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Abstract
We use an effective Lagrangian approach to address the question of the dynamics of
electroweak symmetry breaking in the Standard Model (SM) and its relation to the
hierarchy problem. Composite Higgs models provide a solution by describing the recently
discovered Higgs-like scalar particle as a composite pseudo Nambu-Goldstone boson that
dissolves into its constituents above a certain high energy scale. We discuss many features
of the low energy description of composite Higgs models and present an explicit realisation
in a flat extra dimension showing explicitly that top partners with masses below 1TeV
are expected in a natural theory. Naturalness requires New Physics not much above the
weak scale and hence motivates the search for direct and indirect evidence of physics
beyond the SM at the LHC and future colliders. As an indirect probe at the LHC, we
propose a dedicated analysis of single top production in association with a Higgs boson to
lift the degeneracy in the sign of the top Yukawa coupling. We move on to an extensive
study of WW scattering, double and triple Higgs production at future linear colliders to
estimate their impact on the parameter space of a strongly interacting Higgs boson. Direct
probes of New Physics at the LHC include the search for heavy vectors and fermions. We
introduce a model-independent strategy to study narrow resonances which we apply to
a heavy vector triplet of the SM for illustration. We conclude by summarising current
constraints and the expected reach of future colliders on the parameter space of a minimal
composite Higgs model. This thesis is based on the papers in Refs. [1–4].

Key words: effective Lagrangian, electroweak symmetry breaking, beyond the Standard
Model physics, composite Higgs, LHC phenomenology, future colliders
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Zusammenfassung
In dieser Arbeit benutzen wir die Methode der effektiven Lagrangefunktionen, um die
Dynamik der elektroschwachen Symmetriebrechung im Standardmodell unter dem Ge-
sichtspunkt des Hierarchieproblems zu untersuchen. Die Composite-Higgs-Modelle liefern
eine Lösung des Hierarchieproblems, indem das kürzlich entdeckte Higgs-artige skalare
Teilchen als zusammengesetztes Pseudo-Nambu-Goldstone-Boson beschrieben wird, das
oberhalb einer höheren Energieskala in seine Komponenten zerfällt. Wir diskutieren die
Eigenschaften zur Beschreibung des Composite-Higgs-Modells bei niedrigen Energien
und liefern eine explizite Realisierung in einer flachen Extradimension und zeigen un-
mittelbar, dass Top-Partner mit Massen unterhalb 1 TeV auf natürliche Weise auftreten.
Das Naturalness Principle verlangt eine neue Physik nicht weit oberhalb der schwachen
Energieskala und motiviert deshalb die Suche am LHC und an zukünftigen Beschleunigern
nach direkten oder indirekten Hinweisen auf eine Physik jenseits des Standardmodells. Als
einen indirekten Test am LHC stellen wir eine zweckbestimmte Analyse der Top-Quark
Produktion zusammen mit einem Higgs-Boson vor, um die Mehrdeutigkeit des Vorzei-
chens der Top-Yukawa-Kopplung zu klären. Weiterhin unternehmen wir eine umfassende
Analyse der WW -Streuung, der Doppel- und Tripel-Higgs-Produktion an zukünftigen
Linearbeschleunigern, um deren Einfluss auf den Parameterraum eines stark gekoppelten
Higgs-Bosons abzuschätzen zu können. Direkte Hinweise auf eine neue Physik am LHC
schließen die Suche nach schweren Vektor-Teilchen oder schweren Fermionen ein. Wir
stellen außerdem eine modellunabhängige Methode zur Untersuchung schmaler Resonan-
zen vor, die wir zur Veranschaulichung auf schwere Vektor-Tripletts des Standardmodells
anwenden. Wir schließen mit einer Zusammenfassung der aktuellen Randbedingungen
unter Berücksichtigung der zu erwartenden Reichweite künftiger Beschleuniger im Para-
meterraum eines minimalen Composite-Higgs-Modells. Diese Dissertation basiert auf den
folgenden Veröffentlichungen [1–4].

Stichwörter: effektive Lagrangefunktionen, elektroschwache Symmetriebrechung, Phy-
sik jenseits des Standardmodells, composite Higgs, LHC Phenomenologie, zukünftige
Beschleuniger
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1 Introduction

A matter of hierarchies. Some of the most fundamental questions currently driving
particle physics are related to the Higgs boson.1 Its peculiarity stems from the fact that
it is the only fundamental scalar particle in the Standard Model (SM) and an intrinsic
problem, the hierarchy problem, is connected to scalars. It refers to the observed hierarchy
between the Higgs mass mh, most recently measured to be 125.36 ± 0.37 (stat) ±0.18

(syst) GeV at ATLAS [8] and 125.03+0.26
−0.27 (stat) +0.13

−0.15 (syst) GeV at CMS [9], and the scale
at which New Physics (NP) appears, m∗. In the absence of NP up to the Planck scale, m∗
would have to be identified with the Planck mass MPl =

√
~c/8πGN ∼ 2.44× 1018 GeV

at the onset of quantum gravity. The large separation in scales is formally preserved at
tree level. The problem arises because quantum fluctuations at the scale m∗ tend to spoil
the hierarchy mh � m∗. A direct way to appreciate this is to consider the Higgs mass
parameter at 1-loop. Following ’t Hooft’s naturalness argument [10], the core question is
about the observed smallness of the Higgs mass. The limit mh → 0 does not seem special
from the viewpoint of short distance physics. No symmetry is enhanced in this limit. This
is in clear contrast to fermions, where the chiral symmetry emerges in the massless limit.
The naturalness of gauge bosons is correlated with the presence of scalar particles in the
theory. Without any scalars, the gauge bosons remain massless in order to match the
number of degrees of freedom. If a longitudinal component can be acquired, the naturalness
of the massive vectors depends on the naturalness of the scalar mass. The same questions
can be viewed from another angle. Often, a looser definition of the hierarchy problem
simply questions the large energy separation between the electroweak scale v = 246GeV
and the Planck scale MPl. However, by itself this is not a real problem. In fact, why do
we not analogously question the slightly larger energy separation between ΛQCD ∼ 1GeV
and MPl? This is easily answered. In an asymptotically free theory like QCD, the strong
coupling αS(µ) decreases as αS(µ) = αS(ΛQCD)/ (1 + b αS(ΛQCD)/(2π) ln (µ/ΛQCD)) as

1We refer to the recently discovered scalar particle as the Higgs boson. The scalar field has first been
introduced by P. Higgs [5] and independently by G. Guralnik, C. Hagen and T. Kibble [6]. Already a few
months before F. Englert and R. Brout discussed electroweak symmetry breaking to give mass to the
gauge bosons without explicitly mentioning an additional scalar [7].
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Chapter 1. Introduction

the energy scale µ increases. Consequently a large separation of scales can be generated
naturally

ΛQCD = MPl e
− 2π
bαS(MPl) , (1.1)

and the problem of hierarchy does not arise. The crucial ingredient in this argument is
the logarithmic running of αS(µ). This follows immediately from the fact that αS(µ) is
a dimensionless coupling defined through a marginal operator: the kinetic term of the
gluons. Furthermore notice, that the theory is promoted to a free field theory in the limit
αS → 0 and thus enjoys a large symmetry enhancement. But let us elaborate on the
relevance of operators in the theory which lies at the heart of naturalness. Consider an
operator O∆, with mass dimension ∆. From a Wilsonian point of view, running from a
high mass scale m∗ to a lower scale mIR implies integrating out high energy degrees of
freedom which in turn generate a perturbation [11]

Lpert = cm4−∆
∗ O∆ , (1.2)

which leads to a relation similar to eq. (1.1) for the low energy scale

mIR = c
1

4−∆m∗ . (1.3)

A priori, the parameter c is expected to be O(1). A hierarchy between the scales arises
naturally when 4 −∆ is close to zero and c algebraically small [11], i.e. c ∼ 0.1. This
is the case for a marginal or weakly relevant operator, as demonstrated in eq. (1.1) for
QCD. For a highly relevant operator, 4−∆ ∼ O(1), no significant separation of scales is
generated even for a reasonably small value of c. Exactly this is the case in the electroweak
theory of the SM where the only relevant operator is the Higgs mass term H†H with
dimensionality ∆ = 2. A hierarchy can only be explained for a particularly small, very
fine tuned value of the parameter c. This is typically referred to as the fine tuning problem
and corresponds to an unnatural hierarchy in the SM.

Current status. These ideas have attracted attention for decades already before the
discovery of the Higgs boson. However, electroweak precision tests (EWPT) have strongly
pointed towards a Higgs-like scalar particle. In that sense, the Higgs discovery announced
by the ATLAS and CMS collaborations on 4 July 2012 [12, 13] was not particularly
unexpected. At the same time, the open question about the dynamics of electroweak
symmetry breaking (EWSB) developed a new twist since a new scalar particle was
actually discovered. Let us briefly review the need for a broken electroweak symmetry.
In nature, the electroweak bosons W±, Z gauging the SM group SU(2)L × U(1)Y are
observed to be massive while the photon remains massless. The simplest way to give
mass to the W±, Z bosons is to couple the gauge theory to a linear σ-model, in which a
complex SU(2) doublet, the Higgs boson, obtains a vacuum expectation value (vev) which
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breaks SU(2)L × U(1)Y spontaneously to the electromagnetic U(1)Q subgroup.2 Current
experimental data has not shown any significant deviation from the SM expectations and
thus suggests the Higgs boson to play its destined role. However, explanations for EWSB
without the scalar being involved in the breaking dynamics have not yet been completely
refuted.

Assuming the discovered scalar particle to be involved in EWSB, a solution of the
hierarchy problem requires the existence of NP at the scale m∗, not far above the weak
scale. Constraints on generic NP require m∗ to be at or above the TeV scale. Naturalness,
on the other hand, demands low scale New Physics. A completely natural theory would,
for instance, require the presence of a new set of particles and interactions at a scale

m∗ .
2π√
3yt

mh ≈ 450GeV, (1.4)

in order to cancel the quadratically divergent top quark contribution to the SM Higgs
potential.

The two main frameworks in which the hierarchy problem is usually addressed are
supersymmetry and compositeness. Nature chose the observed value of the Higgs mass
so delicately to push both models into regions of considerable, 1− 10%, fine tuning and
beyond their minimal realisations without clearly choosing one over the other. While
a natural minimal supersymmetric model predicts the Higgs mass to be close to the Z
mass, a composite Higgs model prefers a Higgs of a few hundred GeV. Nonetheless, both
models can still stretch to explain the observed value. Let us briefly sketch their basic
ideas.

According to the no-go theorem by Haag, Lopuszanski and Sohnius [18], in quantum field
theories with a mass gap and satisfying very general conditions, supersymmetry (extending
Poincaré symmetry) is the largest possible space-time symmetry of the S-matrix.3 In its
minimal version, supersymmetry doubles the particle content of the SM by introducing
a superpartner for each SM field.4 In fact, it relates fermions and bosons by packaging
them into superfields which share all quantum numbers except for the spin. A complex
scalar is paired on-shell with a Weyl fermion in a chiral multiplet, while a massless vector
field forms a vector multiplet together with a Weyl fermion in the adjoint representation
of the gauge group. Through these supermultiplets, supersymmetry extends the chiral
symmetry protecting the fermion masses to the Higgs boson and consequently solves the
hierarchy problem. Since none of the superpartners has been observed yet, supersymmetry
must be broken. In order to preserve the cancellation of the radiative corrections, the

2Spontaneous symmetry breaking was first discussed in the context of condensed matter by Y. Nambu
[14] and P. Anderson [15] and only after introduced in particle physics [7, 16, 17].

3This extends the known result by Coleman and Mandula [19] that only applies to bosonic algebras.
4This is not completely true as it also introduces a second Higgs doublet together with its fermionic

superpartner.
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Chapter 1. Introduction

breaking must be soft (i.e. through relevant operators). An upper bound on the soft
masses can be inferred from the radiative corrections to the Higgs mass which the soft
terms logarithmically contribute to

∆m2
h = m2

soft

(
λ

16π2
ln

(
ΛUV
msoft

)
+ . . .

)
, (1.5)

where λ stands for a generic dimensionless coupling, while ΛUV indicates the scale at
which the soft terms are generated, for instance the messenger mass in gauge mediation.
m∗ can be identified with the soft mass terms msoft. To have a natural explanation of
the Higgs mass with at most a 10% tuning, light stops and gluinos below 600GeV and
Higgsinos with masses less than 300GeV are expected in all incarnations of supersymmetry
(see for example Refs. [20–25]). Supersymmetric bounds are usually model dependent
and should be interpreted with care taking the precise assumptions made in each analysis
into account. Quite generically, simplified model searches for gluinos give the most robust
experimental bounds up to 1 − 1.4TeV almost independently of the nature and mass
of the lightest neutralino. Since in a large class of models, the gluino pulls up the stop
masses due to its one-loop contribution, the stops are expected to be heavy [25, 26]. For
R-parity conserving supersymmetry, bounds reach up to around 600GeV [27], however
gaps for light stops depending on the mass and nature of the lightest supersymmetric
particle in models with compressed spectra remain. For recent attempts to close these
gaps see for instance Ref. [28]. For (baryonic) R-parity violating models, there are still
no limits on the stop masses from LHC searches and the strongest bounds from Tevatron
and LEP extend up to 100GeV [29, 30]. Higgsino bounds are more model dependent even
for R-parity conserving supersymmetry. The current most stringent Higgsino exclusion of
300GeV requires a lightest neutralino below 50GeV [31, 32]. Despite its growing tension
with experiment in the minimal models, the supersymmetric way is still particularly
attractive due to its ability to make definite predictions due to its weakly coupled nature,
to provide a Dark Matter candidate, to explain gauge coupling unification and not at last
due to its tight connection to string theory.

Compositeness remains a much less studied alternative which part of this thesis is devoted
to. Initially proposed in Refs. [33–39] in the 1980s, a realistic framework has emerged
[40–46] in the past decade in which the Higgs boson arises as a pseudo-Nambu-Goldstone
Boson (pNGB) from the spontaneous breaking of a global symmetry G, of a new strongly
interacting sector, to a subgroup H. The Higgs boson is composite meaning that in
the far UV it is described by new degrees of freedom. Analogously to the kaon in QCD
(a doublet under the isospin symmetry), the hierarchy problem does not arise. The
naturalness condition in eq. (1.4) requires light states to be present in the composite
sector and therefore a relatively low compositeness scale. Heavy vector resonances in
composite Higgs models are already severely constrained by electroweak precision tests.
∆Ŝ = m2

W /m
2
ρ implies mρ ∼> 2.6TeV, setting the scale of NP very high. Fermionic

states are still less constrained. Partial compositeness, as discussed in detail in section
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3.2, imposes a linear coupling between elementary and composite states. Since the
top-loop contributes dominantly to the Higgs potential, the fermionic states coupling to
the top, the so-called top partners, cancel the top contribution analogously to the stops
in supersymmetry. In minimal models with the least possible amount of tuning [47], the
Higgs mass is given by

m2
h ∼

Nc

2π2

v2

f2
m2
ψgψyt , (1.6)

where yt = yLyR/gψ is the top Yukawa coupling expressed in terms of the linear couplings
yL , yR between elementary and composite states, which are assumed to be equal here.
mψ denotes the top partner mass, to be identified with m∗, coupling with strength gψ.
The ratio v2/f2 indicates the ratio between the weak and the composite scale and can be
interpreted as a partial measure of tuning in the model. To reproduce the measured Higgs
mass and avoid large fine-tuning, the coupling gψ is preferred to be not too strong. In
fact, naturalness requires the top partner masses mψ to be lighter than ∼ 1TeV [1, 47–49]
for a fine tuning of . 10%. Although, motivated by explicit implementations, composite
fermion and vector masses are expected to be the same, to achieve a mild tuning a
separation of the two scales mψ < mρ would be favourable. Fermionic resonances in a
natural composite Higgs model, just as the stops in supersymmetry, should be well in
reach of the 14TeV run of the LHC. This is of course not the only expected experimental
evidence. Indeed, light resonances also significantly affect further SM observables, mainly
related to the Higgs and top quark since both couple strongest to the composite sector.
Deviations in Higgs or top quark couplings could give important evidence for a strongly
coupled sector.

Light new states accessible at the LHC are expected in all natural realisations of super-
symmetric and composite Higgs models. The current absence of any significant hint of NP
is carving a big hole into the natural parameter space and pushes both frameworks into a
more and more fine-tuned region. More sophisticated non-minimal models can partially
evade the most stringent bounds but often introduce many more parameters. Nevertheless,
the current situation just before the 14TeV run of the LHC is far from hopeless. Not
only are significant improvements in the mass reach of direct searches for new states
expected, also indirect probes of NP such as coupling and precision measurements will
have an increased sensitivity. Nonetheless, the time has come to at least consider an LHC
outcome without any new discovery and to evaluate the potential of future colliders with
a clear physics case. Proposals for linear colliders such as the ILC [50] and CLIC [51]
have been investigated for some time, while a future circular collider (FCC), with a first
stage of electron positron collisions (see for instance Ref. [52]) and a second stage as a
pp collider, has attracted attention only very recently. In particular, it is important to
study the impact of direct versus indirect probes of NP and the wealth of information
contained in them for a specific framework.

5



Chapter 1. Introduction

Effective Lagrangian approach. To approach the above questions with the greatest
possible generality, the SM should be best viewed as an effective field theory (EFT) valid
up to a certain cutoff which is parametrically larger than the scale at which the physics
is probed. This is of course only valid as long as no new light states are discovered. The
cutoff can be identified with the scale m∗ where New Physics becomes important. If a
hierarchy between the two scales exists, mIR � m∗, the currently known particle content
of the SM can be described as the low energy regime of a more fundamental theory whose
high energy degrees of freedom at m∗ have been integrated out. An effective Lagrangian is
therefore an expansion in inverse powers of m∗. While the SM consists only of dimension-4
operators, higher dimensional operators characterise new effects beyond the SM (BSM).
Their strengths are suppressed by inverse powers of m∗. Hence, the larger m∗, the smaller
the effect of NP on the low-energy observables. Precision measurements have already set
stringent bounds on the presence of NP by constraining their contribution to physical
quantities. The current experimental agreement with SM predictions seems to favour a
high cutoff scale which contradicts the requirement of low scale New Physics to satisfy
naturalness.

An EFT approach is also of greatest value from a more practical point of view since
it allows us to make model-independent predictions. Especially now, with the LHC
running but no clear target to search for, the data should be interpreted as broadly as
possible. Robust qualitative predictions, like the existence of a given set of particles, are
common to many SM extensions but a quantitative comparison with the data requires
an explicit implementation of the general idea. Technically, each model with a common
prediction would need to be compared with the data. Obviously, this program can
not be completed directly by the experimental collaborations because it would require
tens of different models for each NP analysis and a separate presentation of the results
for each of them. Moreover even if we knew the “true” NP theory, it would typically
depend on so many free parameters that a direct comparison with data, obtained by
scanning the multi-dimensional parameter space with numerical simulations, would be
impossible. A step in the right direction is therefore a “simplified model” [53] built from
an effective Lagrangian with a small number of free parameters that capture the distinct
phenomenology of a class of NP models. The simplified model can easily be translated
into every explicit model with the same phenomenological feature. The interpretation of
the data in terms of a simplified model (where possible) makes the bounds considerably
more flexible. An effective Lagrangian approach is therefore crucial to ensure constructive
communication among theory and experiment and to make the most of the available data.
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Outline of the thesis. This thesis is organised as follows. Chapter 2 summarises the
current status of Higgs physics. We explain the necessity of EWSB in the SM in section
2.1 and introduce two commonly used effective Lagrangians, the linear and non-linear
σ-model, and their respective breaking dynamics. Experiments already favour a linear
σ-model with the physical Higgs boson embedded in a complex SU(2)L doublet. New
physics would affect the low energy description through higher dimensional operators,
written in the SILH Lagrangian, and deviations from the SM Higgs couplings, discussed
in section 2.2. In section 2.3, we present the current constraints on NP effects coming
from electroweak precision measurements.

Chapter 3 is devoted to composite Higgs models and is largely based on Ref. [1]. We
introduce the bosonic constituents of the effective Lagrangian with the Higgs as a pNGB
in section 3.1. Section 3.2 discusses the generation of the SM fermion masses and the
Higgs potential through partial compositeness. We concentrate on the case where the
SM quark doublet is embedded in a 14 of SO(5). An explicit realisation of the minimal
composite Higgs model in a flat extra dimension is studied in 3.3. Through a numerical
simulation in section 3.4, we confirm the minimal tuning of this particular model and the
expected small mass of around 1TeV of the lightest top partners required for a natural
theory.

Chapters 4, 5 and 6 investigate possible NP effects from an effective Lagrangian point of
view. At the LHC, a wealth of indirect NP effects are currently being probed. In chapter
4, we focus on single top production in association with a Higgs boson, based on Ref. [2],
to lift the degeneracy in the current best fit to the top Yukawa couplings. We present a
signal and background study in 4.3 and find only the 14TeV dataset to be able to lift the
degeneracy completely.

Furthermore, we study, based on Ref. [3], indirect NP effects through Higgs precision
measurements at a linear e+e− collider, such as the ILC or CLIC, in chapter 5. We
argue in sections 5.3 and 5.4 that even small deviations in the cross sections of single
and double Higgs production, or the mere detection of a triple Higgs final state, can
help establish whether the Higgs is a composite state and whether or not it emerges as a
pNGB from an underlying symmetry. In section 5.5, we obtain an estimate of the ILC
and CLIC sensitivities on the anomalous couplings from a study of WW scattering and
hh production which can be translated into a sensitivity on the compositeness scale, 4πf

or equivalently on the degree of compositeness ξ = v2/f2.

In chapter 6, we present direct probes of NP at the LHC based on Ref. [4]. We construct
a simplified effective Lagrangian, extending the SILH Lagrangian by the inclusion of a
heavy vector triplet, which reproduces a large class of explicit models. Based on the
available 8 TeV LHC analyses, we derive current limits in 6.2.3 and interpret them in 6.2.4
for vector triplets arising in weakly coupled (gauge) and strongly coupled (composite)
extensions of the SM. We point out that a model-independent limit setting procedure

7



Chapter 1. Introduction

must be based on purely on-shell quantities as illustrated in 6.2.3.3. Section 6.3 contains
a brief summary of the effective Lagrangian for top partners and their current bounds.

The conclusions are drawn in chapter 7 by comparing the sensitivities of direct and
indirect probes of NP at the LHC and future colliders on the parameter space of a new
strongly coupled sector.
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2 Effective Lagrangians for the Higgs
boson

2.1 Dynamics of electroweak symmetry breaking

The electroweak sector of the SM unifies the description of the electromagnetic and weak
interactions in a gauge theory invariant under SU(2)L × U(1)Y [54–56]. Explicitly, the
Lagrangian can be written as

LEW = −1

4
W a
µνW

aµν − 1

4
BµνB

µν + iΨ̄ /DΨ , (2.1)

in terms of the field strengths W a
µν and Bµν

W a
µν = DµW

a
ν −DνW

a
µ , DµW

a
ν = ∂µW

a
ν + gεabcW b

µW
c
µ ,

Bµν = ∂µBν − ∂νBµ ,
(2.2)

where W a
µ and Bµ are the SU(2)L and U(1)Y gauge bosons respectively, while Ψ =(

QiL, u
i
R, d

i
R, L

i
L, e

i
R, ν

i
R

)
is a compact notation for all SM fermions and the hypothetical

right-handed neutrino in a single column vector of Weyl spinors. The index i denotes the
generation. So far this Lagrangian describes only massless states. Since we encounter also
massive particles in Nature we need to take their masses into account. In the following we
will review two mechanisms to spontaneously break the electroweak symmetry. In each
case, gauge boson masses are generated through the Higgs mechanism where the gauge
vectors W± and Z eat a Nambu-Goldstone boson (NGB), originating from the symmetry
breaking, to obtain their longitudinal component and hence a mass. The discovery of
a Higgs-like scalar particle at the LHC has added a crucial piece of information to the
exploration of the electroweak sector and, although it still has not completely settled
the mechanism of EWSB, the data shows a strong preference for a Higgs embedded in a
linear SU(2)L doublet.
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Chapter 2. Effective Lagrangians for the Higgs boson

2.1.1 The linear σ-model

In the linear realisation, the physical Higgs field, h, is embedded with the three Goldstone
bosons, π1, π2, π3, in a complex field

H =
1√
2

(
π1 − i π2

v + h+ i π3

)
≡

 π+

v + h+ i π0√
2

 , (2.3)

transforming linearly, as a doublet with hypercharge Y = 1/2, under SU(2)L × U(1)Y .
The potential for this Higgs doublet

V (H) = −µ2H†H + λ
(
H†H

)2
(2.4)

has, for µ2 > 0, a local maximum at the origin and its minimum at H†H = v2 = 2µ2/λ.
The physical Higgs field h thus acquires a vacuum expectation value (vev) which is
conventionally given by v =

(√
2GF

)−1/2
= 246GeV. The ground state of the Lagrangian

turns out not to be invariant under the full gauge group but to preserve its subgroup, the
electromagnetic U(1)Q whose generator is given by the electric charge Q = T 3 + Y . The
non-zero Higgs vev is responsible for the spontaneous breakdown of the gauge symmetry
and, at the same time, for the generation of the gauge boson and fermion masses. The
Higgs kinetic term

LH = (DµH)†DµH (2.5)

generates mass terms for the gauge bosons and a mass mixing between the W 3 and B
through the covariant derivative

Dµ = ∂µ − igW a
µT

a − ig′Y Bµ , T a =
σa

2
. (2.6)

Rotating the neutral sector to the mass eigenstate basis

Aµ = sin θWW
3
µ + cos θWBµ ,

Zµ = cos θWW
3
µ − sin θWBµ ,

(2.7)

where θW denotes the weak mixing angle given by tan θW = g′/g, and defining W±µ =(
W 1
µ ∓W 2

µ

)
/
√

2 gives the masses

m2
W =

g2v2

4
, m2

Z =
(g2 + g′ 2)v2

4
. (2.8)

The photon, as the generator of the preserved symmetry, remains massless. Fermion mass
terms are generated through Yukawa couplings of the form

L = −λdij
(
Q̄

(i)
L

)
Hd

(j)
R − λuijQ̄

(i)
L H

cu
(j)
R + h.c. , (2.9)

10



2.1. Dynamics of electroweak symmetry breaking

where i, j are generation indices and Hc = iσ2H
∗. The λ’s denote the Yukawa couplings.

The quark mass matrix is thus predicted explicitly in terms of the vev as

md
ij =

1√
2
λdijv , mu

ij =
1√
2
λuijv . (2.10)

Lepton masses arise analogously. Note that no neutrino masses are generated in the SM
at the level of dimension-4 operators. The right-handed neutrino is a possible beyond the
SM extension to explain the recently observed, small neutrino masses (see for example
Ref. [57] for an extensive review).

Using the expression of the weak mixing angle leads to the following relation among the
charged and neutral masses

m2
W

m2
Z cos2 θW

≡ ρ = 1 . (2.11)

In the limit g′ → 0, the masses become equal. This is a consequence of the SO(4)

symmetry of the Higgs potential in eq. (2.4) which depends only on the combination
H†H = 1/2

(
π2

1 + π2
2 + π2

3 + h2
)
. SO(4) is isomorphic to SU(2)L × SU(2)R of which

SU(2)L and the third component of SU(2)R are gauged. To make this symmetry structure
more explicit, we can define

H =
(
iσ2H∗, H

)
, (2.12)

transforming as H → U †LHUR under SU(2)L × SU(2)R, where UL and UR are the
respective independent transformation matrices. The vacuum is only invariant under the
diagonal, custodial, subgroup SU(2)L+R where UL = UR. W a

µ transforms as a triplet
under SU(2)L and therefore preserves the custodial symmetry. It is instead broken by g′

since only the subgroup corresponding to T 3 of SU(2)R is gauged. The limit g′ → 0 hence
decouples the custodial breaking, implies equal masses for W± and Z and consequently
degenerate gauge bosons. As before, masses are generated from the Higgs kinetic term
LH = 1/2Tr

(
(DµH)†DµH

)
through the covariant derivative

DµH = ∂µH− igW a
µT

aH+ ig′HT 3Bµ . (2.13)

2.1.2 The non-linear σ-model

The Higgs boson is not necessarily a crucial ingredient for EWSB as we will discuss in
this section. In fact, we can decouple h from the complex doublet by increasing its mass
and integrating it out. What remains is the field

Φ = eiσ
aπa/Fπ , (2.14)

11



Chapter 2. Effective Lagrangians for the Higgs boson

where we replaced v by Fπ for later convenience, transforming non-linearly as

Φ→ ULΦU †R , (2.15)

under the partially gauged SU(2)L × SU(2)R. This Goldstone field has its analogue in
QCD where it originates from the breaking of the chiral SU(2)L × SU(2)R symmetry to
its diagonal subgroup by the QCD vacuum 〈ūu+ d̄d〉 6= 0. At the confinement scale ΛQCD,
the condensate becomes energetically favourable and breaks the symmetry spontaneously
to SU(2)L+R. Switching on SU(2)L × U(1)Y gauging implies that also the electroweak
symmetry is broken. In the case of QCD, the pion decay constant Fπ would have to be
identified with the experimentally measured fπ ≈ 92 MeV which would lead to gauge
boson masses of ∼ 30 MeV. QCD alone is therefore not a viable option for electroweak
symmetry breaking, in contrast to a scaled-up version of QCD, which would become strong
near the scale of EWSB. Such theories are usually called technicolor,1 (for a detailed
review see for example Ref. [60]). Consider the technifermions ΨL,Ψ

1
R,Ψ

2
R transforming

as (N, 2)0, (N, 1)1, (N, 1)−1 under SU(N)TC × SU(2)L × U(1)Y respectively. At a scale
ΛTC , they condense into a vacuum 〈ψ̄iLψ

j
R〉 6= 0 and break SU(2)L × SU(2)R/SU(2)L+R.

The pion decay constant is now numerically equal to the Higgs vev of the previous section
Fπ = v and reproduces the correct gauge boson masses.

Since EWSB does not pose any problems, we can construct an effective Lagrangian
including a light CP-even scalar particle transforming as a singlet under SU(2)L×SU(2)R,
which, by some abuse of notation, we call h. This choice of CP is both motivated from
the theoretical point of view (it follows for example in minimal composite Higgs theories),
and supported by the results on the Higgs couplings obtained by the LHC collaborations.
Such a construction does not assume that h is part of an SU(2)L doublet, nor does it
make hypotheses on the strength of its interactions, as long as it is weakly coupled at
energies of the order of its mass. It is thus completely general and applies as well to the
case where h is a Higgs-like impostor not directly involved in EWSB. The Lagrangian is
constructed by expanding in the number of derivatives and classifying the various terms
according to the number of h fields. The expression obtained in this way extends the
EW chiral Lagrangian [61–63] to include the light state h. At O(p2) in the derivative
expansion, the bosonic part of the effective Lagrangian thus reads [64–67]

L =
1

2
(∂µh)2−V (h) +

v2

4
Tr
(
DµΦ†DµΦ

)(
1 + 2a

h

v
+ b

h2

v2
+ b3

h3

v3
+ . . .

)
, (2.16)

with the potential for h

V (h) =
1

2
m2
hh

2 + d3

(
m2
h

2v

)
h3 + d4

(
m2
h

8v2

)
h4 + . . . , (2.17)

and a, b, b3, d3, d4 are arbitrary dimensionless parameters. The dots stand for terms of

1Technicolor was initially introduced in Refs. [58, 59].
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2.1. Dynamics of electroweak symmetry breaking

higher order in h. Now we see that the kinetic term for Φ generates the gauge boson
masses in eq. (2.8). This is most easily understood in the unitary gauge where Φ = 1

and the covariant derivative is given by eq. (2.13). The fermion masses of eq. (2.10) are
reproduced from the fermionic part of the Lagrangian

L = − v√
2

∑
i,j

(
ū

(i)
L d̄

(i)
L

)
Φ

(
1 + c

h

v
+ . . .

)(
λuiju

(j)
R

λdijd
(j)
R

)
+ h.c. , (2.18)

with the notation used in eq. (2.9).

The SM Higgs of section 2.1.1 can be reproduced for the parameter choice a = b =

d3 = d4 = c = 1 while all higher-order terms vanish. This corresponds exactly to the
Lagrangian obtained by substituting the linear doublet

H =
1√
2

Φ

(
0

v + h

)
, (2.19)

into Higgs kinetic term and potential and thus mimics the linear representation of
SU(2)L × SU(2)R. The dilaton couplings are instead characterised by the relations
a = b2, b3 = 0 [68–73].

2.1.3 Implications of experimental evidence

The currently available measurements indicate that the properties of the newly discovered
scalar particle are SM-like. In fact, so far no significant deviation from the SM predictions
have been found. This has profound implications for NP scenarios. Firstly, potential
deviations from the SM in form of higher dimensional operators involving a linear doublet
have to be small to be compatible with experiments. Secondly, in the parameterization of
a non-linear σ-model, data fixes all free coefficients a, b, d3, c, . . . to be close to their SM
value 1. Concrete relations and constraints among the parameters will be discussed in
the following section.

One piece of experimental evidence is particularly interesting in order to compare the
linear and non-linear realisations. Figure 2.1 shows the fitted Higgs couplings to the
τ, b,W,Z, t versus their respective masses. The dashed black line depicts the SM prediction
of these couplings. For leptons and quarks the linear relation between Yukawa coupling
and mass can be easily understood from eq. (2.9). Since in the unitary gauge H is simply
given by h+ v, the slope is predicted to be v−1. Analogously, we find the same relation
for gauge bosons when plotting the square root of the hV V coupling, ghV V = 2m2

V /v,
divided by 2v, versus the mass. As anticipated the combination on the ordinate axis
simplifies to the weak coupling, g/2. In conclusion, the linear σ-model permits a precise
prediction of the Higgs couplings to fermions and gauge bosons which furthermore agrees
with the data within 1σ uncertainty. The non-linear realisation, on the contrary, does
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Chapter 2. Effective Lagrangians for the Higgs boson
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Figure 2.1 – Fitted Higgs couplings presented as the Yukawa couplings hf̄f of τ, b, t and the
square root of the hV V coupling, ghV V = 2m2

V /v, divided by 2v forW,Z versus the corresponding
particle mass are shown. The dashed black line depicts the SM prediction of the couplings in a
linear σ-model. The green and yellow bands show the 69% and 95% C.L. bands. The figure is
taken from Ref. [9] (for a similar fit see also [74]).

not allow for any prediction. In fact, the ratio of Higgs coupling to the mass depends on
the, a priori arbitrary, parameters a and c. Instead of predicting a relation, the best fit
to the experimental measurements allows one to fix a and c close to their SM value 1 in
which case the two descriptions coincide. Although the non-linear σ-model can not be
ruled out, since in some limit it coincides with the linear σ-model, the data clearly points
towards the doublet structure of the Higgs and its linear implementation.

2.2 Effective Lagrangian for New Physics effects

While the SM is a renormalizable theory, it is necessary to go to non-renormalizable theories
in order to describe physics beyond the SM. This is commonly done by considering the
SM as an effective theory. The effect of heavy New Physics can be included in the effective
Lagrangian description and parameterized in terms of higher dimensional operators and
deviations in the SM couplings. In the following section, we want to discuss the different
parameterisations and the relations among them.

2.2.1 Higher dimensional operators

The possible effects of New Physics living at a high mass scale m∗, well above the weak
scale mW , can be parameterized in a general and model independent way. If the New
Physics mass scale is parametrically larger than the energy scale at which we want to
probe it, like the collider’s centre of mass energy, the heavy new states can be integrated
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2.2. Effective Lagrangian for New Physics effects

out. This results in an effective Lagrangian expansion in powers of E/m∗ which can be
organised according to the dimensionality of the operators

Leff = L4 + L6 + L8 . . . , (2.20)

consisting of SM fields and their derivatives only. L4 defines the dimension-4 operators
of the SM, while L6, L8 and higher orders describe BSM effects suppressed by powers
of m2

∗, m4
∗, etc. respectively. Hence, the higher the dimensionality of the operator, the

larger the suppression by inverse powers of m∗ and thus, the smaller the NP effect. The
dominant NP effects are encoded in L6. The only 5-dimensional operator that can be
constructed is of the form

(
L̄cLH

)
(LLH), where L denotes the left-handed lepton doublet,

and violates lepton number [75]. This operator was introduced by Weinberg [76] to
explain a Majorana mass for neutrinos. To comply with current bounds the suppression
scale must be ∼ 1015 GeV giving negligible effects for current collider searches. Similarly,
baryon or lepton number violating dimension-6 operators must be suppressed by scales
∼ 1016 GeV to guarantee bounds from proton decay, making also those operators irrelevant
for the LHC.

In general, the low energy effective Lagrangian coming from a heavy NP sector is of the
following form

Leff =
m4
∗

g2∗
L
(
Dµ

m∗
,
gHH

m∗
,
gΨΨ

m
3/2
∗

)
, (2.21)

where g∗ is the typical coupling strength among the states of the new sector which is
assumed to lie in the range g . g∗ < 4π to ensure the perturbative expansion to hold.
The various powers of couplings and the mass cutoff follow from simple dimensional
analysis according to the mass and ~ dimensions given in Table 2.1. H and Ψ are
characterised by the couplings gH and gΨ respectively. If g∗ is a strong coupling, and
gH , gΨ ∼ O(g∗), the particles are strongly coupled and can be interpreted as composite
states in a composite Higgs model, while a weak coupling of order g identifies them as
elementary states. For all elementary states, the kinetic term violates the power counting
since it would assign a smaller coefficient (g/g∗)2 than required. A canonically normalised
kinetic term must therefore be added explicitly to eq. (2.21). This is reasonable since the
elementary kinetic term does not originate from a strong sector and exists independently.
The transverse gauge bosons are always taken as elementary particles coupling weakly
to any other state [77]. Experimental measurements have shown that gauge fields and
light fermion generations are largely elementary, thus their mixing with the composite
sector is extremely small [78, 79]. The Higgs as well as the top quark are often assumed
to originate from a strong sector and to couple strongly to its states.

Equation (2.21) generalises the power counting introduced in the SILH Lagrangian in
Ref. [80] where H is taken to be composite (i.e. coupling with strength gH = g∗) and all
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Chapter 2. Effective Lagrangians for the Higgs boson

dimension

scalar field φ [~]
1
2 [L]−1

fermion field ψ [~]
1
2 [L]−

3
2

vector field Aµ [~]
1
2 [L]−1

mass m [~]0[L]−1

gauge coupling g [~]−
1
2 [L]0

quartic coupling λ [~]−1[L]0

Yukawa coupling yf [~]−
1
2 [L]0

Table 2.1 – Mass (as [length]−1) and ~ dimensionalities of the classical SM fields and
couplings for c = 1 but ~ 6= 1. This follows trivially from the dimensionality of the
quantum mechanical action [S] = ~ when ~ is restored.

fermions elementary (gΨ = g) from the beginning. If the Higgs is strongly coupled, a
simple yet crucial observation is that any additional power ofH costs a factor g∗/m∗ ≡ 1/f

while any additional derivative instead is suppressed by a factor 1/m∗.2 If the light Higgs
interacts strongly with the new dynamics, g∗ � 1, then the leading corrections to low-
energy observables arise from operators with extra powers of H rather than derivatives.
This remark greatly simplifies the list of important operators.

The list of dimension-6 operators has been discussed at length in the literature [81–90],
for recent reviews see Refs. [91, 92]. There exist various bases for the dimension-6
operators related by field redefinitions, or equivalently, the classical equations of motion.
In the following we will adopt the basis discussed in Refs. [80, 92] which has several
advantages. Firstly, it captures the effects of a well motivated set of New Physics models
in only a minimal number of operators. Universal theories, for instance, describing those
models whose low energy effects can be encoded solely in higher dimensional operators
consisting of SM bosons, can be captured by only 14 operators corresponding to the
14 coefficients parametrising all possible NP effects. Composite Higgs models without
partial compositeness (as explained in section 3.2) are an example of such models. If the
elementary fermions couple to the strong sector, also fermionic operators are induced.
Potentially complicated, linear combinations (as would be needed for example in the basis
of Ref. [90]) can be avoided. The operators in this basis are furthermore directly related
to experimentally measured quantities which simplifies the procedure to set bounds on
the coefficients [79]. Secondly, under reasonable assumptions, this basis allows one to
distinguish operators arising from tree and loop level diagrams when integrating out the
heavy, minimally coupled particles. The dimension-6 operators fall into the following
three categories [80, 92].

