network stack
can firewall applications, enforce access control lists
(ACLs), and implement limiters and other policies based
on bandwidth metering.

Resource efficiency: The load of datacenter applications
varies significantly due to diurnal patterns and spikes in
user traffic. Ideally, each service node will use the fewest
resources (cores, memory, or IOPS) needed to satisfy
packet rate and tail latency requirements at any point. The
remaining server resources can be allocated to other ap-
plications [15, 25] or placed into low power mode for en-
ergy efficiency [4]. Existing operating systems can sup-
port such resource usage policies [36, 38].
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2.2 The Hardware – OS Mismatch
The wealth of hardware resources in modern servers
should allow for low latency and high packet rates for dat-
acenter applications. A typical server includes one or two
processor sockets, each with eight or more multithreaded
cores and multiple, high-speed channels to DRAM and
PCIe devices. Solid-state drives and PCIe-based Flash
storage are also increasingly popular. For networking,
10 GbE NICs and switches are widely deployed in dat-
acenters, with 40 GbE and 100 GbE technologies right
around the corner. The combination of tens of hardware
threads and 10 GbE NICs should allow for rates of 15M
packets/sec with minimum sized packets. We should also
achieve 10–20µs round-trip latencies given 3µs latency
across a pair of 10 GbE NICs, one to five switch crossings
with cut-through latencies of a few hundred ns each, and
propagation delays of 500ns for 100 meters of distance
within a datacenter.

Unfortunately, commodity operating systems have
been designed under very different hardware assumptions.
Kernel schedulers, networking APIs, and network stacks
have been designed under the assumptions of multiple
applications sharing a single processing core and packet
inter-arrival times being many times higher than the la-
tency of interrupts and system calls. As a result, such
operating systems trade off both latency and throughput
in favor of fine-grain resource scheduling. Interrupt co-
alescing (used to reduce processing overheads), queuing
latency due to device driver processing intervals, the use
of intermediate buffering, and CPU scheduling delays fre-
quently add up to several hundred µs of latency to remote
requests. The overheads of buffering and synchronization
needed to support flexible, fine-grain scheduling of appli-
cations to cores increases CPU and memory system over-
heads, which limits throughput. As requests between ser-
vice tiers of datacenter applications often consist of small
packets, common NIC hardware optimizations, such as
TCP segmentation and receive side coalescing, have a
marginal impact on packet rate.

2.3 Alternative Approaches
Since the network stacks within commodity kernels can-
not take advantage of the abundance of hardware re-
sources, a number of alternative approaches have been
suggested. Each alternative addresses a subset, but not
all, of the requirements for datacenter applications.

User-space networking stacks: Systems such as
OpenOnload [59], mTCP [29], and Sandstorm [40] run
the entire networking stack in user-space in order to elim-
inate kernel crossing overheads and optimize packet pro-
cessing without incurring the complexity of kernel modifi-

cations. However, there are still tradeoffs between packet
rate and latency. For instance, mTCP uses dedicated
threads for the TCP stack, which communicate at rela-
tively coarse granularity with application threads. This
aggressive batching amortizes switching overheads at the
expense of higher latency (see §5). It also complicates
resource sharing as the network stack must use a large
number of hardware threads regardless of the actual load.
More importantly, security tradeoffs emerge when net-
working is lifted into the user-space and application bugs
can corrupt the networking stack. For example, an at-
tacker may be able to transmit raw packets (a capability
that normally requires root privileges) to exploit weak-
nesses in network protocols and impact other services [8].
It is difficult to enforce any security or metering policies
beyond what is directly supported by the NIC hardware.

Alternatives to TCP: In addition to kernel bypass, some
low-latency object stores rely on RDMA to offload pro-
tocol processing on dedicated Infiniband host channel
adapters [17, 31, 44, 47]. RDMA can reduce latency, but
requires that specialized adapters be present at both ends
of the connection. Using commodity Ethernet network-
ing, Facebook’s memcached deployment uses UDP to
avoid connection scalability limitations [46]. Even though
UDP is running in the kernel, reliable communication and
congestion management are entrusted to applications.

Alternatives to POSIX API: MegaPipe replaces the
POSIX API with lightweight sockets implemented with
in-memory command rings [24]. This reduces some soft-
ware overheads and increases packet rates, but retains all
other challenges of using an existing, kernel-based net-
working stack.

OS enhancements: Tuning kernel-based stacks provides
incremental benefits with superior ease of deployment.
Linux SO REUSEPORT allows multi-threaded applica-
tions to accept incoming connections in parallel. Affinity-
accept reduces overheads by ensuring all processing for a
network flow is affinitized to the same core [49]. Recent
Linux Kernels support a busy polling driver mode that
trades increased CPU utilization for reduced latency [27],
but it is not yet compatible with epoll. When microsec-
ond latencies are irrelevant, properly tuned stacks can
maintain millions of open connections [66].

3 IX Design Approach
The first two requirements in §2.1 — microsecond latency
and high packet rates — are not unique to datacenter ap-
plications. These requirements have been addressed in the
design of middleboxes such as firewalls, load-balancers,
and software routers [16, 34] by integrating the network-
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ing stack and the application into a single dataplane. The
two remaining requirements — protection and resource
efficiency — are not addressed in middleboxes because
they are single-purpose systems, not exposed directly to
users.