2Extra powers of the gauge fields are also suppressed by 1/m∗ as they can only appear through
covariant derivatives in minimally coupled theories.
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2.2. Effective Lagrangian for New Physics effects

Tree level operators with extra powers of Higgs fields or SM fermions. Op-
erators in this first category are built from products of SM bilinears. They appear by
integrating out heavy scalars, fermions or vectors at tree level and contain extra powers of
Higgs fields or SM fermions thus contributing additional powers of gH and gΨ. According
to the power counting in eq. (2.21) and Table 2.1, these operators can be parameterized
by

L1
6 =

∑
i1

g2
∗
ci1
m2∗
Oi1 , (2.22)

where the coefficients ci1 contain only ratios of couplings (e.g. gH/g∗ and gΨ/g∗). This
implies firstly, that the 1/m2

∗ suppression is attenuated for composite particles through
the strong coupling gH , gΨ . 4π in the numerator. These operators can thus give the
largest effects in the strong coupling regime. Secondly, elementary particles coupled by g
exhibit an additional suppression (g∗/m∗)

2 (g/g∗)
2. It can therefore be concluded that

operators of this category are not important for weakly coupled states. In fact, only those
operators are included in the first category that are enhanced in the strong coupling limit.

The bosonic operators with additional powers of the Higgs field can be written explicitly
as

OH =
1

2

(
∂µ|H|2

)2
, OT =

1

2

(
H†

↔
DµH

)2
, O6 = λ|H|6 , (2.23)

where λ is the quartic coupling which appears in front of the marginal operator (H†H)2.
We defined H†

↔
DµH = H†DµH − (DµH)†H and the covariant derivative is given by

eq. (2.6) with Y = 1/2. Using the equations of motions for the gauge fields, the
seemingly independent operator Or = |H|2|DµH|2 can be eliminated. In addition to the
bosonic operators, there are 30 independent fermionic operators – for each family – listed
consistently in Table 2 of Ref. [92]. For future reference, we will report here only those
CP-even operators that can be constrained by electroweak precision measurements as
discussed in section 2.3. In particular, this implies that we omit to write four-fermion
operators that do not affect the precision observables.3 Moreover, we omit CP-odd and
dipole (or one-loop) operators which are suppressed by small SM Yukawa couplings under
the assumption that the NP sector respects minimal flavour violation (MFV) [94]. The

3Using αEM ,mZ and mW as SM input parameters and not (as typically done) GF allows one to study
four-fermion operators in complete separation [93].
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remaining operators are4

Oyu = yu|H|2Q̄LH̃uR , Oyd = yd|H|2Q̄LHdR ,
Oye = ye|H|2L̄LHeR ,

OuR =
(
iH†

↔
DµH

)
(ūRγ

µuR) , OdR =
(
iH†

↔
DµH

) (
d̄Rγ

µdR
)
,

OeR =
(
iH†

↔
DµH

)
(ēRγ

µeR) ,

OqL =
(
iH†

↔
DµH

) (
Q̄Lγ

µQL
)
, OlL =

(
iH†

↔
DµH

) (
L̄Lγ

µLL
)
,

O(3)q
L =

(
iH†σa

↔
DµH

) (
Q̄Lγ

µσaQL
)
, O(3)l

L =
(
iH†σa

↔
DµH

) (
L̄Lγ

µσaLL
)
,

(2.24)

where H̃ = iσ2H
∗. The hermitean conjugates of the above operators are understood to

be included in the analysis. Since light fermions are typically considered as elementary,
these operators are not relevant due to the additional (g/g∗)

2 suppression.

Tree level operators with extra derivatives. Analogously to the first category,
these operators are generated from tree-level exchanges of heavy particles and consist of
products of SM bilinears. However, they also contain additional powers of derivatives or
gauge fields. Their suppression is thus 1/m2

∗. If a canonically normalised gauge field is
involved, the suppression is further enhanced by the weak gauge coupling. The general
contribution of these operators to the effective Lagrangian is

L2
6 =

∑
i2

ci2
m2∗
Oi2 . (2.25)

The bosonic operators can be written explicitly as

OW =
ig

2

(
H†σa

↔
D
µ
H
)
DνW a

µν , OB =
ig′

2

(
H†

↔
D
µ
H
)
∂νBµν ,

O2W = −1

2

(
DµW

a
µν

)2
, O2B = −1

2
(∂µBµν)2 ,

O2G = −1

2

(
DµG

A
µν

)2
,

(2.26)

where A is the adjoint index of SU(3). There are furthermore six fermionic operators
which are all suppressed by two SM Yukawa couplings [92]. The basis is redundant since
operators of the first category are related to operators in the second by the equations of

4For the complete list see Table 2 of Ref. [92].
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motion

DνW a
µν = igH†

σa

2

↔
DµH + g

∑
f

f̄L
σa

2
γµfL ,

∂νBµν = ig′YHH†
↔
DµH + g′

∑
f

(
Y f
L f̄LγµfL + Y f

R f̄RγµfR

)
.

(2.27)

In particular, OB and OW can be traded for a combination of operators from the first
category. Keeping the redundancy is nonetheless useful at this stage. An appropriate
choice can be made for each specific scenario. Consider, for instance, the case of composite
Higgs and fermions, where operators from the first category will have a coefficient g2

∗/m
2
∗.

By the equations of motion, this can be translated into an enhancement of cB,W = g2
∗/g

2

in OB,W compared to the native expectation of category two. Since composite fermions
affect OB,W , it would be convenient to work in a basis with fermionic operators instead of
OB,W . For elementary Higgs and fermions, on the contrary, no enhancement is expected
and the coefficients cB,W are of order one. Including OB,W can therefore be convenient.

One-loop operators. Operators in this category arise from one-loop diagrams in
renormalizable theories involving heavy fields. Their coefficients are consequently expected
to be loop suppressed

L3
6 =

∑
i3

κi3
m2∗
Oi3 , (2.28)

where the prefactor includes the one-loop suppression κi3 = g2
∗

16π2 ci3 . Explicitly, the
CP-even bosonic operators are

OBB = g′2|H|2BµνBµν , OGG = g2
s |H|2GAµνGAµν ,

OHW = ig (DµH)† σa (DνH)W a
µν , OHB = ig′ (DµH)† (DνH)Ba

µν ,

O3W =
1

3!
gεabcW

aν
µ W b

νρW
cρµ , O3G =

1

3!
gsfABCW

Aν
µ WB

νρW
CρµfABC .

(2.29)

There is an analogous set of six CP-odd operators where one field strength in each
operator is replaced by its dual F̃µν = εµνρσF

ρσ/2. In addition, there are eight fermionic
operators in this category which are not only one-loop suppressed but also include a factor
of the Yukawa coupling. Since these operators can not be constrained by electroweak
measurements, we do not report them here (see Ref. [92] for the full list).

We are thus left with 14 independent bosonic operators shown in eqs. (2.23), (2.26) and
(2.29). To complete the basis there are additional 44 operators for each family of SM
fermions, some of which are listed in eq. (2.24). The redundancy of the basis lies in
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five operators which can be eliminated by the equations of motion of the gauge fields.
Therefore five operators, chosen by convenience, can be discarded. Adding, on the other
hand, the six CP-odd operators one remains with 59 independent dimension-6 operators
encoding NP effects. 20 of them can be severely constrained by electroweak precision test
and results from Higgs physics.

There will be an even greater number of dimension-8 operators giving more suppressed
contributions to the Higgs couplings. As described in more detail in Appendix C.1, there
are only two dimension-8 operators which modify a, b, b3, d3 and are of relevance in the
following

O′H =
c′Hg

4
∗

2m4∗
|H|2∂µ|H|2∂µ|H|2 , O8 = −c8g

4
∗λ

m4∗

(
H†H

)4
, (2.30)

where the coefficients c′H and c8 are expected to be of order 1.

2.2.2 Higgs couplings

Some of the O(1) coefficients of the dimension-6 operators, in particular cH and c6, control
the Higgs couplings a, b, b3, d3 at order (v/f)2. Under the assumption of h being part of
a doublet, the Higgs couplings of eq. (2.16) are thus correlated and functions of a smaller
set of parameters. To relate the coefficients we need a field redefinition of the form

h→ h +
h

8

v2

f2

(
−4cH + (3c2

H − 2c′H)
v2

f2

)
+
h2

2v

v2

f2

(
−cH + (2c2

H − c′H)
v2

f2

)
+

h3

12v2

v2

f2

(
−2cH + (13c2

H − 6c′H)
v2

f2

)
.

(2.31)

After canonically normalising the Higgs field, corrections of order (v/f)4 to the Higgs
couplings are induced. The expressions for the couplings at O(v4/f4) thus read

a = 1− cH
2

v2

f2
+

(
3c2
H

8
− c′H

4

)
v4

f4
,

b = 1− 2cH
v2

f2
+

(
3c2
H −

3c′H
2

)
v4

f4
,

b3 = −4cH
3

v2

f2
+

(
14c2

H

3
− 2c′H

)
v4

f4
,

d3 = 1 +

(
c6 −

3cH
2

)
v2

f2
+

(
15c2

H

8
− 5c′H

4
− c6cH

2
− 3c2

6

2
+ 2c8

)
v4

f4
.

(2.32)

Any deviation of the couplings a, b, d3 from their SM values implies the energy growth
of some 2→ 2 scattering amplitude whose strength can be parameterized in terms of a
“running” coupling ḡ(

√
s) at a given center-of-mass (c.o.m.) energy

√
s. For example, the
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2.2. Effective Lagrangian for New Physics effects

couplings a and b control the strength of the interactions in 2→ 2 processes among π’s
and h. Under the assumption of SO(3) custodial invariance, the scattering amplitudes
read

A
(
πaπb → πcπd

)
= A(s, t, u) δabδcd +A(t, s, u) δacδbd +A(u, t, s) δadδbc , (2.33)

A
(
πaπb → hh

)
= Ahh(s, t, u) δab , (2.34)

A
(
πaπb → πch

)
= Ahπ(s, t, u) εabc , (2.35)

where s, t, u are the usual Mandelstam variables. As implied by the equivalence theo-
rem [95, 96], at high energy each of the above amplitudes equals one in which each external
π is replaced by the corresponding longitudinal vector boson (π± →W±L , π0 → ZL) up to
m2
W /s corrections. From the Lagrangian in eq. (2.16), at leading order in the derivative

expansion, it follows A(s, t, u) = (1 − a2)s/v2 and Ahh(s, t, u) = (a2 − b)s/v2. In both
these cases the scattering amplitude defines a coupling strength

A(2→ 2) = δhh
s

v2
≡ (ḡ(

√
s))2 , (2.36)

where we indicate by δhh both a2 − 1 (for ππ → ππ) and a2 − b (for ππ → hh). A
measurement of the VLVL → VLVL and VLVL → hh (V = W,Z) scattering rates at a
given centre of mass energy

√
s thus corresponds to the measurement of an effective

coupling ḡ(
√
s), characterising the strength of the EWSB dynamics. The effective

coupling ḡ(
√
s) grows with energy so that perturbativity, and with it the validity of the

effective Lagrangian, would be lost at the scale
√
s∗ where ḡ(

√
s∗) ∼ 4π. A reasonable

expectation is then that new states will UV complete the effective Lagrangian at a scale
m∗ ≤

√
s∗. The new states would expectedly saturate the growth of the effective coupling

to g∗ ≡ ḡ(m∗) ≤ 4π.

2 → 2 scattering processes with an odd number of NGB. In the case of the
scattering ππ → πh, Bose and crossing symmetries imply that the function Ahπ(s, t, u) is
antisymmetric under the exchange of any two Mandelstam variables. As a consequence, the
lowest-order contribution to Ahπ(s, t, u) arises at O(p6), that is Ahπ ∝ (s−u)(u−t)(t−s),
in accordance with the fact that there exists no local operator at the level of two and
four derivatives giving a vertex with three π’s. The corresponding scattering amplitude,
VLVL → VLh, is expected to be suppressed by a factor (s/m2

∗)
2 compared to that of

VLVL → VLVL, hh, and is thus not a sensitive probe of the Higgs interaction strength
at energies below the scale m∗ of New Physics. In fact, the absence of an energy
growth in the ππ → πh amplitude could have been anticipated on the basis of a simple
symmetry argument. The request of custodial invariance fixes the global coset to be
SO(4)/SO(3), which is a symmetric space. The grading of its algebra, under which all
broken generators and thus all NG bosons change sign, is an accidental symmetry of the
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Chapter 2. Effective Lagrangians for the Higgs boson

O(p2) Lagrangian (2.16) 5

PLR : πa(x)→ −πa(x) , h(x)→ h(x) . (2.37)

Any process with an odd number of π’s, including ππ → πh, must thus vanish at leading
derivative order. Furthermore, although PLR is generically broken at O(p4), it turns
out that none of the PLR-odd operators with four derivatives contributes to 2 → 2

processes [97]. In absence of custodial symmetry, on the other hand, the global coset
is SU(2) × U(1)/U(1) rather than SO(4)/SO(3). This is not a symmetric space, and
there is no grading symmetry which forbids vertices with three NG bosons at O(p2). In
particular, the operator [Tr(Φ†DµΦσ3)]2h contains the term h ∂µπ

3(π+i
←→
∂µπ

−), which
gives A(π+π− → π3h) ∝ (t − u). In practice, the experimental results on the Higgs
couplings obtained by the LHC collaborations already set tight limits on possible custodial
breaking effects [98–100] and thus on the energy growth of VLVL → VLh. These new
constraints are not surprising given the very strong constraint on custodial symmetry
breaking provided by electroweak precision tests at LEP/SLC/Tevatron.

One might ask whether the amplitude of the process VTVL → VLh, with one transversely
polarised vector boson, grows with the energy and thus probes the Higgs interaction
strength. By virtue of the equivalence theorem, at high energy this coincides with the
amplitude of VTπ → πh, for which a naive power counting would suggest A ∼ g√s/v. A
direct calculation, on the other hand, reveals that the energy-growing term cancels after
summing all relevant diagrams, thus implying A(VTπ → πh) ∼ g3(v/

√
s). 6 Eventually,

the leading contribution to V V → V h comes from the scattering amplitude with two
transversely polarised vector bosons, A(VTVT → VLh) ∼ g2, which makes it clear that
this process cannot be used to probe the Higgs interaction strength. Incidentally, notice
that there is no analog cancellation in the scatterings with zero or two Higgses and one
transverse vector boson, that is: A(VTπ → hh) ∼ (a2 − b)g√s/v and A(VTπ → ππ) ∼
(a2 − 1)g

√
s/v.

2.3 Electroweak precision tests

2.3.1 Current constraints on higher dimensional operators

Electroweak precision data refers to a set of high precision measurements from LEP I and
II, SLC, Tevatron and further low energy experiments that probe SM observables to a
very high precision and thus allow one to infer constraints on NP parameters through their
indirect effects. Following Ref. [79], we discuss the current constraints on the dimension-6
operators introduced in the previous section. The five redundancies due to the equations

5 It coincides with parity up to a spatial inversion: P = P0PLR, with P0 : {~x→ −~x, t→ t}.
6The cancellation follows from the fact that all the diagrams have the same dependence on the Higgs

couplings, namely they are all proportional to a. Since in the SM limit a = 1 the amplitude cannot grow
with the energy, by continuity this implies that the same holds true for any a.
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of motion are used to eliminate the operators O2W,2B,2G and OlL, O
(3)l
L . The constraints

can be classified according to their strength.

Z-pole measurements at the per-mille level. Deviations in the weak gauge boson
propagators and their couplings to fermions can be constrained at the per-mille level by
Z-pole observables from LEP I and SLC [101]. In the leptonic sector, the constraints can
be set on Γ

(
Z → l̄LlL

)
, Γ
(
Z → l̄RlR

)
and Γ (Z → ν̄ν). These quantities are modified

by the three dimension-6 operators proportional to cT , c+
V , c

e
R, where c

±
V = (cW ± cB) /2.

Performing a χ2 fit (for details see Ref. [79]) sets the following bounds at 95% C.L. on
the three coefficients.

v2

f2
cT ∈ [−5, 1]× 10−3 ,

m2
W

m2∗
c+
V ∈ [−6, 0]× 10−3 ,

v2

f2
ceR ∈ [−5, 0]× 10−3 .

(2.38)

LEP I can constrain only the combination cW + cB . The orthogonal combination cW − cB
thus represents a so-called blind direction of LEP I. It can however be constrained by
trilinear gauge coupling measurements, as show in the following.

Bounds on hadronic operators originate from Z-pole measurements and the extraction
of GF from quark-lepton weak interactions at the low energy experiment KLOE and
β-decays [102]. In addition, the high energy cross section q̄q → l̄ν accessible at the LHC
[103] can be used. Combining this data yields the following bounds

v2

f2
cqL ∈ [−1, 4]× 10−3 ,

v2

f2
c

(3)q
L ∈ [−7, 4]× 10−3 ,

v2

f2
cuR ∈ [−8, 0]× 10−3 ,

v2

f2
cdR ∈ [−53, 1]× 10−3 ,

v2

f2
c+q3
L ∈ [−7, 13]× 10−3 ,

(2.39)

where c+q3
L = (cq3L + c

(3)q3
L )/2.

Trilinear gauge coupling measurements at the per-cent level. Trilinear gauge
couplings (TGCs) were accessible at LEP II and the Tevatron through di-boson production
processes such as e+e− →W+W− and are currently probed at the per-cent level [104].
Although the LHC is not yet competitive, the next run of the LHC should be sensitive
and improve the current measurements. In the SM, TGCs arise from the non-abelian
structure of the field strength in the gauge kinetic term

Lkin = −1

4
W i
µνW

µνi , W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν . (2.40)
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Consequently, the TGCs are of the form gεijk∂µW
i
νW

µjW νk, where the Levi-Civita
symbol implies couplings between the W+,W− and a neutral boson Z or γ after EWSB.
Interactions between three neutral fields are not present in the SM. The couplings are given
by the electric charge e for the γW+W− coupling, and eg/g′ for ZW+W−. Dimension-6
operators can give corrections to these SM values and are already constrained by current
precision measurements of the couplings. The extracted limits are [79, 105]

m2
W

m2∗

(
c−V + κ−HV

)
∈ [−4.4, 6.6]× 10−2 ,

m2
W

m2∗
κ+
HV ∈ [−5.5, 3.9]× 10−2 , (2.41)

where κ±HV = (κHW ± κHB)/2. The coefficient κ−HV affects the Higgs branching ratio
into Zγ.

Higgs measurements. Recent LHC measurements of Higgs production and partial
decay widths into b̄b, τ̄ τ, γγ and Zγ can constrain further indirect NP effects

m2
W

m2∗
κGG ∈ [−0.8, 0.8]× 10−3 ,

m2
W

m2∗
κBB ∈ [−1.3, 1.8]× 10−3 ,

m2
W

m2∗
κZγ ∈ [−6, 12]× 10−3 ,

(2.42)

while operators such as cH and c6 remain unconstrained for the time being. Despite the
stringent constraint, the bound on κZγ corresponds to the latest experimental bound on
the h → Zγ branching ratio at 10 times its SM value [106, 107]. This is thus the only
process which still allows for large deviations. Considerable improvements are expected
with the next run and more precise measurements of the LHC.

2.3.2 Current constraints on the Higgs couplings

The coupling a is indirectly constrained by the precision tests of the EW observables
performed at LEP, SLD and Tevatron, and directly measured in single Higgs processes
studied at the LHC. However, there is currently no significant constraint on the couplings
b and d3 as these can be measured only through double Higgs processes.

The sensitivity of the EW observables on a arises at the 1-loop level only through the
Higgs contribution to vector boson self energies. 7 This is the leading effect, two-loop
corrections are small and thus negligible. Compared to a few years ago, the information
that comes from the EW fit has sharpened [108–111]. This is mainly due to the value
of the Higgs mass being now precisely known experimentally, so that a global fit can be
used to extract the Higgs coupling to vector bosons directly, but also due to the new
and more precise measurement of the W mass from Tevatron. For example, compared

7The 1-loop Higgs contribution to the bb̄Z vertex is suppressed by y2
b and thus negligible.
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to the average of Tevatron and LEP measurements mW = (80.425 ± 0.034)GeV used
in the 2006 final report on EW tests at the Z pole [112], the current world average
mW = (80.385 ± 0.015)GeV [101] has an error smaller by more than a factor 2. As a
matter of fact, among the various observables sensitive to the Higgs coupling a, mW is
the one which leads to the most precise determination [111]. Focusing on the 1-loop Higgs
contribution to the vector boson self energies, the dependence on a can be straightforwardly
derived from that on mH at a = 1 [45]: the b-quark forward-backward asymmetry AbFB
prefers values a < 1, while the leptonic asymmetries Al and mW favour values slightly
larger than 1. Overall, the global fit of a is dominated by mW due to its small uncertainty,
with the other observables individually playing a minor role. By using the results from
the GFitter collaboration [108], we find that in absence of additional NP contributions to
the EW fit, the Higgs coupling is expected to lie in the interval 0.98 ≤ a2 ≤ 1.12 with
95% of probability. A similar result has been recently obtained by Ref. [111]. This is
an extremely strong bound which seems to disfavour Higgs compositeness as a natural
solution of the little hierarchy problem, in particular its realisations through compact
cosets where a is always reduced compared to its SM value (see for example eq. (3.7)).

To better understand this result it is useful to perform a two-dimensional fit in terms of
the Peskin–Takeuchi Ŝ and T̂ parameters [113, 114]. It is well known that modifying the
Higgs coupling to vector bosons compared to its SM prediction leads to a logarithmically
divergent shift in these two parameters, with ∆Ŝ > 0 and ∆T̂ < 0 [45]. FormH = 125GeV
and a = 1 the theoretical point lies slightly outside the 68% contour, and by decreasing a
it moves further outside the experimentally preferred region, following a trajectory almost
orthogonal to the probability isocontours. Thus, small reductions of the coupling a have
dramatic impact on the fit. Values a > 1 are less constrained but also theoretically less
motivated, as they require either non-compact cosets (like for example SO(4, 1)/SO(4)),
or a sizeable tree-level contribution from a scalar resonance with isospin I = 2 [115, 116]. 8

If one excludes these more exotic theoretical scenarios, one concludes that sizeable NP
contributions to the EW observables, in particular to the vector boson self energies, are
required to accommodate ∼ O(10%) shifts in the Higgs coupling a.

A negative and large ∆Ŝ can follow from loops of fermion resonances [117–120]. A sizeable
and positive ∆T̂ could also be generated by the 1-loop exchange of composite fermions,
in particular the top partners. For example, if both SM top chiralities couple with the
same strength to the strong dynamics, one naively expects ∆T̂ ∼ ξ y2

t /(16π2) (see for
example Ref. [80]), which shows that it is possible to obtain ∆T̂ ∼ a few × 10−3 for
ξ ∼ O(10%). Corrections of this size would dramatically modify the range of a preferred
by the EW fit, especially if accompanied by an additional ∆Ŝ < 0. For example, by
assuming ∆T̂ = +1.5 × 10−3 (with no extra ∆Ŝ), we find that the 95% interval on
the Higgs coupling becomes 0.70 ≤ a2 ≤ 0.92. It is thus interesting to see under what
conditions models can accommodate such corrections while satisfying all other constraints,

8The latter possibility can be directly tested experimentally, since the I = 2 multiplet includes
doubly-charged scalars which can be produced and observed at the LHC.
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in particular on the Zb̄b vertex, and investigate what their predictions for the production
of the top partners are at the LHC. The first analyses that appeared in the literature
seemed to indicate a generic difficulty to obtain positive ∆T̂ [45, 121–123]. However, a
more detailed exploration of the full parameter space in a broader class of models has
shown that there is more freedom in accommodating a positive and sizeable ∆T̂ while
keeping corrections to Zb̄b under control [119] (see also Ref. [124]).

One might wonder if a modified value of a can be helpful in relaxing the tension of the
b-quark observables AbFB and Rb. 9 In fact, as we already pointed out, all the observables,
including those related to the b quark, depend on a mainly through the 1-loop contribution
of the Higgs to the vector boson self-energies. As a consequence, any NP correction
to a cannot lead to an effect restricted to the b-quark sector, but will propagate to all
observables. Notice also that excluding AbFB from the fit pushes a towards larger values,
which are even more problematic from the theoretical viewpoint, although the effect is
small. It is thus clear that the existence of a tension in the b observables does not lead to
any room for relaxing the strong bound on the Higgs coupling a. Yet, the fact that in a
fit to the couplings of bL and bR to the Z the SM point lies outside the 95% probability
contour (see Refs. [110, 111, 126]) might indicate that the contribution from NP states is
already at work.

Apart from possible NP effects, the fit of a is strongly sensitive to the value of the W
and top quark masses. We have already stressed that mW dominates over the other
observables. Its current experimental measurement is ∼ 1.2σ larger than the one preferred
by the EW fit, if it goes down in the future also the central value of a will diminish.
The strong dependence on the top mass originates from the 1-loop correction to the
ρ parameter, ∆ρ = ∆T̂ ∝ m2

tGF , which we have seen has an important impact on a.
In this regard one must notice that the error reported in the current Tevatron average
mt = (173.18 ± 0.94)GeV [127] does not include the theoretical uncertainty on the
definition of the parameter extracted from the event kinematics in terms of the MS mass.
If one instead adopts the larger error σt = 2.8GeV that follows from measuring the MS

mass directly from the tt̄ cross section [128], one finds that the uncertainty on a increases
by a non-negligible amount [111]. While these issues have to be considered to make a
precise determination of the Higgs coupling, the overall picture which emerges from the
EW fit seems quite robust: O(10%) decrease in a require sizeable NP contributions to
the vector-boson self energies.

2.3.3 Oblique parameters

A particular subset of the electroweak precision data constrains deviations in the vacuum
polarisations of the SM gauge bosons, the so called oblique corrections, which were

9By including the two-loop calculation of Rb performed by Ref. [125], the pulls of AbFB and Rb are
respectively +2.7σ and −2.1σ [111] (see also [108] for similar results).
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especially well experimentally accessible at LEP through 2→ 2 fermion scattering. The
oblique parameters have been initially introduced in Refs. [113, 117, 129] and were
discussed in detail in the literature, see for example Refs. [114, 130, 131]. They can be
conveniently quantified in terms of the effective Lagrangian [132]

L = −1

2
W 3
µΠ33(p2)Wµ3− 1

2
BµΠ00(p2)Bµ−W 3

µΠ30(p2)Bµ−W+
µ Π±(p2)Wµ− . (2.43)

The various form factors are then expanded in powers of p2

Π(p2) = Π(0) + p2Π′(0) +
p4

2!
Π′′(0) + . . . . (2.44)

From the 12 parameters at O(p4), three of them can be absorbed in the definition of the
SM parameters

v2|exp ≡ −4Π±(0) ,
1

g2

∣∣∣∣
exp
≡ Π′±(0) ,

1

g′2

∣∣∣∣
exp
≡ Π′00(0) . (2.45)

Two further relations among the zeroth-order coefficients follow from the massless photon:
Πγγ(0) = ΠγZ = 0. We are hence left with seven free oblique parameters

Ŝ =
g

g′
Π′30(0), T̂ =

Π33(0)−Π±(0)

m2
W

, Y =
m2
W

2
Π′′00(0), W =

m2
W

2
Π′′33(0),

X =
m2
W

2
Π′′30(0), −Û = Π′33(0)−Π′±(0), V =

m2
W

2

(
Π′′33(0)−Π′′±(0)

)
.

(2.46)

The second line consists of the same linear combinations of form factors as the first line
with additional derivatives. These oblique parameters are thus associated to dimension-
8 and 10 operators whose effects are negligible compared to dimension-6. Since each
derivative contributes a suppression factor of 1/m∗, the second line is suppressed by
powers of mW /m∗ with respect to the first and can therefore be neglected. Consequently,
we remain with the four oblique parameters given in the first line of eq. (2.46) which
constrain NP effects in the gauge boson propagators. Their relation to the S and T

parameters introduced in Ref. [113] is simply

S =
4s2
W

αEM
Ŝ ≈ 119 Ŝ , T =

1

αEM
T̂ ≈ 129 T̂ . (2.47)

Note that T̂ breaks the custodial symmetry SU(2)R × SU(2)L. Generally, Ŝ and T̂

describe NP related to electroweak symmetry breaking involving the Higgs field while Y
and W are Higgs independent and related to new structures in the heavy sector, such as
additional heavy vectors as we will show explicitly in section 6.2, but also fermions or
scalars (see for example Ref. [133]).
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In the SM, the leading contributions to Ŝ and T̂ can be computed from the various
1-loop corrections to the gauge boson correlators. Three different loop diagrams, with
NGBs, the Higgs and the top running in the loop, contribute to the vacuum polarisations
as depicted in Fig. 2.2 [134]. Since T̂ is expected to be proportional to the custodial
breaking parameter g′, the computation can be performed in the gaugeless limit, g = 0,
and it suffices to consider diagrams with external NGBs only. It is important to note
that this is not an application of the equivalence theorem since we are interested in the
form factors at zero momentum. Furthermore, this small number of diagrams is sufficient
only in an Rξ-gauge where the kinetic Bµ − π3 mixing vanishes [135]. Otherwise, more
diagrams with explicit mixings would have to be taken into account. In particular, it is
most convenient to work in the Landau gauge (ξ = 0) where the NGBs are massless. The
explicit computation of the NGB and Higgs loops in Fig. 2.2 gives

ŜSM =
g2

96π2
log

(
m∗
mW

)
− g2

96π2
a2 log

(
m∗
mh

)
,

T̂SM = − 3g′2

32π2
log

(
m∗
mW

)
+

3g′2

32π2
a2 log

(
m∗
mh

)
,

(2.48)

where m∗ is the cutoff of the loop integrals and can again be associated to the scale of
NP. As anticipated T̂ is proportional to the custodial breaking parameter g′. Note that
we take a possibly modified coupling of the Higgs to vector bosons and NGBs through
the parameter a into account. Subleading corrections of order O

(
m2
W /m

2
h

)
have been

neglected in the above expressions. However, they explain the slight bend in the curve
describing the effect of the Higgs mass in the (Ŝ, T̂ ) plane [134]. The apparent logarithmic
divergences in the above equations can be recast into

ŜSM =
g2

96π2
log

(
mh

mW

)
+

g2

96π2
(1− a2) log

(
m∗
mh

)
,

T̂SM = − 3g′2

32π2
log

(
mh

mW

)
− 3g′2

32π2
(1− a2) log

(
m∗
mh

)
,

(2.49)

where now the first term, usually referred to as the IR contributions to the oblique
parameters, is finite and the Higgs mass can be interpreted as the cutoff value of the
divergent loop integral while the second term involves the factor 1− a2 which vanishes
for a SM Higgs boson with a = 1. Hence in the SM, the logarithmic divergence cancels
between the two diagrams. For modified Higgs couplings this is, however, no longer true
and a logarithmic dependence on the cutoff scale arises. Finally, the top gives the leading
contribution in the fermion loops as shown in Fig. 2.3

Ŝtop = − g2

48π2
log

(
m2
t

m2
Z

)
,

T̂top =
3g2m2

t

64π2m2
W

,

(2.50)
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Figure 2.2 – The Goldstone boson and Higgs contribution to Ŝ (upper row) and T̂ (lower row).
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Figure 2.3 – The leading top loop contribution contribution to Ŝ (left) and T̂ (right).

Note that current fits are usually centred around the SM value, i.e. the top and NGB
contributions have been subtracted such that only NP effects have to be taken into account.
The following contributions to the oblique parameters arise from the dimension-6 operators
of the effective Lagrangian

Ŝ = (cW + cB)
m2
W

m2∗
, T̂ = cT

g2
∗v

2

m2∗
,

W = c2W
m2
W

m2∗
, Y = c2B

m2
W

m2∗
.

(2.51)

The Ŝ and T̂ parameters have been very precisely constrained in recent fits [108, 111]
while W and Y have not been updated [114]. The current constraints are

Ŝ ∈ [−0.59, 1.09]× 10−3 , T̂ ∈ [−0.54, 1.32]× 10−3 ,

W ∈ [−0.7, 9.1]× 10−3 , Y ∈ [−4.7,−0.7]× 10−3 .
(2.52)
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3 The Minimal Composite Higgs
Model

In the past decade a realistic framework has emerged [40–46] in which the Higgs boson
arises as a pseudo-Nambu-Goldstone Boson (pNGB) from the spontaneous breaking of a
global symmetry G, of a new strongly interacting sector, to a subgroup H. These models
have two crucial advantages over plain technicolor models. Firstly, the presence of a light
Higgs boson allows the parametric separation between the G→ H breaking scale f and
the electroweak symmetry breaking scale v. This alleviates the tension of technicolor
models with electroweak precision tests [136]. Secondly, the flavour problem of technicolor
can be greatly improved by the implementation of partial compositeness [137] discussed
in more detail in section 3.2.

3.1 The Goldstone and gauge sector: a Higgs as a pNGB

Nambu-Goldstone bosons. The simplest realistic realisation of the composite Higgs
idea is represented by G = SO(5)× U(1)X and H = SO(4)× U(1)X . The U(1)X factor
is needed to obtain the correct hypercharge, Y ≡ T 3

R + X, for the SM fermions. This
breaking pattern satisfies the two conditions of a viable model. Firstly, the SM gauge
bosons gauge a subgroup SU(2)L×U(1)Y ⊂ SU(2)L× SU(2)R ∼ SO(4)′ ⊂ G. Secondly,
G/H contains one SU(2)L doublet which can be identified with the Higgs doublet. The
coset space of SO(5)×U(1)X/SO(4)×U(1)X contains a quadruplet of NGBs hâ = (πa, h)

transforming as a 4 of SO(4), three of which are eaten by the SM gauge bosons while the
fourth is the physical Higgs boson.1

Let us outline the symmetry breaking pattern in more detail. The global symmetry G
is broken spontaneously to the subgroup H at a scale f . Simultaneously, the couplings
of the elementary fields to the strong sector (discussed in section 3.2) break the global
symmetry G explicitly and generate a potential for the Higgs which is calculable in specific

1There are just two custodially symmetric cosets yielding only one complex doublet of Goldstones:
SO(5)/SO(4) and SO(4, 1)/SO(4).
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Chapter 3. The Minimal Composite Higgs Model

models and whose general structure is sketched in section 3.2.2. The potential aligns the
non-zero vacuum along a particular direction inside the coset. Four NGBs arise in the
breaking and can be encoded in the Goldstone boson matrix

U(h) = exp

(
i

√
2hâT â

f

)
, (3.1)

where T â are the broken SO(5)/SO(4) generators (see Appendix A.2 for their explicit
expressions). Notice that U(h) is an orthogonal matrix transforming as [138]

U(h)→ g U(h) ĥ(g, h)−1, g ∈ G, ĥ ∈ H. (3.2)

U(h) can be used to turn irreducible representations of G into irreducible representations
of H. Moreover, we can use U(h) to construct the 5-vector parameterising the NGB fields

ΣI(h) = U(h)Σ0 = UI5(h) =
1

h
sin

h

f

(
h1, h2, h3, h4, h cot

h

f

)T
, (3.3)

transforming linearly under SO(5), i.e. Σ(h)→ gΣ(h). The vacuum configuration is given
by Σ0 = (0, 0, 0, 0, 1) and we defined h =

√
(hi)2. Σ0 is the SO(5) vacuum that preserves

SO(4)′, i.e. the subgroup that embeds the complete SM gauge group SU(2)L × U(1)Y .
Notice, however, that the true vacuum, given by

Σ =

(
0, 0, 0, sin

h

f
, cos

h

f

)T
, (3.4)

preserves a different SO(4) 6= SO(4)′ which overlaps with SO(4)′ only in one generator
for the electromagnetic subgroup U(1)Q. The true vacuum corresponds to eq. (3.3) in the
unitary gauge. The misalignment between the two vacua is parameterized by the angle
θ = 〈h〉/f which is determined dynamically in the breaking. We can distinguish two cases.
For θ = 0, no vacuum expectation value is generated and the two vacua coincide. This is
the case because the partially gauged SO(4)′ coincides with the preserved SO(4) and the
EW symmetry remains unbroken. The vacua of SO(4)′ and SO(4) are only misaligned
for θ 6= 0, when the EW symmetry is broken by the dynamically generated non-zero vev
v = f sin θ. Also the gauge group is spontaneously broken at the same time as G/H. To
consider the different limits let us also define the parameter2

ξ =
v2

f2
= sin2 θ > 0 . (3.5)

The limit ξ → 0 corresponds to the SM since NP only comes in at such high energies,
f →∞, that its effects are negligible. Instead, ξ → 1 describes the maximally broken,
technicolor case where v = f . The physical Higgs field decouples at linear order from the

2Note that for SO(4, 1)/SO(4) it would be ξ = −v2/f2 < 0.
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3.1. The Goldstone and gauge sector: a Higgs as a pNGB

electroweak sector as can be seen explicitly from the Higgs couplings in eq. (3.7). In this
case, the technicolor vacuum of the remaining NGBs, introduced in section 2.1.2, breaks
the electroweak symmetry. A composite Higgs model thus interpolates between the two
breaking mechanisms.

The chiral Lagrangian at O(p2) can be simply written as

L(2) =
f2

2
(DµΣ)T (DµΣ) ,

=
1

2
(∂µh)2 +

f2

4
Tr (DµΦ)† (DµΦ) sin2

(
θ +

h

f

)
.

(3.6)

such that mW = gf/2 sin θ. To construct the O(p4) chiral Lagrangian, it is most
convenient to use the covariant CCWZ variables discussed in appendix A.1. Equation 3.6
reduces to a particular case of eq. (2.16) where

a =
√

1− ξ , b = 1− 2ξ , b3 = −4

3
ξ
√

1− ξ . (3.7)

once the sine is expanded. Further expanding the above relations to O(ξ2), eq. (2.32)
with cH = 1, c′H = 2 is reproduced. The expression for d3 depends instead on the form of
the Higgs potential, which is model dependent since it requires some explicit breaking
of the Goldstone symmetry G. For example, in the minimal composite Higgs models
with the elementary fermions embedded in 4 or 5 of SO(5), MCHM4 and MCHM5 of
Refs. [41, 43], one has

MCHM4 : d3 =
√

1− ξ , MCHM5 : d3 =
1− 2ξ√

1− ξ , (3.8)

from which c6 = 1, c8 = 5/4 in the MCHM4 and c6 = c8 = 0 in the MCHM5 follows.

The fact that at O(v2/f2) the couplings a, b, b3 are affected by only one operator [80],
whose coefficient cH can always be redefined away by a proper redefinition of f (for
example it can be set to 1), has an important consequence.3 Since the predictions of any
coset G/H must match those of the SILH Lagrangian at low energy, this implies that
the expressions of eq. (2.32) are universal at first order in v2/f2, i.e. they are the same
for a pNGB and for a generic scalar. At order v4/f4, instead, the couplings a, b, b3 are
modified by two operators, whose coefficients are thus related by a specific relation for
any given coset G/H; for example, the coset SO(5)/SO(4) implies c′H = 2cH . One can
thus distinguish the case of a generic SILH, where c′H can have any value, from that of a
pNGB Higgs.

3Note that custodial symmetry is crucial for this argument since otherwise two dimension-6 operators
would contribute at O(v2/f2).
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Chapter 3. The Minimal Composite Higgs Model

Gauge bosons. The bosonic sector of the theory comprises not only the Goldstone
bosons of the SO(5)/SO(4) coset but also the gauge bosons of the SU(2)L × U(1)Y
SM gauge symmetry. We expect the elementary gauge bosons to couple linearly to
dimension-3 conserved currents of the strong sector, as discussed below eq. (3.13). Upon
integrating out the heavy degrees of freedom of the composite sector these G-breaking
interactions will generate an effective Lagrangian for the gauge bosons which can be
used to derive the gauge contribution to the Higgs potential. The most general effective
action for the SM gauge fields can be derived under the assumption that the full global
symmetry of the strong sector G is gauged. Working in Landau gauge, at the quadratic
level in momentum space, this SO(5)× U(1)X invariant Lagrangian is given by

Lgeff =
1

2
P (t)
µν

[
ΠX

0 (p)AX µAX ν + Π0(p)Tr[AµAν ] + Π1(p)ΣTAµAνΣ
]
, (3.9)

where P (t)
µν = ηµν−pµpν/p2 is the transverse projector.4 We identify the SM gauge bosons

among the SO(5)× U(1)X ones according to

AaLµ = W a
µ , A3R

µ = AXµ = Bµ, A1R,2R
µ = Aâµ = 0 . (3.10)

Using these relations, the effective Lagrangian for the SM gauge fields becomes

Lgeff = P (t)
µν

[
1

2
W aµΠabW

bν +W 3µΠ30B
ν +

1

2
BµΠ00B

ν

]
, (3.11)

where the form factors are related to those in eq. (3.9) by

Π00 = Π0 + ΠX
0 +

s2
h

4
Π1 ,

Π03 = −s
2
h

4
Π1 ,

Πab = δab

(
Π0 +

s2
h

4
Π1

)
.

(3.12)

where we used the shorthand notation sh ≡ sinh/f .

3.2 The fermionic sector: partial compositeness

The degrees of freedom, whose elementary nature is well probed (the light quarks and
leptons and the transverse polarisations of the gauge bosons), are external to the strongly
interacting sector and they communicate with it only through linear couplings of the
form

Lmix = g AµJ µ + λ qO + . . . , (3.13)

4Notice that ΣTAΣ = 0.
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3.2. The fermionic sector: partial compositeness

where J is a global current of the strong sector which is gauged by the SM vector bosons
Aµ and O is a fermionic operator (assumed to have a scaling mass dimension 5/2) [139].
The couplings of the elementary fields to the strong sector break the global symmetry
G explicitly and generate a potential for the Higgs. The largest contribution to the
pNGB potential comes typically from the interactions generating the top quark mass.
The Yukawa for the top quark arises from the coupling of the elementary qL and tR to
the strong sector according to the pattern sketched above in eq. (3.13)

Lmix = λLf qLOqL + λRf tROtR + h.c. , (3.14)

where f is the sigma model decay constant and O stands for fermionic resonances of mass
mψ in the low energy theory (their naive dimension is now 3/2). Dimensional analysis
ensures the leading contribution to the top Yukawa to be

yt ∼
λLλR
gψ

, (3.15)

where 1 < gψ ∼ mψ/f < 4π is the typical coupling among these fermionic resonances. We
wish to distinguish this coupling from the one among the vector resonances, gρ. Notice that
gψ can be naturally smaller than gρ due to an approximate chiral symmetry. So far, both
couplings were jointly referred to as g∗. The dimensionless parameters εL,R ≡ λL,R/gψ
determine the degree of compositeness of the various SM fields ranging from 0 (elementary
state) to 1 (composite state). Furthermore, flavour changing neutral currents arising
through four fermion interactions (falling in the first category of dimension-6 operators
introduced in section 2.2.1) which have been problematic in traditional technicolor are
now of the form

λiλjλkλl
g2
ψm

2
ψ

, (3.16)

and thus strongly suppressed by four powers of the elementary-composite mixing.

Deep insight into the structure of the Higgs potential is obtained by exploiting the
symmetry properties of eq. (3.14). As the strong sector obeys a global symmetry G the
operators Oq and Ot can be classified according to their transformation properties under
G.5 Furthermore when both interactions in eq. (3.14) and the SM gauge interactions
are switched off, the action for the elementary fields is invariant under an independent
SU(2)× U(1) group, with charges corresponding to their SM quantum numbers. The
couplings λL and λR break this large G ≡ SU(2)×U(1)×G to the gauged SU(2)L×U(1)Y
vector subgroup. It is however possible to assign spurious transformation properties to

5The fact that G is spontaneously broken to a subgroup H does not affect this statement as the
Goldstone bosons from G → H can be used in the definition of Oq and Ot in order to make them
transform linearly under G.
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Chapter 3. The Minimal Composite Higgs Model

the λs, promoting them to λ̂s, in order to make eq. (3.14) formally invariant under G

Lmix = f qαL(λ̂L)αIOq IL + f tαR(λ̂R)αIOt IR + h.c. ; (3.17)

α and I are irreducible SU(2)× U(1) and G indices respectively.

When both the strong sector and the high energy fluctuations of the elementary modes
are integrated out the resulting effective action will respect the spurious G symmetry.
SU(2) × U(1) invariance implies that, for instance, at leading order in λL only the
combination XLI⊗J ≡ (λ̂Lλ̂L)I⊗J will enter the Higgs potential. The same argument
constrains the form of the λR contribution.

XL,R transform spuriously as reducible representations of G: XI⊗J =
∑

rX
r
Ir
. Combining

X with the Goldstone matrix U in eq. (3.2) according to their transformation properties
we can construct non-linear G invariants, Ii(h/f), which depend non-trivially on the
pNGB h. The structure of the potential will thus be [80]

V (h) = V (1 loop)(h/f) + V (2 loop)(h/f) + . . .

= f2m2
Ψ

(gψ
4π

)2 (
ε2F (1)

1 (h/f) + ε4F (1)
2 (h/f) + . . .

)
+f2m2

Ψ

(gψ
4π

)4 (
ε2F (2)

1 (h/f) + . . .
)

+ . . . ,

(3.18)

where

F =
∑
i

ciIi

(
h

f

)
, (3.19)

i.e. each of the functions F is a sum of the non-trivial G invariants which can be
constructed at a given order in ε and ~. eq. (3.18) allows us to determine how EWSB
occurs. Generically we expect the one-loop, leading order F (1)

1 contribution to be dominant.
As the various F are expected to be O(1) functions of their argument, some degree of
cancellation among the ci is necessary to obtain a small enough ratio ξ = (v/f)2 which is
crucial for a realistic phenomenology. In the absence of other cancellations, this irreducible
tuning of a composite Higgs model can be quantified by ξ itself.

For certain choices of the operators Oq,t, the leading contribution to the Higgs potential,
F (1)

1 , contains a single invariant at O(ε2). This happens for instance in the simplest case
in which both Oq and Ot transform as a 5 of SO(5) where

ε2F (1)
1 = c1ε

2s2
h , (3.20)

with sh ≡ sinh/f , and only a discrete set of values is available for ξ. In order to be
able to tune ξ � 1, it is necessary to suppress the coefficient of the leading order term
in eq. (3.20) to be of the same order as the O(ε4) subleading contribution which will

36



3.2. The fermionic sector: partial compositeness

contribute with the new independent functions of h/f

ε4F (1)
2 =

(
c2ε

2
)
ε2s2

h

(
1− s2

h

)
. (3.21)

In other words we need c1 ≈ c2ε
2 and the tuning is worsened to ξ × ε2. The simplest situ-

ation that avoids this peculiar behaviour corresponds to the Oq being the 14 dimensional
(symmetric and traceless) representation of SO(5) and Ot being a singlet. This choice
defines the MCHM14 [48]. In the MCHM14, already F (1)

1 contains two invariants and a
viable EWSB can be achieved with the minimal amount of tuning.

To study the consequences of this model beyond simple dimensional analysis the calcula-
bility of the Higgs potential is a crucial property. A 4D realisation of the MCHM14 has
been obtained in Ref. [48] using Weinberg’s sum rules to ensure calculability.6 Collective
breaking, used in Ref. [47], led to the same result. In this section, we follow the original
approach of Ref. [41] studying a holographic realisation of the MCHM14 where calculabil-
ity is related to locality in an extra dimension. The only difference between our approach
and the original holographic approach to composite Higgs models is the 5D metric, that
we choose to be flat and not AdS5.

The remainder of this section is organised as follows. In section 3.2.1 and 3.2.2, we clarify
the role of symmetries and dimensional analysis in the structure of the Higgs potential of
the MCHM14. We recall the general features of holographic composite Higgs models in
section 3.3 and describe the setup leading to the MCHM14 in detail. In section 3.4, we
compute the Higgs potential and study the dependence of ξ and mh on the parameters of
the 5D model. Here we study the spectrum of the fermionic resonances, their relations
with the Higgs mass and the tuning of the holographic implementation. In section 3.5 we
summarise and conclude, sketching some possible phenomenological implications of the
model.

3.2.1 A composite Higgs with qL ∈ 14 and tR ∈ 1

We assume the existence of fermionic operators OqL ∈ 142/3 and OtR ∈ 12/3. The subscript
refers to the U(1)X charge.7 According to partial compositeness these operators couple
to the elementary fermions through linear mixings

Lmix = λLf q
α
LTr

[
PαLOqL

]
+ λRf t

α
RP

α
ROtR + h.c. . (3.22)

6For an extensive discussion of the use of generalised Weinberg’s sum rules in general composite Higgs
models see Ref. [49].

7Notice that our choice of the representations of the composite operators mixing with the top sector
do not generate dangerous corrections to the ZbLbL coupling thanks to a PLR symmetry [140, 141]. In
this section we do not discuss the implementation of SM fermion masses apart from the top quark since
their effect on the Higgs potential is subleading. However, the model can be extended in order to generate
a mass for the b-quark without introducing large corrections to the ZbLbL and ZbRbR couplings. These
will be generically proportional to the mixing angles in the bottom sector which can be small consistently
with the generation of the small b mass.
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To make contact with eq. (3.17), we define λ̂L = λLPL and analogously λ̂R = λRPR
where λL and λR are numerical coefficients describing the mixing strength between the
elementary states and the composite sector. Both PαL and Oq are taken to be 5 × 5

matrices transforming as

Oq → g−1Oq g, PαL → g−1PαL g, g ∈ SO(5). (3.23)

α is an elementary SU(2) index. eq. (3.22) is formally invariant under a spurious symmetry
group G ≡ SU(2)× U(1)× SO(5)× U(1)X if one assumes

qL ≡ (2, 2/3,1, 0), Oq ≡ (1, 0,14, 2/3), PL ≡ (2,−2/3,14,−2/3) ,

tR ≡ (1, 2/3,1, 0), Ot ≡ (1, 0,1, 2/3), PR ≡ (1,−2/3,1,−2/3) .
(3.24)

The spurion PαL is given by

PαL =
1

2

 ~vα

~vαT

 , (3.25)

with

~v1T = (0, 0, i,−1), ~v2T = (i,−1, 0, 0), (3.26)

while PR = 1. The explicit expression for the matrix ψq ≡ qαLPαL is thus

ψq =
1

2


ibL
−bL
itL
−tL

ibL −bL itL −tL

 . (3.27)

Once the strong sector is integrated out the resulting effective Lagrangian for the light
degrees of freedom has to respect the full spurionic symmetry which implies that qL and
tR will only enter through the combinations ψq and ψt ≡ tR. The relevant terms in the
most general effective Lagrangian are thus

Leff = Πq
0Tr

[
ψq p/ψq

]
+ Πt

0ψt p/ψt

+4Πq
1ΣTψq p/ψqΣ + Πq

2

(
ΣTψqΣ

)
p/
(
ΣTψqΣ

)
+M t

1ψ̄tΣ
TψqΣ + h.c. ,

(3.28)

where Πq
0,Π

t
0,Π

q
1,Π

q
2,M

t
1 are p2-dependent form factors that we will determine in the

complete 5D theory in section 3.3 (the explicit form in 5D can be found in Appendix
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A.3.2). In terms of tL, bL and tR the Lagrangian in eq. (3.28) becomes

Lfeff = ΠbLbL p/bL + ΠtLtL p/ tL + ΠtRtR p/ tR −
(
ΠtLtRtLtR + h.c.

)
, (3.29)

where the form factors are related by

ΠbL = Πq
0 + 2Πq

1c
2
h,

ΠtL = Πq
0 + Πq

1

(
1 + c2

h

)
+ Πq

2s
2
hc

2
h,

ΠtR = Πt
0,

ΠtLtR = M t
1shch,

(3.30)

with sh ≡ sinh/f and ch ≡ cosh/f .
eq. (3.29) is sufficient to extract the top quark mass:

m2
t =

|M t
1|2s2

hc
2
h

Πt
0(Πq

0 + Πq
1

(
1 + c2

h

)
+ Πq

2s
2
hc

2
h)
≈ ξ |M

t
1|2

Πt
0 Πq

0

. (3.31)

Here the form factors are evaluated at p = 0 which neglects effects of order m2
t /m

2
T where

mT is the mass of the fermionic resonances in the strong sector. In the last equality
we assumed the existence of a hierarchy Πq

1,Π
q
2 � Πq

0. As we will explain below this
assumption is guaranteed by partial compositeness.

3.2.2 The Higgs potential

As the couplings of the elementary fermions and gauge bosons break the global symmetry
of the strong sector, integrating out their high energy modes at 1-loop or higher order will
generate a non-vanishing potential for the Higgs boson. At 1-loop the calculation is the
one of Coleman and Weinberg in Ref. [142]. The gauge contribution to the Higgs potential
is obtained starting from eq. (3.9). After rotation of the form factors to Euclidean space
we obtain

Vg(h) =
3

2

∫
d4pE
(2π)4

[
2 log

(
1 +

s2
h

4

Π1

Π0

)
+ log

(
1 +

s2
h

4

Π1

Π0

2Π0 + ΠX
0

Π0 + ΠX
0

)]
, (3.32)

where p2
E = −p2 is the Euclidean momentum. The explicit expression of the form factors

in a 5D model is obtained in section 3.3. Similarly, the fermionic contribution to the
Higgs potential follows from eq. (3.29)

Vtop (h) = −2Nc

∫
dp4

E

(2π)4

[
log
(

ΠbL
)

+ log
(
p2
EΠtLΠtR +

∣∣ΠtLtR
∣∣2)] , (3.33)

where again all form factors are functions of the Euclidean momentum pE . The convergence
of the integrals in eq. (3.32) and eq. (3.33) depends on the details of the model. In the
holographic case the form factors turn out to be exponentially decreasing functions of pE ,
while the convergence is only power-like in discretised models.
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Chapter 3. The Minimal Composite Higgs Model

To extract the structure of the Higgs potential we use again the relations Π1 � Π0 and
Πq

1,Π
q
2 � Πq

0 that allow us to expand the logarithms and write the non-constant part of
the potential as

V (h) = αc2
h + βs2

hc
2
h = (β − α)s2

h − βs4
h . (3.34)

The coefficients α and β are given by

α = −3

4

∫
d4pE
(2π)4

Π1

Π0

(
1 +

2Π0 + ΠX
0

2
(
Π0 + ΠX

0

))− 6Nc

∫
d4pE

(2π)4

Πq
1

Πq
0

, (3.35a)

β = −2Nc

∫
d4pE

(2π)4

(
Πq

2

Πq
0

− |M t
1|2

p2
E Πq

0 Πt
0

)
. (3.35b)

The potential in eq. (3.34) has a minimum for

v2

f2
≡ ξ = sin2

(〈h〉
f

)
=
β − α

2β
, (3.36)

corresponding to a physical Higgs mass

m2
h = 2

α2 − β2

βf2
= −8β

f2
ξ(1− ξ) . (3.37)

Assuming the gauge contribution to be subleading we can estimate the expected size of
α and β using spurionic symmetries and dimensional analysis [141]. The Lagrangian in
eq. (3.22) is formally invariant under the spurious symmetry group G described in the
Introduction. As the composite sector and the high energy fluctuations of the SM fields
are integrated out, the Higgs potential has to satisfy the spurionic symmetry G with its
SO(5) subgroup being non-linearly realised. Since no non-trivial invariants can be build
out of λRPR which does not break SO(5), this structure will not enter the potential. For
λLP

α
L there are two possibilities

I1 ≡ (U †PαLP
†
LαU)55 = ΣTPαLP

†
LαΣ = 1− 3

4
s2
h ,

I2 ≡ (U †PαLU)55(U †P †LαU)55 = (ΣTPαLΣ)(ΣTP †LαΣ) = s2
hc

2
h .

(3.38)

Both invariants can be generated at 1-loop order and are proportional to λ2
L. The leading

contribution to the potential will thus be of the form

V (h) ≈ NC

m4
ψ

16π2

λ2
L

g2
ψ

(a1I1 + a2I2) , (3.39)

where a1, a2 are coefficients of order 1, and mψ ≡ gψf is the typical mass of the fermionic
resonances cutting off the UV divergences in V (h). As a1 is naturally of the same order
as a2, a given value of ξ requires a cancellation of order ξ among the parameters. The
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Higgs mass, on the other hand, is given by

m2
h ∼ NC

g2
ψ

2π2

g2
ψ

λ2
R

y2
t v

2|a2|(1− ξ) ≈ (380 GeV)2 1

ε2R

(gψ
4

)2
|a2|. (3.40)

This implies that, to obtain the measured value of the Higgs mass in a natural way,
we need εR ≈ 1 (in which case tR would be a fully composite state), a small gψ and
|a2| ∼ O(1) or a suppressed quartic coupling |a2| . 1. This second possibility will increase
the tuning from ξ to ξ×|a2| if it is obtained through cancellations between the two pieces
in the expression of β in eq. (3.35). These considerations must be taken with a grain of
salt. While the parametric behaviour of mh as a function of the various parameters is a
solid prediction, the overall normalisation of eq. (3.40) is only an educated guess. In a
specific model, numerical factors of order 1 can conspire to make |a2| somewhat larger
or smaller than 1 in a completely natural way. In the former case the tuning needed to
obtain a light Higgs boson would be enhanced while in the latter it would be reduced.
We will show an effect of this kind in our specific example in section 3.4.

3.3 The 5D construction

In order to make quantitative predictions from our setup we need a framework where
the Higgs potential is calculable. In this section we follow the holographic approach
where finiteness is ensured by locality in an extra dimension. This follows from the
AdS/CFT correspondence [143], where a strongly coupled 4D theory can be related to a
weakly coupled theory in a slice of 5D anti de-Sitter (AdS) space (for detailed reviews see
[144, 145]). For simplicity, and as justified in the next paragraph, we define our theory in
a compact extra dimension R4 × [0, L] with a flat metric

ds2 = ηµνdx
µdxν − dz2, (3.41)

and with L−1 = O(TeV). To compute the effective action for the light degrees of freedom
we follow the holographic prescription as described in Ref. [146] where the fields at one
boundary are separated from the bulk degrees of freedom. The bulk obeys an enlarged
gauge symmetry SO(5)× U(1)X and is broken to the SM gauge group at the UV brane
and SO(4)× U(1)X at the IR brane. Elementary fields are mostly localised in the UV
while composite particles, including the Higgs boson and right-handed top quark, live
on the IR brane. By integrating out the bulk, an effective holographic Lagrangian for
the boundary fields can be obtained. Form factors are computed in terms of boundary
to boundary 5D propagators. The scalar degrees of freedom arise as the fifth gauge
field component in so called gauge-Higgs unification models [40, 147]. In this case, the
scalars correspond to pNGBs of the 4D theory. For a detailed analysis of the holographic
techniques and gauge-Higgs unification in a flat extra dimension see Ref. [148].

One may question the use of the flat metric in our construction: extra dimensional models
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Chapter 3. The Minimal Composite Higgs Model

require warping in order to properly address the hierarchy problem. It is known however
that it is possible to mimic the low energy behaviour of a theory in warped space (AdS5

in particular) by a theory formulated in a flat extra dimension with suitable terms added
to its action [149–151]. This is enough to implement features like partial compositeness
in flat space. In a warped theory these properties would follow automatically from the
dual 4D interpretation.

In Appendix A.3 we give all the formulas which are necessary to implement our model
also on an AdS5 background.

3.3.1 Gauge degrees of freedom

The bulk theory obeys a gauged SO(5)× U(1)X symmetry8 corresponding to the action

Sg5D = −
∫
d4x

∫ L

0

dz

L

[
1

4g2
5

Tr[F 2
MN ] +

1

4g2
X

(
FXMN

)2]
. (3.42)

The gauge symmetry is broken to SU(2)L×U(1)Y in the UV (z = 0) and to SO(4)×U(1)X
in the IR (z = L) by the boundary conditions [150]

F aLµ5 = F aRµ5 = FXµ5 = 0, Aâµ = 0, z = L,

AaLµ = W a
µ , A3R

µ = AXµ = Bµ, A1R,2R
µ = Aâµ = 0, z = 0.

(3.43)

The z = 0 values of the 5D fields are used as interpolating fields (holographic fields) in
the low energy theory.

The bulk gauge symmetry has to be gauge fixed. A useful gauge to adopt is the one in
which A5 vanishes along the extra dimension. This is reached by a rotation of the gauge
fields by the Wilson line

ḡ(x, z) = P
[
exp

(
i

∫ z

0
dz′Aa5(x, z′)T a

)]
, (3.44)

where ‘P’ stands for path ordered exponential and T a are the SO(5) generators. The
issue with ḡ is that it does not reduce to an element of SO(4) on the IR boundary. This
problem can be bypassed by enlarging the gauge group at z = L through the explicit
introduction of Goldstone bosons. The IR boundary conditions in eq. (3.43) are therefore
redefined in terms of the rotated field

A
(U)
M ≡ U(AM + i∂M )U † , (3.45)

8The gauged symmetry includes colour SU(3) which we do not write explicitly.
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where U is the matrix in eq. (3.1) and(
A(U)

)â
µ

(x, L) = 0 ,
(
F (U)

)â
µ5

(x, L) = 0. (3.46)

This corresponds to an SO(5) gauge transformation by the matrix U . Thanks to the
transformation properties of U the IR boundary conditions are now invariant under the
full SO(5) group and eq. (3.44) can be used to reach the A5 = 0 gauge. It is important
to keep in mind that no new degree of freedom has been introduced in the theory. This
is clear since the new scalars in U can be gauge fixed to zero by an appropriate gauge
transformation on the IR boundary. The dependence of the IR action on U can be
removed through a constant bulk gauge transformation A→ A(U†). As the bulk action is
SO(5) invariant, the effect is merely to move the dependence on U to the UV boundary
conditions which become

Aµ(x, 0) = a(U)
µ . (3.47)

This rotation will affect all the fields in the theory according to their SO(5) representations
and determine how the Higgs boson enters the theory.

Localised terms consistent with the reduced gauge symmetry can be added on both
boundaries. For the gauge fields we add kinetic terms for the holographic sources

SgUV = −
∫
d4x

[
1

4g2
2

(
W a
µν

)2 − 1

4g2
1

(Bµν)2

]
. (3.48)

Following Ref. [146] we obtain the effective action for the holographic degrees of freedom.
We solve the classical equations of motion for the bulk fields with the boundary conditions
specified in eq. (3.43) and we get

Sgeff = SgUV −
∫
d4x

[
1

2g2
5L

Tr[Aµ∂5A
µ] +

1

2g2
XL

AXµ ∂5A
Xµ

]
. (3.49)

The gauge fields can be split into their longitudinal and transverse parts Aµ = A
(l)
µ +A

(t)
µ .

It is easy to show that the solution of the equation of motion for the longitudinal part is

Aâ(l)(z) = Aâ(l)(0)
(

1− z

L

)
, Aa(l)(z) = 0. (3.50)

The A5 = 0 gauge is reached by rotating the UV boundary values of the gauge fields as
in eq. (3.47). The residual gauge freedom can be fixed by going to the Landau gauge
B

(l)
µ = W

a (l)
µ = 0. Now the terms in eq. (3.49) corresponding to the longitudinal part of

the broken SO(5)/SO(4) gauge fields deliver the kinetic term for the Goldstone bosons

Lkin = − 1

2g2
5L

2
Tr[(U †∂µU)2] . (3.51)
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Matching its normalisation to eq. (3.6) implies the relation

f2 =
2

L2

1

g2
5

. (3.52)

From the remaining part of eq. (3.49) one obtains the form factors appearing in eq. (3.12)

ΠX
0 =

p2

g2
1

− p2

g2
2

+
Π(p)V
g2
XL

,

Π0 =
p2

g2
2

+
Π(p)V
g2

5L
,

Π1 = 2
Π̂V (p)−ΠV (p)

g2
5L

,

(3.53)

where ΠV (p) = p tan pL and Π̂V (p) = −p cot pL. Using eqs. (3.12) and (3.53) we obtain
for the gauge couplings

1

g2
=

1

g2
2

+
1

g2
5

(
1− ξ

3

)
≈ 1

g2
2

,
1

g′2
=

1

g2
1

+
1

g2
X

+
1

g2
5

(
1− ξ

3

)
≈ 1

g2
1

, (3.54)

which also imply g1 ≈ g′, g2 ≈ g and therefore g1 = g2tW with tW the tangent of the
weak mixing angle. The first zero of Πab in eq. (3.9) corresponds to the W mass. In the
limit g2 � g5 this is given by

m2
W ≈

1

L2

g2
2ξ

2g2
5

. (3.55)

The masses of the Kaluza-Klein resonances can be obtained from the zeros of the form
factors. The first KK partner of the W has a mass, before EWSB, given by

MKK =
π

2L
+O

(
g2

2

Lg2
5

)
. (3.56)

Also the Ŝ parameter is readily computed from eq. (3.9)

Ŝ ≡ g2Π′30(0) =
ξ

3
(
1 + g2

5/g
2
2

)
− ξ ≈

g2
2ξ

3g2
5

. (3.57)

One can interpret Ŝ as originating from the tree level exchange of the massive KK vectors

Ŝ ∼ m2
W

M2
KK

. (3.58)

Notice the factor of π2 mismatch between eqs. (3.57) and (3.58) when eq. (3.56) is used.
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3.3. The 5D construction

This is due to the sum over the whole KK tower (M (n)
KK ∼ nπ/L) since

∑
1/n2 = π2/6.

Substituting the form factors in eqs. (3.12) and (3.53) into the potential of eq. (3.32) and
assuming g2 � g5, g1 � gX and g5 ≈ gX we can perform the integral explicitly to get

Vg(sh) = − 1

L4

63ζ(3)

256π2

(
1 +

t2W
3

)
g2

2

g2
5

c2
h. (3.59)

Notice that the gauge contribution to the potential gives a positive mass term for the
Higgs and therefore does not break electroweak symmetry [152, 153].

Let us now discuss the role of the UV localised kinetic terms for the gauge fields in a flat
extra dimension [151]. As shown in eq. (3.54), in the absence of these contributions the
kinetic terms of the gauge bosons would come only from the strong sector 1/g2 ≈ 1/g2

5.
In this case we would expect no difference between the electroweak bosons and the other
vector resonances of the theory: this is exemplified by the value of Ŝ which is of order one
without UV localised kinetic terms. Such a scenario is clearly not viable. The inclusion of
large kinetic terms on the UV boundary is required to ensure that the SM W and Z are
sufficiently weakly coupled to the strong sector. The parameter g/g5 can be understood
as the degree of mixing between the elementary gauge fields and the composite resonances
of the strong dynamics.

When the theory is formulated in AdS5 space the suppression of the mixing between
the elementary and the composite sector is guaranteed by the curvature of the metric
without the necessity to add localised kinetic terms (see Appendix A.3). The reason
for this is the presence of a warping which makes a clear distinction between the UV
localised (elementary) and IR localised (composite) states: the small overlap of their wave
functions automatically ensures a suppression of their mixing.

3.3.2 Fermionic degrees of freedom

We introduce two bulk Dirac fermions in SO(5) × U(1)X representations:
Ψq = 142/3 = 12/3 ⊕ 42/3 ⊕ 92/3 and Ψt = 12/3. We work in the massless b quark limit.
To properly account for the b quark mass two further multiplets embedding a qL and a
bR with X = −1/3 have to be introduced with appropriate boundary conditions. There
is some degree of arbitrariness in the definition of the boundary conditions for the various
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Chapter 3. The Minimal Composite Higgs Model

fermionic components. Our choice is the following9

Ψt = (ψtL(−+) ψtR(+−)) , (3.60)

Ψq ⊃


ψ

(1)
qL (−−) ψ

(1)
qR (++)

ψ
(4)
qL =

(
q′L(−+)

qL(++)

)
ψ

(4)
qR =

(
q′R(+−)

qR(−−)

)
ψ

(9)
qL (−+) ψ

(9)
qR (+−)

(3.61)

where we take the UV boundary values of the T 3
R = −1/2 components of ψ(4)

qL and of ψtR
as holographic fields. Notice that the boundary conditions on the IR brane commute
with the unbroken SO(4) symmetry. The two multiplets are assigned the bulk masses
MΨt and MΨq respectively so that the bulk action is given by

Sf5D =

∫
d4x

∫ L

0

dz

L
Tr[Ψq

(
i /D +MΨq

)
Ψq] + Ψt

(
i /D +MΨt

)
Ψt , (3.62)

where the factor 1/L has been introduced to ensure the dimensionality of the 5D fermions
to be equivalent to the canonically normalised 4D fields. At this level the only zero modes
are a left-handed SU(2)L doublet, qL, and a right-handed SU(2)L singlet, ψ(1)

qR , both
coming from Ψq.

The IR boundary terms allowed by the unbroken SO(4)× U(1)X symmetry at x = L are
given by the sum of four different kinetic terms for the four SO(4) representations plus a
mass mixing between the two SO(4) singlets:

SfIR =

∫
d4x

∫ L

0
dz

[ (
kt1ψtLi /DψtL + kq1ψ

(1)
qR i /Dψ

(1)
qR + kq4ψ

(4)
qL i /Dψ

(4)
qL + kq9ψ

(9)
qL i /Dψ

(9)
qL

)
+
(
m11ψ

(1)
qRψtL + h.c.

)]
δ(z − L) .

(3.63)

The parameter m11 has the dimension of a mass and controls the mixing between the
right-handed component of the singlet inside Ψq and the left-handed component of Ψt.
This mixing ensures that the holographic source for ψtR has a non vanishing overlap with
the right-handed zero mode living in Ψq. This is crucial because the top Yukawa coupling
arises from the kinetic term of Ψq after EWSB.10 The parameters ki are dimensionless

9For the decomposition of the 142/3 representation in terms of SM quantum numbers see Appendix
A.3.2.

10Notice that we could have exchanged the boundary conditions of Ψt with those of ψ(1)
1 with little

change in the physics. Another possibility could have been to dispose of the 5D singlet and to use
the UV boundary value of ψ(1)

qR as the holographic field. In a model implemented in AdS5 space this
possibility requires both the tL and the tR to couple to the same operator in the strong sector thus
implying λL ∼ λR ∼

√
ytgψ. This is problematic for two reasons: firstly it does not allow us to reach

the limit in which the tR is fully composite thus disfavouring a light Higgs boson; secondly it creates
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and control the magnitude of the IR localised kinetic terms for the four different SO(4)

representations. Notice that kt1 and the combination kq1 = kq4 = kq9 are SO(5) invariants.
To simplify the discussion and without losing any qualitative effect we set kt1 = kq1 = 0.
Non vanishing values for kq4 and kq9 are thus needed to break SO(5) on the IR boundary.
Moreover a non vanishing difference kq4 − kq9 is required to break an SU(9 + 4) = SU(13)

accidental global symmetry of the bulk theory under which the fields in the 9 and those
in the 4 rotate as a single multiplet. In the absence of such a breaking the Πq

1 form factor
would vanish: the only contribution to α in eq. (3.34) would then come from the gauge
sector.

As discussed in the previous section for the gauge sector, realising partial compositeness
in a flat extra dimension requires the introduction of UV localised kinetic terms. We
introduce the UV boundary action

SfUV =

∫
d4x

∫ L

0
dz
[
Zq qLi /DqL + Zt qRi /DqR

]
δ(z), (3.64)

which contributes to the form factors in eq. (3.30) as

∆Πq
0 = Zq, ∆Πt

0 = Zt. (3.65)

Assuming Zq � 1 implies a hierarchy Π̃q
0 � Πq

1,Π
q
2 which is the one invoked in eq. (3.31)

and above eq. (3.34).11 All interactions of the elementary fields with the strong sector
get suppressed by a factor Z−1/2

q,t which can be interpreted as the mixing εL,R ≡ λL,R/gψ
between elementary and composite fields (see Introduction). In view of eq. (3.40), to
obtain a composite top right (εR ≈ 1) we take Zt = 0.12

3.3.3 The spectrum of fermionic resonances

In this paragraph we review how the spectrum of fermionic resonances is encoded in the
holographic action for the boundary degrees of freedom. Using the holographic procedure
one can obtain the effective Lagrangian in Fourier space for a fermionic bulk field Ψ

Ψ(p) /pΠ(p) Ψ(−p) . (3.66)

a tension with EWPT, in particular with the T̂ parameter, which scales like T̂ ∼ g2ψ
(4π)2

λ4
L

g4
ψ
ξ. Although

there is more freedom in flat space, we discard this possibility to make the comparison with AdS5 more
transparent.

11In flat space we will use the notation Π̃q
0 = Zq + Πq

0, Π̃t
0 = Zt + Πt

0 as we do in Appendix A.3.2 to
distinguish the form factors with and without the localised kinetic terms. Notice that Π̃q

0 and Π̃q
0 enter in

the Coleman-Weinberg potential of eq. (3.33).
12Other UV and IR boundary terms are needed to ensure that the total variation of the 5D action

vanishes [147]. These terms play a crucial role in the calculation of the 4D effective action and are listed
in Appendix A.3.2.
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The function Π(p) contains all the information about the masses of the physical states in
the theory. If the source Ψ is not dynamical (Dirichlet BC in the UV), holography relates
/pΠ(p) with the two-point function 〈OΨ(p)OΨ(−p)〉 of the operator OΨ associated to Ψ

in the dual 4D picture. This implies that the masses of the physical states are associated
with the poles of /pΠ(p) (the poles in the two point functions of OΨ). If on the other
hand the source Ψ is dynamical, it mixes with the bound states interpolated by OΨ and
the masses of the physical states are given by the zeros of /pΠ(p). In the following we
will have to deal with cases where Ψ is a vector and Π a matrix. Here three possibilities
occur. If all the sources in Ψ are non dynamical it is sufficient to consider the poles of any
of the entries in /pΠ(p) as all the states with the same quantum numbers in the strong
sector are mixed. If all the sources are instead dynamical one has to find the zeros of
the various eigenvalues of /pΠ(p), that is the zeros of their determinant. Finally, in the
intermediate situation in which only a subset of sources is dynamical, it is enough to find
the zero eigenvalues of the sub-matrix corresponding to these fields.

For the model presented in this section, the resonance spectrum before EWSB consists of
various towers labeled by their SU(2)L × U(1)Y quantum numbers:

• a 12/3 tower with masses given by the zeros of /pΠ̃t
0;

• a 21/6 tower with masses given by the zeros of /p(Π̃q
0 + 2Πq

1);

• a 27/6 tower with masses given by the poles of /p(Πq
0 + 2Πq

1);

• a 92/3 tower under SO(4), decomposing as 35/3⊕32/3⊕3−1/3 under SU(2)L×U(1)Y
with masses given by the poles of /pΠq

0.

After EWSB the physical states are organised according to their electric charge:

• a charge 2/3 tower with masses given by the zeroes of

p2Π̃t
0

(
Π̃q

0 + Πq
1

(
1 + c2

h

)
+ Πq

2c
2
hs

2
h

)
− |M t

1|2s2
hc

2
h,

where the first zero corresponds to the top quark mass;

• a charge -1/3 tower with masses given by the zeros of /p(Π̃q
0 + 2Πq

1c
2
h), where the

massless pole corresponds to the bottom quark;

• a charge 5/3 tower with masses given by the poles of /p(Πq
0 + 2Πq

1c
2
h);

• charge 8/3 and -4/3 towers with masses given by the poles of /pΠq
0.

All the form factors appearing in these expressions are given in Appendix A.3.2.

Before closing this section it is important to discuss a crucial feature of holographic
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composite Higgs models, which pertains the relation between the two couplings gρ and
gψ described in the Introduction. They can be defined schematically by their relation to
the masses of bosonic and fermionic resonances of the theory: mρ ≡ gρf and mψ ≡ gψf .
While these two couplings can be split in generic 4D constructions [154–156], in a 5D
theory the Kaluza-Klein masses are all set by a single mass scale, L−1. For the coupling
among vectors, using eq. (3.56) for the mass of the first KK state and eq. (3.52), one gets

gρ ≡
π

2
√

2
g5. (3.67)

The fermionic spectrum and thus the coupling gψ are more model dependent. Considering
a 5D bulk fermion with MΨ = 0 whose right-handed component has (+,−) BC we find
again

gψ ≡
π

2
√

2
g5. (3.68)

Thus in general

gρ = gψ = g5 . (3.69)

This has an important consequence in view of eq. (3.40) since gψ is now identified with gρ.
Barring accidental cancellations in the quartic coupling of the Higgs and assuming the
most favourable situation of a composite tR (εR ∼ 1), gρ has to be small to accommodate
the observed value of mh. This generates a tension with the value of the Ŝ parameter
(see eq. (3.57))

Ŝ ≈ ξ g
2

3g2
ρ

≈ 10−3

(
ξ

0.1

)(
4

gρ

)2

. (3.70)

We will come back to this issue in the next section.

3.4 Numerical analysis

In this section we present a numerical analysis of the model focusing on the Higgs potential
and on the fermionic spectrum. We begin by discussing the parametric behaviour of the
various observables we are interested in and later present our numerical procedure.

As we are mainly interested in the composite tR case we first describe the ideal situation
in which Zq � 1 and Π̃q

0 ≈ Zq. The parameters of the 5D model can be related using the
expressions for the weak coupling g, the W , top and Higgs masses. The Higgs potential
has the following parametric behaviour

V (h) =
1

L4

NC

(4π)2Zq
Vh({pi}; ξ) + Vg(h) , (3.71)
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where Vg(h) is the gauge contribution given in eq. (3.59). pi is the set of dimensionless
parameters MqL, MtL, m11L, k

t
1, k

q
1, k

q
4, k

q
9. If we can neglect Vg (that is if g5 is suffi-

ciently large) the value of ξ can be determined as soon as the pi are fixed. In the limit
g5 � g13 the W mass is given by eq. (3.55). The top mass can be read off eq. (3.31) and,
in the large Zq limit, can be written as

m2
t =

1

L2

ξ

Zq
Ft({pi}) , (3.72)

where Ft is a dimensionless function of the various pi. Our final input, the Higgs mass,
follows from eq. (3.71)

m2
h =

1

L2

NCg
2
5

(4π)2

ξ

Zq
Fh({pi}). (3.73)

For a given set of pi it is then possible to fix g5, Zq and L to reproduce the three input
values mW , mt and mh.

In order to include the effect of a non vanishing gauge potential and to allow for smaller
values of Zq we scan randomly and uniformly over the parameters pi and over both g5

and Zq. For each point we evaluate ξ and compute the ratios mt/mW and mh/mW . We
discard points which do not fall into the interval defined by

mW = 81GeV,
148GeV ≤ mt ≤ 154GeV14,

120GeV ≤ mh ≤ 130GeV.
(3.74)

We choose the following range for the parameters pi

MqL, MtL : (−2÷ 2),

m11L : (0.3÷ 2),

kq4, k
q
9 : (0÷ 2),√

Zq : (0÷ 10),

g5 : (1÷ 9).

(3.75)

To simplify the scan we fix kt1, k
q
1 = 0 since these parameters are not expected to modify

the qualitative picture as we explained in section 3.3.2. We furthermore restrict m11 to
positive values as it only enters through the combination |m11|2.

In order to conform to the general discussion at the end of section 3.2.2 it is necessary to
understand the typical size of the coefficient a2 defined in eq. (3.39). To do so we scan
over the range defined by eq. (3.75) and calculate a2 without imposing any additional

13These various relations hold with good accuracy as long as g5 & 1.5.
14The central value corresponds to the top quark mass renormalized at the scale µ = 1TeV,

mt = 150.7± 3.4GeV.
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Figure 3.1 – Distribution of the values of
√
|a2| as defined in eq. (3.40). The parameter range is

the one defined in eq. (3.75). We only keep points with negative a2.

requirement. This will give the correct normalisation of eq. (3.39) within our model. The
results are shown in Fig. (3.1). We selected only points in which a2 is negative (the
distribution is basically symmetric around 0). The distribution is quite broad but clearly
peaks around

√
|a2| ∼ 0.4.15 Thus, it is more appropriate to rewrite the NDA estimate

of the Higgs mass in eq. (3.40) by factoring out the normalisation of a2

m2
h ≈ (150 GeV)2 1

ε2R

(gψ
4

)2
|ã2|, (3.76)

where now
√
|ã2| ∼ 1. If the constraints that we impose on the parameter space to obtain

the correct values for ξ and the top mass do not push a2 to the right tail of its distribution,
it is clear that the tension of the model with the Ŝ parameter will be substantially relieved
compared to the naive expectation.

3.4.1 Results

In the left panel of Fig. (3.2) we show the distribution of points passing the vari-
ous cuts in eq. (3.74) as a function of gρ. The grey histogram includes all points for
which mh < 400GeV, while the red distribution requires mh to fall inside the interval
120÷ 130GeV. As expected from the scaling of mh (see eqs. (3.40) and(3.76)), gρ cannot
be too large and its distribution is peaked between 3 and 4. In the right panel of Fig. (3.2)
we show the distribution of the parameter

√
|ã2| as defined in eq. (3.76) and compare it

with the one already shown in Fig. (3.1), taking into account the new normalisation of
|ã2|. The scan thus selects values with ã2 ∼ 1, that is in its natural range.