Many middlebox dataplanes adopt design principles
that differ from traditional OSes. First, they run each
packet to completion. All network protocol and applica-
tion processing for a packet is done before moving on to
the next packet, and application logic is typically inter-
mingled with the networking stack without any isolation.
By contrast, a commodity OS decouples protocol process-
ing from the application itself in order to provide schedul-
ing and flow control flexibility. For example, the kernel
relies on device and soft interrupts to context switch from
applications to protocol processing. Similarly, the ker-
nel’s network stack will generate TCP ACKs and slide
its receive window even when the application is not con-
suming data, up to an extent. Second, middlebox data-
planes optimize for synchronization-free operation in or-
der to scale well on many cores. Network flows are dis-
tributed into distinct queues via flow-consistent hashing
and common case packet processing requires no synchro-
nization or coherence traffic between cores. By contrast,
commodity OSes tend to rely heavily on coherence traffic
and are structured to make frequent use of locks and other
forms of synchronization.

IX extends the dataplane architecture to support un-
trusted, general-purpose applications and satisfy all re-
quirements in §2.1. Its design is based on the following
key principles:

Separation and protection of control and data plane:
IX separates the control function of the kernel, respon-
sible for resource configuration, provisioning, schedul-
ing, and monitoring, from the dataplane, which runs the
networking stack and application logic. Like a conven-
tional OS, the control plane multiplexes and schedules re-
sources among dataplanes, but in a coarse-grained man-
ner in space and time. Entire cores are dedicated to data-
planes, memory is allocated at large page granularity, and
NIC queues are assigned to dataplane cores. The control
plane is also responsible for elastically adjusting the allo-
cation of resources between dataplanes.

The separation of control and data plane also allows
us to consider radically different I/O APIs, while permit-
ting other OS functionality, such as file system support,
to be passed through to the control plane for compatibil-
ity. Similar to the Exokernel [19], each dataplane runs
a single application in a single address space. However,
we use modern virtualization hardware to provide three-
way isolation between the control plane, the dataplane,

and untrusted user code [7]. Dataplanes have capabilities
similar to guest OSes in virtualized systems. They man-
age their own address translations, on top of the address
space provided by the control plane, and can protect the
networking stack from untrusted application logic through
the use of privilege rings. Moreover, dataplanes are given
direct pass-through access to NIC queues through mem-
ory mapped I/O.

Run to completion with adaptive batching: IX data-
planes run to completion all stages needed to receive and
transmit a packet, interleaving protocol processing (kernel
mode) and application logic (user mode) at well-defined
transition points. Hence, there is no need for intermediate
buffering between protocol stages or between application
logic and the networking stack. Unlike previous work that
applied a similar approach to eliminate receive livelocks
during congestion periods [45], IX uses run to comple-
tion during all load conditions. Thus, we are able to use
polling and avoid interrupt overhead in the common case
by dedicating cores to the dataplane. We still rely on in-
terrupts as a mechanism to regain control, for example, if
application logic is slow to respond. Run to completion
improves both message throughput and latency because
successive stages tend to access many of the same data,
leading to better data cache locality.

The IX dataplane also makes extensive use of batch-
ing. Previous systems applied batching at the system call
boundary [24, 58] and at the network API and hardware
queue level [29]. We apply batching in every stage of the
network stack, including but not limited to system calls
and queues. Moreover, we use batching adaptively as fol-
lows: (i) we never wait to batch requests and batching
only occurs in the presence of congestion; (ii) we set an
upper bound on the number of batched packets. Using
batching only on congestion allows us to minimize the
impact on latency, while bounding the batch size prevents
the live set from exceeding cache capacities and avoids
transmit queue starvation. Batching improves packet rate
because it amortizes system call transition overheads and
improves instruction cache locality, prefetching effective-
ness, and branch prediction accuracy. When applied adap-
tively, batching also decreases latency because these same
efficiencies reduce head-of-line blocking.

The combination of bounded, adaptive batching and
run to completion means that queues for incoming packets
can build up only at the NIC edge, before packet process-
ing starts in the dataplane. The networking stack sends
acknowledgments to peers only as fast as the applica-
tion can process them. Any slowdown in the application-
processing rate quickly leads to shrinking windows in
peers. The dataplane can also monitor queue depths at
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the NIC edge and signal the control plane to allocate addi-
tional resources for the dataplane (more hardware threads,
increased clock frequency), notify peers explicitly about
congestion (e.g., via ECN [52]), and make policy deci-
sions for congestion management (e.g., via RED [22]).

Native, zero-copy API with explicit flow control: We
do not expose or emulate the POSIX API for networking.
Instead, the dataplane kernel and the application commu-
nicate at coordinated transition points via messages stored
in memory. Our API is designed for true zero-copy op-
eration in both directions, improving both latency and
packet rate. The dataplane and application cooperatively
manage the message buffer pool. Incoming packets are
mapped read-only into the application, which may hold
onto message buffers and return them to the dataplane at
a later point. The application sends to the dataplane scat-
ter/gather lists of memory locations for transmission but,
since contents are not copied, the application must keep
the content immutable until the peer acknowledges recep-
tion. The dataplane enforces flow control correctness and
may trim transmission requests that exceed the available
size of the sliding window, but the application controls
transmit buffering.