15|a1| has a similar distribution. We have also checked the suppression in the potential does not correlate
with the presence of anomalously light fermionic resonances in the spectrum [157]. This could happen if
this suppression was due to the presence of light top partners cutting of the quadratic divergences of the
Higgs potential at a lower scale.
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Figure 3.2 – Left panel: distribution of points coming from the scan with parameter ranges
given by eq. (3.75) as a function of gρ. Grey: points with 115GeV < mh < 400GeV; red: points
with 120GeV < mh < 130GeV; blue: points with 120GeV < mh < 130GeV which are consistent
with the electroweak fit at 99% C.L. assuming a 10−3 positive contribution to T̂ . Right panel:
distribution of the values of

√
ã2 as defined in eq. (3.39) and eq. (3.76).

We estimate the tuning of the model as follows. Among all points in which the experimental
inputs are reproduced, we pick those satisfying the experimental constraint from the
EWPT. These points represent a fraction of the total, and this fraction is what we denote
as the tuning of the model. This definition measures the size of the region in parameter
space (according to the measure defined by eq. (3.75)) which is left after the various
experimental constraints are imposed. In this way we automatically take into account that
unnatural conspiracies among parameters, which are needed to satisfy the experimental
constraints, occur rarely [158].

Our measure of the tuning differs from the one in Ref. [47] where the more common
definition in terms of the logarithmic derivative of m2

Z with respect to the various
parameters was used [159].16

Requiring the points satisfying eq. (3.74) to be consistent with the LEP electroweak fit at
99% C.L., we remain with the fractions shown in Table 3.1. In this subset, the value of ξ
is always below 0.04, corresponding to f > 1.2TeV. Notice that the fraction of points
remaining (∼ 5%) is consistent with a measure of the tuning given just by ξ. This is the

16The relation between the two criteria is particularly transparent in Supersymmetry [160]. Here one
can write a simple relation between the soft parameters at the scale at which they are generated and mZ :

m2
Z = aM2 + bm2 − c|µ|2.

M and m are the common gaugino and scalar masses at the high scale and a, b, c > 0. The log-derivative
tuning associated to M is given by ∆ = aM2/m2

Z . Notice that in the (x ≡ M2

|µ|2 , y ≡
m2

|µ|2 ) plane this can
be interpreted by saying that for a fixed lower bound on ∆exp (implied for instance by an experimental
lower bound Mexp on the gluino mass), the only allowed region of the (x, y) plane is the one bounded by
the two lines ax+ by − c = 0 (on which mZ vanishes) and ax+ by − c = ax/∆exp. For a & b this slice
covers a fraction of order b/(a∆exp) of the whole plane. If we randomly scan the (x, y) plane fixing µ to
reproduce the Z mass, a fraction b/(a∆exp) of points will satisfy the experimental bound M > Mexp.
This relates the criterion we adopt to the one using the local logarithmic derivative estimate.
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Figure 3.3 – Scatter plot in the (ξ, gρ) plane for those points that can be made consistent with
the EWPT at 99% C.L. assuming a ∆T̂ = 10−3. The black lines are the 2σ and 3σ contours
from the LEP EW fit. Blue lines indicate the suppression in

√
a2 which is necessary to achieve

mh = 125GeV according to the NDA estimate of the Higgs boson mass of eq. (3.76). The colour
of the points indicates the mass of the lightest charge 5/3 top partner in the spectrum (see figure).

EWPT EWPT (+∆T̂ = 10−3)
% 4.5± 0.4 18± 1

Table 3.1 – Fraction of points where the experimental inputs in eq. (3.74) are reproduced which
are allowed at 99% C.L. by the EW fit as described in the text.

case because as discussed above we do not need any additional suppression in the Higgs
quartic coupling in order to get a light Higgs mass and to cope with the constraints on
the Ŝ parameter.

Before moving on we notice that by artificially adding an additional positive contribution
to T̂ = 10−3 the fraction of allowed points grows from 5% to roughly 18% (see the blue
histogram in the left panel of Fig. (3.2)). This contribution to T̂ , corresponding to one
tenth of the top contribution in the SM, is an optimistic estimate of the corrections
coming from loops of heavy top partners.17

Figure 3.3 shows the distribution of points in the (ξ, gρ) plane. We included all points
that can be made consistent with EWPT at the 99% C.L. with the assumption of an
additional contribution ∆T̂ = 10−3. Red and orange points have a spectrum which
contains a charge 5/3 top partner which is lighter than 800GeV. Any detailed study of
the experimental status of these points is beyond the scope of this work, nevertheless we
believe that they should be severely constrained by the available experimental searches

17These contributions are finite and computable in our model. See Ref. [42] for a discussion.
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Figure 3.4 – Left panel: Distribution of fermionic resonance masses before EWSB according
to their quantum numbers: 9 in green, 21/6 in blue and 12/3 in red. Thicker points are those
passing the EWPT constraint. Right panel: mass distributions for the 21/6 (blue) and 12/3 (red)
SO(4) representations without considering EWPT. The red dashed histograms is the expected
mass distribution from the NDA scaling mψ = gρf .

[161, 162]. The blue contours show the necessary suppression in
√
a2 according to the

NDA estimate of the Higgs boson mass. Fig. (3.3) is puzzling. If we believe the NDA
formula mψ ∼ gρf we should expect a much heavier spectrum than what we find in
Fig. 3.3, as gρ = 4 and ξ = 0.1 give mψ = 3TeV!

The solution of this puzzle is shown in Fig. (3.4). In the left panel we show the fermionic
spectrum before EWSB of all points that reproduce the experimental inputs (thicker dots
are for points also satisfying EWPT). A definite hierarchy m9 < m27/6

< m21/6
� m12/3

emerges from the figure. In the right panel of the same figure we compare the mass
distribution of the SO(4) representations 12/3 (shaded red) and 21/6 (shaded blue) before
requiring EWPT. The red-dashed histogram shows the distribution of masses obtained
from the NDA estimate mψ ∼ gψf . It is clear that, while the singlet matches reasonably
well with the expectations, the other three SO(4) representations are much lighter.

To understand this behaviour it is necessary to inspect how the top mass is obtained
in terms of the model parameters. Using the approximation in eq. (3.31) and the form
factors in eqs. (A.36), one finds that for large positive MΨq the top mass is exponentially
suppressed, while for MΨq < 0

m2
t

m2
W

=
g2

5

g2
2

5|MΨqL|
Zq + e2|MΨqL|kq9

. (3.77)

Reproducing the correct mt/mW ratio thus fixes MΨq . −1. Next, in the limit of large
Zq and vanishing Zt, k

q
4, k

q
9, the KK masses of the 9, 27/6 and 21/6 towers are all given

by the zeros of MΨq + ωq cotωqL while those of the 12/3 tower are given by the zeros
of MΨt + ωt cotωtL. The approximate expression for the first KK mode mass can be
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written as

p ∼ 2|MΨi |e−|MΨi
|L , MΨiL . 0 ,√

π2

4L2
+M2

Ψi
< p <

√
π2

L2
+M2

Ψi
, MΨiL & 0 .

(3.78)

We see that since MΨq should be large and negative to reproduce the correct top mass
(see eq. (3.77)) we expect the masses of the first resonances in the 9, 27/6, 21/6 towers to
be parametrically (exponentially) suppressed with respect to the mass of the first KK
mode in the 12/3 tower, whose corresponding bulk mass MΨt is unconstrained.

We now explain the smaller splittings giving m9 < m27/6
< m21/6

. First of all, the
splitting between the 9 and the 27/6 is proportional to the difference (kq4−kq9). Expanding
the relevant form factors around the point kq4 − kq9 = 0 explicitly shows that m9 −m27/6

is positive when kq4 − kq9 is positive. Next we rewrite the Higgs potential in eq. (3.34)
separating the fermionic and gauge contributions to α and β:

V (h) = (−αf − αg + βf )s2
h − βfs4

h. (3.79)

The coefficient αg is negative, βf is always negative in the region we consider, while αf
can have both signs depending on k4 − k9. A viable electroweak symmetry breaking
requires the coefficient of the s2

h term to be negative. The Higgs mass input needs a small
g5 which enhances the electroweak symmetry preserving gauge contribution. As the size
of β is basically fixed by the top and Higgs mass measurements, EWSB typically requires
an extra positive contribution to α (see the minus sign in eq. (3.79)), favouring k4 < k9

and thus m9 < m27/6
.

The mass difference between the 27/6 and the 21/6 towers is due to the different UV
boundary conditions for these fields. The zeros of Π̃q

0 give the masses of the 21/6 while the
poles of Πq

0 give the masses of the 27/6. It is clear that in the large Zq limit the masses
will coincide. In particular, from the explicit form of Π̃q

0 for kq9 = 0 (see Appendix A.3.2),

Π̃q
0 = Zq +

1

MΨqL+ ωqL cotωqL
, (3.80)

it follows that the states in the 27/6 are always heavier than those in the 21/6. A summary
of the mass distributions of the fermionic resonances before (red) and after (blue) requiring
the electroweak fit at 99% C.L. (with an additional positive contribution ∆T = 10−3) is
given in Figure 3.5. We show the distributions for the different SO(4) representations
12/3 (top left), 9 (top right), 21/6 (bottom left) and 27/6 (bottom right).
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Figure 3.5 – Mass distributions of the 12/3 (top left), 9 (top right), 21/6 (bottom left) and 27/6

(bottom right) obtained from the scan with parameter ranges given by eq. (3.75). Red: points
with 120GeV < mh < 130GeV; blue: points with 120GeV < mh < 130GeV which are consistent
with the electroweak fit at 99% C.L. assuming a 10−3 positive contribution to T̂ .

3.5 Conclusions

The main challenge of composite Higgs models to naturally describe electroweak symmetry
breaking are the constraints coming from precision electroweak physics. The tension of
these theories with electroweak precision tests is the one of old fashioned Technicolor
models and is due to the unavoidable existence of heavy spin-1 states mixing with the
SM gauge bosons. This mixing corrects the Ŝ parameter by an amount

∆Ŝ ∼ m2
W

m2
ρ

, (3.81)

requiring mρ & 2.6 TeV.

The masses of the spin-1 resonances mρ ∼ gρf are controlled by two parameters, their
coupling gρ and the decay constant f determining the non-linear interactions of the
composite Higgs. As we described in the text, pushing f to large values implies an upper
bound on the tuning of the model of order ξ ≡ v2/f2. Before Higgs discovery, electroweak
physics was pointing towards a strongly coupled theory, gρ ∼ 4π, and ξ . 0.1 was needed
to regulate the infrared contributions of the composite Higgs to electroweak observables.
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3.5. Conclusions

The measurement of the Higgs boson mass, mh ≈ 125GeV, adds extra information to
this picture. The generic expectation of the Higgs boson mass in composite Higgs models
can be given in terms of the mass of the fermionic resonances which regulate the UV
divergence of the Higgs potential:

mh ∼ 125GeV
( mψ

1.0TeV

)√ ξ

0.1

√
ã2. (3.82)

The parameter a2 is naturally expected to be of order 1. In order not to worsen the
tuning of the model it is thus important to have light enough fermionic top partners.

In this section we presented the 5D implementation of a specific class of composite Higgs
models with a (pseudo-)Goldstone boson Higgs from the SO(5)/SO(4) coset. Our starting
point is the observation, already present in Refs. [47, 48], that in order for ξ to be a good
measure of fine tuning and not to underestimate it, the Higgs potential must be the sum
of at least two independent periodic functions of the Higgs field h which are generated
at the same order in the elementary-composite mixing expansion. This fact constrains
the fermionic content of the model. The simplest way to satisfy this requirement is to
couple the left-handed top quark to a symmetric representation of SO(5), a 14, and the
right-handed top quark to an SO(5) singlet.

Models in 5D are expected to be more constrained and to face a more severe fine tuning
problem with respect to more general composite Higgs models. The reason for this are
eqs. (3.81) and (3.82) and the fact that the masses of the fermionic and bosonic resonances
are predicted to be parametrically the same, fixed by the size L of the extra dimension.
This implies that, once mψ ∼ mρ is fixed to comply with the bound on Ŝ, an additional
suppression of either ξ or a2 is needed to obtain the right Higgs mass.

We discussed these issues in our model finding that the NDA estimate in eq. (3.82) may
be too pessimistic. In our model this occurs because of an additional, fortuitous, overall
suppression of the estimate in eq. (3.82) by a factor ∼ 0.4÷ 0.5. The existence of such a
suppression implies a somewhat heavier spectrum of the top partners can be obtained
without worsening the fine tuning. Our model is somewhat peculiar in this respect because
the requirement of a heavy enough top implies that some of the SU(2)L representations,
into which the 14 decomposes, have to be anomalously light. The existence of light,
exotic charged, top-partners is probably the most important prediction of the class of
composite Higgs models we have been discussing. Their experimental search is to be
considered one of the most important avenues to either verify or falsify the composite
Higgs idea.

A thorough discussion of the phenomenology of the fermionic sector of our model is
presented in more detail in sections 6.3. Here we would just like to point out that
in our model, and in all constructions where the Higgs is a PGB from SO(5)/SO(4),
the fermionic resonances fill degenerate SO(4) multiplets before EWSB and in the
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absence of elementary-composite mixing. In our model the lightest among these SO(4)

representations is a 9 which decomposes under SU(2)L × U(1)Y as 35/3 ⊕ 32/3 ⊕ 3−1/3.
This SO(4) multiplet contains, in particular, two charge 5/3 and a charge 8/3 quarks.

Finally, as in every composite Higgs model, the Higgs couplings to SM gauge bosons
and fermions are modified. From this point of view our model is indistinguishable from
other known composite Higgs models as the one described in [42]. Deviations from the
SM are controlled by a single parameter, ξ. Bounds on ξ coming from Higgs coupling
measurements are currently mild, requiring ξ < 0.3÷ 0.4 [163].
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4 Indirect Probes of NP at the LHC

4.1 Introduction

After the discovery of a Higgs-like scalar particle, an important program has been launched
to measure the Higgs couplings to known elementary particles of the Standard Model
(SM). The goal is not so much to determine a few further unknown parameters of the SM
but to understand the underlying structures of the laws of physics at high energy: if the
SM were to be valid up to the scale of quantum gravity, the couplings of the Higgs boson
would be uniquely fixed in terms of other already known and well-measured quantities.
On the contrary, any deviation in these couplings, for instance of the order of 20%, would
unambiguously signal new physics at a scale below 5TeV.

The study of the LHC sensitivity on the Higgs couplings has been initiated in Refs. [164–
167]. Upon the first and still incomplete measurements reported by both ATLAS and
CMS as well as by the Tevatron experiments, a simple methodology inspired by a chiral
effective Lagrangian approach has been developed in Refs. [168–170] in order to quantify
to which extent the Higgs boson is really fulfilling the role it has been devoted to in the
SM, namely the screening of scattering amplitudes involving massive bosons and fermions
at high energy.

At the LHC, the main production channel of the Higgs boson as well as its cleanest decay
mode proceed through purely quantum mechanical processes and rely on couplings to
massless gluons and photons that are vanishing in the Born approximation. This results
in an ambiguity in the value of the tree-level Higgs couplings since the coupling likelihood
function exhibits several and almost degenerate minima (see e.g. Refs. [167, 169, 170]).
Indeed, the degeneracy can be found in the current combined data of the 7 and 8TeV run
in Refs. [9, 171]. As was emphasised [170, 172] the degeneracies remained even after the
whole 8 TeV dataset was analysed. Measuring processes involving real top quarks in the
final state will bring invaluable information. With the largest rate, the Higgs production
in association with a top pair is a golden channel and has received great attention by the
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experimental [173, 174] as well as theoretical [175–179] communities.

In this chapter we argue that, even though subleading, Higgs boson production in
association with a single top quark can also bring valuable information, in particular
regarding the sign of the top Yukawa coupling.1 This is because an almost totally
destructive interference between two large contributions, one where the Higgs couples to
a space-like W boson and the other where it couples to the top quark, takes place in the
SM. This fact can be exploited to probe deviations in the Higgs coupling structure, which
will inevitably jeopardise perturbative unitarity at high energy and lead to a striking
enhancement of the cross section compared to the SM. We discuss how this enhancement
can be used to extract information on the sign of the top Yukawa coupling and we show
that th production can be used to lift the degeneracy plaguing the Higgs coupling fit of
the LHC data. While a moderate integrated luminosity at 14TeV should allow us to
make a conclusive statement, we point out that already with the full 2012 luminosity,
corresponding to ∼ 25 fb−1 per experiment, an interesting sensitivity on the sign of the
top Yukawa could be reached.

In our study we focus on the decay of the Higgs into bb̄, updating the early analysis of
Ref. [180] (see also Refs. [181, 182]). This choice leads to an experimental signature (lepton
+ missing energy + multijets, among which ≥ 3 are b-jets) which is very similar to the one
ATLAS and CMS have already analysed in their searches for tt̄h production [173, 174].
In this respect we believe that the experimental collaborations could easily perform the
analysis we propose here in the very near future, thus adding new important information
to the challenge of identifying the true nature of the recently discovered particle. Single
top production in association with a Higgs boson has also been studied in Refs. [183, 184]
focussing on the h→ γγ, h→WW ∗ and h→ τ̄ τ decay channels.

The large enhancement of the th cross section for nonstandard Higgs couplings is associated
to the growth of the scattering amplitude at high energy, which in turn implies that
perturbative unitarity is lost at some UV scale Λ. We estimate Λ, which acts as the
cutoff of our effective theory, to be at least of O(10)TeV and thus above the energy scales
that the LHC will be able to probe. In fact, the th invariant mass distribution in LHC
collisions essentially vanishes above 1 TeV, therefore we can safely conclude that our
analysis remains insensitive to UV physics above the cutoff scale.

This chapter is structured as follows: we start by introducing the general features of
the th process and discussing its implications, including an estimate of the scale where
perturbative unitarity is lost, in section 4.2. We proceed in section 4.3 to the analysis of
the signal and of the main backgrounds at the LHC, performing a parton-level simulation.
In section 4.4, we discuss the implications on the determination of the Higgs parameters.
Finally, we conclude in section 5.6. Unless otherwise specified, the Higgs mass is assumed

1The sign of the top Yukawa coupling is not physical by itself, but the relative sign compared to the
Higgs coupling to gauge bosons (we take the latter to be positive) is physical.
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4.2. Single top and Higgs associated production

W
W W

b t

h h

ht

t

b b

Figure 4.1 – Feynman diagrams contributing to the partonic process Wb→ th.

to be mh = 125 GeV throughout this work. For the top mass we take mt = 173 GeV.
Finally, the shorthand th is always understood to include also the charge-conjugated case
where t is replaced by t̄. Therefore all our cross sections include both t and t̄ production.

4.2 Single top and Higgs associated production

The Feynman diagrams contributing to the core process Wb→ th are shown in Fig. 4.1.
The diagram where the Higgs is emitted from a b leg is suppressed by the bottom Yukawa,
and will be consistently neglected in our study. In the th production process at the LHC
the initial W is radiated from a quark in the proton, and is thus spacelike. However, at
high energy the effective W approximation [185, 186] holds, which allows us to factorize
the process into the emission of an approximately on-shell W from the quark times its
hard scattering with a bottom. Thus it makes sense to discuss the amplitude forWb→ th

at high energies assuming the initial W to be on-shell, in order to gain an approximate
understanding of the full picture.

In the high-energy, hard-scattering regime, where s,−t,−u� m2
t ,m

2
W ,m

2
h, the amplitude

for WLb→ th (the longitudinal polarisation dominates at large s) reads2

A =
g√
2

[
(cF − cV )

mt
√
s

mW v
A

(
t

s
, ϕ; ξt, ξb

)

+

(
cV

2mW

v

s

t
+ (2cF − cV )

m2
t

mW v

)
B

(
t

s
, ϕ; ξt, ξb

)]
,

(4.1)

where we have omitted terms that vanish in the high-energy limit and, for simplicity, also
neglected the Higgs mass in addition to setting mb = 0. The generalised couplings of
the Higgs are defined as cV ≡ ghWW /g

SM
hWW and cF ≡ ghtt̄/gSMhtt̄ . The functions A,B are

2We take final momenta outgoing, and define s = (pW + pb)
2, t = (pW − ph)2. ϕ is the azimuthal

angle around the z axis, which is taken parallel to the direction of motion of the incoming W .
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Figure 4.2 – Partonic cross sections for the process Wb→ th as a function of the center
of mass energy

√
s. The parameter cV is set to 1. The hard scattering cross section is

defined by a cut |η| < 2: the large enhancement obtained for cF = −cV with respect to
the SM case is evident. The forward cross section, defined by a cut |η| > 3, is also shown
(dashed curves).

given by

A (t/s, ϕ; ξt, ξb) = ξ†t

(
−t/s 0

−eiϕ
√
− t
s

(
1 + t

s

)
0

)
ξb −→

(
0 0

−eiϕ
√
−t/s 0

)
,

(4.2)

B (t/s, ϕ; ξt, ξb) = ξ†t

(
1 + t/s 0

eiϕ
√
− t
s

(
1 + t

s

)
0

)
ξb −→

(
eiϕ
√

1 + t/s 0

0 0

)
,

(4.3)

where in the rightmost term of each line we have chosen a specific basis for the spinors,
namely

ξLb =

(
1

0

)
, ξRb =

(
0

1

)
; ξLt =

(
e−iϕ

√
1 + t/s√
−t/s

)
, ξRt =

(
−e−iϕ

√
−t/s√

1 + t/s

)
, (4.4)

which correspond to the chiral states {FL, FR} (F = b, t) in the mF → 0 limit3. The
amplitudes involving the helicity state ξRb , which is identified with a right-handed bottom
since we are assuming mb = 0, exactly vanish due to the V −A structure of the couplings
of the W to fermions. From eq. (4.1) we see that when cV 6= cF the amplitude grows
with energy like

√
s and is enhanced compared to the case cV = cF (which includes the

SM), where the amplitude is constant in the large s limit. The non-cancellation of the
terms in the amplitude growing with energy is at the origin of the striking enhancement
of the cross section when cV 6= cF .

3However, note that the limit mt → 0 does not interest us here.

62



4.2. Single top and Higgs associated production

The cross section for Wb → th is shown as a function of the center of mass energy
in Fig. 4.2. The large enhancement of the hard scattering cross section (defined by a
centrality cut |η| < 2) for cF = −cV is evident.4 At large energies, the amplitude is
constant for cV = cF and thus the cross section vanishes as ∼ 1/s. On the other hand,
when cF 6= cV the amplitude grows with energy like

√
s and as a consequence the cross

section tends to a constant for large s. It is easy to compute this asymptotic value of
the cross section: squaring the leading term of the amplitude in eq. (4.1), summing and
averaging over polarisations and integrating over t we find

σ(|η| < η̃, s→∞) ' g2(cF − cV )2m2
t

384πm2
W v

2
tanh η̃ . (4.5)

This simple formula gives accurate results: for example for
√
s = 5 TeV, cV = −cF = 1

and a centrality cut5 |η| < 2 we find that the cross section computed without any
approximations is σfull(|η| < 2) = 41.3 pb, whereas σ(|η| < 2, s→∞) = 40.7 pb .

Since for cV 6= cF the hard scattering amplitude grows with energy, perturbative unitarity
will be lost at some cutoff scale Λ, which we now estimate. In the spinor basis of eq. (4.4),
only one s-wave amplitude is non-vanishing

a0 =
1

16π
√

2
√
s

(cF−cV )
gmt

mW v

∫ 0

−s
A(t/s, ϕ; ξRt , ξ

L
b ) = − 1

24
√

2π
(cF−cV )

gmt
√
s

mW v
eiϕ (4.6)

from which, imposing the condition |a0| < 1, we find that perturbative unitarity is violated
at a scale

√
s ' Λ with

Λ = 12
√

2π
v2

mt |cF − cV |
. (4.7)

For example, for cV = −cF = 1 the cutoff is Λ ' 9.3 TeV. One may worry about other
processes involving top quarks, in which perturbative unitarity could be lost at a scale
lower than the one in eq. (4.7) for cF < 0. A relevant and often mentioned process
is W+

LW
−
L → tt̄, for which we find Λ = 16πv2/(mt |1− cV cF |) . For cV = −cF = 1

this formula yields 8.8 TeV, essentially the same cutoff scale we found for WLb → th.
For previous discussions of perturbative unitarity breakdown in processes with external
fermions, see Refs. [187, 188].

Having analysed the behaviour of the partonic cross section, we can now turn our attention

4Incidentally, we note that the cross section shows another feature, a Coulomb enhancement at small
|t| due to the diagram with a W exchange in the t-channel. As can be read off Fig. 4.2 the forward cross
section tends to a constant limit for large s, which can be computed in a simple way in terms of the
parameter cV alone and is insensitive to the value of cF . A short discussion of the forward cross section
is contained in Appendix B.1.

5Note that for the expression in eq. (4.5) to be reliable, η̃ cannot be too large. In fact, as already
mentioned, in the forward region the cross section has a Coulomb enhancement which is not captured by
the approximations we made here. See also Appendix B.1.
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Figure 4.3 – Feynman diagrams for the processes pp→ thj and pp→ thjb.

σLO(pp→ thj) [fb] σLO(pp→ thjb) [fb]

cF = 1 cF = −1 cF = 1 cF = −1

8TeV 17.4 252.7 5.4 79.2

14TeV 80.4 1042 26.9 363.5

Table 4.1 – Leading-order cross sections for the processes pp→ thj and pp→ thjb (with
pbT > 25GeV and |ηb| < 2.5) at the LHC. The parameter cV has been set to 1.

to single top and Higgs associated production in hadron collisions. At the LHC, t-channel
single top production goes through an initial-state gluon splitting into a bb pair. Such a
process can be efficiently described by a 5-flavor scheme where b’s are in the initial state
and described by a perturbative b PDF, Fig. 4.3(a). In this scheme, the non-collinearly
enhanced contribution, where the spectator b (i.e. the one not struck by the W boson) is
central and at high pT (see Fig. 4.3(b)), is moved to the next-to-leading order term. This
contribution, which we indicate with pp → thjb, is finite and can be easily calculated
at tree-level, contributing to a final state signature with an extra b-jet, a useful handle
to suppress the background. In Table 4.1 we present the rates for th production in the
5-flavor scheme, fully inclusive as well as with the requirement of the extra b to be in the
tagging region, for 8 and 14TeV, in the cV = 1, cF±1 cases. Our analysis in section 4.3 will
consider both processes, which lead to final states containing 3 and 4 b-jets respectively,
once the decay of the Higgs to bb̄ is taken into account. The cross sections in Table 4.1 were
computed using MadGraph 5[189] with CTEQ6L1 PDFs [190], setting the factorisation
and renormalization scales to the default event-by-event MadGraph 5 value. As an
estimate of the theoretical uncertainty on the signal, we have computed the fully inclusive
cross sections at NLO in QCD, in the 5-flavor scheme, using aMC@NLO [191–193] and
CTEQ6M PDFs [190]. The results are reported in Table 4.2, where the uncertainties
correspond to variations of the factorisation and renormalization scales with µF = µR
around µ = (mt +mh)/2 from µ/2 to 2µ. The NLO cross sections appear to be extremely
stable under radiative corrections and therefore we deem the theory uncertainty of the
signal rates in our analysis negligible.

The striking enhancement of the hadronic cross section for cF 6= cV is shown in Fig. 4.4,
where σ(pp→ thj) for an LHC energy of 14 TeV, normalised to its SM value, is displayed
as a function of cF for three different choices of cV (very similar plots are obtained
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4.2. Single top and Higgs associated production

σNLO(pp→ thj) [fb]

cF = 1 cF = −1

8TeV 18.28+0.42
−0.38 233.8+4.6

−0.

14TeV 88.2+1.7
−0. 982+28

−0

Table 4.2 – Cross sections at NLO in QCD for the process pp → thj at the LHC. The
parameter cV has been set to 1.
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Figure 4.4 – Cross section for pp→ thj at 14TeV normalised to the SM one, as a function
of cF for three choices of cV . Solid, dashed and dotted lines correspond to cV = 1, 0.5
and 1.5 respectively.

considering 8 TeV and/or the pp → thjb process). For example, for a standard hWW

coupling, i.e. cV = 1, a top Yukawa with equal magnitude and opposite sign with respect
to the standard one (cF = −1) yields an enhancement of the cross section of more than a
factor 10.

As noted above, perturbative unitarity inWb→ th scattering is lost at a scale Λ & 10 TeV

for cV , cF ∼ O(1). Figure 4.5 clearly shows that after convolution with the PDFs the
contribution of the region

√
ŝ & 1 TeV, where

√
ŝ is the center of mass energy of the th

system, to the hadronic cross section is negligible. This implies that our perturbative
computations can be fully trusted. Indeed Fig. 4.5 demonstrates that the relative
contribution to the cross section from large values of

√
ŝ is more sizeable in the SM than

for cF 6= cV . This is compatible with the different behaviours of the partonic cross section
in the two cases, shown in Fig. 4.2.
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Figure 4.5 – Histograms of normalised pp→ thj cross section as a function of the center
of mass energy of the hard scattering process Wb→ th. The left panel is for 8TeV, the
right one for 14TeV.

4.3 Signal and background study

4.3.1 Parton-level simulation

Signal and background events have been generated at the parton level using MadGraph 5
with CTEQ6L1 PDFs, setting the factorisation and renormalization scales to the default
event-by-event MadGraph 5 value. Jets are defined at the parton level. In order to take
showering, hadronization, detector and reconstruction effects minimally into account, we
smear the pT of the jets uniformly in η using a jet energy resolution defined by

σ(pT )

pT
=

a

pT
⊕ b√

pT
⊕ c , (4.8)

where the parameters are taken to be a = 2, b = 0.7 and c = 0.06. With these choices,
eq. (4.8) is compatible with the results of the ATLAS jet energy resolution study of
Ref. [194] (see Fig. 9 there). The jet 4-momentum is then rescaled by a factor psmearedT /pT .
The acceptance cuts reported in Table 4.3, chosen following the ATLAS tt̄h analysis [173],
are applied on the physical objects. We do not require any acceptance cut on the missing
transverse energy.

Cut pbT > p`T > pjT > |ηb,`| < |ηj | < ∆Rij >

Value 25GeV 25GeV 30GeV 2.5 5 0.4

Table 4.3 – Acceptance cuts applied to the signal and backgrounds at the reconstructed
level. The ∆R requirement applies to all objects.

An object is considered to be missed if it does not pass one of the acceptance cuts. If,
in particular, two jets are collinear with ∆R < 0.4 we merge them by summing their
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4.3. Signal and background study

4-momenta and we consider them as a single jet when applying further cuts.6 Additionally
we require the lepton to be isolated from any jet in the event, including those that do not
pass acceptance cuts and therefore are missed.

In all the signal and background processes we consider in this section, a semileptonically
decaying top is present. We assume a 100% efficiency for the reconstruction of this top,
which implies an unambiguous identification of the b originating from its decay. This
assumption is of course idealised, however the use of a more realistic semileptonic top
reconstruction efficiency will only affect the overall normalisation of both signal and
background, and not their relative values.

Concerning b-tagging, we assume the following performance: efficiency εb = 0.7, charm
mistag probability εc = 0.2 and light jet mistag probability εj ≈ 0.008 [173]. Finally we
assume a lepton reconstruction efficiency ε` = 0.9.

4.3.2 Final state with 3 b-tags

We start by discussing the 3 b-jet final state, which arises from pp→ thj after selecting
the Higgs decay into bb̄. Requiring the top to decay semileptonically (t → b`+ν) gives
the signature

3 b+ 1 forward jet + `± + EmissT . (4.9)

We can now turn our attention to the most relevant backgrounds:7

• tZj, Z → bb: an irreducible background where a Z boson mimics the Higgs in
decaying to bb.

• tbbj: an irreducible QCD background.

• tt, t→ bcs: a reducible background where either the c or s are mis-tagged.

• ttj, t → bcs: also in this case, either the c or s are mis-tagged while the other is
missed.

As can be seen in Table 4.4 for 8 TeV and in Table 4.5 for 14 TeV, after acceptance cuts
and efficiencies the last two backgrounds are extremely large. In particular, their values
are larger than those quoted in Ref. [180], mainly due to a larger charm mistag rate
considered here (we use εc = 0.2, whereas Ref. [180] adopted εc = 0.1) and to the fact that
we increased the pT threshold for jets, which results in a larger probability of missing a

6The exception to this procedure is the case where the b coming from a semileptonic top decay is
collinear to another jet. Since we are assuming ideal semileptonic top reconstruction (see below), we
simply reject the event in this case.

7For the sake of readability we do not write the top decay t→ bl+ν explicitly, as it is the same for all
processes.
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Signal Backgrounds

Cuts cF = 1 cF = −1 Total tZj tbbj tt ttj

Acceptance Cuts + ε 0.18 2.88 600.81 0.61 1.01 456.40 142.80

|mbb −mh| < 15GeV 0.15 2.55 245.95 0.02 0.11 184.2 61.65

mbbj > 270GeV 0.10 2.02 31.78 0.01 0.08 0. 30.68

|ηj | > 1.7 0.08 1.70 17.98 0.01 0.06 0. 17.24

Events at 25 fb−1 1.9 42.5 449.4

Table 4.4 – Cross sections in fb for the 3 b-tag case at 8TeV. In the event line backgrounds
are summed.

jet from tt̄j. The dominance of backgrounds where a c is mistagged suggests that it may
be sensible to prefer a b-tagging performance with smaller efficiency but higher rejection
against charm. However, for definiteness we stick to the numbers reported in section 4.3.1,
taken from Ref. [173].

After acceptance cuts and efficiencies, the signal is overwhelmed by the tt̄ background not
only for the standard case cF = 1, but even considering the enhanced case cF = −1 (we
set cV = 1). Thus, we require a set of additional cuts in order to isolate the signal. These
cuts are listed in Tables 4.4-4.5, together with the cross sections obtained after their
application. The value of each cut is chosen by optimising the Poisson exclusion limit in
the cF = −1 case. We remark that since we are assuming ideal top reconstruction, the
b coming from the semileptonic top is always assumed to be unambiguously identified,
therefore no cut on it is applied beyond the detector ones, neither for the signal nor for
the backgrounds.

The first cut we apply requires the bb pair to have an invariant mass around mh, which
of course helps to eliminate the tZj background. The second cut selects large values for
the bbj invariant mass and is effective against the reducible backgrounds, in particular it
suppresses enormously tt̄, where the jet and 2 b’s are decay products of a top and therefore
we expect their invariant mass to be close to mt. The last cut singles out a forward jet,
which is a distinctive feature of the signal. However, after all cuts the background cross
section, completely dominated by tt̄j, is still one order of magnitude larger than the
signal for cF = −1.

In the last line of Tables 4.4 and 4.5, we present the number of signal and total background
events expected after 25 fb−1 of integrated luminosity. At 8 TeV, the Poisson exclusion is
at 97.4% CL or 2.2σ (by abuse of notation, we are expressing the probability in terms of
number of σ’s, e.g. 2σ approximately corresponds to the 95% CL), while at 14TeV it
reaches ∼ 4σ.
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Signal Backgrounds

Cuts cF = 1 cF = −1 Total tZj tbbj tt ttj

Acceptance Cuts + ε 0.71 11.55 2448.18 2.29 3.72 1773.35 668.83

|mbb −mh| < 15GeV 0.63 10.23 1020.4 0.07 0.38 737.23 282.76

mbbj > 280GeV 0.46 8.59 153.10 0.05 0.31 0. 152.74

|ηj | > 2 0.34 7.12 79.26 0.03 0.24 0. 79.00

Events at 25 fb−1 8.4 178.0 1981.5

Table 4.5 – Cross sections in fb for the 3 b-tag case at 14TeV. In the event line backgrounds
are summed.

4.3.3 Final state with 4 b-tags

As suggested in Ref. [180], a way to enhance the sensitivity on the th signal is to require
an extra b, coming from the splitting of an initial gluon: the process of interest is thus
pp→ thjb. Requiring a semileptonic top and the decay h→ bb̄ leads to the signature

4 b+ 1 forward jet + `± + EmissT . (4.10)

Here the main backgrounds are:

• tZbj, Z → bb: an irreducible background where the Z mimics the Higgs.

• tbbbj: similarly to the 3 b case, an irreducible QCD background.

• ttbb, t→ bjj: a reducible background where one of the two jets, originating from a
hadronically decaying W , is missed.

• ttbb, t→ bcs (one mistag): here the c or the s is mis-tagged, while either the other
one is missed (and one b is not tagged) or one of the b’s is missed.

• ttj, t→ bcs (two mistags): in this case both c and s are mistagged.

Looking at Tables 4.6 and 4.7, we see that requiring 4 b-jets allows us to obtain a much
larger signal to background ratio after acceptance cuts compared to the 3 b case. On the
other hand, the overall rates are obviously smaller. Analogously to what was done in the
3 b case, a set of additional cuts are imposed to enhance the signal. The cuts are listed in
Tables 4.6-4.7, together with the cross sections obtained after their application. The value
of each cut is again chosen by optimising the Poisson exclusion limit in the cF = −1 case.

The first cut requires the invariant mass of one of the 3 bb pairs (we recall that ideal
reconstruction of the semileptonic top is assumed) to be inside a window around mh.
This helps again to eliminate the tZb̄j background. The second cut demands all bb
invariant masses to be higher than about 100 GeV, and is most effective on tt̄j, where the
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Signal Backgrounds

Cuts cF = 1 cF = −1 Total tZb̄j tbb̄b̄j tt̄bb̄ tt̄bb̄ (mis) tt̄j

Acceptance Cuts + ε 0.043 0.63 7.81 0.11 0.26 2.66 (0.48) 2.25 2.54

|mbb −mh| < 15GeV 0.039 0.58 4.06 0.03 0.08 0.94 (0.40) 1.29 1.71

min mbb > 110GeV 0.023 0.30 0.67 0.002 0.015 0.20 (0.18) 0.44 0.

min mbj > 180GeV 0.008 0.15 0.014 0. 0.007 0.002 (0.001) 0.004 0.

Events at 25 fb−1 0.2 3.8 0.4

Table 4.6 – Cross sections in fb for the 4 b-tag case at 8 TeV. In the event line backgrounds
are summed. For tt̄bb̄, the contribution of tt̄h is shown in parentheses.

Signal Backgrounds

Cuts cF = 1 cF = −1 Total tZb̄j tbb̄b̄j tt̄bb̄ tt̄bb̄ (mis) tt̄j

Acceptance Cuts + ε 0.19 2.85 39.14 0.46 1.07 14.40 (1.94) 11.53 11.69

|mbb −mh| < 15GeV 0.17 2.61 19.78 0.12 0.32 4.88 (1.63) 6.52 7.93

min mbb > 90GeV 0.13 1.82 5.97 0.05 0.09 1.68 (1.04) 3.54 0.61

min mbj > 170GeV 0.07 1.20 0.35 0.02 0.06 0.03 (0.03) 0.05 0.19

Events at 25 fb−1 1.7 30.1 8.7

Table 4.7 – Cross sections in fb for the 4 b-tag case at 14 TeV. In the event line backgrounds
are summed. For tt̄bb̄, the contribution of tt̄h is shown in parentheses.

mis-tagged c and s, coming from a W decay, have an invariant mass around mW . The
last cut requires all 3 bj pairs to have a large invariant mass. This efficiently suppresses
the tt̄bb̄ backgrounds, for which in most cases at least one bj pair comes from a top decay
and thus has an invariant mass mbj .

√
m2
t −m2

W ∼ 150 GeV.

The exclusion limits obtained for cF = −1, assuming 25 fb−1 of data, are 2.4σ and ∼ 6σ

at 8 and 14 TeV respectively. The sensitivity at 8 TeV is comparable to the one obtained
in the 3 b case, while at 14 TeV requiring an extra b-jet improves the result significantly.