Flow consistent, synchronization-free processing:
We use multi-queue NICs with receive-side scaling
(RSS [43]) to provide flow-consistent hashing of incom-
ing traffic to distinct hardware queues. Each hardware
thread (hyperthread) serves a single receive and trans-
mit queue per NIC, eliminating the need for synchro-
nization and coherence traffic between cores in the net-
working stack. The control plane establishes the map-
ping of RSS flow groups to queues to balance the traf-
fic among the hardware threads. Similarly, memory man-
agement is organized in distinct pools for each hardware
thread. The absence of a POSIX socket API eliminates
the issue of the shared file descriptor namespace in multi-
threaded applications [12]. Overall, the IX dataplane de-
sign scales well with the increasing number of cores in
modern servers, which improves both packet rate and la-
tency. This approach does not restrict the memory model
for applications, which can take advantage of coherent,
shared memory to exchange information and synchronize
between cores.

4 IX Implementation
4.1 Overview
Fig. 1a presents the IX architecture, focusing on the sep-
aration between the control plane and the multiple data-
planes. The hardware environment is a multi-core server
with one or more multi-queue NICs with RSS support.

The IX control plane consists of the full Linux kernel and
IXCP, a user-level program. The Linux kernel initializes
PCIe devices, such as the NICs, and provides the basic
mechanisms for resource allocation to the dataplanes, in-
cluding cores, memory, and network queues. Equally im-
portant, Linux provides system calls and services that are
necessary for compatibility with a wide range of applica-
tions, such as file system and signal support. IXCP mon-
itors resource usage and dataplane performance and im-
plements resource allocation policies. The development
of efficient allocation policies involves understanding dif-
ficult tradeoffs between dataplane performance, energy
proportionality, and resource sharing between co-located
applications as their load varies over time. We leave the
design of such policies to future work and focus primarily
on the IX dataplane architecture.

We run the Linux kernel in VMX root ring 0, the
mode typically used to run hypervisors in virtualized sys-
tems [62]. We use the Dune module within Linux to
enable dataplanes to run as application-specific OSes in
VMX non-root ring 0, the mode typically used to run
guest kernels in virtualized systems [7]. Applications run
in VMX non-root ring 3, as usual. This approach provides
dataplanes with direct access to hardware features, such
as page tables and exceptions, and pass-through access
to NICs. Moreover, it provides full, three-way protection
between the control plane, dataplanes, and untrusted ap-
plication code.

Each IX dataplane supports a single, multithreaded ap-
plication. For instance, Fig. 1a shows one dataplane for a
multi-threaded memcached server and another dataplane
for a multi-threaded httpd server. The control plane al-
locates resources to each dataplane in a coarse-grained
manner. Core allocation is controlled through real-time
priorities and cpusets; memory is allocated in large
pages; each NIC hardware queue is assigned to a single
dataplane. This approach avoids the overheads and unpre-
dictability of fine-grained time multiplexing of resources
between demanding applications [36].

Each IX dataplane operates as a single address-space
OS and supports two thread types within a shared, user-
level address space: (i) elastic threads which interact
with the IX dataplane to initiate and consume network
I/O and (ii) background threads. Both elastic and back-
ground threads can issue arbitrary POSIX system calls
that are intermediated and validated for security by the
dataplane before being forwarded to the Linux kernel.
Elastic threads are expected to not issue blocking calls
because of the adverse impact on network behavior result-
ing from delayed packet processing. Each elastic thread
makes exclusive use of a core or hardware thread allocated
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Figure 1: The IX dataplane operating system.

to the dataplane in order to achieve high performance
with predictable latency. In contrast, multiple background
threads may timeshare an allocated hardware thread. For
example, if an application were allocated four hardware
threads, it could use all of them as elastic threads to serve
external requests or it could temporarily transition to three
elastic threads and use one background thread to execute
tasks such as garbage collection. When the control plane
revokes or allocates an additional hardware thread using
a protocol similar to the one in Exokernel [19], the data-
plane adjusts its number of elastic threads.

4.2 The IX Dataplane
We now discuss the IX dataplane in more detail. It differs
from a typical kernel in that it is specialized for high per-
formance network I/O and runs only a single application,
similar to a library OS but with memory isolation. How-
ever, our dataplane still provides many familiar kernel-
level services.

For memory management, we accept some internal
memory fragmentation in order to reduce complexity and
improve efficiency. All hot-path data objects are allocated
from per hardware thread memory pools. Each memory
pool is structured as arrays of identically sized objects,
provisioned in page-sized blocks. Free objects are tracked
with a simple free list, and allocation routines are inlined
directly into calling functions. Mbufs, the storage object
for network packets, are stored as contiguous chunks of
bookkeeping data and MTU-sized buffers, and are used
for both receiving and transmitting packets.

The dataplane also manages its own virtual address
translations, supported through nested paging. In con-

trast to contemporary OSes, it uses exclusively large pages
(2MB). We favor large pages due to their reduced address
translation overhead [5, 7] and the relative abundance of
physical memory resources in modern servers. The data-
plane maintains only a single address space; kernel pages
are protected with supervisor bits. We deliberately chose
not to support swappable memory in order to avoid adding
performance variability.

We provide a hierarchical timing wheel implementation
for managing network timeouts, such as TCP retransmis-
sions [63]. It is optimized for the common case where
most timers are canceled before they expire. We sup-
port extremely high-resolution timeouts, as low as 16 µs,
which has been shown to improve performance during
TCP incast congestion [64].