Before discussing the implications of our results, we wish to comment here on the
sensitivity of the proposed analysis to the tt̄h process. As can be read from Tables 4.6
and 4.7, this process makes up a sizeable fraction of the tt̄bb̄ cross section after the cuts.
Moreover, after the first three cuts, the rate for tt̄h is comparable to the th signal for
cF = −1. Being insensitive to the sign of the top Yukawa, tt̄h can be considered as a
background process in our analysis. It is, however, quite useful to observe that the simple
search strategy we propose in the 4b channel would be sensitive to both single and pair
top production in association with a Higgs boson. In this respect, a key role is played by
the cut on mbj that was designed to suppress processes with a tt̄ pair in the final state, as
discussed above. The relative contribution of tt̄h to the tt̄bb̄ background with one mistag,
on the other hand, is small, approximately 5%.
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Figure 4.6 – Regions of the (cV , cF ) plane excluded at 95% CL by our analysis of th→ hbb̄
(3 and 4 b final states combined), at 8 TeV (left) and 14 TeV (right), assuming an integrated
luminosity of 25 fb−1 and 50 fb−1 (dashed and solid respectively). The 68% and 95% CL
contours of a fit to current Higgs data are also shown, in green and yellow respectively.
A universal rescaling by cF of the Higgs coupling to fermions is assumed. The Higgs
coupling fit is based on the data reported by ATLAS, CMS and Tevatron after ICHEP
2012 and collected in Ref. [195].

4.4 Implications on Higgs couplings

We are now able to study the implications of our results on the general parameter space
of Higgs couplings. To do so we combine the two analyses that we discussed in section 4.3,
i.e. 3 and 4 b-tags, to exploit the full LHC sensitivity in th→ tbb̄ production. Note that
in the combination we consider the 3b and 4b samples as independent. While this is an
approximation (which can be easily lifted in a more realistic analysis by defining fully
exclusive samples), in practice it has a small effect as the 4b sample is significantly smaller
than the 3b one. In Fig. 4.6 we present the results of our analysis in the (cV , cF ) plane,
where a universal rescaling of the Higgs couplings to fermions ct = cb = cτ = cc = cF
is assumed. The regions that can be excluded (at 95% CL) by th production with an
integrated luminosity of 25 and 50 fb−1 are presented, along with the regions currently
favoured by a fit to Higgs data. As can be seen, already at 8 TeV parts of the preferred
region with cF < 0 can be excluded. The current best fit point with cF < 0 is excluded at
2.1σ with 50 fb−1. On the other hand, a moderate luminosity at 14 TeV can conclusively
remove the degeneracy between the two regions that are at the present time preferred by
Higgs data, for example reaching a 5.8σ exclusion of the best fit point with cF < 0 after
50 fb−1. Notice that in addition to the th production cross section (recall Fig. 4.4), also
the branching ratio of the Higgs into bb̄ depends on the parameters (cV , cF ).

It is also possible to relax the assumption of universal couplings of the Higgs to fermions
and consider the case where only the htt̄ coupling ct has a rescaled value compared to the
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Figure 4.7 – Regions of the (cV , ct) plane excluded at 95% CL by our analysis of th→ hbb̄
(3 and 4 b final states combined), at 8 TeV (left) and 14 TeV (right), assuming an integrated
luminosity of 25 fb−1 and 50 fb−1 (dashed and solid respectively). The 68% and 95% CL
contours of a fit to current Higgs data are also shown, in green and yellow respectively.
The top Yukawa is assumed to be rescaled by ct, while we have set cb = cτ = cc = 1. The
Higgs coupling fit is based on the data reported by ATLAS, CMS and Tevatron after
ICHEP 2012 and collected in Ref. [195].

SM while cb = cτ = cc = 1, so in particular Γ(h→ bb̄) is equal to its SM value. In this
case, the th→ tbb̄ rate is essentially fixed by the dependence on cV , ct of the production
cross section (a mild sensitivity to cV , ct through the Higgs total width is also present).
The results are shown in the (cV , ct) plane in Fig. 4.7. Excluded regions at 95% C.L. are
displayed for 25 fb−1 and 50 fb−1 integrated luminosity. Superimposed are the regions
currently favoured by Higgs data. The most striking feature is, that the best fit region
with ct < 0 can already be completely excluded at 8 TeV with 25 fb−1 (reaching a 4.0σ

exclusion of the best fit point with negative ct).

4.5 Conclusions

After the time of discovery comes the need for measurements. The couplings of the
putative Higgs boson are of prime importance since they control the behaviour of the
whole theory at high energy. The dominant processes involving the Higgs boson that
are currently investigated at the LHC do not allow us to determine all its couplings
unambiguously. An important task now is therefore to systematically identify additional
processes that could complement the first LHC information and lift degeneracies appearing
in Higgs coupling fits.

In this chapter, we studied single top production in association with a Higgs boson,
focusing on the Higgs decay into bb̄. We discussed the form of the amplitude of the hard
scattering process Wb→ th, showing that for nonstandard couplings of the Higgs to the
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W boson and/or to the top quark a striking enhancement of the cross section can be
obtained. The enhancement is due to the non-cancellation of terms that grow with energy
in the amplitude and lead to violation of perturbative unitarity at some UV scale. We
estimate the new physics scale to be at most 10 TeV, concluding that corrections to our
computation of the cross section from physics above the cutoff are always negligible.

We have performed a parton-level study of the LHC signal processes pp → thj and
pp→ thjb, and of the corresponding irreducible and some of the most relevant reducible
backgrounds. The combination of the two final states, containing 3 and 4 b-jets respectively,
shows that if a universal rescaling cF of the fermion couplings is assumed, already at 8 TeV
parts of the preferred region with cF < 0 can be excluded. On the other hand, a moderate
luminosity of 50 fb−1 at 14 TeV can conclusively remove the degeneracy between the two
regions that are at the present time preferred by Higgs data, reaching a 5.8σ exclusion of
the best fit point with negative cF . In addition, we investigated the case where only the
htt̄ coupling differs from its SM value while the other Yukawa couplings are standard.
Here, the best fit region with negative top Yukawa coupling can be completely excluded
at 8 TeV with 25 fb−1, reaching a 4.0σ exclusion of the best fit point with ct < 0.

Our results, along with similar studies [183, 184], have already motivated the experiments
to investigate single top and Higgs associated production in the H → γγ channel. CMS
quotes to be sensitive to 4.1 times the expected cross section for cF = −1 at 95%

C.L. [196], while ATLAS [197] reports the 95% C.L. intervals of cF to be [−1.3, 7.9].
As expected from our analysis, the 8TeV dataset is not yet conclusive. Experimental
analyses in H → b̄b are currently underway. Besides the experimental analyses, our
results also motivate an improvement in the accuracy of the theoretical predictions. It
would be certainly interesting to evaluate the (possibly significant) impact of NLO QCD
corrections to signal and irreducible backgrounds, i.e., thj and tZj, a task that can now
be accomplished in a fully automatic way [177, 191, 192, 198].

Further information on the Higgs couplings to heavy quarks could also come from other
processes at the LHC. One example is double Higgs production, gg → hh. This process
proceeds through a triangle and a box diagram, which, again, interfere destructively in
the SM and therefore result in a sensitive probe of the Higgs-heavy quarks interactions,
see, e.g., Refs. [199–201]. Finally we remark that complementary information could a
priori also come from the observation of Bs → µ+µ− recently reported by LHCb [202].
The measured value of BR(Bs → µ+µ−) agrees well with the SM prediction [203]. The
SM contribution is actually dominated by the interactions associated to the top Yukawa
coupling and therefore this measurement could be naively expected to provide a good
probe of any deviation of the top Yukawa itself. However, only the Yukawa interactions
between the Goldstone bosons and the quarks contribute to this process. What we have
proposed to probe via th production is rather the interaction of the physical Higgs boson
with the top quark, i.e. the one controlled by the parameter ct. Actually, if the deviations
from ct = 1 originate from pure Higgs non-linearities as in composite Higgs models, for
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instance via a higher dimensional operator like |H|2Q̄LH†tR, then it is easy to see that
the prediction for BR(Bs → µ+µ−) remains unaffected.

74



5 Indirect Probes of NP at Future
Colliders

5.1 Introduction

With the discovery of the Higgs boson [12, 13] and with the absence, thus far, of any
clear evidence for New Physics, a basic feature of the dynamics underlying electroweak
symmetry breaking has begun to materialise: the new states associated with that dynamics
do not seem to be as light as naturalness considerations would have recommended. That
this might be the case has been suggested for quite some time by considerations based
on precision electroweak and flavor data, but the LHC results have made this picture
more concrete. Of course, we may just sit at the edge of New Physics and evidence may
plentifully show up in the next run of the LHC. However, once a bit of un-naturalness is
accepted, it is natural to expect, or fear, that history may repeat itself at 13 TeV. For
instance, keeping the composite Higgs scenario in mind [33–39], a plausible situation is one
where, at the end of its program, the LHC will have only measured inconclusive O(10%)

deviations from the Standard Model in the Higgs couplings. In a definitely more optimistic
situation these small deviations would appear along with some new states, but without a
clear indication for their role in the EWSB dynamics. Under the above circumstances,
the next experimental project would be more one of exploration and discovery than one
of refinement and consolidation. With this in mind, a high-energy hadron machine like
the LHC at

√
s = 33TeV [204–206] would superficially seem better suited than a cleaner

but less powerful leptonic machine like the ILC [50] or CLIC [51, 207, 208]. However,
given the criticality of the decisions we may face in the coming years, it is important to
carefully assess the potential of each machine in each plausible NP scenario. It is the
goal of this chapter to provide one such assessment: by focussing on a high-energy lepton
machine such as CLIC, we shall explore its potential in the exploration of the composite
Higgs scenario.

Single Higgs production at a linear collider, even at 500 GeV, is known to be a very sensitive
probe of compositeness [209], even though an indirect one. In the case where resonances
are still out of reach, a more direct probe on compositeness is offered by the study of the
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interactions of longitudinally polarised electroweak vector bosons and the Higgs. The
relevant processes are V V → V V and V V → hh (V = W,Z), whose cross sections grow
like E2. There exist several studies of V V → V V at hadron machines [64, 210–219] but
just a few of V V → hh [64, 80]. The study of these processes in hadron collisions is not
an easy task. V V → V V offers final states with leptons that stand out well against the
QCD background. However, the genuine SM contribution to V V → V V happens to be
numerically so large that the effects of compositeness dominate only at very high energy,
where LHC parton luminosities are small [64]. The result is a poor reach on the scale
of compositeness. In the case of V V → hh the genuine SM contribution is numerically
small, so that in principle this would be a good probe of compositeness. However the final
states and branching ratios of Higgs decay are not favourable in a hadronic environment.
The reach on compositeness from this process at the LHC is thus also not very good.
Instead, as we will show in this chapter, a machine like CLIC offers the right combination
of a clean environment and center-of-mass energy to significantly probe the composite
Higgs scenario. The improvement compared to hadron machines is particularly stark for
V V → hh. Our main result is that V V → hh at CLIC offers about half the reach on
the scale of compositeness as single Higgs production at a 500GeV ILC. However the
observation of a cross section for hh production that grows with energy would be a more
direct and convincing evidence of the strongly coupled nature of NP. It also turns out
that in the presence of a signal in V V → hh one may in principle be able to make more
refined statements about the nature of h. First of all, via a comparison with single h
processes, one can nicely and directly confirm that h is part of a doublet. Moreover one
can in principle test whether h is a pseudo Nambu–Goldstone boson (pNGB) living in a
coset space [33–39] or whether it is a generic composite scalar. A way in which this could
also be done is by studying triple Higgs production: V V → hhh. This process could be
marginally observable in the case of a generic composite h, while in the case of a pNGB
non-trivial selection rules suppress its rate below observability.

This chapter is organised as follows. In section 2.2.2, we review the general parameteriza-
tion of the Higgs couplings and the relative importance of energy-growing 2→ 2 scattering
processes. Current constraints on the couplings, especially from electroweak precision
tests, and their consequences on the scale of NP are discussed in detail in section 5.2.
In sections 5.3 and 5.4, we study the information contained in single, double and triple
Higgs production on the structure of the underlying theory. A quantitative analysis of the
ILC and CLIC sensitivities on the anomalous couplings and their reach in the parameter
space is given in section 5.5. We present our conclusions and outlook in section 5.6.

5.2 Current constraints on the Higgs couplings

Past and current experiments set important constraints on the Higgs couplings and on
the scale of New Physics m∗. For a detailed discussion of EW precision observables see
section 5.2.
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5.2.1 Direct coupling measurements

The precision currently reached at the LHC on the direct measurement of the Higgs
couplings to vector bosons and to fermions is limited. The exact value depends on
the assumptions one makes to extract the couplings. For example, one can make a
two-dimensional fit of a and c, where the latter parameterises a common rescaling of all
the Yukawa couplings. Even neglecting the second solution at c < 0, the uncertainty
in the official fits of the ATLAS and CMS collaborations is of the order of ∼ 20% on a
and even larger on c [99, 100]. In particular, while ATLAS prefers values a > 1, the best
fit value of CMS is for a < 1. A naive combination of these results leads to a smaller
uncertainty [74, 79, 163, 220–222], but more data are definitely required to form a clearer
picture. Preliminary studies indicate that eventually a precision of ∼ 5% on a should be
reached at the 14TeV LHC with an integrated luminosity of 300 fb−1 [223, 224].

5.2.2 Resonance searches

Searches for direct production of resonances at the LHC also set important constraints
on the mass scale mρ of a new strongly-interacting sector. Here we consider the case of
a generic SO(5)/SO(4) composite Higgs theory as a benchmark scenario, although the
actual bounds will depend on the details of the strong dynamics and on how it couples
to the SM fermions. For illustrative purposes we focus on the lightest spin-1 resonance
of the strong sector, which we denote by ρ, and assume that it transforms as a (3, 1)

under SU(2)L × SU(2)R ∼ SO(4) (for recent studies in this direction see for example
[97, 225–227]). The dominant production is via Drell–Yan processes (see for example
Ref. [228]). A class of theories motivated both theoretically and experimentally is one in
which the spin-1 resonance couples to light fermions only through its mixing to the SM
gauge fields [229] (see Ref. [230] for alternative possibilities). In this case the Drell–Yan
production cross section scales as 1/g2

ρ, since couplings of the resonances to the SM
fermions are suppressed by 1/gρ. The strongest exclusion limits are currently set by the
LHC searches performed at 8 TeV with 20 fb−1 in final states with one lepton and missing
transverse energy [231, 232] or dileptons [233, 234], looking for charged and neutral spin-1
resonances respectively. For values of ξ of order 1, searches for resonances decaying into
WZ, in particular those with three leptons in the final state [235, 236], give slightly
stronger bounds. 1 Assuming the ρ to be a (3,1) of SU(2)L × SU(2)R, we translated the
bounds on (σ ×BR) set by the experimental collaborations into a combined exclusion
region in the (ξ,mρ) plane.

The situation of direct and also indirect constraints is summarised in Fig. 5.1 for the case
of a generic SO(5)/SO(4) composite Higgs theory. We fix aρ ≡ mρ/(gρf) = 1, where we
define gρ as the physical coupling strength between three ρ resonances. The fundamental

1We find that the more recent searches for spin-1 resonances decaying to pairs of vector bosons with
boosted decay products [237–239] give less strong constraints.
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Figure 5.1 – Summary of current constraints (orange curves and brown region) and expected
sensitivities at CLIC and the LHC (horizontal regions) on ξ = (v/f)2 and the mass of the lightest
spin-1 resonance mρ for SO(5)/SO(4) composite Higgs theories. See text.

free parameters of the new dynamics are then the mass of the spin-1 resonance, mρ, and
the strengths of the Higgs interactions parameterized by ξ = (v2/f2). The dark brown
region on the left shows the current 95% combined limit from direct production of the
charged ρ± at the LHC decaying to lν and WZ → 3lν final states. A similar exclusion
region follows from the limits on the production of the neutral ρ0. The dark (medium
light) horizontal purple bands of Fig. 5.1 indicate instead the sensitivity on ξ expected at
the LHC from double (single) Higgs production with 300 fb−1 of integrated luminosity
(see footnote 12 for the definition of sensitivity adopted in this chapter). The value shown
for the case of double Higgs production is based on a naive (and perhaps optimistic)
extrapolation of the study of Ref. [64]; a more precise determination requires an updated
analysis for mh = 125GeV. As we will discuss in section 5.5, the study of double Higgs
processes alone at CLIC is expected to lead to a precision on ξ larger than what obtainable
at the LHC through single Higgs studies. In the plot of Fig. 5.1 this is illustrated by
the lowest horizontal band. The possibility of directly testing such small values of ξ at
CLIC has to be compared with the indirect bounds set by the EW precision data. By
including only the tree-level contribution ∆Ŝ = m2

W /m
2
ρ from the ρ exchange [97] and

the 1-loop IR effect from the modified Higgs couplings, we find that the region above
the lower orange band is excluded at 95%. For mρ →∞ the upper limit on ξ tends to
∼ 0.02, as previously reported in the discussion of the EW fit. In the absence of other
contributions to the oblique parameters, masses mρ . 5TeV are already excluded even
for very small ξ. Lowering the value of aρ makes the bound on mρ weaker, but does not
change much that on ξ. The allowed region instead opens up in presence of an additional
contribution to T̂ : for 0 < ∆T̂ ≤ +1.5× 10−3 the 95% exclusion boundary varies between
the upper and lower orange lines and masses as low as mρ ∼ 2 TeV can still be viable.
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The domain of validity of our predictions, gρ < 4π, is below the upper red line.

5.3 What can be learned from single and double Higgs pro-
duction?

In this section we discuss what could be learned directly, or indirectly, from a program of
precise Higgs measurements at CLIC. For definiteness we can imagine a scenario where
the LHC did not measure deviations from the SM larger than O(20%) in single Higgs
production, and also no clear indications emerged on what the underlying theory may be
(new particles may have been discovered but not with a clear role, i.e. no supersymmetric
particles). There are various broad questions one can in principle address with these
measurements. One question is whether the scalar h is elementary or composite. Other
questions concern the nature of h, whether or not it fits into an SU(2) doublet (an explicit,
if not well motivated, example of a non-doublet Higgs-like scalar is a dilaton [68–73]) or
whether or not it is a pNGB. To some extent the information will be indirect, so it is
worth illustrating the logic in some detail.

Consider the issue of compositeness first. Of course, in order to directly answer this
question, it would be necessary to explore the energy scale associated with the new
states and observe the onset of a novel UV regime, perhaps described by a strongly
coupled CFT. That would be the analogue of observing the hadron to parton transition in
QCD processes. However, the measurement of low-energy quantities can already give an
appraisal of the strength of the underlying interactions, thus favouring or disfavouring a
composite scenario. Indeed for an SU(2) Higgs doublet, a heavy particle with massmρ and
coupling to the Higgs gρ modifies the low-energy couplings by a relative amount of order
(gρv/mρ)

2. 2 For instance, massive fermions with a vectorlike mass mρ and a Yukawa
interaction to the Higgs of strength gρ affect the coupling of h to two gluons and two
photons by a relative amount ∼ (gρv/mρ)

2 (for recent work in the context of composite
Higgs models see e.g. Ref. [241–243]). Similarly, a heavy singlet scalar S coupled to
the Higgs doublet via a trilinear term gρmρS|H|2 mixes by an angle θ ∼ gρv/mρ with
h, implying shifts in its couplings of order θ2 ∼ (gρv/mρ)

2. 3 In the absence of new
states below a certain scale M , the observation of deviations of order δexph in single Higgs
production would then imply a qualitative lower bound on the coupling

gρ >
√
δexph

M

v
. (5.1)

Sizeable deviations δexph in the absence of new states would suggest a strong coupling and,
indirectly, h compositeness. A more direct measurement of the strength of the underlying

2Notice that a light Higgs mass mh = 125GeV disfavours maximal values gρ ∼ 4π unless some
(additional) tuning is present in the Higgs potential. See for example Refs. [1, 47, 240].

3One could also consider a potential V = −m2
ρ|S|2 + g2

ρ|S|2|H|2 + g2
ρ|S|4, by which 〈S〉 ∼ mρ/gρ ≡ f ,

and reach the same conclusion.
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interaction is obtained by a study of the processes WW → WW and WW → hh. As
discussed in section 2.2.2, a deviation from a = b = 1 leads to a cross section that grows
with s. The 2→ 2 amplitude can be taken as a measure of a “running” coupling ḡ(

√
s),

see eq. (2.36). The measurement of an enhancement, quantified by δexphh , in these processes
at an energy

√
s, corresponds directly, though qualitatively, to a lower bound on the

strength of the interaction

gρ > ḡ(
√
s) ∼

√
δexphh

√
s

v
. (5.2)

Equations (5.1) and (5.2) look similar, and not by chance. Notice, however, that the
second equation corresponds to a direct measurement of the coupling, and is thus a more
robust estimate. Indeed, at a precise machine such as CLIC a detailed study of 2→ 2

processes would allow even stronger conclusions. The point is that eq. (2.36) is only the
leading term in a derivative expansion, the subleading corrections being of relative size
s/m2

ρ:

A(2→ 2) = δhh
s

v2

(
1 +O

(
s

m2
ρ

))
. (5.3)

In principle at CLIC one could measure the leading O(s) contribution and set an upper
bound εhh on the relative size of the O(s2) term. That would indirectly suggest that
there are no new states below a mass M ∼ √s/√εhh and that the amplitude will keep
rising at least until that scale. That would amount to a stronger indirect bound

gρ > ḡ(M) ∼
√
δexphh

εhh

√
s

v
. (5.4)

We clearly see here the value of being able to measure 2 → 2 processes with high
precision below the threshold of New Physics. Of course another possibility is that of
directly observing, rather than setting limits on, the O(s2) effects from the tails of heavy
resonances. In this case detailed information on the strong dynamics, such as the quantum
numbers of its resonances, can come from the comparison of different scattering channels,
see for example Refs. [97, 244–246]. 4

Consider now the properties of h from the standpoint of symmetries. In the case of the
SILH, in which h fits into a doublet of SU(2) arising from some unspecified dynamics at
the scale mρ, the bosonic couplings a, b, b3 are predicted in terms of just one parameter
at O(v2/f2), as illustrated by eq. (2.32). In particular, by defining ∆a2 ≡ a2 − 1 and
∆b ≡ b− 1 one has

∆b = 2∆a2
(
1 +O(∆a2)

)
, (5.5)

4The effects from the tails of spin-1 resonances can also be studied through the process e+e− → V V ,
see for example Refs. [247–252].
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where the higher-order corrections are determined by the tower of higher-dimensional
operators with two derivatives and 2n H fields using the SILH power counting. Further-
more, in the very special case where H is a pNGB the whole tower of operators and the
resulting WWhn couplings are all fixed in terms of a single parameter ξ. Equation (3.7)
reports for example the predictions of the minimal SO(5)/SO(4) and SO(4, 1)/SO(4)

theories. In both cases eq. (5.5) becomes exactly

∆b = 2∆a2 . (5.6)

From single Higgs production one would be able to measure ∆a2 with an error ∼ 10−2,
maybe of a few per mille [50, 209, 253–256]. The measurement of WW → hh, as we
will discuss in the next sections, allows one in principle to measure ∆b with an error of
order 10−2. Equations (5.5) and (5.6) can then be tested at the percent level. For instance,
in the case of a SILH not embedded in a coset one could imagine finding ∆a2,∆b ∼> 0.1

and to be compatible with eq. (5.5) but violating eq. (5.6) by an amount bigger than
the expected percent accuracy. On the other hand, for ∆a2,∆b < 0.1, it would not be
possible to distinguish between a SILH and a pNGB. Finally, down to ∆a2,∆b ∼ 10−2

one could find that eq. (5.5) is not respected, indirectly speaking against the embedding of
h in a doublet. It should however be pointed out that such a scenario, normally associated
with a fully composite h, would more probably imply ∆’s of order 1, which are already
excluded by the current LHC results. It should also be remarked that the only case of
this type with some mild motivation is the one of a light dilaton, corresponding to

∆b = ∆a2 , (5.7)

implying a vanishing contribution to WW → hh at leading order in the energy expan-
sion [64].

We should finally point out the potential role of the rates for h → gg and h → γγ in
distinguishing a pseudo Nambu–Goldstone h from a generic composite scalar. The basic
remark [80] is that there are two classes of corrections to these rates. One correction
originates from the modification of the coupling of h to WW and to t̄t and affects the
on-shell h → gg, h → γγ amplitudes via the W and t loop contribution. In a sense
this contribution is long distance. A second correction is the genuine short-distance
contribution to the Wilson coefficient of the operators

Ogg = hGµνG
µν , Oγγ = hFµνF

µν , (5.8)

that arises from loops of heavy states. In the case of a pNGB this second class of effects
is suppressed with respect to the first by a factor (g6G/gρ)2, where by g6G we indicate
a weak spurion coupling which breaks the Goldstone symmetry. This suppression is a
consequence of the Goldstone symmetry selection rules and would be absent in the case of
a generic composite scalar, like for instance the dilaton. In the limit where g 6G/gρ � 1, the
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rates h→ gg, h→ γγ are fully controlled by a and ct (ct measures the deviations of the
top Yukawa coupling [80]), a result that can in principle be tested. However, one should
keep in mind that the measured value of mh prefers a scenario where the top partners
are somewhat lighter than the rest and only moderately strongly coupled [1, 47–49, 157].
In that situation the correlation between h→ gg, h→ γγ and the parameters a, ct may
receive important corrections.

5.4 What can be learned from triple Higgs production?

In this section we discuss the relevance of the process V V → hhh in distinguishing
between a generic SILH and a pNGB (for an earlier study of this process at a linear
collider, see Ref. [257], while a study at the LHC has been recently carried out in Ref. [258]
and triple Higgs production by gluon fusion has also been studied in Ref. [259]). We will
show that this process is suppressed in the pNGB case as a consequence of a Z2 invariance
of the Lagrangian under which the NG bosons are odd. A priori, any three-body final
state involving the Higgs and gauge bosons could be a further probe of the nature of the
Higgs. In practice, however, V V → hhh is the only process that adds new information,
thanks to its sensitivity to b3. Studying further final states like hhV , hV V and V V V
merely gives a complementary probe of the relation between a2 and b.

5.4.1 Symmetry structure

In a symmetric coset like SO(5)/SO(4) there exists a Z2 invariance of the algebra (grading)
under which the broken generators T â change sign while the unbroken generators T a

do not: T a → +T a, T â → −T â. At the field level this corresponds to a parity R under
which all NG bosons are odd

R : πâ(x)→ −πâ(x) . (5.9)

In general, R is an accidental invariance of the Lagrangian at the two-derivative level
and is violated at higher orders. This is for example the case of SO(4)/SO(3), where R
coincides with the PLR parity of eq. (2.37). It may happen however, as for example in
the case of SO(5)/SO(4), that R is an element of G, in which case it remains unbroken
to all orders in the derivative expansion of the strong dynamics. In fact, this is true
for any coset G/H involving only doublets under some SU(2)′ ⊂ H. 5 In particular
this property is shared by the simplest cosets involving just one scalar doublet, whether
custodially symmetric (SO(5)/SO(4) or SO(4, 1)/SO(4)) or not (SU(3)/SU(2)× U(1)).
Consequently, when the Higgs doublet is the only pNGB multiplet from some strong
dynamics, processes with an odd number of pseudo-NG bosons are forbidden to all orders

5Such a coset is obviously symmetric, as the commutator of any element in G/H cannot be a doublet,
and must therefore belong to H. Moreover the residual SU(2)′ will forbid odd powers of the NG-bosons
at any order in the derivative expansion.
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Polarisation Amplitude for
pNGB SILH

VLVL → hhh g2v/f2 ŝv/f4

VLVT → hhh
√
ŝg/f2

VTVT → hhh g2v/f2

Table 5.1 – Naive high-energy and large-angles behaviour of partonic V V → hhh amplitudes for
a pNGB Higgs (first column) and a generic SILH scalar (second column).

in the strong dynamics and only arise as a weak effect of the SM couplings.

The above argument implies that, although by a naive counting one would expect the
VLVL → hhh cross section to grow with ŝ2, 6 this does not happen for a pNGB Higgs.
In practice R is weakly broken by the gauging, so that this process is not strictly zero
but only suppressed by g. The expected energy behaviour of the amplitude at the
parton level can be estimated by power counting and is shown in Table 5.1. Longitudinal
modes interact with coupling strength ḡ(

√
ŝ) ∼

√
ŝ/f , while transverse modes have weak

coupling strength g. Measuring the cross section of triple Higgs production can thus give
important indications on the nature of the Higgs boson and distinguish the case of a
pNGB from that of a generic SILH. Indeed, as it will become more clear in a moment, the
grading symmetry R is reflected in some non-trivial correlations among the coefficients
of operators of different dimensionality in the expansion of the effective Lagrangian in
powers of the Higgs doublet H.

5.4.2 Quantitative analysis of V V → hhh

We checked that the expected cancellation of the energy-growing term of the VLVL → hhh

scattering amplitude takes place by performing an explicit computation in the gaugeless
limit g = g′ = 0. By the equivalence theorem, the leading energy behaviour of VLVL →
hhh is captured by the NG boson scattering χχ→ hhh. From the Lagrangian of eq. (2.16)
we find three distinct diagrams, depicted in Fig. 5.2, plus their crossings, which contribute
to the amplitude. At leading order in ŝ we find 7

A(χχ→ hhh) =
iŝ

v3

(
4ab− 4a3 − 3b3

)
. (5.10)

6From here on we will indicate the partonic c.o.m. energy with ŝ, while s will denote the collider
energy.

7Note that, similarly to the process V V → hh, anomalous Higgs self-interactions parameterized by d3

and d4 modify the amplitude of triple Higgs production near threshold but do not affect the asymptotic
behaviour at large partonic energy. Their contribution is thus subleading and will be neglected in the
following.
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+ crossings++

Figure 5.2 – Leading diagrams contributing to the χχ→ hhh amplitude. Dashed lines represent
the NG bosons χ, while solid lines denote the Higgs boson h. The sum of these diagrams with
their crossings cancels out exactly in the gaugeless limit for a symmetric coset and at the O(p2)
level for any coset. See text.

σ ξ
[ab] 0 0.05 0.1 0.2 0.3 0.5 0.99

pNGB 0.32 0.46 0.71 1.47 2.41 4.13 0.30

SILH 0.32 0.71 0.87 7.56 42.89 407.9 7808

Table 5.2 – Cross section for the process e+e− → νν̄hhh for mh = 125GeV at
√
s = 3 TeV.

The first line shows the cross sections obtained in the symmetric SO(5)/SO(4) coset for various
values of ξ. The cross sections in the second line are for a SILH with cH = 1 and c′H = 0 and
vanishing higher-order operators.

In the case of SO(5)/SO(4) the values of the couplings a, b and b3 are given by eq. (3.7)
and the coefficient of the term growing with ŝ in the amplitude vanishes identically. In
the case of a generic Higgs doublet the cancellation works at the O(v2/f2) level, as due
to the universality of the SILH Lagrangian, but it fails at higher orders. By substituting
the relations of eq. (2.32) into eq. (5.10) we find

A(χχ→ hhh) = 2i
(
c′H − 2c2

H

) ŝ
v3

(
v4

f4

)
. (5.11)

As expected, the coefficient of the energy-growing term is of order v4/f4 and proportional
to the linear combination (c′H − 2c2

H). This latter must vanish if the Higgs lives on a
symmetric coset G/H. 8

At CLIC, triple Higgs production proceeds through the process e+e− → νν̄V V → νν̄hhh,
where V = W±, Z. Some typical values of the cross section are shown in Table 5.2 for
the case of a pNGB and a SILH with cH = 1 and c′H = 0 (and vanishing higher-order
operators). While the cross section for a pNGB is in the range of a few ab, in the case of
a generic SILH it can be much bigger and grows like ξ4, with the dominant contribution
coming from the subprocess VLVL → hhh. A careful analysis of the sensitivity of a linear
collider to the anomalous couplings involved in triple Higgs production is beyond the
scope of this work. A very conservative approach is to decay every Higgs to bb̄ and to
require the identification of at least 5 b-jets. The branching ratio of three Higgses into 3
bb̄ pairs is 20%. Assuming an 80% b-tagging probability, the efficiency to reconstruct at

8This shows that the relation c′H = 2c2H holds true in any symmetric coset, and not only in
SO(5)/SO(4).
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+ crossings+

Figure 5.3 – Diagrams giving the dominant contribution to the VTχ → hhh cross-section.
Continuous, dashed and wiggly lines denote a Higgs boson h, the NG bosons χ, and a transverse
gauge boson VT respectively.

least 5 b-jets out of the available 6 in the final state is 66%. Including an additional factor
3 reduction due to identification cuts to be performed on the final state jets one obtains
an overall efficiency on the signal which is roughly 5%. Requiring the identification of
O(10) triple Higgs events implies the possibility to detect this process with an integrated
luminosity of 1 ab−1 as soon as ξ ∼> 0.3 for a generic SILH.

The dominant contribution to triple Higgs production in the case of a pNGB Higgs
comes from the subprocess W±LW

∓
T → hhh, whose cross section is expected to grow as

ŝ log ŝ. The leading logarithmic behaviour can be extracted by using the equivalence
theorem and arises from the subset of diagrams shown in Fig. 5.3. In the limit in which
the intermediate pNGB line is nearly on-shell, the total cross section factorizes into the
product of a collinear WT → χh splitting times the cross section of a hard χ±χ∓ → hh

scattering

σ(W±T χ
∓ → hhh) =

∫
dx dp2

T f(x, pT )σ(χ±χ∓ → hh)(xŝ) . (5.12)

Here x is the fraction of the W energy carried by the emitted χ, pT is its transverse
momentum and ŝ is the total center-of-mass energy of the WTχ → hhh process. The
splitting function f(x, pT ) can be calculated using eq. (2.16) and is given by

f(x, pT ) =
1

p4
T

x(1− x)

8π2
|A(WT → χh)|2 =

x(1− x)

p2
T

a2g2

32π2
, (5.13)

where we have neglected the masses of the gauge and Higgs bosons. Notice that the
amplitude of the splitting A(WT → χh) vanishes in the forward direction as required by
angular momentum conservation. At leading order in ŝ, the cross section of the hard
χχ→ hh scattering does not depend on pT , and reads

σ(χ±χ∓ → hh)(ŝ) =
ŝ(b− a2)2

32πv4
. (5.14)
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Figure 5.4 – Partonic cross-sections of the processes VLVL → hhh (black), VLVT → hhh (red)
and VTVT → hhh (blue) as a function of

√
ŝ for a pNGB Higgs with ξ = 0.1 and mh = 125GeV.

The dashed line shows the partonic cross section after applying the cuts pT > 0.05
√
ŝ for each

Higgs and mhh > 0.1
√
ŝ for all Higgs pairs.

We thus obtain

σ(W±T χ
∓ → hhh) =

g2

12288π3

(ab− a3)2

v4
ŝ log

ŝ

m2
W

. (5.15)

The factor log(ŝ/m2
W ) originates from the logarithmic divergence of the integral over pT ,

which is cut off in the infrared at p2
T ∼ m2

W once the W mass dependence is properly
taken into account.

Although this calculation captures the exact asymptotic behaviour of the W±T W
∓
L → hhh

process, it turns out that the subleading contribution proportional to ŝ is numerically
large, so that the logarithmically enhanced term starts to dominate only at very high
center-of-mass energies. The energy dependence of the process V V → hhh (V = W,Z)
in the various polarisation channels is shown in Fig. 5.4. We assume that the Higgs boson
is a pNGB living on the coset SO(5)/SO(4), so that the selection rules discussed at the
beginning of this section apply. The expectation for the various 2 → 3 amplitudes is
reported in Table 5.1. Notice that for a three-body process the product of the flux factor
and phase space is dimensionless. The naive high-energy behaviour of the various cross
sections is then obtained by squaring the entries of Table 5.1. The total cross section is
expected to follow this naive energy behaviour only if the phase space integral does not get
any particular enhancement from singular kinematic configurations. As explained above,
the LT polarisation channel indeed gets a logarithmic enhancement from the kinematical
region where one of the final Higgs bosons is collinear with the incoming transverse vector.
As Fig. 5.4 shows, the TT channel cross section is constant at high energy, in agreement
with the naive expectation σ(VTVT → hhh) ∼ (g4/(4π)3)(v2/f4). On the other hand
the inclusive VLVL → hhh cross section grows like ŝ at high energy, faster than what is
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expected from Table 5.1. This is due to the Coulomb singularity that some of the diagrams
have in the limit in which one of the final Higgs bosons is collinear to the incoming beam.
The amplitude of those diagrams goes as A(VLVL → hhh) ∼ (g2v/f2)(ŝ/t̂), where t̂ is the
squared difference of one of the initial momenta and the momentum of the collinear Higgs
boson. The integral over t̂ is dominated by the singular region t ' tmin ∼ −m2

W , so that
the total cross section gets enhanced by a factor (ŝ/m2

W ). Such an enhancement can be
removed by suitable kinematic cuts to avoid all collinear configurations. For example, the
dashed curves of Fig. 5.4 show the energy dependence of the cross sections after requiring
pT > 0.05

√
ŝ on each of the Higgs final momenta. As expected, the TT and LT channels

are only slightly suppressed by the cuts, while the Coulomb singularity of the LL channel
is removed and its cross section is constant at high energies.

5.5 Quantitative analysis of V V → V V and V V → hh

In this section we study the sensitivity of a linear e+e− collider to the anomalous Higgs
couplings a, b and d3 through vector boson scattering and double Higgs production. In
section 5.5.2 we discuss VLVL → VLVL scattering at low-energy (ILC) and high-energy
(CLIC) linear colliders; in sections 5.5.3 and 5.5.4 we focus on double Higgs production. We
show that, while CLIC can provide a precise determination of the anomalous couplings
through the study of the vector boson fusion process e+e− → hhνν̄, a lower-energy
machine like the ILC has to rely on the double Higgs-strahlung process e+e− → hhZ.
Previous analyses of V V → V V and V V → hh at high-energy linear colliders appeared
in Refs. [260–262] and [209, 263, 264] respectively. 9

5.5.1 Identification cuts

In the following we set mh = 125GeV and focus on final states where W , Z and h decay
hadronically, with the only exception of double Higgs-strahlung where we include leptonic
decays of the Z. Our analysis is at the parton level and does not include corrections due
to QCD radiation. Final-state partons are passed through a simple algorithm to obtain a
crude though sufficiently accurate approximation of jet-reconstruction and detector effects
of a real experiment. We perform a simple Gaussian smearing of the parton energies
assuming a constant resolution ∆E/E = 5% [51, 207, 208]. Two partons with

∆Rjj < 0.4 (5.16)

are merged together by summing their 4-momenta. The algorithm is applied recursively
until it converges to a list of final partons. A parton thus obtained which satisfies the

9See also Ref. [265] for a study of the process γγ → V V (V = W,Z) to extract the anomalous Higgs
couplings.
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cuts

Ej >20GeV , |ηj | < 2 (5.17)

is identified with a reconstructed jet. The rapidity cut, in particular, excludes recon-
structed jets which fall within 15◦ of the collision axis. Leptons (muons and electrons)
are identified if they satisfy the following cuts:

E` >5GeV , |η`| < 2 . (5.18)

We furthermore require a separation ∆Rj` > 0.4 between reconstructed jets and leptons.

In events with two Higgs bosons (like those coming from WW fusion or double
Higgs-strahlung) we require at least 3 b-tags with a b-tagging efficiency of 80% assumed
throughout the analysis. According to Ref. [51, 207, 208], this is associated with mistag
rates of ∼10% and ∼1% for c-jets and light jets respectively. With this assumption the
probability of tagging at least 3 b-jets out of 4 is 82%.

All our event samples are generated with MadGraph5 [189], except for the background
to V V → V V scattering which has been generated with Whizard [266]. We do not
include parton showering and hadronization.

5.5.2 V V → V V scattering

All the channels e+e− → V V `¯̀, where ` is either an electron or a neutrino, provide
a framework for studying vector boson scattering at a linear collider. V V scattering
processes with electrons in the final state are initiated by a neutral current splitting
e± → γe± or e± → Ze±. While the first always contributes as a large background to the
signal we are interested in, the second splitting is a factor of 2 smaller than the charged
current splitting e → Wν. We will focus therefore on V V νν̄ final states and neglect
V V e+e− for simplicity. We will consider hadronically decaying vector bosons and, to
avoid possible experimental issues related to energy resolution and W/Z separation, we
will be inclusive and sum over final states with W ’s or Z’s.