Our current IX dataplane implementation is based on
Dune and requires the VT-x virtualization features avail-
able on Intel x86-64 systems [62]. However, it could
be ported to any architecture with virtualization support,
such as ARM, SPARC, and Power. It also requires one
or more Intel 82599 chipset NICs, but it is designed to
easily support additional drivers. The IX dataplane cur-
rently consists of 39K SLOC [67] and leverages some ex-
isting codebases: 41% is derived from the DPDK variant
of the Intel NIC device driver [28], 26% from the lwIP
TCP/IP stack [18], and 15% from the Dune library. We
did not use the remainder of the DPDK framework, and
all three code bases are highly modified for IX. The rest
is approximately 7K SLOC of new code. We chose lwIP
as a starting point for TCP/IP processing because of its
modularity and its maturity as a RFC-compliant, feature-
rich networking stack. We implemented our own RFC-



USENIX Association  11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 55

System Calls (batched)
Type Parameters Description
connect cookie, dst IP, dst port Opens a connection
accept handle, cookie Accepts a connection
sendv handle, scatter gather array Transmits a scatter-gather array of data
recv done handle, bytes acked Advances the receive window and frees memory buffers
close handle Closes or rejects a connection

Event Conditions
Type Parameters Description
knock handle, src IP, src port A remotely initiated connection was opened
connected cookie, outcome A locally initiated connection finished opening
recv cookie, mbuf ptr, mbuf len A message buffer was received
sent cookie, bytes sent, window size A send completed and/or the window size changed
dead cookie, reason A connection was terminated

Table 1: The IX dataplane system call and event condition API.

compliant support for UDP, ARP, and ICMP. Since lwIP
was optimized for memory efficiency in embedded en-
vironments, we had to radically change its internal data
structures for multi-core scalability and fine-grained timer
management. However, we did not yet optimize the lwIP
code for performance. Hence, the results of §5 have room
for improvement.

4.3 Dataplane API and Operation
The elastic threads of an application interact with the
IX dataplane through three asynchronous, non-blocking
mechanisms summarized in Table 1: they issue batched
systems calls to the dataplane; they consume event con-
ditions generated by the dataplane; and they have direct,
but safe, access to (mbuf s) containing incoming payloads.
The latter allows for zero-copy access to incoming net-
work traffic. The application can hold on to mbufs until
it asks the dataplane to release them via the recv done
batched system call.

Both batched system calls and event conditions are
passed through arrays of shared memory, managed by the
user and the kernel respectively. IX provides an unbatched
system call (run io) that yields control to the kernel and
initiates a new run to completion cycle. As part of the
cycle, the kernel overwrites the array of batched system
call requests with corresponding return codes and popu-
lates the array of event conditions. The handles defined
in Table 1 are kernel-level flow identifiers. Each handle is
associated with a cookie, an opaque value provided by the
user at connection establishment to enable efficient user-
level state lookup [24].

IX differs from POSIX sockets in that it directly ex-
poses flow control conditions to the application. The
sendv system call does not return the number of bytes
buffered. Instead, it returns the number of bytes that were
accepted and sent by the TCP stack, as constrained by

correct TCP sliding window operation. When the receiver
acknowledges the bytes, a sent event condition informs
the application that it is possible to send more data. Thus,
send window-sizing policy is determined entirely by the
application. By contrast, conventional OSes buffer send
data beyond raw TCP constraints and apply flow control
policy inside the kernel.

We built a user-level library, called libix, which ab-
stracts away the complexity of our low-level API. It pro-
vides a compatible programming model for legacy ap-
plications and significantly simplifies the development of
new applications. libix currently includes a very sim-
ilar interface to libevent and non-blocking POSIX
socket operations. It also includes new interfaces for zero-
copy read and write operations that are more efficient, at
the expense of requiring changes to existing applications.

libix automatically coalesces multiple write requests
into single sendv system calls during each batching
round. This improves locality, simplifies error handling,
and ensures correct behavior, as it preserves the data
stream order even if a transmit fails. Coalescing also facil-
itates transmit flow control because we can use the trans-
mit vector (the argument to sendv) to keep track of out-
going data buffers and, if necessary, reissue writes when
the transmit window has more available space, as notified
by the sent event condition. Our buffer sizing policy
is currently very basic; we enforce a maximum pending
send byte limit, but we plan to make this more dynamic in
the future [21].

Fig. 1b illustrates the run-to-completion operation for
an elastic thread in the IX dataplane. NIC receive buffers
are mapped in the server’s main memory and the NIC’s
receive descriptor ring is filled with a set of buffer descrip-
tors that allow it to transfer incoming packets using DMA.
The elastic thread (1) polls the receive descriptor ring and
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potentially posts fresh buffer descriptors to the NIC for
use with future incoming packets. The elastic thread then
(2) processes a bounded number of packets through the
TCP/IP networking stack, thereby generating event condi-
tions. Next, the thread (3) switches to the user-space ap-
plication, which consumes all event conditions. Assum-
ing that the incoming packets include remote requests, the
application processes these requests and responds with a
batch of system calls. Upon return of control from user-
space, the thread (4) processes all batched system calls,
and in particular the ones that direct outgoing TCP/IP traf-
fic. The thread also (5) runs all kernel timers in order
to ensure compliant TCP behavior. Finally (6), it places
outgoing Ethernet frames in the NIC’s transmit descrip-
tor ring for transmission, and it notifies the NIC to initiate
a DMA transfer for these frames by updating the trans-
mit ring’s tail register. In a separate pass, it also frees
any buffers that have finished transmitting, based on the
transmit ring’s head position, potentially generating sent
event conditions. The process repeats in a loop until there
is no network activity. In this case, the thread enters a
quiescent state which involves either hyperthread-friendly
polling or optionally entering a power efficient C-state, at
the cost of some additional latency.

4.4 Multi-core Scalability
The IX dataplane is optimized for multi-core scalability,
as elastic threads operate in a synchronization and coher-
ence free manner in the common case. This is a stronger
requirement than lock-free synchronization, which re-
quires expensive atomic instructions even when a single
thread is the primary consumer of a particular data struc-
ture [13]. This is made possible through a set of conscious
design and implementation tradeoffs.

First, system call implementations can only be
synchronization-free if the API itself is commutative [12].
The IX API is commutative between elastic threads. Each
elastic thread has its own flow identifier namespace, and
an elastic thread cannot directly perform operations on
flows that it does not own.

Second, the API implementation is carefully optimized.
Each elastic thread manages its own memory pools, hard-
ware queues, event condition array, and batched system
call array. The implementation of event conditions and
batched system calls benefits directly from the explicit,
cooperative control transfers between IX and the appli-
cation. Since there is no concurrent execution by pro-
ducer and consumer, event conditions and batched system
calls are implemented without synchronization primitives
based on atomics.

Third, the use of flow-consistent hashing at the NICs
ensures that each elastic thread operates on a disjoint sub-

set of TCP flows. Hence, no synchronization or coherence
occurs during the processing of incoming requests for a
server application. For client applications with outbound
connections, we need to ensure that the reply is assigned
to the same elastic thread that made the request. Since
we cannot reverse the Toeplitz hash used by RSS [43], we
simply probe the ephemeral port range to find a port num-
ber that would lead to the desired behavior. Note that this
implies that two elastic threads in a client cannot share a
flow to a server.

IX does have a small number of shared structures, in-
cluding some that require synchronization on updates. For
example, the ARP table is shared by all elastic threads and
is protected by RCU locks [41]. Hence, the common case
reads are coherence-free but the rare updates are not. RCU
objects are garbage collected after a quiescent period that
spans the time it takes each elastic thread to finish a run to
completion cycle.

IX requires synchronization when the control plane re-
allocates resources between dataplanes. For instance,
when a core is revoked from a dataplane, the correspond-
ing network flows must be assigned to another elastic
thread. Such events are rare because resource allocation
happens in a coarse-grained manner. Finally, the appli-
cation code may include inter-thread communication and
synchronization. While using IX does not eliminate the
need to develop scalable application code, it ensures that
there are no scaling bottlenecks in the system and protocol
processing code.

4.5 Security Model
The IX API and implementation has a cooperative flow
control model between application code and the network-
processing stack. Unlike user-level stacks, where the ap-
plication is trusted for correct networking behavior, the IX
protection model makes few assumptions about the appli-
cation. A malicious or misbehaving application can only
hurt itself. It cannot corrupt the networking stack or af-
fect other applications. All application code in IX runs
in user-mode, while dataplane code runs in protected ring
0. Applications cannot access dataplane memory, except
for read-only message buffers. No sequence of batched
system calls or other user-level actions can be used to vi-
olate correct adherence to TCP and other network specifi-
cations. Furthermore, the dataplane can be used to enforce
network security policies, such as firewalling and access
control lists. The IX security model is as strong as con-
ventional kernel-based networking stacks, a feature that is
missing from all recently proposed user-level stacks.

The IX dataplane and the application collaboratively
manage memory. To enable zero-copy operation, a buffer
used for an incoming packet is passed read-only to the ap-
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plication, using virtual memory protection. Applications
are encouraged (but not required) to limit the time they
hold message buffers, both to improve locality and to re-
duce fragmentation because of the fixed size of message
buffers. In the transmit direction, zero-copy operation re-
quires that the application must not modify outgoing data
until reception is acknowledged by the peer, but if the ap-
plication violates this requirement, it will only result in
incorrect data payload.

Since elastic threads in IX execute both the network
stack and application code, a long running application
can block further network processing for a set of flows.
This behavior in no way affects other applications or data-
planes. We use a timeout interrupt to detect elastic threads
that spend excessive time in user mode (e.g., in excess of
10ms). We mark such applications as non-responsive and
notify the control plane.

The current IX prototype does not yet use an IOMMU.
As a result, the IX dataplane is trusted code that has ac-
cess to descriptor rings with host-physical addresses. This
limitation does not affect the security model provided to
applications.

5 Evaluation
We compared IX to a baseline running the most re-
cent Linux kernel and to mTCP [29]. Our evaluation
uses both networking microbenchmarks and a widely de-
ployed, event-based application. In all cases, we use TCP
as the networking protocol.

5.1 Experimental Methodology
Our experimental setup consists of a cluster of 24
clients and one server connected by a Quanta/Cumulus
48x10GbE switch with a Broadcom Trident+ ASIC. The
client machines are a mix of Xeon E5-2637 @ 3.5 Ghz
and Xeon E5-2650 @ 2.6 Ghz. The server is a Xeon
E5-2665 @ 2.4 Ghz with 256 GB of DRAM. Each client
and server socket has 8 cores and 16 hyperthreads. All
machines are configured with Intel x520 10GbE NICs
(82599EB chipset). We connect clients to the switch
through a single NIC port, while for the server it depends
on the experiment. For 10GbE experiments, we use a sin-
gle NIC port, and for 4x10GbE experiments, we use four
NIC ports bonded by the switch with a L3+L4 hash.

Our baseline configuration in each machine is an
Ubuntu LTS 14.0.4 distribution, updated to the 3.16.1
Linux kernel, the most recent at time of writing. We en-
able hyperthreading when it improves performance. Ex-
cept for §5.2, client machines always run Linux. All
power management features are disabled for all systems
in all experiments. Jumbo frames are never enabled. All
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Figure 2: NetPIPE performance for varying message sizes
and system software configurations.