The cross section for the process e+e− → V V νν̄ can be parameterized in terms of the
coupling shift ∆a2 as

σ(∆a2) = σSM
(
1 +A∆a2 +B (∆a2)2

)
, (5.19)

where σSM is the SM cross section and A,B are two dimensionless coefficients. Notice
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that ∆a2 = ξ in the MCHM. For
√
s = 3 TeV we find, before any cut,

σSM = 184 fb , {A,B} = {0.01, 0.15}
[
e+e− → V V νν̄

√
s = 3TeV

before any cut

]
. (5.20)

It is clear that at this level the cross section is largely dominated by the SM term. One
reason is the “accidental” numerical enhancement, discussed in Ref. [64], of the partonic
VTVT → VTVT cross section compared to VLVL → VLVL. Another reason is that the total
cross section displayed here is dominated by threshold production and does not really
probe the highest energies.

The situation is worsened by the presence of backgrounds. The largest contribution
arises from the process e+e− →W+W−e+e−, which goes through a γγ →W+W− hard
scattering, where the final electron and positron escape the detector. A similar though
smaller background comes from e+e− →W±Ze∓ν. Before cuts, the cross section of these
background processes is of the order of hundreds of pico-barns.

We focus on hadronic decays of the W and Z bosons and select events with at least four
reconstructed jets, where jet reconstruction is done according to the procedure discussed
in section 5.5.1. The two V candidates are defined by considering the four most energetic
jets in each event, j1,...4, and by identifying the pairing (j1j2, j3j4) which minimises the
χ2 function

(mj1j2 −mV )2 + (mj3j4 −mV )2 , (5.21)

where mV ≡ (mW +mZ)/2. We use the average mass mV in the χ2 function since we
do not know a priori if the V candidate is a W or a Z. The algorithm is however quite
effective to identify real vector bosons, and the percentage of fake pairings is negligible.
After their reconstruction, we impose the following cut on the invariant mass of each of
the two V candidates:

|mjj −mV | < 15GeV . (5.22)

Events where such requirement is not satisfied are discarded. The overall efficiency of the
identification cuts in eqs. (5.17) and (5.22) is roughly 30% for both signal and background.
After imposing the identification cuts and including the hadronic branching ratios of the
W and Z bosons, we find that the signal rate r = σ(e+e− → V V νν̄)×BR(V V → 4j) is
parameterized by

r(∆a2) = rSM
(
1 +Ar ∆a2 +Br (∆a2)2

)
, (5.23)

with

rSM = 28.7 fb , {Ar, Br} = {0.04, 0.16}
[
e+e− → 4jνν̄

√
s = 3TeV

after identification cuts

]
. (5.24)
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In order to enhance the signal and reduce the backgrounds we apply the following
additional set of cuts

mV1V2 > 500GeV ,

min pT (Vi) > 100GeV ,

max |ηVi | < 1.1 ,

mνν > 150GeV ,

(5.25)

where V1,2 denote the two V candidates. The cut on the invariant mass of the two
neutrinos, in particular, eliminates those backgrounds, like e+e− → V V Z (with Z → νν̄),
where the missing energy arises from the invisible decay of an on-shell Z boson. Finally,
we require

pT (V1V2) > 75GeV. (5.26)

This latter cut on the transverse momentum of the V V system is applied to further reduce
the e+e− →W+W−e+e− and e+e− →W±Ze∓ν backgrounds: if the final electrons are
so forward to be lost in the beam-pipe it is reasonable to expect the total pT of the
recoiling vectors to be small. After all these cuts, the signal rate is parameterized by

rSM = 1.7 fb , {Ar, Br} = {0.04, 0.7}
[
e+e− → 4jνν̄

√
s = 3TeV

after analysis cuts

]
. (5.27)

The background rate from e+e− → W+W−e+e− and e+e− → W±Ze∓ν processes
amounts to roughly rb = 2.5 fb after the cuts. The calculation has been performed
using Whizard [266] by requiring the electrons in the final state to be undetected
(η(e±) > 2.5). 10

We thus proceed to estimate the expected sensitivity on ∆a2. We follow a Bayesian
approach and construct a posterior probability for the total event rate rtot

p(rtot|Nobs) ∝ L(Nobs|rtotL)π(rtot) , (5.28)

where Nobs is the assumed number of observed events and L is the integrated luminosity.
We denote with π(rtot) the prior distribution and with L(Nobs|rtotL) the likelihood
function, which we take to be a Poisson distribution

L(Nobs|rtotL) =
e−rtotL (rtotL)Nobs

Nobs!
. (5.29)

For a given true value ∆ā2 of the coupling shift, we assume the number of observed

10We found significant numerical instabilities in the MC computation of the cross section, with variations
in the final result up to 30 − 50%. As explained below, we took into account such uncertainty in our
analysis by rescaling the final background rate by a factor 1.5.
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∆ā2 = ξ̄ ∆a2 ξ(68) ξ(95)

0 (−0.21, 0.17) (0, 0.17) (0, 0.29)

0.05 (−0.22, 0.17) (0, 0.18) (0, 0.29)

0.1 (−0.23, 0.18) (0, 0.19) (0, 0.30)

0.2 (−0.34,−0.1) ∪ (0.04, 0.28) (0.06, 0.28) (0.0, 0.34)

0.3 (−0.45,−0.22) ∪ (0.17, 0.39) (0.17, 0.39) (0.0, 0.45)

0.5 (−0.62,−0.49) ∪ (0.45, 0.56) (0.43, 0.56) (0.36, 0.61)

Table 5.3 – Expected 68% probability intervals on ∆a2 (second column) and ξ (third column)
and 95% probability intervals on ξ (fourth column) for different true values ∆ā2 = ξ̄ measured at
CLIC 3TeV through V V → V V scattering. The limits on ξ have been derived by taking into
account that only values in the range ξ ∈ [0, 1] are theoretically allowed. See the text for details
on the statistical analysis.

events to be Nobs = (r(∆ā2) + rb)L, while the total rate is rtot = r(∆a2) + rb. As we
do not explicitly introduce additional uncertainties (theoretical or systematic) on the
estimate of the background in our statistical analysis, 11 we have conservatively rescaled
the background rate rb by a factor 1.5 compared to the MC prediction.

By assuming a flat prior on ∆a2 and setting the integrated luminosity to L = 1 ab−1, we
obtain the 68% probability intervals shown in Table 5.3 (second column) for different true
values ∆ā2. We find that for large ∆ā2, the term proportional to (∆a2)2 dominates the
rate and a second peak of the likelihood appears at negative values of the coupling shift.
The 68% interval in these cases consists of two disconnected parts. We also considered the
SO(5)/SO(4) models MCHM where the coupling shift is ∆a2 = ξ, see eq. (3.7). In this
case we have imposed a prior on ξ which is flat in the theoretically allowed range [0, 1] and
vanishing outside. The corresponding 68% probability intervals on ξ are reported in the
third column of Table 5.3 for different true values ξ̄. With our set of cuts, a 3TeV linear
collider is sensitive to values of ∆a2 (ξ) bigger than ∼ 0.2 through WW scattering. 12

We do not find any significant gain in resolution by applying a harder cut on the V V
invariant mass.

A similar analysis can be carried out for a lower energy machine. We considered for
example the case of a 500GeV linear collider. Parameterizing the signal cross section as
in eq. (5.19), before cuts we find

σSM = 5.12 fb , {A,B} = {−0.03, 0.06}
[
e+e− → V V νν̄

√
s = 500GeV

before any cut

]
.

(5.30)
11This would require introducing one or more corresponding nuisance parameters in the likelihood

function, which is beyond the scope of our simple statistical analysis.
12Here and in the following, by sensitivity/precision on some anomalous Higgs coupling we mean the

68% error on its measured value for injected SM signal.
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At this stage the background processes have very large cross sections, of the order of 100 fb.
However, all backgrounds can be reduced to a negligible level by applying the identification
cuts of eqs. (5.17) and (5.22), the additional cuts pT (V1V2) > 40GeV, mνν > 100GeV
and requiring all electrons in the final states to escape detection, η(e±) > 2.4. After
these cuts, and including the hadronic branching ratio of W and Z, the signal rate is
parameterized as in eq. (5.23) with:

rSM = 0.5 fb , {Ar, Br} = {−0.03, 0.15}
[
e+e− → 4jνν̄

√
s = 500GeV

after analysis cuts

]
.

(5.31)

By repeating the previous statistical analysis, we find that with an integrated luminosity
L = 1 ab−1 the effect of a non-vanishing hV V anomalous coupling can be resolved in
e+e− → V V νν̄ only for large values of ∆a2 (ξ), of the order 0.5− 0.6.

5.5.3 V V → hh scattering

The scattering amplitude for VLVL → hh depends on a, b and d3 and can be conveniently
written as A = a2 (ASM +A1 δb +A2 δd3), where ASM is the value predicted by the SM
and 13

δb ≡ 1− b

a2
, δd3 ≡ 1− d3

a
. (5.32)

At large partonic center-of-mass energies, E � mV , A1 grows like E2, while A2 and ASM
are constant. The parameter δb thus controls the high-energy behaviour of the amplitude
and gives a genuine “strong coupling” signature. On the contrary, δd3 determines the value
of the cross section at threshold [64]. In an e+e− collider, VLVL → hh scatterings can
be studied via the processes e+e− → νν̄hh and e+e− → e+e−hh. The latter, initiated
by a partonic ZZ state, has a cross section which is roughly one order of magnitude
smaller than the former. This is due in particular to the fact that the e± → Ze± splitting
function is roughly a factor of 2 smaller than e± → W±ν. For this reason we neglect
e+e− → e+e−hh in the following. The e+e− → νν̄hh cross section can be written as

σ = a4 σSM
(
1 +Aδb +B δd3 + C δbδd3 +D δ2

b + E δ2
d3

)
, (5.33)

where σSM denotes its SM value. Notice that a enters only as an overall factor. Without
applying any kinematic cut on the Higgs decay products (nor including the branching
fraction of Higgs decays) we find, for

√
s = 3 TeV,

σSM = 0.83 fb , {A,B,C,D,E} = {3.83, 0.64, 3.41, 15.6, 0.48}
[ √

s = 3TeV
before any cut

]
.

13In the MCHM4 δb = ξ/(1−ξ), δd3 = 0, while in the MCHM5 δb = δd3 = ξ/(1−ξ). See eqs. (3.7),(3.8)
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(5.34)

Notice that although the SM cross section σSM of the processes V V → V V and V V → hh

differs by more than two orders of magnitude, the energy-growing contributions (given
by σSMB = 27.6 fb for V V → V V , see eqs. (5.19) and (5.20), and σSMD = 12.9 fb for
V V → hh, see eqs. (5.33) and (5.34)) are of the same size, as required by the SO(4)

invariance.

In contrast to V V → V V scattering, in the case of double Higgs production simple
acceptance and reconstruction cuts keep the background at a negligible level. For our
analysis we focus on events where both Higgs bosons in the signal decay to bb̄, and select
events with four or more jets and at least three b-tags. The most important processes
which can fake the signal are then e+e− → νν̄hZ, e+e− → νν̄ZZ and e+e− → e+e−ZZ.
In all cases the Z boson must decay to a bb̄ pair, and in the latter process both electrons
have to be missed in the beam pipe. Before cuts we find

σ(e+e− → hZνν̄ → bb̄bb̄ νν̄) = 0.88 fb ,

σ(e+e− → ZZνν̄ → bb̄bb̄ νν̄) = 1.26 fb ,

σ(e+e− → ZZe+e− → bb̄bb̄ e+e−) = 0.58 fb ,

(5.35)

which can be compared to the signal cross section in eq. (5.34) after multiplying this
latter by the Higgs pair branching fraction BR(hh→ bb̄bb̄) ' BR(hh→ bb̄bb̄)SM = 0.34.
Further backgrounds, like for example tt̄→ bb̄W+W− → bb̄jjlν, can fake our signal only
if one or more light jets are mistagged as b-jets and if extra charged leptons escape into
the beam pipe. This is enough suppression to safely ignore them. The backgrounds in
eq. (5.35), on the other hand, are largely suppressed, and thus negligible, if the jet energy
resolution of the detector is sufficiently good to accurately distinguish a Z from a Higgs
boson. This seems to be a valid assumption according to Ref. [51, 207, 208], and in the
following we will consequently assume the backgrounds to be negligible.

A simple-minded approach to the extraction of the two parameters δb and δd3 is the
following. Let us consider a kinematical variable O whose value increases with the
c.o.m. energy of the W+W− → hh subprocess. The invariant mass of the two Higgses,
mhh, and the sum of their transverse momenta, HT , are two valid examples for O. We can
divide the set of e+e− → νν̄hh events into two categories according to whether O < Ō
or O > Ō, where Ō is some fixed value. The number of observed events in these two
categories can be fitted to σ<(δb, δd3) and σ>(δb, δd3). Notice that thanks to the cut on
O, σ>(δb, δd3) will have an enhanced sensitivity to δb while σ<(δb, δd3) is more sensitive
to δd3 .

We thus adopt the above strategy and proceed as follows. We start by selecting events
with four or more reconstructed jets. The Higgs candidates are identified from the list of
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the four most energetic jets, j1,...4, by selecting the pairing (j1j2, j3j4) which minimises
the χ2 function

(mj1j2 −mh)2 + (mj3j4 −mh)2 . (5.36)

We impose the following cut on the invariant mass of each of the two Higgs candidates

|mjj −mh| < 15GeV , (5.37)

and require that at least three of the jets j1,...4 are b-tagged. Events where these
requirements are not fulfilled are discarded. We find that the overall efficiency of the
identification cuts of eqs. (5.16), (5.17) and (5.37) varies from 20% to roughly 35% when
δb ranges in the interval 0− 0.5, while it is only marginally sensitive to δd3 . In particular,
the energy cut on the jets has an almost constant efficiency (roughly 80%) over the
whole parameter space. The variation in the total efficiency comes mainly from the cuts
on pseudorapidity and on ∆R. The cut on η disfavours small values of δb, since these
typically lead to more forward Higgses and consequently more forward b-jets, which in
turn have a smaller probability to pass the η cut. The cut on minimum ∆R, eq. (5.16),
on the other hand, disfavours large values of δb, since these lead to more boosted Higgses
and thus more collimated decay products. Finally, the cut in eq. (5.37) has an almost
unit efficiency in our parton-level analysis with our assumed energy resolution.

Figure 5.5 shows the distributions ofmhh andHT for some fixed values of the parameters δb
and δd3 after the identification cuts. While a single cut on either of these two kinematic
variables is sufficient to extract the dependence on δb and δd3 , we found that using both
mhh and HT gives a slightly better sensitivity. We thus consider the four independent
kinematical regions

I : mhh > 700GeV and HT > 400GeV ,

II : mhh > 700GeV and HT < 400GeV ,

III : mhh < 700GeV and HT > 400GeV ,

IV : mhh < 700GeV and HT < 400GeV.

(5.38)

Our final results do not crucially depend on the specific choice of the cuts on mhh and HT .
One could in principle optimise them to obtain the best sensitivity on the parameters.
We checked, however, that reasonable variations around the values adopted in eq. (5.38)
result in small variations of the final results. For each of the kinematic regions (5.38), the
signal rate r ≡ σ(e+e− → νν̄hh)×BR(hh→ bbb̄b̄) can be parameterized as follows

r = rSM a4

(
BR(bb̄)

BR(bb̄)SM

)2 (
1 +Ar δb +Br δd3 + Cr δbδd3 +Dr δ

2
b + Er δ

2
d3

)
, (5.39)
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Figure 5.5 – Normalised differential cross sections dσ/dmhh and dσ/dHT for e+e− → νν̄hh at
CLIC with

√
s = 3 TeV after the identification cuts of eqs. (5.17) and (5.37), for several values of

δb and δd3 .

where rSM is the SM rate and BR(bb̄) is the Higgs branching fraction to bb̄. The values
of the coefficients Ar, Br, Cr, Dr, Er and of rSM are reported in Table 5.4. Figure 5.6
shows the curves of constant rate in the plane (δb, δd3) for three choices of cuts: only the
identification cuts of eqs. (5.17) and (5.37), identification cuts + region I, identification
cuts + region IV.

In order to derive the expected sensitivity on δb and δd3 , we construct a Poisson likelihood
function (see eq. (5.29)) for each of the kinematical regions of eq. (5.38), and a global
likelihood as the product of the individual ones. We assumed a flat prior on δb and δd3 .
Since a and the branching ratio BR(bb̄) appear in eq. (5.39) as overall factors, they can
be conveniently absorbed by rescaling the integrated luminosity L (note that, by the time
the study of V V → hh will be feasible, both a and BR(bb̄) will be known precisely enough
through single Higgs processes). The sensitivity on δb (δd3) is obtained by marginalising
the posterior probability over δd3 (δb) and using the resulting single-parameter function
to find the 68% probability interval on δb (δd3).

The results for a 3TeV linear collider with L = 1 ab−1/(a2BR(bb̄)/BR(bb̄)SM )2 are shown
in Tables 5.5 and 5.6. 14 For injected (true) values (δ̄b, δ̄d3) = (0, 0) we find that the

14Notice that for small δb and large and negative δd3 , the central value of the measured parameter
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rSM [ab] Ar Br Cr Dr Er

I 8.8 15.6 0.88 14.5 164 0.07
II 4.5 3.87 0.30 0.92 4.44 -0.08
III 6.5 9.89 1.25 17.1 55.4 1.54
IV 44 3.95 1.23 5.09 7.3 1.10

Table 5.4 – Fit of the e+e− → hh(→ bb̄bb̄)νν̄ rate (see eq. (5.39)) at CLIC with
√
s = 3TeV in

the various kinematical regions defined in eq. (5.38).
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Figure 5.6 – Contours of constant e+e− → hh(→ bb̄bb̄)νν̄ rate (see eq. (5.39)) for
√
s = 3TeV in

the plane (δb, δd3). We set a = 1 and BR(hh→ bbb̄b̄) = BR(hh→ bbb̄b̄)SM .

measured δ̄d3
δb -0.5 -0.3 -0.1 0 0.1 0.3 0.5

δ̄b

0 −0.045+0.060
−0.025 0.015+0.020

−0.040 0.010+0.070
−0.045 0.00+0.05

−0.05 0.00+0.03
−0.03 0.00+0.03

−0.03 0.00+0.03
−0.03

0.01 −0.055+0.070
−0.020 0.030+0.030

−0.045 0.020+0.080
−0.035 0.015+0.030

−0.035 0.010+0.020
−0.030 0.010+0.025

−0.025 0.010+0.025
−0.025

0.02 0.02+0.030
−0.035 0.040+0.040

−0.050 0.025+0.075
−0.020 0.020+0.030

−0.035 0.020+0.025
−0.025 0.020+0.025

−0.025 0.020+0.025
−0.025

0.03 0.03+0.030
−0.035 0.050+0.040

−0.050 0.035+0.030
−0.020 0.030+0.025

−0.025 0.030+0.025
−0.025 0.030+0.025

−0.025 0.030+0.020
−0.020

0.05 0.05+0.030
−0.035 0.080+0.020

−0.040 0.055+0.025
−0.020 0.050+0.025

−0.020 0.050+0.025
−0.025 0.050+0.025

−0.025 0.050+0.020
−0.020

0.1 0.12+0.025
−0.030 0.10+0.03

−0.02 0.10+0.03
−0.03 0.10+0.02

−0.03 0.10+0.02
−0.02 0.10+0.02

−0.02 0.10+0.02
−0.02

0.3 0.30+0.02
−0.02 0.30+0.02

−0.02 0.30+0.02
−0.02 0.30+0.02

−0.02 0.30+0.02
−0.02 0.30+0.02

−0.02 0.30+0.02
−0.02

0.5 0.50+0.02
−0.02 0.50+0.02

−0.02 0.50+0.02
−0.02 0.50+0.02

−0.02 0.50+0.02
−0.02 0.50+0.02

−0.02 0.50+0.02
−0.02

Table 5.5 – Expected precision on δb for different true values δ̄b and δ̄d3 obtained at CLIC with√
s = 3TeV and L = 1 ab−1/(a2BR(bb̄)/BR(bb̄)SM )2 through V V → hh scattering.
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measured δ̄d3
δd3 -0.5 -0.3 -0.1 0 0.1 0.3 0.5

δ̄b

0 −0.50+0.35
−0.25 −0.25+0.20

−0.50 0.00+0.25
−0.40 0.05+0.30

−0.30 0.10+0.25
−0.20 0.30+0.20

−0.15 0.50+0.15
−0.15

0.01 −0.45+0.35
−0.30 −0.20+0.30

−0.55 −0.05+0.30
−0.30 0.00+0.25

−0.25 0.10+0.20
−0.20 0.30+0.15

−0.15 0.50+0.15
−0.15

0.02 −0.35+0.30
−0.35 −0.25+0.25

−0.60 −0.10+0.25
−0.30 0.00+0.20

−0.25 0.10+0.15
−0.20 0.30+0.15

−0.15 0.50+0.15
−0.15

0.03 −0.40+0.30
−0.35 −0.25+0.20

−0.70 −0.10+0.20
−0.25 0.00+0.15

−0.20 0.10+0.15
−0.20 0.30+0.15

−0.15 0.50+0.15
−0.15

0.05 −0.55+0.30
−0.40 −0.30+0.20

−0.30 −0.10+0.20
−0.20 0.00+0.15

−0.20 0.10+0.15
−0.15 0.30+0.15

−0.15 0.50+0.10
−0.10

0.1 −0.50+0.15
−0.25 −0.30+0.15

−0.20 −0.10+0.20
−0.20 0.00+0.15

−0.15 0.10+0.15
−0.15 0.30+0.10

−0.10 0.50+0.10
−0.10

0.3 −0.50+0.15
−0.15 −0.30+0.15

−0.15 −0.10+0.10
−0.10 0.00+0.10

−0.10 0.10+0.10
−0.10 0.30+0.10

−0.10 0.50+0.10
−0.10

0.5 −0.50+0.15
−0.10 −0.30+0.10

−0.10 −0.10+0.10
−0.10 0.00+0.10

−0.10 0.10+0.10
−0.10 0.30+0.10

−0.10 0.50+0.10
−0.10

Table 5.6 – Expected precision on δd3 for different true values δ̄b and δ̄d3 obtained at CLIC with√
s = 3TeV and L = 1 ab−1/(a2BR(bb̄)/BR(bb̄)SM )2 through V V → hh scattering.

68% error on δd3 is equal to ∼ 0.3 (see Table 5.6), which means that a measurement
of the Higgs trilinear coupling in the SM should be possible with a precision of ∼ 30%

with L = 1 ab−1. This has to be compared with the 16% and 20% precisions reported
respectively in Ref. [253] and in the third paper of Ref. [51, 207, 208] for 2 ab−1 of
integrated luminosity and unpolarised beams. For injected (δ̄b, δ̄d3) = (0, 0) we also find
that the precision attainable on δb with L = 1 ab−1 is ∼ 5% (see Table 5.5), which is
compatible with the 3% recently reported for L = 2 ab−1 by Ref. [253].

The results of Tables 5.5 and 5.6 have been obtained by considering a, b and d3 as indepen-
dent parameters. Alternatively, by assuming them to be related as in eqs. (3.7) and (3.8)
for the SO(5)/SO(4) model MCHM4 (where BR(bb̄) = BR(bb̄)SM ), one can optimise the
analysis to extract ξ. We do so by applying, besides the identification cuts of eqs. (5.17)
and (5.37), a single cut on HT to isolate the energy growing behaviour. Since we need to
fit a single parameter, we select events with HT > 400GeV. The corresponding efficiencies
are reported in Table 5.7. Larger values of ξ give larger efficiencies for the identification
cuts, as mainly due to the stronger boost of the Higgses, as previously discussed. The
signal rate can be parameterized in this case as follows

r(ξ) = rSM
(
1 +Ar ξ +Br ξ

2
)
. (5.40)

The SM rate rSM and the coefficients Ar, Br are reported in Table 5.8. In order to
estimate the sensitivity on ξ that can be reached at CLIC, for any given true value ξ̄ we
construct a posterior probability (see eqs. (5.28) and (5.29)) by assuming a prior on ξ
which is flat in the theoretically allowed range [0, 1] and vanishing outside. The results

sometimes does not coincide with the true value. This is because in this limit, for our choice of integrated
luminosity, the 2D likelihood can be largely non-gaussian and its marginalization over one parameter can
lead to a shift of the central value of the second one.
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All×[HT > 400GeV] No η×[HT > 400GeV] No ∆R×[HT > 400GeV]

ξ = 0 0.07=0.28×0.24 0.10=0.90×0.11 0.08=0.30×0.26
ξ = 0.1 0.15=0.35×0.44 0.20=0.89×0.23 0.18=0.39×0.46
ξ = 0.5 0.42=0.55×0.77 0.50=0.81×0.62 0.54=0.65×0.83

Table 5.7 – Efficiencies of the kinematic cuts imposed on the e+e− → νν̄hh signal events to
extract the parameter ξ at CLIC with

√
s = 3TeV. The format is A = B × C, where B is the

efficiency for the identification cuts of eqs. (5.17) and (5.37), and C is the efficiency of the cut
HT > 400GeV on the reconstructed Higgses.

rSM [ab] Ar Br

All cuts 15 11 106
No HT 63 4.1 28.3
No η 23 10.5 76.9

No ∆R 17 11 118

Table 5.8 – Fit of the e+e− → hh(→ bb̄bb̄)νν̄ in the MCHM4 (see eq. (5.40)) at CLIC with√
s = 3TeV. The numbers in the second row have been obtained by applying the whole set of

kinematic cuts described in the text (eqs. (5.17),(5.37) and the cut on HT ), while each of the last
three rows is obtained by removing one the cuts.

are shown in Table 5.9 for L = 1 ab−1.

The results obtained in this section can be translated into an estimate of the sensitivity of
CLIC on the scale of compositeness. In the presence of a shift in the Higgs couplings, δh ∼
(v/f)2, the low-energy theory becomes strongly coupled at the scale Λ = 4πf ∼ 4πv/

√
δh

unless New Physics states set in at a scale mρ < Λ, expectedly freezing the growth of
the coupling at gρ ∼ mρ/f < 4π. From Tables 5.5 and 5.9 we conclude that the study of
double-Higgs production at CLIC with 3TeV can lead to a sensitivity on Λ of the order
of ∼ 15− 20TeV with an accumulated luminosity of 1 ab−1. This has to be compared
with sensitivities of the order of ∼ 10TeV and ∼ 30− 40TeV expected from the study
of single-Higgs processes respectively at the 14TeV LHC with 300 fb−1 [223, 224] and at
the ILC with 250 fb−1 of luminosity accumulated at

√
s = 250GeV plus another 500 fb−1

at
√
s = 500GeV [50, 254–256]. Table 5.13 summarises the reach on the compositeness

scale at various experiments from the study of single and double Higgs processes.

5.5.4 Double Higgs-strahlung

The cross section for double Higgs production through WW fusion drops as the energy
of the collider is lowered: in the SM it goes from 1 fb for

√
s = 3TeV down to 0.01 fb

for
√
s = 500GeV. At such low energies one has to resort to other processes in order

to measure the anomalous Higgs couplings δb and δd3 . One possibility is double Higgs-
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ξ̄

0 0.02 0.05 0.1 0.2 0.5

All cuts (68%) 0+0.020
−0 0.02+0.015

−0.015 0.05+0.015
−0.015 0.1+0.015

−0.015 0.2+0.015
−0.015 0.5+0.010

−0.015

No HT 0+0.025
−0 0.02+0.015

−0.020 0.05+0.020
−0.020 0.1+0.015

−0.015 0.2+0.015
−0.015 0.5+0.010

−0.015

No η 0+0.015
−0 0.02+0.015

−0.015 0.05+0.015
−0.015 0.1+0.015

−0.015 0.2+0.010
−0.015 0.5+0.010

−0.010

No ∆R 0+0.020
−0 0.02+0.015

−0.015 0.05+0.015
−0.015 0.1+0.015

−0.015 0.2+0.010
−0.010 0.5+0.010

−0.010

All cuts (95%) 0+0.040
−0 0.02+0.03

−0.02 0.05+0.03
−0.03 0.1+0.03

−0.03 0.2+0.03
−0.03 0.5+0.02

−0.03

Table 5.9 – Expected 68% (first four lines) and 95% (last line) probability intervals on ξ for
different true values ξ̄ obtained at CLIC with

√
s = 3TeV and L = 1 ab−1 through V V → hh

scattering.

h

+

h

Ze+

e−
+

+

Figure 5.7 – Diagrams contributing to double Higgs-strahlung at an e+e− collider. The two
diagrams in the upper row are proportional to a2, while the first and second diagrams in the
lower row are proportional respectively to b and ad3.

strahlung (DHS), e+e− → hhZ [267–271]. The relevant Feynman diagrams are shown
in Fig. 5.7, and the analytic expression of the differential cross section is known (see
Appendix C.2). Figure 5.8 shows the value of the total cross section as a function of the
e+e− center-of-mass energy for some values of δb and δd3 . For δb = 0 the cross section
drops as 1/s at high energy, while it asymptotically approaches a constant value for
δb 6= 0. This different high-energy behaviour is due to the e+e− → hhZL amplitude and
can be easily derived by using the equivalence theorem (see Appendix C.2). Notice that
for mh = 125GeV the cross section is maximal between 500GeV and 1TeV.

Before decaying the Higgs bosons, the DHS total cross section can also be parameterized
as in eq. (5.33). By using the analytic expressions given in Appendix C.2, we find
the coefficients reported in Table 5.10. In Fig. 5.9 we compare the invariant mass
distributions of the two Higgses at

√
s = 500GeV and

√
s = 1 TeV for various values of

the parameters. 15

15 The enhancement of the cross section at mhh ∼
√
s is due to the infrared singularity associated with
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Figure 5.8 – Total cross section of double Higgs-strahlung, e+e− → hhZ, as a function of the
c.o.m energy for several values of the parameters δb and δd3 .

e+e− → hhZ σSM [fb] A B C D E

500GeV 0.16 -1.02 -0.56 0.31 0.28 0.10
1TeV 0.12 -1.42 -0.35 0.48 0.93 0.91

1TeV (mhh < 500) 0.03 -2.45 -1.02 1.42 1.85 0.33
1TeV (mhh > 500) 0.09 -3.15 -0.36 0.48 1.83 0.03

Table 5.10 – Parameterization of the double Higgsstrahlung e+e− → hhZ cross section (see
eq. (5.33)) for various center-of-mass energies and cuts on the invariant mass of the two Higgses.
The coefficients in the Table have been computed by using the analytic expressions given in
Appendix C.2. Decay branching fractions and reconstruction efficiencies are not included.

Our strategy to extract the anomalous couplings in this section differs in part from the
one employed to analyse WW scattering. In the case of DHS, at the energies we are
interested in, the efficiency of the identification and reconstruction cuts is practically
insensitive to the value of the Higgs couplings. The final rate can then be obtained by
starting from the analytical expression of the cross section in terms of the parameters δb
and δd3 given in eq. (5.33) and Table 5.10, and rescaling the value of σSM by an overall
efficiency factor to include the decay branching fractions and the effect of kinematic cuts.
We extracted such efficiency factor by generating a single sample of events corresponding
to the SM choice of parameters. Such simplified approach fully exploits the analytic
expression of the DHS cross section and greatly reduces the complexity of the Monte
Carlo simulation.

The analysis of DHS turns out to be more difficult than the one of double Higgs production
via WW fusion due to the presence of non-negligible background processes. We focus
on final states where both Higgses decay to bb̄ and the Z decays either hadronically
or to a pair of charged leptons. We thus select events with 6 or more jets (and no

the soft emission of a transversely-polarised Z in the diagrams in the first row of Fig. 5.7. The energy of the
Z boson, E3, is related to the invariant mass of the two Higgses by the formulam2

hh/s = 1−2E3/
√
s+m2

Z/s.
In the limit E3 → 0 it then follows mhh →

√
s (1 +O(m2

Z/s)). See Appendix C.2 for more details.
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Figure 5.9 – Differential cross section dσ/dmhh of double Higgsstrahlung at a linear collider
with

√
s = 500GeV (solid lines) and

√
s = 1TeV (dashed lines), for several values of δb and δd3 .

All distributions have been normalized to unit area.

lepton), or with 4 or more jets plus 2 opposite-charge leptons (electrons or muons). Jets
and leptons are reconstructed according to the criteria defined in eqs. (5.17) and (5.18).
Our selection ensures a full reconstruction of the momentum of the Z boson in signal
events and consequently a substantial reduction of background contamination. As a final
discrimination we require at least 3 of the jets in the event to be b-tagged.

The reconstruction of the Higgs and Z candidates proceeds as follows. In the case of
events with 4 or more jets and 2 leptons, the Z is reconstructed from the lepton pair,
while the two Higgs candidates are identified as done in the case of WW → hh, see
section 5.5.3. We impose the following cut on the invariant mass of the lepton pair

|mll −mZ | < 10GeV , (5.41)

while the invariant masses of the Higgs candidates are required to satisfy eq. (5.37).
Events which do not satisfy these cuts are rejected. In the case of fully hadronic events,
the Higgs and Z candidates are reconstructed from the six most energetic jets, j1,...6, by
identifying the pairing (j1j2, j3j4, j5j6) that minimises the χ2 function

(mj1j2 −mh)2 + (mj3j4 −mh)2 + (mj5j6 −mZ)2 . (5.42)

We focus only on pairings where at least three among the four jets j1...4 are b-tagged,
discarding the other pairings. This implies the presence of at least 3 b-tags in the decay
products of the two reconstructed Higgs bosons. After the Higgs (j1j2 and j3j4) and Z
(j5j6) candidates have been reconstructed, we impose a cut

|mj5j6 −mZ | < 10GeV (5.43)

on the invariant mass of the Z candidate, and the cut of eq. (5.37) on the invariant mass
of each of the two Higgs candidates. Events where these requirements are not fulfilled
are rejected. This algorithm has a fake rate (i.e. the rate at which it reconstructs fake
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Energy Efficiency rSM [ab]

hhZ → bb̄bb̄jj
500GeV 0.56 21
1TeV-I 0.50 3.5
1TeV-II 0.50 10.2

hhZ → bb̄bb̄``
500GeV 0.58 2.2
1TeV-I 0.56 0.34
1TeV-II 0.56 1.0

Table 5.11 – Efficiencies for the identification of the Higgs and Z candidates in the DHS signal
at 500GeV and 1TeV (for both regions I and II of eq. (5.44)) for the two final states discussed in
the analysis. The variation of the efficiency with the parameters δb and δd3 is negligible. The last
column reports the SM rate after the identification cuts, rSM , as defined in eq. (5.39).

Higgs or Z candidates) always below 5% in the case of fully-hadronic events, and even
smaller in the case of events with two leptons. The identification efficiencies on the
signal at

√
s = 500GeV and 1TeV are given in Table 5.11 for each of the two final states

under consideration. They are to a large extent constant upon variations of δb and δd3 .
The signal rate r(δb, δd3) can be thus parameterized as in eq. (5.39) with coefficients
Ar, Br, Cr, Dr, Er equal to the A,B,C,D,E given in Table 5.10, and an overall factor
rSM fully subsuming the reconstruction efficiency and the decay branching fraction.

At a center-of-mass energy of 500GeV, the signal rate is mostly dominated by events
at the kinematical threshold. Disentangling the effect of δb from that of δd3 by means
of kinematic cuts does not seem possible (at least for reasonable values of integrated
luminosity). A measurement of the total cross section gives nevertheless the possibility
to constrain a combination of the two relevant parameters δb and δd3 . At the higher
center-of-mass energy

√
s = 1TeV, a better determination of both parameters is possible

by cutting on the invariant mass of the two Higgs bosons. We define the two kinematical
regions

I : mhh > 500GeV ,

II : mhh < 500GeV .
(5.44)

The signal rate in each region and for each of the two final states (leptonic and fully
hadronic) is obtained by multiplying the cross section by the decay branching fraction
and an overall reconstruction efficiency. 16 The value of the SM rate rSM for each of the
event categories at

√
s = 500GeV and 1TeV is reported in Table 5.11.

As previously mentioned, a crucial difference between DHS and double Higgs production

16Notice that in order for this procedure to be accurate it is crucial that the fake-rate of our algorithm
for the reconstruction of the Higgs and Z candidates is very small. If this was not the case, the measured
invariant mass distribution of the Higgs pair could be affected by the reconstruction and this would
invalidate our procedure.
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Rate
scaling with a 500 GeV 1 TeV-I 1 TeV-II

bb̄bb̄jj a0 r
(0)
b = 20 ab r

(0)
b = 1.4 ab r

(0)
b = 3.1 ab

hbb̄jj a2 r
(1)
b = 5.5 ab r

(1)
b = 0.4 ab r

(1)
b = 0.3 ab

bb̄bb̄`` a0 r
(0)
b = 0.2 ab r

(0)
b = 0.05 ab r

(0)
b = 0.01 ab

Table 5.12 – Rates after identification and reconstruction cuts for the backgrounds included in
our double Higgs-strahlung analysis at

√
s = 500GeV and 1TeV (for both regions I and II of

eq. (5.44)). The leptonic background hbbb̄`` is negligible.

via vector boson fusion is the presence of backgrounds processes that cannot be neglected.
They can be classified according to their scaling with the parameter a, which sets the
strength of the hV V coupling. The powers of a thus control the number of external Higgs
boson legs. Notice that up to effects of order Γ/m the interference between amplitudes
with a different number of on-shell Higgs boson legs is negligible. Under this assumption,
each factor a2 is accompanied by one power of the Higgs decay branching ratio to bb̄. The
total rate can thus be parameterized as follows:

rtot(δb, δd3) = r
(0)
b + a2 BR(bb̄)

BR(bb̄)SM
r

(1)
b + a4

(
BR(bb̄)

BR(bb̄)SM

)2

r(δb, δd3) , (5.45)

where r(0) and r(1) are the rates for background processes respectively with 0 and 1 Higgs
boson. Simple inspection of eq. (5.45) shows that in this case our results will depend in a
non-trivial way on three quantities: a2(BR(bb̄)/BR(bb̄)SM ), δb and δd3 . The backgrounds
included in our analysis are listed in Table 5.12, together with their rate after applying
the same reconstruction algorithm adopted for the signal.

We derive the expected sensitivity on δb and δd3 by assuming a flat prior on these coupling
shifts and constructing a Poissonian likelihood function for each event category: two
categories for a

√
s = 500GeV collider (the leptonic and fully hadronic final states); four

categories for a
√
s = 1TeV collider (two kinematic regions for each of the two final states).

In each case, the total likelihood is obtained by taking the product of the individual ones.
In general, we find that the fully hadronic final states lead to a better sensitivity on the
couplings than the leptonic ones. As a way to effectively take into account the systematic
and theoretical uncertainties on the estimate of the background in our statistical analysis,
we have rescaled all the background rates by a factor 1.5 compared to the MC predictions
reported in Table 5.12.

Figure 5.10 shows the regions of 68% probability obtained in the plane (δb, δd3) with L =

1 ab−1 by setting a2(BR(bb̄)/BR(bb̄)SM ) = 0.81 (left plot) and a2(BR(bb̄)/BR(bb̄)SM ) =

1 (right plot). The various contours are relative to the following two benchmark points:
(δb, δd3) = (0, 0) (in blue), and (δb, δd3) = (0.25, 0.25) (in red). The latter point is obtained

103



Chapter 5. Indirect Probes of NP at Future Colliders

-1.0 -0.5 0.0 0.5 1.0

-1

0

1

2

3

4

∆b

∆
d 3

-1.0 -0.5 0.0 0.5 1.0

-1

0

1

2

3

4

db

dd
3

Figure 5.10 – Regions of 68% probability in the plane (δb, δd3) obtained from the analysis of
double Higgs-strahlung at various collider energies. Blue (red) shapes and contours are relative to
the case of injected values δ̄b = 0, δ̄d3 = 0 (δ̄b = 0.25, δ̄d3 = 0.25). Lighter shaded bands: 500GeV;
Dashed contours: 1TeV; Darker shaded regions: 500GeV + 1TeV. The plots have been obtained
by assuming an integrated luminosity L = 1 ab−1 and setting a2(BR(bb̄)/BR(bb̄)SM ) = 0.81 (left
plot) and a2(BR(bb̄)/BR(bb̄)SM ) = 1 (right plot).

in the SO(4)/SO(5) MCHM5 for ξ = 0.2, see eqs. (3.7),(3.8). The bands in light (red and
blue) colour indicate the result obtainable by measuring just the total cross section at a
500GeV collider. The red and blue dashed curves show instead the precision achievable at
a linear collider with 1TeV c.o.m. energy by exploiting the cut on mhh. If measurements
at both 500GeV and 1TeV c.o.m. energies are possible (each with an integrated luminosity
L = 1 ab−1), an even more accurate precision on the couplings can be reached. The
corresponding 68% regions are shown in darker (red and blue) colour in Fig. 5.10.