Linux workloads are pinned to hardware threads to avoid
scheduling jitter, and background tasks are disabled.

The Linux client and server implementations of our
benchmarks use the libevent framework with the
epoll system call. We downloaded and installed mTCP
from the public-domain release [30], but had to write
the benchmarks ourselves using the mTCP API. We run
mTCP with the 2.6.36 Linux kernel, as this is the most
recent supported kernel version. We report only 10GbE
results for mTCP, as it does not support NIC bonding.
For IX, we bound the maximum batch size to B = 64
packets per iteration, which maximizes throughput on mi-
crobenchmarks (see §6).

5.2 Latency and Single-flow Bandwidth

We first evaluated the latency of IX using NetPIPE, a pop-
ular ping-pong benchmark, using our 10GbE setup. Net-
PIPE simply exchanges a fixed-size message between two
servers and helps calibrate the latency and bandwidth of a
single flow [57]. In all cases, we run the same system on
both ends (Linux, mTCP, or IX).

Fig. 2 shows the goodput achieved for different mes-
sage sizes. Two IX servers have a one-way latency of
5.7µs for 64B messages and achieve goodput of 5Gbps,
half of the maximum, with messages as small as 20KB.
In contrast, two Linux servers have a one-way latency of
24µs and require 385KB messages to achieve 5Gbps. The
differences in system architecture explain the disparity:
IX has a dataplane model that polls queues and processes
packets to completion whereas Linux has an interrupt
model, which wakes up the blocked process. mTCP uses
aggressive batching to offset the cost of context switch-
ing [29], which comes at the expense of higher latency
than both IX and Linux in this particular test.
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5.3 Throughput and Scalability
We evaluate IX’s throughput and multi-core scalability
with the same benchmark used to evaluate MegaPipe [24]
and mTCP [29]. 18 clients connect to a single server lis-
tening on a single port, send a remote request of size s
bytes, and wait for an echo of a message of the same
size. Similar to the NetPIPE benchmark, while receiving
the message, the server holds off its echo response until
the message has been entirely received. Each client per-
forms this synchronous remote procedure call n times be-
fore closing the connection. As in [29], clients close the
connection using a reset (TCP RST) to avoid exhausting
ephemeral ports.

Fig. 3 shows the message rate or goodput for both the
10GbE and the 40GbE configurations as we vary the num-
ber of cores used, the number of round-trip messages per
connection, and the message size respectively. For the
10GbE configuration, the results for Linux and mTCP are
consistent with those published in the mTCP paper [29].
For all three tests (core scaling, message count scaling,
message size scaling), IX scales more aggressively than
mTCP and Linux. Fig. 3a shows that IX needs only 3
cores to saturate the 10GbE link whereas mTCP requires
all 8 cores. On Fig. 3b for 1024 round-trips per connec-
tion, IX delivers 8.8 million messages per second, which
is 1.9× the throughput of mTCP and of and 8.8× that of
Linux. With this packet rate, IX achieves line rate and is
limited only by 10GbE bandwidth.

Fig. 3 also shows that IX scales well beyond 10GbE
to a 4x10GbE configuration. Fig. 3a shows that IX lin-
early scales to deliver 3.8 million TCP connections per
second on 4x10GbE. Fig. 3b shows a speedup of 2.3×
with n = 1 and of 1.3× with n = 1024 over 10GbE IX.
Finally, Fig. 3c shows IX can deliver 8KB messages with a
goodput of 34.5 Gbps, for a wire throughput of 37.9 Gbps,
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Figure 5: Average and 99th percentile latency as a function of throughput for two memcached workloads.

out of a possible 39.7Gbps. Overall, IX makes it practi-
cal to scale protected TCP/IP processing beyond 10GbE,
even with a single socket multi-core server.

5.4 Connection Scalability
We also evaluate IX’s scalability when handling a large
number of concurrent connections on the 4x10GbE setup.
18 client machines runs n threads, with each thread re-
peatedly performing a 64B remote procedure call to the
server with a variable number of active connections. We
experimentally set n = 24 to maximize throughput. We
report the maximal throughput in messages per second for
a range of total established connections.

Fig. 4 shows up to 250,000 connections, which is the
upper bound we can reach with the available client ma-
chines. As expected, throughput increases with the de-
gree of connection concurrency, but then decreases for
very large connections counts due to the increasingly
high cost of multiplexing among open connections. At
the peak, IX performs 10× better than Linux, consistent
with the results from Fig. 3b. With 250,000 connections
and 4x10GbE, IX is able to deliver 47% of its own peak
throughput. We verified that the drop in throughput is not
due to an increase in the instruction count, but instead can
be attributed to the performance of the memory subsys-
tem. Intel’s Data Direct I/O technology, an evolution of
DCA [26], eliminates nearly all cache misses associated
with DMA transfers when given enough time between
polling intervals, resulting in as little as 1.4 L3 cache
misses per message for up to 10,000 concurrent connec-
tions, a scale where all of IX’s data structures fit easily
in the L3 cache. In contrast, the workload averages 25 L3
cache misses per message when handling 250,000 concur-
rent connections. At high connection counts, the working
set of this workload is dominated by the TCP connec-
tion state and does not fit into the processor’s L3 cache.

Nevertheless, we believe that further optimizations in the
size and access pattern of lwIP’s TCP/IP protocol control
block structures can substantially reduce this handicap.

5.5 Memcached Performance
Finally, we evaluated the performance benefits of IX with
memcached, a widely deployed, in-memory, key-value
store built on top of the libevent framework [42]. It is
frequently used as a high-throughput, low-latency caching
tier in front of persistent database servers. memcached
is a network-bound application, with threads spending
over 75% of execution time in kernel mode for network
processing [36]. It is a difficult application to scale be-
cause the common deployments involve high connection
counts for memcached servers and small-sized requests
and replies [2, 46].

We use the mutilate load-generator to place a se-
lected load on the server in terms of requests per second
(RPS) and measure response latency [35]. mutilate
coordinates a large number of client threads across mul-
tiple machines to generate the desired RPS load, while a
separate unloaded client measures latency by issuing one
request at the time. We configure mutilate to generate
load representative of two workloads from Facebook [2]:
the ETC workload that represents that highest capacity de-
ployment in Facebook, has 20B–70B keys, 1B–1KB val-
ues, and 75% GET requests; and the USR workload that
represents deployment with most GET requests in Face-
book, has short keys (<20B), 2B values, and 99% GET
requests. In USR, almost all traffic involves minimum-
sized TCP packets. Each request is issued separately (no
multiget operations). However, clients are permitted
to pipeline up to four requests per connection if needed to
keep up with their target request rate. We use 23 client
machines to generate load for a total of 1,476 connections
to the memcached server.
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To provide insights into the full range of system behav-
iors, we report average and 99th percentile latency as a
function of the achieved throughput. The 99th percentile
latency captures tail latency issues and is the most rele-
vant metric for datacenter applications [14]. Most com-
mercial memcached deployments provision each server
so that the 99th percentile latency does not exceed 200µs
to 500µs. We carefully tune the Linux baseline setup
according to the guidelines in [36]: we pin memcached
threads, configure interrupt-distribution based on thread-
affinity, and tune interrupt moderation thresholds. We
believe that our baseline Linux numbers are as tuned as
possible for this hardware using the open-source version
of memcached-1.4.18. We report the results for the
server configuration that provides the best performance: 8
cores with Linux, but only 6 with IX.

Porting memcached to IX primarily consisted of
adapting it to use our event library. In most cases, the port
was straightforward, replacing Linux and libevent
function calls with their equivalent versions in our API.
We did yet not attempt to tune the internal scalability of
memcached [20] or to support zero-copy I/O operations.

Fig. 5 shows the throughput-latency curves for the two
memcached workloads for Linux and IX, while Table 2
reports the unloaded, round-trip latencies and maximum
request rate that meets a service-level agreement, both
measured at the 99th percentile. IX noticeably reduces
the unloaded latencies to roughly half. Note that we use
Linux clients for these experiments; running IX on clients
should further reduce latency.

At high request rates, the distribution of CPU time
shifts from being ∼ 75% in the Linux kernel to < 10%
in the IX dataplane kernel. This allows IX to increase
throughput by 2.8× and 3.6× for ETC and USR respec-
tively at a 500µs tail latency SLA. The improvement for
ETC is lower due to the increased lock contention within
the application itself, in particular because it has a higher
write frequency. Lock contention within application code
is also the reason that IX cannot provide throughput im-
provements with more than 6 cores.

Configuration Minimum latency RPS for SLA:
@99th pct < 500µs @99th pct

ETC-Linux 94µs 550K
ETC-IX 45µs 1550K
USR-Linux 85µs 500K
USR-IX 32µs 1800K

Table 2: Unloaded latency and maximum RPS for a
given service-level agreement for the memcache work-
loads ETC and USR.

6 Discussion
What makes IX fast: The results in §5 show that a net-
working stack can be implemented in a protected OS ker-
nel and still deliver wire-rate performance for most bench-
marks. The tight coupling of the dataplane architecture,
using only a minimal amount of batching to amortize tran-
sition costs, causes application logic to be scheduled at the
right time, which is essential for latency-sensitive work-
loads. Therefore, the benefits of IX go beyond just mini-
mizing kernel overheads. The lack of intermediate buffers
allows for efficient, application-specific implementations
of I/O abstractions such the libix event library. The
zero-copy approach helps even when the user-level li-
braries add a level of copying, as it is the case for the
libevent compatible interfaces in libix. The extra
copy occurs much closer to the actual use, thereby in-
creasing cache locality. Finally, we carefully tuned IX
for multi-core scalability, eliminating constructs that in-
troduce synchronization or coherence traffic.

The IX dataplane optimizations — run to completion,
adaptive batching, and a zero-copy API — can also be
implemented in a user-level networking stack in order to
get similar benefits in terms of throughput and latency.
While a user-level implementation would eliminate pro-
tection domain crossings, it would not lead to significant
performance improvements over IX. Protection domain
crossings inside VMX non-root mode add only a small
amount of extra overhead, on the order of a single L3
cache miss [7]. Moreover, these overheads are quickly
amortized at higher packet rates.

Subtleties of adaptive batching: Batching is commonly
understood to trade off higher latency at low loads for bet-
ter throughput at high loads. IX uses adaptive, bounded
batching to actually improve on both metrics. Fig. 6 com-
pares the latency vs. throughput on the USR memcached
workload of Fig. 5 for different upper bounds B to the
batch size. At low load, B does not impact tail latency,
as adaptive batching does not delay processing of pend-
ing packets. At higher load, larger values of B improve
throughput, by 29% between B = 1 to B = 16. For this
workload, B ≥ 16 maximizes throughput.