An estimate of the precision attainable on the Higgs trilinear coupling at the ILC has been
recently derived in Ref. [50] assuming a = 1, b = 1. It is found that for

√
s = 500GeV

and with an integrated luminosity L = 500 fb−1, d3 can be measured with a precision
of 104% through DHS. At

√
s = 1TeV with L = 1 ab−1, Ref. [50] cites a precision of

28% through V V → hh scattering, while DHS is found to be less powerful. This suggests
that a substantial improvement of our results can be obtained by including double Higgs
production via vector boson fusion at

√
s = 1TeV into the analysis. Another recent

study appeared in Ref. [272] whose approach is more similar to the one presented in this
chapter. The couplings b and d3 are extracted through the measurement of the total
DHS cross section at 500GeV and 1TeV (with no cut on mhh applied), and on double
Higgs production through V V fusion at 1TeV. In the case of DHS, all the final states
Z → ``, νν̄, jj were included. We find that, although we did not include V V → hh and
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the νν̄ final state in DHS, our analysis gives a better precision on the couplings d3 and b
for those benchmark points where a comparison can be performed.

5.6 Conclusions

The observation of a resonance with a mass around 125 GeV and properties remarkably
compatible with those of the Standard Model Higgs boson makes the questions about
the dynamics at the origin of electroweak symmetry breaking more pressing. The most
relevant and urgent issue now facing us concerns the structure of the newly discovered
(Higgs) scalar. Are there additional states accompanying it? Is it elementary or is
it composite? Could this really be the first elementary scalar observed in Nature, or
could it just be a bound state arising from some novel strong dynamics, like a π or η
in QCD? The answer to these questions will have profound implications on our picture
of fundamental physics. That is because of the hierarchy problem. Establishing, to the
best of our experimental capability, that the Higgs boson is elementary, weakly coupled
and solitary, would surely be shocking, but it may well start a revolution in the basic
concepts of quantum mechanics and space-time. If instead deviations from the SM will
emerge in the dynamics of the Higgs, we will have to use them as a diagnostic tool of the
underlying dynamics. A crucial part of this program is the identification of the smoking
guns of compositeness in Higgs dynamics. Moreover, along this basic question there are
more specific ones we can ask, related to the symmetry properties of the new state. For
instance, it will be essential to establish whether the new scalar is indeed “a Higgs" fitting
into an SU(2) doublet and not some exotic impostor, like for instance a pseudo-dilaton.
Although there is really no strong theoretical motivation for such an alternative, and so
far the data disfavour it, it remains a logical possibility that can be tested and possibly
ruled out. A perhaps more interesting question is whether the Higgs particle is just an
ordinary composite, like a σ, or whether it is a pseudo-Nambu–Goldstone boson, like
the π. The answer to this question will give us important clues on the UV completion of
the electroweak breaking dynamics.

It is well known that in a fully natural theory of electroweak symmetry breaking the Higgs
couplings must deviate, even in a significant way, from the predictions of the Standard
Model. Note, however, that past and current experiments already put stringent constraints
on these deviations, specifically on the single-Higgs hV V coupling a, while the quadratic
h2V V coupling b and the Higgs cubic self-coupling d3 so far remain unconstrained. Thanks
to finally precise knowledge of the Higgs mass and to a more accurate measurement of
the W mass, the Higgs coupling a is now constrained to lie with 95% probability in the
interval 0.98 ≤ a2 ≤ 1.12 under the assumption of no further contribution from New
Physics. The tension with the theoretically motivated range a < 1 can be slightly lifted
by including an extra positive contribution to ∆T̂ in the electroweak fit, as it can arise
in explicit models. Assuming ∆T̂ = +1.5× 10−3 leads to an interval 0.70 ≤ a2 ≤ 0.92.
Important constraints are also set by direct searches for spin-1 resonances at the LHC,
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which start to exclude interesting portions of the parameter space. Direct Higgs coupling
measurements at the LHC, on the other hand, still have a limited precision but they are
expected to reach a ∼ 5% resolution on a at the 14 TeV LHC.

In this chapter we laid down a strategy to infer information about the scale and the
nature of the dynamics behind EWSB through a precise measurement of the Higgs
couplings. Observing a shift in the Higgs couplings of order δh in single-Higgs processes,
together with the absence of any other new degree of freedom below a scale M , puts a
qualitative lower bound on the strength of the interaction within the New Physics sector,
gρ >

√
δh ×M/v. This could provide a first indirect evidence for strong dynamics at the

origin of EWSB and a hint towards a composite nature of the Higgs boson. For instance,
O(10%) deviations without any new states below 2TeV, would already correspond to
a coupling exceeding all the SM interactions in strength. Qualitatively, an analogous
lower bound on gρ can be obtained from the observation of an enhanced amplitude for
the scattering of massive gauge bosons. Indeed, as we point out in section 5.3, at an
electron-positron collider, the precision of the measurements could in principle allow us
to estimate the size of subleading terms in the growth of the amplitude, thus providing a
stronger indirect bound on the strength of the coupling.

Multi-Higgs production can bring additional valuable information to characterise the
strong sector, even if it does not provide stronger bounds on its coupling strength or
its scale. Double Higgs production by vector boson fusion gives access to the linear
and quadratic couplings of the Higgs to the electroweak gauge bosons. We established
a universal relation among these couplings, valid at order v2/f2 (where the scale f is
defined by f = mρ/gρ for a generic composite state and corresponds to the decay constant
for a pNGB), that follows when the Higgs boson is part of an electroweak doublet. This is
because a single operator of dimension-6 controls the leading corrections to both scattering
amplitudes and single Higgs couplings. Furthermore, we studied the corrections to this
relation that arise at order v4/f4 from dimension-8 operators and we demonstrated that
they can distinguish scenarios with a pNGB Higgs from those where the discovered boson
is a generic light scalar resonance of the strong dynamics. The reason for this non-trivial
result, is that, in the case of a pNGB Higgs, the non-linearly realised symmetry relates
operators of different dimension.

We also emphasised the importance of a precise and energetic lepton collider such as
CLIC to study the rare process of triple Higgs production through vector boson fusion,
V V → hhh. For a generic composite Higgs, the leading expected growing behaviour of
the cross section below the scale of the resonances is ∼ v2s2/f8 and could in principle be
observed provided v2/f2 ∼ 0.1. However we pointed out that for a pNGB Higgs based
on cosets involving only doublets, in particular in the simplest cases of SO(5)/SO(4)

or SO(4, 1)/SO(4), this leading term exactly cancels. This cancellation is a simple
consequence of the homogeneity and of the grading symmetry of such cosets, but in the
effective Lagrangian it corresponds to a more obscure correlation among the coefficients
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of operators of dimension 6 and dimension 8. This is the same correlation we mentioned
before. The observation, or lack thereof, of a visible rate for V V → hhh could then play
a relevant role in the reconstruction of the underlying theory.

We presented a quantitative analysis of vector boson scattering and double Higgs produc-
tion, both through vector boson fusion and double Higgs-strahlung, at the ILC and CLIC
for two different center-of-mass energies. Focusing on V V → V V scattering processes and
using a simple cut-and-count analysis, we found that a

√
s = 500GeV linear collider with

an integrated luminosity of 1 ab−1 is only sensitive to large deviations of the coupling
a from its SM value, ∆a2 ∼ 0.5 (see footnote 12 for the definition of sensitivity used in
this chapter). A 3TeV linear collider with the same luminosity, on the other hand, is
sensitive to shifts in a2 larger than ∼ 0.2. Double Higgs production depends both on a
and on the couplings b and d3. Its cross section can be conveniently expressed in terms
of the two shifts δb ≡ 1 − b/a2 and δd3 ≡ 1 − d3/a, while the parameter a enters as a
simple overall rescaling which can be absorbed in the value of the luminosity (note that,
at the time of the studies we are proposing, a will be known with good accuracy thanks
to single Higgs processes, hence δb and δd3 will really measure the deviations in the b and
d3 couplings). As it emerges clearly throughout our study, δb offers a more sensitive probe
into the Higgs structure than the trilinear δd3 . In the case of a 3TeV CLIC machine with
L = 1 ab−1, the study of V V → hh offers a sensitivity of about 0.05 on δb while that
on δd3 is hardly better than 0.3. In a specific model like the Minimal Composite Higgs
model the couplings a, b and d3 depend on the single parameter ξ = (v/f)2. Through the
study of e+e− → hhνν̄, a machine like CLIC with

√
s = 3TeV and L = 1 ab−1 can reach

a sensitivity as small as 0.02 on ξ. These sensitivities can be translated into an indirect
reach on the cutoff scale Λ ≡ 4πf , that is the mass scale of the resonances for the case
where the underlying dynamics is maximally strong. We find a reach Λ ∼ 15− 20TeV,
which should be compared with the reach Λ ∼ 30− 40TeV expected through single-Higgs
processes at the ILC with 250 fb−1 of luminosity accumulated at

√
s = 250GeV plus

another 500 fb−1 at
√
s = 500GeV [50, 254–256]. Table 5.13 summarises the values of

Λ which can be probed at various experiments through the study of single and double
Higgs processes. Though the reach on Λ seems remarkable, one should not forget that the
measured value of the Higgs mass disfavours a maximally strong coupling [1]: new states
are therefore expected significantly below Λ with a mass around mρ ∼ Λ× gρ/(4π). Still,
even in the case of a moderately strong sector gρ ∼ 3, direct production of resonances at a
high-energy hadron collider like the LHC with

√
s = 33TeV may not become competitive.

Of course one must beware of these qualitative arguments, as the model’s details often
matter.

At lower energies the e+e− → hhνν̄ process is not effective to measure the couplings b, d3,
and one has to resort to double Higgs-strahlung, e+e− → hhZ. At 500GeV center-of-mass
energy, only a linear combination of the two couplings δb and δd3 can be extracted from
a measurement of the total cross section. For

√
s = 1TeV, on the other hand, it is

possible to exploit the kinematical distribution of the final state to extract both couplings
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ξ = (v/f)2 Λ = 4πf

LHC 14TeV L = 300 fb−1 0.5 (double Higgs [64, 80]) 4.5 TeV

0.1 (single Higgs [223, 224]) 10 TeV

ILC 250GeV L = 250 fb−1

0.6-1.2×10−2 (single Higgs [50, 254–256]) 30-40TeV
+ 500GeV L = 500 fb−1

CLIC 3TeV L = 1 ab−1 2-5×10−2 (double Higgs [this work]) 15-20 TeV

CLIC 350GeV L = 500 fb−1

1.1-2.4×10−3 (single Higgs [253]) 60-90TeV+ 1.4TeV L = 1.5 ab−1

+ 3.0TeV L = 2 ab−1

Table 5.13 – Summary of the precision on ξ (as defined in footnote 12) and the corresponding
reach on the compositeness scale at various experiments from the study of single and double
Higgs processes.

independently, even though with large uncertainties. The combined measurement of
double Higgs-strahlung at both 500GeV and 1TeV allows us to obtain the sensitivity
contours shown in Figure 5.10, which again indicate that δb can be measured more
precisely than δd3 . For all those interested in the structure of the Higgs the message
is then very clear. The parameter b not only encodes more robust information than d3

about the nature of h, whether an impostor, a composite or a pNGB, but it also affords
better sensitivity.

In the absence of direct production of new particles at the LHC, precision measurements
in the sector of the newly discovered Higgs boson can play a key role in the search for
New Physics. The time has come to establish a clear strategy to extract the information
on the origin of electroweak symmetry breaking encoded in the Higgs measurements and
to pave the way for a future experimental program.
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6 Direct Probes of NP

6.1 Introduction

While the problem of comparing data to theory is probably too hard to be tackled in
full generality, progress can be made if we restrict our attention to direct experimental
manifestations of New Physics which consist of the production of reasonably narrow new
particles. In this case one can conveniently adopt the so-called “Simplified Model” strategy
[53] which has by now become a standard method in supersymmetry searches and starts
to be developed also in non-supersymmetric frameworks [240, 273–285]. The point is that
resonant searches are typically not sensitive to all the details and the free parameters
of the underlying model, but only to those parameters or combinations of parameters
that control the mass of the resonance and the interactions involved in its production
and decay. Therefore one can employ a simplified description of the resonance defined by
a phenomenological Lagrangian where only the relevant couplings and mass parameters
are retained. Aside from symmetry constraints, the Simplified Model Lagrangian does
not need to fulfil any particular theoretical requirement. Its sole goal is to provide a
phenomenological parameterization of a broad enough set of explicit models and should
thus contain all and only those terms which are present in the explicit constructions. The
experimental results should be presented in the parameter space of the phenomenological
Lagrangian, expressed by confidence level curves or, if possible, in terms of a likelihood
function. In this way they could be easily translated into any specific model where the
phenomenological parameters can be computed explicitly. The advantage of this two-step
approach is that the phenomenological parameters can always be expressed analytically
in terms of those of the “fundamental” theory. No matter how complicated the model
is, the comparison with the data will always be performed analytically rather than with
numerical simulations, in a way that furthermore does not require any knowledge of the
experimental details of the analysis.

The procedure is conveniently depicted as a two-span bridge, shown in Figure 6.1, where
the Simplified Model constitutes the central pillar and the two spans represent the
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Theory yDatayLs
c⃗(p⃗) L(⃗c)

Figure 6.1 – Pictorial view of the Bridge Method.

fundamental/phenomenological parameter relations and the comparison of the Simplified
Model with the data respectively. In the Figure, we denote collectively as ~c the parameters
of the phenomenological Lagrangian and as L(~c) the likelihood function, or the CL curves,
as extracted from the experimental data. Notice that L(~c) could very well be the result
of a combination of different analyses, which can be preformed directly on the Simplified
Model parameter space. Once the likelihood or the CL limits are known, the experimental
information is immediately translated into the free parameters ~p of any explicit model by
computing the phenomenological/explicit parameter relations ~c(~p).

When comparing the Simplified Model with the data, some care is required. The crucial
point is that the Simplified Model, differently for instance from the SM or the MSSM, is
not supposed to be a complete theory and attention must be paid not to use it outside its
realm of validity. Namely, the Simplified Model is constructed to describe only the on-shell
resonance production and decay. A good experimental search should thus be only sensitive
to the on-shell process and insensitive to the off-shell effects. The simplest example of
this situation, which we will discuss in detail, is the Drell-Yan (DY) process where the
invariant mass distribution of the final state is studied. Aside from the resonant peak,
the distribution is characterised by a low mass tail which can become prominent, because
of the rapidly-falling parton distribution functions, when the resonance approaches the
kinematical production threshold or when a large interference with the SM background
is present. Many different New Physics effects, not included in the Simplified Model,
might contribute to the tail and radically change the Simplified Model prediction. This
could come, for instance, from extra contact interactions or from heavier resonances
produced in the same channel. Around the peak, and only in this region, these effects are
negligible and the Simplified Model prediction is trustable. Indeed the peak shape is well
described, through the Breit-Wigner (BW) formula, in terms of purely on-shell quantities
such as the production rate times the Branching Ratio (BR) to the relevant final state,
σ×BR, and by the resonance total decay width. Experimental searches should focus on
the peak and avoid contamination from the other regions as much as possible. More in
general, any resonance search relies on the measurement of a given observable, either the
number of events or a distribution, restricted by suitable identification and selection cuts.
Only “on-shell” observables, which are exclusively sensitive to the resonance formation
and decay, should be employed in Simplified Model searches. Notice that whether an
experimental observable is on-shell or not can crucially depend on the cuts and must be
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checked case by case.

Aside from addressing the conceptual issues previously outlined, the usage of on-shell
observables is also an important practical simplification. Because of factorisation of the
production cross-section and the decay BR, on-shell observables are “easy” to predict
within the Simplified Model since they do not depend on all the parameters of the
phenomenological Lagrangian in a complicated way but only on few combinations that
describe the on-shell resonance. In the example of the invariant mass distribution, a search
performed at the peak can be turned into limits on σ×BR as a function of the resonance
mass and possibly of its width. The width and BRs are simple analytical functions of
the Simplified Model parameters and also the total production rate can be expressed
semi-analytically in terms of the parton luminosities at each mass point. The mass-
and width- dependent limits can thus be mapped analytically into the phenomenological
parameter space. Obviously, taking the experimental efficiencies properly into account
is essential. This is typically rather easy because, as in the examples discussed in the
following, the efficiencies only depend on the resonance mass and can be extracted from
a few benchmark simulations. The tail of the invariant mass distribution, instead, has
a more complicated dependence on the model parameters and can not be predicted
analytically. Therefore a search which is sensitive to the tail can not be cast into a limit
on σ×BR and it can be interpreted within the model only by scanning the parameter
space with long and demanding simulations.

The aim of the following chapter is to illustrate these general concepts in detail by focusing
on the simple but well-motivated example of electroweak-charged spin one resonances
which are a common prediction of many New Physics scenarios. The latter can be weakly
coupled, like for instance Z ′ [276, 286–296] or W ′ [277, 278, 280, 281, 297–301] models, or
strongly coupled constructions such as Composite Higgs models [97, 302–307] and some
variants of Technicolor [225, 226, 228, 244, 308–312]. The experimental searches for these
particles, performed by ATLAS [161, 234, 236, 313–319] and CMS [231, 233, 235, 237–
239, 320–323], provide theoretical interpretations of the results in terms of an extremely
small subset of the possible models and moreover restrict to limited benchmark regions of
the parameter space. This strategy does not provide a sufficient coverage of the theoretical
possibilities and furthermore it precludes reinterpretation in other models. Here we will
show that a great improvement can be achieved with the Bridge method.

The chapter is organised as follows. In section 6.2 we introduce the Simplified Model
Lagrangian and discuss some basic aspects of its phenomenology. We also show how
the resonance production cross-section in the two relevant channels, DY and Vector
Boson Fusion (VFB), can be parameterized semi-analytically in a way that, as previously
described, allows for an efficient comparison of the model with the experimental results.
We restrict, for definiteness, to the case of an SU(2)L iso-triplet of resonances. The
extension to other representations should be straightforward and is left to future work.
Section 6.2.3 is a survey of the present experimental situation where, based on the
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SU(3)C SU(2)L U(1)Y
Q 3 2 1/6
u 3̄ 1 −2/3
d 3̄ 1 1/3
L 1 2 −1/2
e 1 1 1
H 1 2 1/2

SU(3)C SU(2)L U(1)Y
Bµ 1 1 0
B1
µ 1 1 1

Lµ 1 2 −3/2
Vµ 1 3 0
V 1
µ 1 3 1

Table 6.1 – Left table: Standard Model matter content. Right table: Colour singlet vectors
transforming under irreducible representations of GSM that admit linear, dimension 4 couplings
with the SM particles. All spinors are left-handed Weyl spinors.

present experimental limits, we derive 95% CL exclusion bounds in the Simplified Model
parameter space. This is done by taking the experimental results at face value, i.e. by
assuming that the limits are properly set on σ×BR as a function of the resonance mass
as presented by the experimental collaborations. However this might not be completely
correct, since important effects associated with the finite resonance width could affect
the σ×BR currently extracted by the experiments, which would result in an incorrect
definition of the quantity on which the limit is set. In section 6.2.3.3 we will illustrate these
effects in detail by focusing on the examples of di-lepton and lepton-neutrino searches.
In section 6.2.4 we relate the Simplified Model to explicit constructions. Two examples
are considered as representatives of weakly and strongly coupled theories, showing that
the Simplified Model is general enough to describe both cases in different regions of the
parameter space. The examples are the extension of the SM gauge group described in
Ref. [286] and the effective description of Composite Higgs models vectors of Ref. [97].
In section 6.4 we present our Conclusions. Our Simplified Model is implemented in a
series of tools described in Appendix D.3 and available at the webpage [324]. Section 6.3
is devoted to a brief summary of recent pogress in the simplified model description of
fermionic resonances and highlights differences with respect to the vector triplet. Since
their effective description is bound to be more model-dependent, we restrict ourselves to
a discussion of the strongly coupled top partners, especially of the charge-8/3 resonance
introduced in the minimally tuned model in section 3.3. We discuss current experimental
searches and bounds.

6.2 A Simple Simplified Model for a Heavy Vector Triplet

We assume the existence of a multiplet of vector bosons transforming linearly as some
irreducible representation of the SM gauge group. Since we require couplings of one vector
to two fermions and gauge bosons, we are limited to colour singlet representations only.
The possible quantum numbers are summarised in Table 6.1. In the following we consider
a real vector V a

µ , a = 1, 2, 3, in the adjoint representation of SU(2)L and with vanishing
hypercharge in addition to the SM fields and interactions. It captures a large fraction of
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the interesting features of a spin one resonance. V a
µ describes one charged and one neutral

heavy spin-one particle with the charge eigenstate fields defined by the familiar relations

V ±µ =
V 1
µ ∓ iV 2

µ√
2

, V 0
µ = V 3

µ . (6.1)

Similarly to Ref. [282], we describe the dynamics of the new vector by a simple phe-
nomenological Lagrangian

LV = −1

4
D[µV

a
ν]D

[µV ν] a +
m2
V

2
V a
µ V

µ a

+ i gV cHV
a
µH

†τa
↔
D
µ
H +

g2

gV
cFV

a
µ J

µ a
F

+
gV
2
cV V V εabcV

a
µ V

b
νD

[µV ν] c + g2
V cV V HHV

a
µ V

µ aH†H − g

2
cV VW εabcW

µ ν aV b
µV

c
ν .

(6.2)

The first line of the above equation contains the V kinetic and mass term, plus trilinear
and quadrilinear interactions with the vector bosons from the covariant derivatives

D[µV
a
ν] = DµV

a
ν −DνV

a
µ , DµV

a
ν = ∂µV

a
ν + g εabcW b

µV
c
ν , (6.3)

where g denotes the SU(2)L gauge coupling. Notice that the V a
µ fields are not mass

eigenstates as they mix with the W a
µ after EWSB and the mass parameter mV does not

coincide with the physical mass of the resonances.
The second line contains direct interactions of V with the Higgs current

iH†τa
↔
D
µ
H = iH†τaDµH − iDµH†τaH , (6.4)

and with the SM left-handed fermionic currents

Jµ aF =
∑
f

fLγ
µτafL , (6.5)

where τa = σa/2. The Higgs current term cH leads to vertices involving the physical
Higgs field and the three unphysical Goldstone bosons. By the Equivalence Theorem [95],
the Goldstones represent the longitudinally polarised SM vector bosons W and Z in the
high-energy regime which is relevant for the resonance production and decay. Thus cH
controls the V interactions with the SM vectors and with the Higgs, and in particular its
decays into bosonic channels. Similarly, cF describes the direct interaction with fermions,
which is responsible for both the resonance production by DY and for its fermionic decays.
In eq. (6.2) we reported, for shortness, a universal coupling of V to fermions, but in our
analysis we will consider a more general situation with different couplings to leptons, light
quarks and the third quark family. The interaction in eq. (6.2) should thus be generalised
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to

cFV · JF → clV · Jl + cqV · Jq + c3V · J3 . (6.6)

Given the strong constraints on additional sources of lepton and light quark flavor violation
further generalisations seem unnecessary. The proliferation of fermionic parameters is a
complication, but the effects of cl, cq, and c3 can be easily disentangled by combining
searches in different decay channels including third family quarks.
Finally, the third line of eq. (6.2) contains 3 new operators and free parameters, cV V V ,
cV V HH and cV VW . None of them, however, contains vertices of one V with light SM fields,
thus they do not contribute directly to V decays1 and single production processes which
are the only relevant for LHC phenomenology. As we will discuss in the following section,
they do affect the above processes only through the mixing of V with the W , but since
the mixing is typically small their effect is marginal. Therefore to a first approximation
the operators in the third line can be disregarded and the phenomenology described
entirely by the four parameters cH , cl, cq and c3, plus the mass term mV .

In eq. (6.2) we adopted a rather peculiar parameterization of the interaction terms, with
a coupling gV weighting extra insertions of V , of H and of the fermionic fields. Similarly,
the insertions of W in the last line is weighted by the SU(2)L coupling g. We take gV to
represent the typical strength of V interactions while the dimensionless coefficients “c”
parameterise the departures from the typical size. The parameterization of the fermion
couplings is an exception to this rule. In this case one extra factor of g2/g2

V has been
introduced. This is convenient because in all the explicit models we will be interested in,
both of weakly- and strongly-coupled origin, this factor is indeed present and the cF ’s, as
defined in eq. (6.2), are of order one. The other c’s are typically of order one, except for
cH which is of order one in the strongly-coupled scenario but can be reduced in the weakly
coupled case as described in section 6.2.4. In all cases, the c’s are never parametrically
larger than one, with the notable exception of the third family coupling c3, which could
be enhanced in strongly-coupled scenarios where the top quark mass is realised by the
mechanism of Partial Compositeness, see for instance [80]. The coupling gV can easily
vary over one order of magnitude in different scenarios, ranging from gV ∼ g ∼ 1 in the
“typical” weakly-coupled case up to gV ' 4π in the extreme strong limit. Therefore it is
useful to factor it out of the operator estimate. Notice that there is no sharp separation
between the weak and strong coupling regimes as nothing forbids to consider theories
with a “weak” UV origin but with large gV , of the order of a few, and “strong” models
where gV is reduced by the large number of colours of the strong sector, gV = 4π/

√
Nc.

This provides one additional motivation for our approach which interpolates between the
two cases.

Our parameterization of the operators is useful at the theoretical level but obviously

1A priori, they could contribute to cascade decays. However, as we will see below, the mass splitting
between the neutral and the charged state is very small and cascade decays are extremely suppressed.
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redundant as gV could be reabsorbed in the c’s and is not a genuine new parameter of
the model. For instance, one could resolve the redundancy by setting cV V V = 1 and
thus define gV as the V self-interaction strength. However for practical purposes, and
in particular for presenting the experimental limits of the model, it could be easier to
treat gV cH and g2/gV cF , the combinations that enter in the vertices, as fundamental
parameters.

In the Bridge approach, as discussed in the Introduction, the Simplified Model does not
need to fulfil any particular theoretical requirement and its only goal is to be simple
enough while still capable to reproduce a large set of explicit models. Therefore a complete
justification of our phenomenological Lagrangian has to be postponed to section 6.2.4
where the matching with explicit constructions will be discussed. However we can already
appreciate the general validity of the description by noticing that eq. (6.2) is the most
general Lagrangian compatible with the SM gauge invariance and with the CP symmetry
restricted to operators of energy dimension below or equal to 4. Assuming CP , which we
take to act on V as on the SM W

V a(~x, t)→ −(−)δa2V a(−~x, t) ⇔
{
V ±(~x, t)→ −V ∓(−~x, t)
V 0(~x, t)→ −V 0(−~x, t) , (6.7)

is very convenient as it avoids the proliferation of operators constructed with the Levi-
Civita tensor. Furthermore, it leads to a unique coupling of V to the Higgs parameterized
by only one real coefficient cH . CP is often also a good symmetry of explicit models so
that it is not a too restrictive assumption. It is important to note that the Lagrangian
with the imposed CP symmetry is also accidentally invariant under the custodial group
SO(4) = SU(2)L×SU(2)R, with V in the (3,1) representation. The custodial symmetry
is of course broken, but only by the gauging of the hypercharge. This makes our setup
very efficient in reproducing strongly-coupled scenarios where custodial symmetry is
imposed by construction.

One invariant low-dimensional operator, the W -V kinetic mixing

D[µV
a
ν]W

µνa , (6.8)

is not reported in eq. (6.2) because, following Ref. [325], it can be eliminated from the
Lagrangian by a field redefinition of the form{

W a
µ →W a

µ + αV a
µ

V a
µ → βV a

µ

. (6.9)

More details on this can be found in Appendix D.1. We also ignored dimension four
quadrilinear V interactions because they are irrelevant for the LHC phenomenology.

The choice of restricting to low-dimensional operators is clearly well-justified in the weakly-
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coupled case where the underlying model is a renormalizable theory, but it is questionable
in the strongly-coupled one where higher-dimensional operators are potentially relevant.
However in all strongly-coupled scenarios that obey the SILH paradigm [80] we do have a
reason to stop at d = 4. In the SILH power-counting the most relevant higher dimensional
operators are those involving extra powers of the Higgs or the V field which are weighted
by the Goldstone-Boson-Higgs decay constant f . Their effects are generically suppressed
by the parameter

ξ =
v2

f2
,

where v ' 246 GeV is the EWSB scale. Since ξ controls the departures from the Standard
Higgs model, compatibility with the ElectroWeak Precision Tests (EWPT) and the LHC
Higgs coupling measurements [3, 111] requires ξ . 0.2. If the higher dimensional operators
do not induce any qualitatively new effect and only give relative corrections of order ξ
to the vertices, they can be safely ignored given the limited accuracy of the LHC direct
searches. This will be confirmed by the analysis of section 6.2.4.2

There exist however other scenarios where higher dimensional operators are unsuppressed
and the parameterization of eq. (6.2) is insufficient. These are technicolor-like models
where the strong sector condensate breaks the EW symmetry directly and the observed
Higgs boson is a light composite particle with couplings compatible with the SM expecta-
tions. This might occur by accident or in hypothetical scenarios with a light Higgs-like
dilaton [72, 73]. In spite of the tension with EWPT and with the Higgs data it would be
interesting to generalise our framework in order to test also these ideas.

6.2.1 Basic phenomenology

Masses and Mixings

Having introduced our Simplified Model in eq. (6.2), let us discuss its phenomenology
starting from the mass spectrum. After EWSB, the only massless state is the photon
which can be identified as the gauge field associated with the unbroken U(1)em. It is
given by the SM-like expression3

Aµ = cos θWBµ + sin θWW
3
µ , where tan θW =

g′

g
. (6.10)

The orthogonal combination, the Z field, instead acquires a mass and a mixing with V 0.
Notice that since the photon is given by the canonical SM expression, its couplings are

2Notice that this does not need to be the case a priori. There are plenty of examples concerning for
instance the LHC phenomenology of Composite Higgs Top Partners [154, 157, 240] where the Higgs
non-linearities can not be ignored.

3This only holds in the field basis where the W -V mixing of eq. (6.8) is set to zero, otherwise the
photon acquires a component along V 0.
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also canonical. The electric charge in our model is therefore simply given by

e =
gg′√
g2 + g′2

, ⇒
{
g = e/sin θW
g′ = e/cos θW

. (6.11)

In what follows we will trade g and g′ for e and sin θW , taking e as an input parameter
and setting it to the experimental value e ≈

√
4π/137.

The two other neutral mass eigenstates are the SM Z boson and one heavy vector of
mass M0 which are obtained by diagonalising the mass matrix of the (Z, V 0) system by
a rotation(

Z

V 0

)
→
(

cos θN sin θN
− sin θN cos θN

)(
Z

V 0

)
. (6.12)

The mass matrix is

M2
N =

(
m̂2
Z cHζm̂Zm̂V

cHζm̂Zm̂V m̂2
V

)
, where


m̂Z =

e

2 sin θW cos θW
v̂

m̂2
V = m2

V + g2
V cV V HH v̂

2

ζ =
gV v̂

2 m̂V

. (6.13)

In the above equations v̂ denotes the Higgs field Vacuum Expectation Value (VEV)
defined by 〈H†H〉 = v̂2/2, which in our model can differ significantly from the physical
EWSB scale v = 246 GeV. The mass eigenvalues and the rotation angles are easily
obtained by inverting the relations

Tr
[
M2

N

]
= m̂2

Z + m̂2
V = m2

Z +M2
0 ,

Det
[
M2

N

]
= m̂2

Zm̂
2
V

(
1− c2

Hζ
2
)

= m2
ZM

2
0 ,

tan 2θN =
2 cHζm̂Zm̂V

m̂2
V − m̂2

Z

. (6.14)

Notice that the tangent can be uniquely inverted because the angle θN is in the range
[−π/4, π/4] in the parameter region we will be interested in, where m̂Z < m̂V .

The situation is similar in the charged sector where the mass matrix of the (W±, V ±)

system reads

M2
C =

(
m̂2
W cHζm̂W m̂V

cHζm̂W m̂V m̂2
V

)
, where m̂W =

e

2 sin θW
v̂ = cos θW m̂Z , (6.15)
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and it is diagonalised by

Tr
[
M2

C

]
= m̂2

W + m̂2
V = m2

W +M2
+ ,

Det
[
M2

N

]
= m̂2

W m̂
2
V

(
1− c2

Hζ
2
)

= m2
WM

2
+ ,

tan 2θC =
2 cHζm̂W m̂V

m̂2
V − m̂2

W

. (6.16)

The charged and neutral mass matrices are connected by custodial symmetry, which can
be shown in full generality to imply

M2
C =

(
cos θW 0

0 1

)
M2

N

(
cos θW 0

0 1

)
. (6.17)

By taking the determinant of the above equation, or equivalently by comparing the
charged and neutral determinants in eq. (6.14) and eq. (6.16), we obtain a generalized
custodial relation among the physical masses

m2
WM

2
+ = cos2 θWm

2
ZM

2
0 . (6.18)

From the simple formulas above we can already derive interesting features of our model.
First of all, we can identify the physically “reasonable” region of its parameter space. We
aim at describing new vectors with masses at or above the TeV scale, but of course we
also want the SM masses mW,Z ∼ 100 GeV to be reproduced. Therefore we require a
hierarchy in the spectrum, which can only occur, barring unnatural cancellations in the
determinant of the mass matrices, if m̂W,Z and m̂V are hierarchical, i.e.

m̂W,Z

m̂V
∼ mW,Z

M+,0
. 10−1 � 1 . (6.19)

The parameter ζ, instead, can be either very small or of order one. Both cases are realised
in explicit models. While ζ � 1 is the most common situation, ζ ∼ 1 only occurs in
strongly coupled scenarios at very large gV .

In the limit of eq. (6.19) we obtain simple approximate expressions for mW and mZ

m2
Z = m̂2

Z

(
1− c2

Hζ
2
) (

1 +O(m̂2
Z/m̂

2
V )
)
,

m2
W = m̂2

W

(
1− c2

Hζ
2
) (

1 +O(m̂2
W /m̂

2
V )
)
.

Since m̂W = cos θW m̂Z , the W -Z mass ratio is thus given, to percent accuracy, by

m2
W

m2
Z

' cos2 θW . (6.20)

In order to reproduce the observed ratio, which satisfies the ρ = 1 SM tree–level relation
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to ∼ 1%, we need 4

cos2 θW ≈
(
cos2 θW

)
exp = 1− 0.23 . (6.21)

Similarly to the electric charge, also the weak angle parameter θW defined by eq. (6.11),
and therefore in turn the couplings g and g′, has to be close to the SM tree-level value.
eq. (6.20) also has one important implication on the masses of the new vectors. When
combined with the custodial relation (6.18), it tells us that the charged and neutral V s
are practically degenerate

M2
+ = M2

0 (1 +O(%)) , (6.22)

and therefore they are expected to have comparable production rates at the LHC.
Combining experimental searches of charged and neutral states could thus considerably
improve the reach, as discussed in Ref. [282]. Furthermore, the small mass splitting
implies a phase-space suppression of cascade decays, which can be safely ignored. In the
following, when working at the leading order in the limit (6.19), we will ignore the mass
splitting and denote the mass of the charged and the neutral states collectively as MV . It
is easy to check that in that limit MV = m̂V .

Because of the hierarchy in the mass matrices, the mixing angles are naturally small. By
looking at eqs. (6.14) and (6.16) we estimate

θN,C ' cHζ
m̂W,Z

m̂V
. 10−1 . (6.23)

The couplings of the physical states are thus approximately those of the original Lagrangian
before the rotation. In particular, the W and Z couplings to fermions and among
themselves mainly come from the SM Lagrangian and thus are automatically close to
the SM prediction thanks to the hierarchy (6.19) and to the parameter choice (6.21).
Obviously this is not enough to ensure the compatibility of the model with observations.
The W and Z couplings are very precisely measured, and the deviations due to new
physics are constrained at the per mil level. These measurements translate into limits on
the so-called EWPT observables [113, 114, 132], which we will compute in Appendix D.2.
This will allow us to quantify the additional restrictions on the parameter space, besides
eq. (6.19).5

4The reader might be confused by the fact that m2
Z/(cos2 θWm

2
W ) is not strictly equal to one at

tree–level in our model, as eq. (6.20) shows, in spite of custodial symmetry. The reason is that custodial
symmetry provides a relation, reported in eq. (6.17), among the charged and neutral mass matrices
and it does not directly imply a relation among the W and Z mass eigenvalues appearing in eq. (6.20).
Moreover, θW defined by Eq. (??) does not correspond to the physical one. Custodial Symmetry also
implies that the T̂ parameter of EWPT, defined in terms of zero–momentum correlators and not of the
pole masses, vanishes. This fact is explicitly verified to hold in our model in Appendix D.2.

5In the following we will not ask EWPT to be strictly satisfied since this would be in contrast with
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Decay Widths

Let us now turn to the resonance decays. The relevant channels are di-lepton, di-quark
and di-boson. The latter category includes final states with W s, Zs and the Higgs boson.
Decay into Wγ is also possible, but always with a tiny BR, as we will show below.

After rotating to the mass basis, the couplings of the neutral and charged resonances to
left- and right-handed fermion chiralities can be written in a compact form6 gNL =

g2

gV

cF
2

cos θC +
(
gZL
)
SM

sin θN '
g2

gV

cF
2

gNR =
(
gZR
)
SM

sin θN ' 0
,

 gCL =
g2

gV

cF√
2

cos θC +
(
gWL
)
SM

sin θC '
g2

gV

cF√
2

gCR = 0
, (6.24)

for each fermion species F = {l, q, 3}. In the above equation,
(
gW,ZL,R

)
SM

denotes the

ordinary SM W and Z couplings (with the normalisation given by gWL = g/
√

2) that
originate from the fermion covariant derivatives and contribute to the V interactions
because of the rotation. Given that the rotation angles are small, the couplings further
simplify, as also shown in the equation. We see that the V s interact mainly with left-
handed chiralities and that all the couplings for each fermion species are controlled by the
parameter combination g2/gV cF . This gives tight correlations among different channels

Γ
V±→ff ′ ' 2 ΓV0→ff ' Nc[f ]

(
g2cF
gV

)2
MV

48π
, (6.25)

where Nc[f ] is the number of colours and is equal to 3 for the di-quark and to 1 for the
di-lepton decays. The parameters cF = {cl, cq, c3} control the relative BRs to leptons,
light quarks and the third family. Furthermore through the partial width to qq, cq controls
the DY production rate, as we will discuss in the following section.

The analysis is more subtle in the case of di-bosons. Obviously it is straightforward to
compute the V couplings to W , Z and Higgs in the Unitary Gauge, after rotating to the
mass eigenstates, and to obtain exact analytical formulas for the widths. We will not
report the resulting expressions because they are rather involved and not particularly
informative. It is instead useful to derive approximate decay widths in the limit of
eq. (6.19), but the Unitary Gauge is not suited for this purpose. In the Unitary Gauge
there are no direct couplings of V to the SM vectors, these interactions only emerge

the spirit of the Simplified Model approach adopted in this chapter. We will take care of additional
contributions to EWPT, not calculable within the Simplified Model, by considering bounds looser than
the strict 95% CL limits.

6Because of quark mixings, the charged vector couplings should actually be multiplied by the
appropriate CKM matrix elements.
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from the mixing and are thus suppressed by the small mixing angles θN,C . 10−1. On
this basis, one would naively expect small di-boson widths and negligible BR. While
this conclusion is correct for the processes involving transversely polarised SM vectors,
the decay to zero-helicity longitudinal states is actually unsuppressed and potentially
dominant. This is because the longitudinal polarisation vectors grow with the energy of
the process and even a tiny Unitary Gauge coupling can have a large effect in a high-energy
reaction such as the decay of V . Rather than in the Unitary Gauge, one could work in an
“Equivalent Gauge” [96] where the growth of the polarisation vectors is avoided and the
decay to longitudinals is straightforwardly estimated. However for the present analysis, it
is sufficient to rely on a well-known result, the "Equivalence Theorem" [95], according to
which the longitudinal W and Z are equivalent to the corresponding Goldstone Bosons
in the high energy limit. Namely, the theorem states that if we parameterise the Higgs
doublet as

H =


π2 + i π1√

2
v̂ + h− i π3√

2

 ≡
 i π+

v̂ + h− i π0√
2

 , (6.26)

the longitudinal W s and Zs will be described by π+ and π0, respectively, with h being
the physical Higgs boson. The vector fields Wµ and Zµ can be safely ignored, and the
terms in the Lagrangian (6.2) which are relevant for the decay process are only

Lπ = −1

4
∂[µV

a
ν]∂

[µV ν] a +
M2
V

2
V a
µ V

µ a − cHζMV V
a
µ ∂

µπa

+
gV cH

2
V a
µ

(
∂µhπa − h ∂µπa + εabcπb∂µπc

)
+ 2 gV cV V HHζMV hV

a
µ V

µa +
gV
2
cV V V εabcV

a
µ V

b
ν ∂

[µV ν] c . (6.27)

We omitted the kinetic term of the massless Goldstones and of the physical Higgs for
shortness and we used m̂V ≡MV ≈M±,0.