While tuning IX performance, we ran into an unex-
pected hardware limitation that was triggered at high
packet rates with small average batch sizes (i.e. before
the dataplane was saturated): the high rate of PCIe writes
required to post fresh descriptors at every iteration led
to performance degradation as we scaled the number of
cores. To avoid this bottleneck, we simply coalesced PCIe
writes on the receive path so that we replenished at least
32 descriptor entries at a time. Luckily, we did not have to
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coalesce PCIe writes on the transmit path, as that would
have impacted latency.

Limitations of current prototype: The current IX imple-
mentation does not yet exploit IOMMUs or VT-d. Instead,
it maps descriptor rings directly into IX memory, using the
Linux pagemap interface to determine physical addresses.
Although this choice puts some level of trust into the IX
dataplane, application code remains securely isolated. In
the future, we plan on using IOMMU support to further
isolate IX dataplanes. We anticipate overhead will be low
because of our use of large pages. Also, the IX prototype
currently does not take advantage of the NIC’s SR-IOV
capabilities, but instead allocates entire physical devices
to dataplanes.

We also plan to add support for interrupts to the IX dat-
aplanes. The IX execution model assumes some coop-
eration from application code running in elastic threads.
Specifically, applications should handle events in a quick,
non-blocking manner; operations with extended execution
times are expected to be delegated to background threads
rather than execute within the context of elastic threads.
The IX dataplane is designed around polling, with the pro-
vision that interrupts can be configured as a fallback opti-
mization to refresh receive descriptor rings when they are
nearly full and to refill transmit descriptor rings when they
are empty (steps (1) and (6) in Fig 1b). Occasional timer
interrupts are also required to ensure full TCP compliance
in the event an elastic thread blocks for an extended pe-
riod.

Future work: This paper focused primarily on the IX
dataplane architecture. IX is designed and implemented
to support the dynamic addition and removal of elastic
threads in order to achieve energy proportional and re-
source efficient computing. So far we have tested only

static configurations. In future work, we will explore con-
trol plane issues, including a dynamic runtime that rebal-
ances network flows between available elastic threads in
a manner that maintains both throughput and latency con-
straints.

We will also explore the synergies between IX and
networking protocols designed to support microsecond-
level latencies and the reduced buffering characteristics
of IX deployments, such as DCTCP [1] and ECN [52].
Note that the IX dataplane is not specific to TCP/IP.
The same design principles can benefit alternative, po-
tentially application specific, network protocols, as well
as high-performance protocols for non-volatile memory
access. Finally, we will investigate library support for
alternative APIs on top of our low-level interface, such
as MegaPipe [24], cooperative threading [65], and rule-
based models [60]. Such APIs and programming models
will make it easier for applications to benefit from the per-
formance and scalability advantages of IX.

7 Related Work
We organize the discussion topically, while avoiding re-
dundancy with the commentary in §2.3.

Hardware virtualization: Hardware support for virtu-
alization naturally separates control and execution func-
tions, e.g., to build type-2 hypervisors [10, 33], run virtual
appliances [55], or provide processes with access to priv-
ileged instructions [7]. Similar to IX, Arrakis uses hard-
ware virtualization to separate the I/O dataplane from the
control plane [50]. IX differs in that it uses a full Linux
kernel as the control plane; provides three-way isolation
between the control plane, networking stack, and applica-
tion; and proposes a dataplane architecture that optimizes
for both high throughput and low latency. On the other
hand, Arrakis uses Barrelfish as the control plane [6] and
includes support for IOMMUs and SR-IOV.

Library operating systems: Exokernels extend the end-
to-end principle to resource management by implement-
ing system abstractions via library operating systems
linked in with applications [19]. Library operating sys-
tems often run as virtual machines [9] used, for instance,
to deploy cloud services [39]. IX limits itself to the im-
plementation of the networking stack, allowing applica-
tions to implement their own resource management poli-
cies, e.g. via the libevent compatibility layer.

Asynchronous and zero-copy communication: Sys-
tems with asynchronous, batched, or exception-less sys-
tem calls substantially reduce the overheads associated
with frequent kernel transitions and context switches [24,
29, 53, 58]. IX’s use of adaptive batching shares similar
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benefits but is also suitable for low-latency communica-
tion. Zero-copy reduces data movement overheads and
simplifies resource management [48]. POSIX OSes have
been modified to support zero-copy through page remap-
ping and copy-on-write [11]. By contrast, IX’s coop-
erative memory management enables zero-copy without
page remapping. Similar to IX, TinyOS passes pointers to
packet buffers between the network stack and the appli-
cation in a cooperative, zero-copy fashion [37]. However,
IX is optimized for datacenter workloads, while TinyOS
focuses on memory constrained, sensor environments.

8 Conclusion
We described IX, a dataplane operating system that lever-
ages hardware virtualization to separate and isolate the
Linux control plane, the IX dataplane instances that im-
plement in-kernel network processing, and the network-
bound applications running on top of them. The IX dat-
aplane provides a native, zero-copy API that explicitly
exposes flow control to applications. The dataplane ar-
chitecture optimizes for both bandwidth and latency by
processing bounded batches of packets to completion and
by eliminating synchronization on multi-core servers. On
microbenchmarks, IX noticeably outperforms both Linux
and mTCP in terms of both latency and throughput, scales
to hundreds of thousands of active concurrent connec-
tions, and can saturate 4x10GbE configurations using a
single processor socket. Finally, we show that porting
memcached to IX removes kernel bottlenecks and im-
proves throughput by up to 3.6×, while reducing tail la-
tency by more than 2×.
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