We now see clearly why the longitudinal decays are unsuppressed. The second line of
the Lagrangian (6.27) contains a direct interaction of the resonance with the Goldstones.
This term gives a universal contribution to di-boson decays of the charged and neutral
resonances, which are all controlled by the same parameter combination gV cH . If it
dominates, all the relative BRs in these channels are fixed and uniquely predicted. This
is indeed what happens in most of the parameter space of our model where, as discussed
in the previous section, ζ is small. When instead ζ is of order one, the widths receive
additional contributions because the V -π mixing in the first line of eq. (6.27) can not
be ignored and must be eliminated by a field redefinition before reading the physical
couplings. The redefinition is performed in two steps, first we shift

V a
µ → V a

µ +
cHζ

MV
∂µπ

a , (6.28)
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and we cancel the mixing from the variation of the mass term. Second, in order to restore
the canonical normalisation of the π kinetic term we rescale

πa → 1√
1− c2

Hζ
2
πa . (6.29)

Notice that 1− c2
Hζ

2 is necessarily positive to avoid negative-defined mass matrices, see
eqs. (6.14) and (6.16).

After these redefinitions, the relevant interactions become7

gV cH
2(1− c2

Hζ
2)

[
1 + cHcV V V ζ

2
]
εabcV a

µ π
b∂µπc

− gV cH√
1− c2

Hζ
2

[
1− 4cV V HHζ

2
]
hV a

µ ∂µπ
a , (6.30)

and the partial widths are immediately computed

ΓV0→W+
LW

−
L
' ΓV±→W±L ZL

' g2
V c

2
HMV

192π

(1 + cHcV V V ζ
2)2

(1− c2
Hζ

2)2
=
g2
V c

2
HMV

192π

[
1 +O(ζ2)

]
,

ΓV0→ZLh ' ΓV±→W±L h
' g2

V c
2
HMV

192π

(1− 4cV V HHζ
2)2

1− c2
Hζ

2
=
g2
V c

2
HMV

192π

[
1 +O(ζ2)

]
.

(6.31)

We checked that these expressions reproduce the exact widths up to O(m̂2
W,Z/m̂

2
V )

corrections, as expected. The channels which are not reported in the above equations
are either forbidden, like hh and γγ decays, or suppressed like the decays to transverse
polarisations which follow the estimate based on the Unitary Gauge and experience mixing
angle suppressions. In particular, theWγ final state is generically suppressed, and exactly
vanishes in the explicit models described in section 6.2.4 that obey Minimal Coupling
[278]. Notice that the dominance of the longitudinal polarisations in the di-boson decays
is an important simplification for the interpretation of experimental searches. Indeed,
the boosted vector boson reconstruction could slightly depend on the helicity because
different helicities would lead to different kinematical distributions of the final decay
products. In our case one can safely restrict to the longitudinal case when computing the
efficiencies and ignore the transverse.

From the analysis of the present section a very simple picture emerges. At small ζ, all
the decay widths are fixed, for a given resonance mass, by the couplings g2cF /gV and
gV cH , which therefore control the BRs in all the relevant channels. Furthermore, since
the dominant processes are 2→ 1 reactions and can be parameterized, as we will do in
the following section, in terms of the corresponding decay widths, the two parameters

7To obtain the equations that follow we also made use of the V equations of motion or, equivalently,
of further field redefinitions.
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g2cF /gV and gV cH also control the production rate. Therefore the phenomenology of
the model is entirely described, to a good approximation, in terms of the two couplings
g2cF /gV and gV cH and the mass MV , making, as anticipated in section 6.2.1, cV V V ,
cV V HH and cV VW basically irrelevant. When studying our model at the LHC the latter
parameters can be safely ignored, or set to benchmark values inspired by explicit models,
and the limits can be presented in terms of the relevant couplings. Additional plausible
assumptions, like the universality of lepton and quark couplings, could further simplify
the analysis.

Now that the general picture is clear, we can get an idea of the expected widths and
BRs by studying explicit models. We consider two benchmark models, A and B, which
correspond to two explicit models describing the heavy vectors, namely those in Refs. [286]
and [97], respectively. As discussed in detail in section 6.2.4, all the c’s are fixed to
specific values in these models and the only free parameters are the resonance coupling
gV and its mass MV .8 We refer to the benchmark points at fixed gV = ḡV with the
notation AgV =ḡV and BgV =ḡV . Moreover, since models A and B are inspired, respectively,
by weakly coupled extensions of the SM gauge group and strongly coupled scenarios of
EWSB, i.e. Composite Higgs models, we will consider them in different regions of gV ,
relatively small, gV . 3, and relatively large, gV & 3, respectively.

In Figure 6.2 we show the BRs (upper panels) and the total widths (bottom panels) as
functions of the mass in models A (left panels) and B (right panels) for different values of
gV . As expected from the discussion above, model AgV =1, which predicts

gV cH ' g2cF /gV ' g2/gV , (6.32)

has comparable BRs into fermions and bosons, with a factor of two difference coming
from a numerical factor in the amplitude squared (cfr. eq. (6.31) with eq. (6.25)). The
difference between the BRs into leptons and quarks is due to the colour factor, since cF
is universal both in A and B. The total width in model A decreases with increasing gV
because of the overall suppression g2/gV in eq. (6.32). In model B, on the contrary, cH is
unsuppressed

gV cH ' −gV , g2cF /gV ' g2/gV . (6.33)

Therefore, for model BgV =3 the dominant BRs are into di-bosons and the fermionic decays
are extremely suppressed, of the order of one percent to one per mil. Moreover, the total
width increases with increasing gV since it is dominated by the di-boson width which
grows with gV as expected from eq. (6.33). Finally, in model B we see that a very large
coupling gV (the case of gV = 8 is shown in the Figure) leads to an extremely broad
resonance, with Γ/M � 0.1, for which the experimental searches for a narrow resonance

8Actually the model of Ref. [97] has an additional freedom in the choice of cH , which depends on
the additional parameter aρ = mρ/(gρf) as in eq. (6.60), we define the benchmark model B by setting
aρ = 1.
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Figure 6.2 – Upper panel: Branching Ratios for the two body decays of the neutral vector V 0

for the benchmarks AgV =1 (left) and BgV =3 (right). Lower panel: Total widths corresponding to
different values of the coupling gV in the models A (left) and B (right).

are no longer motivated. For this reason we expect, if no further suppression is present in
the parameter cH , to be able to constrain heavy vector models from direct searches only
up to gV of the order 6− 7. For larger couplings different searches become important,
like for instance those for four fermion contact interactions.

6.2.2 Production rates parameterized

The two main production mechanisms of the new vectors are DY and VBF.9 They are
both 2→ 1 processes, therefore their cross-section can be expressed as

σ(pp→ V +X) =
∑
i,j ∈ p

ΓV → ij

MV

16π2(2J + 1)

(2Si + 1)(2Sj + 1)

C

CiCj

dLij
dŝ

∣∣∣∣∣
ŝ=M2

V

, (6.34)

in terms of the partial widths ΓV → ij of the inverse decay process V → ij. In the equation,
i, j = {q, q,W,Z} denote the colliding partons in the two protons, and dLij/dŝ|ŝ=M2

V
is

the corresponding parton luminosity evaluated at the resonance mass. The factor J is
the spin of the resonance and C its colour factor, Si,j and Ci,j are the same quantities

9We ignore the production in association with a gauge boson because it is always negligible for V
masses and couplings in the interesting region.
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for the initial states. If needed, the cross-section above could be corrected by a k-factor
taking into account higher order QCD corrections. It is important to remark that the only
terms in the above equation that carry some dependence on the model parameters are the
partial widths ΓV → ij , while the parton luminosities are completely model-independent
factors that can be encoded in universal fitted functions. Since the widths are analytical
functions of the parameters, this allows us to compute the production rates analytically,
making the exploration of different regions of the parameter space extremely fast as we
will do in the following section. Simple approximated expressions of the partial widths are
reported in eqs. (6.25) and (6.31), however in the following we will make use of the exact
expressions embedded in a Mathematica code and available through a web interface in
[324].

While the meaning of eq. (6.34) is completely obvious for DY, and the corresponding
luminosities are immediately computed by convoluting the quark and anti-quark Parton
Distribution Functions (PDF), the case of VBF requires additional comments. In eq. (6.34)
we are regarding the W and Z bosons as “partons”, or constituents of the proton, relying
on the validity of the Effective W Approximation (EWA) [185]. By the EWA, the vector
bosons’ PDFs and in turn the corresponding luminosities are obtained by convoluting
those of the initial quarks with appropriate splitting functions. More details can be found,
for instance, in Ref. [326]. A priori, all the W and Z polarisations should be taken into
account, as well as photons. However we saw above that the only sizeable partial widths
are those with longitudinal vectors, thus we can safely restrict to the W+

LW
−
L and W±L ZL

initial states for the production of the neutral and the charged V , respectively. It is
also important to remark that the EWA has a limited range of validity and it is not
expected to reproduce the full partonic process pp→ V jj in all possible regimes [327].
It might fail if the W collision is not sufficiently hard, which however is never the case
for MV & 1 TeV, or if other kinematically enhanced configurations exist, besides the
standard VBF ones with forward energetic jets, and contribute to the partonic process.
Also this second issue does not arise in our case. Finally, it might happen that other
processes give a sizeable contribution to the V jj final state. This occurs in our case when
the V coupling to fermions is much larger than the one to vector bosons. In this case the
V jj final state could arise, for instance, by dressing the DY process with QCD initial
state emissions. However when this happens the ordinary DY, without extra parton-level
jets, is necessarily the dominant production mechanism and the failure of the EWA is
irrelevant at the practical level. We checked that the partonic cross-section is extremely
well reproduced by eq. (6.34) in all regions of parameter space, where the VBF rate is
not completely negligible, up to order 1% of the DY one.

The parton luminosities for the various production processes are shown in Figure 6.3.
The VBF luminosity is obviously much smaller than the DY one because of the αEW
suppression in the vector boson PDFs. Therefore VBF only has a chance of being
comparable to DY if the widths in qq are much smaller than those in di-bosons. We see
from eqs. (6.25) and (6.31) that this can happen only at large gV , and in the strongly
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Figure 6.3 – Value of the dL/dŝ for quark initial states (left plots) and longitudinal vector
boson initial states (right plots) for 8TeV (first row) and 14TeV (second row) LHC and for a
hypothetical 100TeV (last row) pp collider.

coupled scenario, i.e. model B, where cH is not suppressed. In the left panel of Figure
6.4 we show the ratio of the production cross-section by DY and VBF (for the V + for
illustration) as a function of the cF /cH ratio, for different masses at the LHC at 8TeV
and 14TeV and at a hypothetical 100TeV pp collider10. Since, as shown by eq. (6.34) the
production cross-section only depends on the corresponding partial widths, we expect
the ratio of the cross-sections to depend only on cF /cH , up to small corrections of order
ζ2. The overall normalisation of the cH , cF parameters has been set to cF = 0.1. This is
necessary because for large gV , which is the case of interest, when the ratio cF /cH becomes
small, a cF of order one would imply a large cH , which would lead to an unacceptably

10Studies of new vector resonances at future hadron collider were done in the context of the Snowmass
2013, see Refs. [328–330].
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collider energies. Right panel: expected number of events from VBF production for different
masses, collider energies and integrated luminosities, assuming cF = 0. For illustration we
consider only V +.

large total width. The left panel of Figure 6.4 shows that even for a large coupling gV = 6,
a ratio of the order of 3(5) at 14(8)TeV is needed for VBF to become comparable with
DY. This ratio can be regarded as the needed suppression in cF with cH still being of
order one. This further suppression is not expected in general in explicit models, making
VBF typically less relevant than DY. For this reason we will ignore VBF in the analysis
of the following section and consider only DY production. For the 100TeV option the
situation is different, since for cF ≈ cH the DY and VBF production cross-sections are
comparable for resonances with masses in the few TeV region. Obviously, for higher
masses in the range of a few tens of TeV, close to the reach of the 100TeV collider, we
expect VBF to be again subleading with respect to DY.

If the coupling to fermions is suppressed for some reason, cF ≈ 0, VBF becomes the
dominant production mechanism and it is worth asking ourselves what the mass reach
of the LHC would be in this case. In order to answer, we notice that for cF ≈ 0 the
fermionic decays are suppressed and thus the total resonance width Γ is simply twice
the di-boson one which controls, by eq. (6.34), the production rate. Therefore, for a
given mass, the expected number of produced vectors (again V + for illustration) can
be expressed as a function of the Γ/MV ratio as shown in the right plot of Figure 6.4
for different masses, collider energies and integrated luminosities. The Γ/MV ratio is an
important parameter, as it quantifies to what extent the resonance can be reasonably
regarded as a particle. By requiring, for instance, Γ/MV . 0.3 we can obtain an upper
bound on the expected signal. We see that at the 8 TeV LHC with 20 fb−1 a reasonable
number of events can be obtained only for very low masses, around 1TeV, where however
we expect the resonance to be excluded already by EWPT. At the LHC at 14TeV with
100 fb−1, a sizeable number of events for a narrow resonance (Γ/M . 0.1) seems possible
even for relatively high masses, up to around 2.5 TeV. This makes VBF more interesting
at the LHC at 14TeV, at least to explore specific scenarios where the coupling to fermions
is suppressed.
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Experiment Channel Reference
ATLAS

l+l−
[234]

CMS [233]
CMS

lν
[231]

ATLAS [232]
ATLAS ττ [317]
ATLAS

WZ → 3lν
[236]

CMS [235]
CMS qW, qZ,WW/WZ/ZZ → jj [239]
CMS WW → lνjj [237]

ATLAS
jj

[315]
CMS [322]
CMS bb̄, bg [321]

ATLAS
tt̄

[318]
CMS [320]

ATLAS
tb̄

[319]
CMS [323]

Table 6.2 – Summary of experimental searches relevant for heavy vector resonances. We have not
mentioned the searches of Refs. [238, 316] in the ZZ final state, since this channel is not present
in our Simplified Model. The grey entries will not be used when showing bounds in Figure 6.5
since the acceptances for a heavy vector are not reported in the experimental analyses.

6.2.3 Data and Bounds

The ATLAS and CMS collaborations have performed a number of searches for heavy
resonances, not only spin-1, decaying into different final states both at the 7 and 8TeV
LHC. A summary of the relevant searches for the study of a heavy vector boson, either
charged or neutral, is given in Table 6.2. Most of those analyses present limits on the
production cross-section times BR, σ×BR, as a function of the resonance mass.11 If
taken at face value, these results are thus very easy to interpret because, as explained in
the previous section, both σ and BR can be expressed in analytical form. This allows us
to draw exclusion contours in the parameter space of our model in a very efficient way,
as we will show in section 6.2.3.2. However, an important message, on which we will
elaborate in section 6.2.3.3, is that in some cases the experimental limits, depending on
the details of the analysis, are not properly set on σ×BR because of the effects of the finite
resonance width. This problem is particularly acute in strongly coupled scenarios, where
the resonance is broader and should be more carefully investigated by the experimental
collaborations.
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6.2.3.1 A first look at the LHC bounds

Before starting a detailed analysis, let us try to get an idea of the present experimental
bounds by discussing two illustrative examples. We consider the benchmark models
AgV =1, BgV =3 and BgV =6 described in the previous section as representatives of the
“typical” weakly coupled (A) and strongly coupled (B) models with intermediate (gV = 3)
and rather strong coupling (gV = 6). In the benchmarks, all the parameters of the model
are fixed except for the resonance mass, so they can be very easily compared with the
data by looking at Figure 6.5 where we report the bounds on the production cross-sections
obtained by rescaling the experimental bounds on σ×BR by the corresponding BRs and
superimpose the theoretical predictions for the production of the positively charged and
neutral states. Let us discuss the results separately for the two cases.

Weakly coupled heavy vector

This case is depicted in the upper plots of Figure 6.5. A weakly coupled vector resonance,
arising for example as a new gauge boson from an extension of the SM gauge group, is
excluded for masses below around 3 TeV for gV = 1. The limit deteriorates for larger
coupling because the DY rate is reduced according to eq. (6.25). For this reason, much
weaker bounds will be obtained in the strongly-coupled case described below. The bound
is dominated by searches into di-lepton and lepton neutrino final states. The searches in
di-bosons, i.e. namely in hadronic and semileptonic WW and hadronic and fully leptonic
WZ are less constraining, but still able to set a bound around 1− 2 TeV. Also relevant is
the search of ATLAS into the ττ final state which sets a bound around 2TeV. Definitely
less constraining are the searches involving the top quark in the final state, like tt̄ and tb.

Using the ratio of the parton luminosities shown in Figure 6.3 we can obtain a naive
estimate of the mass reach of the 14TeV LHC and of a hypothetical 100TeV pp collider.
The exclusion in the weakly coupled region MV ∼ 3TeV for 20 fb−1 corresponds to a
parton luminosity ∼ 4 · 10−2 pb (see Figure 6.3). Using this number and rescaling to a
luminosity of 300 fb−1 at the LHC at 14TeV and to 1 ab−1 at the 100TeV collider we
naively find a sensitivity up to MV ∼ 6TeV and MV ∼ 30TeV respectively.

Strongly coupled heavy vector

This case is depicted in the middle and lower plots of Figure 6.5 for an intermediate,
gV = 3, and rather stronger, gV = 6, coupling. A strongly coupled vector resonance
like a new composite vector boson, analogous to the ρ in QCD, arising for example in
Composite Higgs models is excluded up to ∼ 1.5− 2TeV for intermediate coupling of the
strong sector and almost unconstrained for large enough coupling (gV & 5). The most

11We will not consider the ATLAS and CMS di-jet searches [315, 322] because the limits are given in
terms of an acceptance factor. Furthermore the sensitivity of the latter channels is rather reduced.
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Figure 6.5 – Bounds on the production cross-section for some of the searches listed in Table
6.2 (except for the ones in grey) for the models AgV =1 (upper plots), BgV =3 (middle plots) and
BgV =6 (lower plots) for the CMS (left) and ATLAS (right) collaborations.

constraining searches are those into di-boson final states because, as described above, the
BRs into vector bosons are much larger than those into fermions. tt̄ and tb searches are
not particularly sensitive. Notice, however, that we are working under the assumption of
a universal coupling to fermions. In potentially realistic strongly coupled scenarios the
parameter c3 is actually expected to be enhanced, improving the sensitivity of third family
searches. A careful assessment of this interesting effect is left to future work. Notice that
a large portion of the mass range is theoretically excluded, as shown in the plots. This
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Figure 6.6 – Current experimental constrains in the (cH , cF ) plane for the four benchmark points
at 2TeV. The yellow region shows the exclusion from V → lν searches [231] while in blue are
regions excluded by V →WZ searches with WZ → jj [239] in light blue and WZ → 3lν [235]
in dark blue. The solid black lines depict constrains from EWPT at 95% CL and the dashed
black line twice this limit. The points corresponding to models A and B for the different values
of gV are also shown.

corresponds to regions where it is not possible to reproduce the SM input parameters
αEW, GF and MZ for such a small physical mass and large gV coupling.

Assuming a rather weak strong coupling gV = 3, the same naive rescaling made for the
weakly coupled vector gives a naive reach of MV ∼ 3− 4TeV and MV ∼ 15− 20TeV at
the LHC at 14TeV with 300 fb−1 and the 100TeV collider with 1 ab−1 respectively.

6.2.3.2 Limits on the Simplified Model parameters

The experimental limits on σ × BR can be simply converted into limits on the relevant
parameters of the Simplified Model. In section 6.2 we showed that the most relevant
parameters are the mass of the resonance, the overall scale of its couplings gV and
the parameters cF and cH describing the interactions with SM fermions and bosons
respectively. In order to give an idea of the bounds coming from present analyses we make
the simple choice cF = cq = cl = c3 and show the bounds, for given mass and coupling,
in the two-dimensional (cH , cF ) plane. The results, as expected from the discussion of
section 6.2, are very weakly sensitive to the other parameters cV VW , cV V V and cV V HH .
In the plots we fixed the latter to their values in model A (see section 6.2.4.1) and checked
explicitly that the results do not change significantly by setting them to model B.

In Figure 6.6 we show the allowed and excluded regions in the (cH , cF ) plane for fixed MV

and gV = 1, 3, 6 corresponding, respectively, to weak, intermediate and strong coupling.
As an illustrative example we chose MV = 2TeV as an intermediate mass scale where the
experimental constraints are neither too strong nor too weak and thus more interesting.
For simplicity, we did not report all the relevant limits in the plots, but only the ones
from charged vector searches. The neutral ones could be easily added but would just give
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Figure 6.7 – Current experimental constraints in the (MV , gV ) plane in models A and B. The
notation is the same as in Figure 6.6.

comparable constraints and not change the result significantly. Obviously, the situation
could have changed if we had performed a statistical combination of the limits in the
different channels rather than a superposition of the corresponding excluded regions.
However, we think that correlations among the different channels should be taken into
account by the experimental collaborations. In the plots, the yellow region represents
the exclusion from the CMS l+ν analysis of Ref. [233], while the dark and light blue
ones show the limits from CMS WZ → 3lν [235] and WZ → jj with W/Z tagged
jets [239] respectively.12 The black curves represent constraints coming from EWPT,
i.e. from the Ŝ parameter, which we computed in Appendix D.2. The black solid curve
corresponds to the strict 95% C.L. bound on Ŝ of Ref. [111]13, while the dashed line is
obtained by artificially enlarging the latter bound by a factor of two. This second line
is a more realistic quantification of the constraints than the strict limits because the
EWPT observables are eminently off-shell observables and thus not calculable within the
Simplified Model. Extra contributions, of the same order as the ones coming from the
resonance exchange, can easily arise in the underlying complete model. By enlarging the
bound on Ŝ we take these contributions into account and obtain a conservative exclusion
limit.

Any given explicit model corresponds to one point in the plots of Figure 6.6. The two
points indicated by A and B correspond to the prediction of the two benchmarks models
for the assumed values of gV and MV . For small gV the lepton-neutrino search dominates
the exclusion (first plot) and only a narrow band around −1 . cF . 1 remains allowed.
Here EWPT are not competitive with direct searches and the di-boson searches are almost
irrelevant due to the relatively small di-boson BR (see the discussion at the end of section
6.2.1). Moreover, for small gV both our benchmark models are excluded. As gV increases
we notice four main features: the constraints from EWPT become comparable to the
direct searches into di-bosons, di-boson searches become more and more relevant due to

12For recent theoretical developments in the search for vector resonances using boosted techniques see,
for instance, in Refs. [331–333].

13The bound quoted in Ref. [111] is S = 0.04± 0.10 obtained from an STU fit.
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Figure 6.8 – Current experimental constrains in the (cH , cV VW ), (cH , cV V V ) and (cH , cV V HH)
planes for gV = 3, MV = 2TeV and cF = 4 (all the other parameters are fixed to their value in
model A). The notation is the same as in Figure 6.6.

the enhanced BRs, model B evades bounds from direct searches more and more compared
to model A which remains close to the excluded region, and bounds from EWPT constrain
model B more than model A. The last two features are due to the larger value of cH
predicted by model B, corresponding to a region which is very difficult to access with
direct searches.

A second interesting way to present the experimental limits is to focus on explicit models
and draw exclusion curves in the plane of their input parameters. In both models A and
B we have two parameters, the coupling and the mass of the new vector. The limits in
the (MV , gV ) plane are reported in Figure 6.7. We find similar exclusions in the two
models at low gV , where the limit is dominated by leptonic final state searches, but the
situation changes radically for large coupling. In particular the limit in model B is rather
weak and barely competitive with EWPT already for intermediate couplings gV ∼ 3 and
it disappears when the coupling is large.

Finally we want to check that, as expected from the discussion of section 6.2.1, the
parameters cV VW , cV V V and cV V HH affect the exclusion only marginally. We thus plot
the same constraints shown in Figure 6.6, in the (cH , cV VW ), (cH , cV V V ) and (cH , cV V HH)

planes in Figure 6.8 for the benchmark models A and B at gV = 3. The plots represent a
horizontal slice at cF = 4 in the second plot of Figure 6.6 using the same colouring as
previously. We find cV VW and cV V V indeed to be sub-leading with no variation in their
direction. A slight tilt can be observed in the direction of cV V HH , on the other hand. This
is due to the enhanced sensitivity on cV V HH induced by the term (1− 4cV V HHζ

2)2 in the
width in eq. (6.31) for relatively large ζ. The correction induced by this term can be of
the order of 20% for cH ∼ −0.5 (ζ ≈ 0.4). One could expect the same enhancement in the
central plot, due to the term (1 + cHcV V V ζ

2)2 in the width in eq. (6.31). However, the
absence of the factor of four only gives an effect of the order of the percent for cH ∼ −0.5,
not clearly observable in the central plot.
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6.2.3.3 Limit setting for finite widths

1800 1850 1900 1950 2000 2050

1

2

3

4

5

Ml+ l- @GeVD

ds
êdM

l+
l-
@10-

7 p
bêG

eV
D

-1.0 -0.5 0.0 0.5 1.0
-3
-2
-1
0
1

y

1-sFullêsBW H%L LHCû14TeV
MV = 2 TeV
G êMV = 2 %

1800 1900 2000 2100 2200
0

1

2

3

4

Ml+ l- @GeVD

d
Σ

�d
M

l+
l-

@1
0

-
7
p
b

�G
eV

D

-1.0 -0.5 0.0 0.5 1.0
-20

-10

0

10

20

y

1-ΣFull�ΣBW H%L
LHC�14TeV

MV = 2 TeV

G �MV = 10 %

Effect of interference -1 < y < 1
SM + BW Hwêo interferenceL sHpp Æ V0L â BRHV0 Æ l+l-L + sSMHpp Æ l+l-L
SM + Signal Hwêo interferenceL sHpp Æ V0 Æ l+l-L + sSMHpp Æ l+l-L
Signal BW sHpp Æ V0L â BRHV0 Æ l+l-L
Signal only sHpp Æ V0 Æ l+l-L
SM sSMHpp Æ l+l-L

2600 2800 3000 3200 3400 3600 38000

1

2

3

4

Ml+ l- @GeVD

ds
êdM

l+
l-
@10-

7 p
bêG

eV
D

-1.0 -0.5 0.0 0.5 1.0
-20

-15

-10

-5

0

y

1-sFullêsBW H%L LHCû8TeV
MV = 3.5 TeV
G êMV = 11 %

1850 1900 1950 2000 2050

1

2

3

4

Ml+ l- @GeVD

ds
êdM

l+
l-
@10-

7 p
bêG

eV
D

-1.0 -0.5 0.0 0.5 1.0
-3
-2
-1
0
1

y

1-sFullêsBW H%L

LHCû8TeV
MV = 2 TeV
G êMV = 2 %

1200 1400 1600 1800 2000 2200

2

4

6

8

Ml+ l- @GeVD

ds
êdM

l+
l-
@10-

7 p
bêG

eV
D

-1.0 -0.5 0.0 0.5 1.0
-20

-10

0

10

20

y

1-sFullêsBW H%L

LHCû8TeV
MV = 2 TeV
G êMV = 10 %

Figure 6.9 – Di-lepton invariant mass distribution for different choices of M0 and Γ0/M0 at the
LHC at 8 TeV (first three plots) and 14 TeV (last two plots) c.o.m energy. The Figures show the
dependence of the difference between the full 2→ 2 calculation and a simple BW distribution
normalized to the on-shell production cross-section and multiplied by the corresponding BR into
di-leptons on Γ0/M0. The “inset” plots show the percentage agreement between the cross-sections
obtained by integrating the full simulation with a y-dependent interference in the shaded “bin”
(varying continuously from fully constructive (y = 1) to fully deconstructive (y = −1)) and the
simple sum of the BW plus the background.

The final goal of a resonance search is to set experimental limits, for either exclusion or
discovery, on the resonance production cross-section times the BR into the relevant final
states for different mass hypotheses. This way of presenting the experimental results is
obviously the simplest and most convenient, as it is completely model-independent and
can be very easily interpreted in any given model as we did above. However whether this
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6.2. A Simple Simplified Model for a Heavy Vector Triplet

goal can be really achieved or not, and with which accuracy, can depend crucially on the
details of the analysis and on the assumed total width of the resonance. The aim of this
section is to illustrate two kinds of effects associated with the finite particle width that
can make the extraction of σ×BR limits from an experimental search rather involved.
Both effects are well-known. Recent discussions can be found in Refs. [296, 301, 334].
Here we will quantify their importance for heavy vector searches at the LHC and propose
some strategies to minimise their impact. The results of this section are obviously not
conclusive. A detailed analysis of these issues and their impact on the searches should be
performed by the experimental collaborations. The final goal should be to quantify, and
minimise, the systematic uncertainties associated with the determination of σ×BR.

The example of the di-lepton invariant mass

Let us study the width effects in detail by focusing on the simple case of di-lepton searches
for the neutral vector. The relevant observable is the di-lepton invariant mass distribution
which we show in Figure 6.9 for different V 0 masses, widths and collider energies. We
took a vector resonance with a mass of 2TeV, both narrow (Γ/MV = 2%) and broad
(Γ/MV = 10%) at the LHC at 8TeV (first row of plots) and 14TeV (last row of plots) as
reference. Finally, in the central plot we show the example of a resonance at 3.5TeV with
Γ/MV ∼ 11% at the 8 TeV LHC.

The first effect to be discussed is the distortion of the signal shape which can depart
significantly from the prediction of the BW formula. This can be seen in the Figure by
comparing the dashed red curves, which are obtained by the BW distribution normalized to
σ×BR, where σ is defined by eq. (6.34) with the red solid lines obtained by MadGraph5
simulations of the 2 → 2 process pp → V ∗0 → l+l−. We see that in the peak region
the distortion is rather mild when the resonance is light (2 TeV) at both the 8 and
14 TeV LHC. The effect is barely visible for Γ/M = 2% and more pronounced for a broad
resonance Γ/M = 10%. The distortion is more significant for a 3.5 TeV mass but the
deviation is still under control. This can be seen by comparing the area of the two curves
in the interval [M − Γ,M + Γ] depicted as a shadowed region in the plots. The relative
deviation is depicted in the inset plots for y = 0. We see that it is of around 10% in
the worst case of MV = 3.5 TeV and Γ/MV ∼ 11%. Outside the peak, on the contrary,
the situation is worrisome already for MV = 2 TeV. The simulated signal has a long tail
extending towards small invariant masses which is due to the steep fall of the parton
luminosities.

By focusing on the peak, where the signal is well approximated by the BW prediction,
extracting the limit on σ×BR is straightforward. For instance one could simply measure
the cross-section of the 2→ 2 process integrated in a window around the resonance mass
and convert it into a bound on σ×BR by rescaling for the fraction of events that, according
to the BW distribution, are expected to fall in the selected window. Alternatively, one
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could perform a shape analysis by assuming a BW signal shape and extract a limit on
its normalisation. Also in this second case the analysis should be restricted to the peak
region because the tail is not well-described by the BW formula. Notice in particular that
the total area of the simulated signal, that gives the total 2→ 2 cross-section, can differ
considerably from σ×BR. The low-mass tail, which extends in a wide range of masses,
can indeed give a sizeable contribution to the total integral.

In order to understand the effect in more detail, let us briefly remind the reader of the
assumption under which the BW formula is derived. The measured signal is pp→ l+l−

whose partonic cross-section is

σ̂S(ŝ) =
4πŝ

3M2
V

ΓV→qiqjΓV→l+l−

(ŝ−M2
V )2 +M2

V Γ2
. (6.35)

After convoluting with the PDFs, and using ŝ = M2
l+l− , the total differential cross-section

reads

dσS
dM2

l+l−
=
∑
i,j

4π

3

ΓV→qiqjΓV→l+l−

(M2
l+l− −M2

V )2 +M2
V Γ2

M2
l+l−

M2
V

dLij
dŝ

∣∣∣∣∣
ŝ=M2

l+l−

. (6.36)

In the peak region, namely for Ml+l− −MV ∼ Γ, and only in that region, it is reasonable
to approximate

M2
l+l−

M2
V

dLij
dŝ

∣∣∣∣∣
ŝ=M2

l+l−

' dLij
dŝ

∣∣∣∣∣
ŝ=M2

V

, (6.37)

from which, using eq. (6.34), the differential cross-section can be written in terms of the
on-shell σ×BR, times a universal function

dσS
dM2

l+l−
= σ × BRV→l+l−BW(M2

l+l− ;MV ,Γ) , (6.38)

where BW denotes the standard relativistic BW distribution

BW(ŝ;MV ,Γ) =
1

π

ΓMV

(ŝ−M2
V )2 +M2

V Γ2
. (6.39)

Whether eq. (6.38) is a good description of the 2 → 2 shape or not depends on how
accurately the assumption (6.37) holds, namely it depends on how fast the parton
luminosities vary in the peak region. Therefore the agreement is better for smaller widths
when the peak is narrower. But the level of agreement also depends on the resonance
mass and decreases when the resonance approaches the kinematical production threshold
of the collider. This is because after a certain threshold the parton luminosities start to
decrease extremely fast, more than exponentials, so that regarding them as constants is
less and less justified even for a narrow width. This threshold corresponds, in Figure 6.3,
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to the point where the luminosities become concave functions in logarithmic scale around
3 or 3.5 TeV at the 8 TeV LHC. This explains why the peak distortion is so pronounced
at the 3.5 TeV mass point. Notice that the peak distortion could be modelled, starting
from eq. (6.36), and the agreement with the simulated signal improved by employing a
“distorted” BW shape. We will not discuss this possibility because we consider the BW
description to be sufficiently accurate in the cases at hand. However such an improvement
could be helpful in order to deal with more problematic situations.

The second important effect to be taken into account originates from the quantum
mechanical interference of the resonance production diagrams with those of the SM
background. Differently from before the strength of this second effect crucially depends on
the amount of background which is present in the peak region or, more precisely, on the
signal to background ratio. Notice that only the strictly irreducible backgrounds matter,
because interference can only occur among processes with the exact same initial and final
states at the partonic level. In Figure 6.9, the upper and lower boundaries of the green
shaded region are the result of two complete simulations, including interference, of the
pp→ l+l− process as obtained at two different points of the parameter space of our model.
For each mass and collider energy the two points are chosen to have identical production
rates and partial widths but, respectively, constructive and destructive interference. The
two points are simply related by flipping the relative sign of cq and cl, which leads to
identical rates and widths but opposite interference. The green solid lines correspond
instead to the “signal plus background” prediction, obtained by ignoring the interference
and summing the background, reported in black, with the “signal only” line in red. In
dashed green we show the signal plus background curves obtained by the BW prediction
of the signal. Notice that the interference never vanishes in any model so that the signal-
plus-background shape does not represent any point of the parameter space. However
the interference could be reduced, and most of the shaded region could be populated
by some explicit model. Therefore, imagining for simplicity that the interference can be
continuously varied from constructive to destructive we define

dσFull
dMl+l−

(y) =
dσB

dMl+l−
+

dσS
dMl+l−

+ y
dσI

dMl+l−
. (6.40)

By varying y among −1 and 1 we can get a rough idea of how much the interference
effect can change the shape in different regions of the parameter space.

We see in the Figure that the shape distortion due to the interference is considerable, and
in most cases more significant than the one due to the PDFs. Notice however that we are
voluntarily considering pessimistic cases where the interference distortion is enhanced.
The idea is that if we manage to deal with these situations we will have no problems in
covering more favourable cases. As mentioned above, the interference distortion depends
on the signal to background ratio, therefore for a given mass and collider energy, where the
background is fixed, the effect is maximal for the smallest possible signal cross-section. For
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the plots in Figure 6.9 we thus selected the minimal cross-sections that can be excluded at
the 8 TeV LHC with 20 fb−1 and at 14 TeV with 100 fb−1. Stated in a different way, we
placed ourselves at the boundary of the excluded σ×BR region for each mass hypothesis.
In the bulk of the excluded region, where σ×BR is well above the one assumed in the
plots, the signal shape would grow and the interference effect would become relatively
less important. With this choice, the interference is more important at 14 than at 8 TeV
because with the assumed luminosity the exclusion will be set in a region where the
background is larger. For the 3.5 TeV mass point the interference is negligible because the
background is very small and the distortion is mainly due to the PDF effect as described
above.

Notice that, differently from the PDF effect, the distortion due to the interference can
not be modelled in any simple way. Namely, it is impossible to cast it in a way that only
depends on the production rate and on the widths, indeed we saw above that it depends
on other parameter combinations. Obviously it could be computed by a simulation, but
the resulting shape would depend in a complicated way on all the model parameters
and could not be taken as a universal template. Therefore by proceeding in this way
it would not be possible to set model-independent limits on σ×BR and the comparison
of the model with the data should be performed by scanning the parameter space with
simulations on a grid of points.

Two different attitudes could be taken towards this problem. One could insist with a shape
analysis, assuming a BW signal, and accept the intrinsic systematic uncertainty associated
with this assumption. Of course the uncertainty should be quantified by comparing with
the limits obtained with the “true” shape, taken for instance from eq. (6.40) for different
values of y. Alternatively, one could turn to a simpler cut-and-count experiment and
try to reduce the impact of the interference by exploiting the following observation. In
general, the interference contribution to the partonic cross-section has the functional form

σ̂I(ŝ) ∝
(ŝ−M2

V )

(ŝ−M2
V )2 +M2

V Γ2
, (6.41)

so that it vanishes exactly at ŝ = M2
V as is odd around this point. This explains why

the shaded green region shrinks to a point for an invariant mass equal to the resonance
mass. After PDF convolution one can show that, provided the approximation of constant
parton luminosities in eq. (6.37) holds accurately enough, the interference contribution to
the signal shape is also an odd function around Ml+l− = MV and thus it cancels when
integrated over a symmetric interval. The signal in the [MV − Γ,MV + Γ] region is thus
much less sensitive to the interference than the shape itself.14 This is confirmed by the

14For a complete cancellation one should consider a domain which is symmetric in the squared invariant
mass variable. The cancellation is only approximate in the window we have chosen. However we prefer
to stick to this simpler prescription of a symmetric domain in Ml+l− , because the cancellation would not
be exact anyhow due to the PDF variation in the peak region.
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inset plots, where we report the relative deviation of the total signal in the window,
compared to the BW signal plus background prediction as a function of the parameter y.
We see that the deviation is typically below 10% even in cases where the shape distortion
due to the interference is considerable.

In view of the above results, let us briefly discuss the limit setting procedure employed
by CMS [233] and ATLAS [234] in the di-lepton searches. After suitable selection and
identification cuts, both analyses perform a shape analysis on the di-lepton invariant
mass distribution based on an un-binned (CMS) or binned (ATLAS) likelihood. The only
relevant difference among the two methods is the choice of the assumed signal distribution
and the mass-range where the analysis is performed. CMS employs a gaussian shape
obtained by convoluting a narrow resonance peak with the detector resolution function
and the analysis is performed in an invariant mass window around the resonance mass. If
the resonance is assumed to be extremely narrow, the CMS strategy is definitely correct
and leads to an accurate determination of σ×BR. However, no finite width effect is taken
into account with this method. It is not even clear, and we plan to study this and related
aspects in a future publication, how narrow the resonance must be in order to make
this method reliable. Notice that asking for a width below the experimental resolution
might not be sufficient as the distortion effects outlined above take place already in
the theoretical distribution and are completely unrelated with the detector resolution.
Furthermore, assuming a too small width might be inconsistent with the amount of signal
needed for exclusion. A given DY cross-section requires, at fixed mass, a given qq partial
width and thus a minimal total width. Moreover, a non-vanishing BR into di-leptons is
needed, leading to a larger minimal width. By exploiting this observation it is possible to
compute the minimal width needed, at a given mass, for 3 or more signal events at the
8 TeV LHC. For a mass of 3.5 TeV, for instance, the minimal width is Γ/MV & 10% and
therefore it would be inconsistent to set an exclusion limit for a very narrow resonance at
this mass. The existence of a minimal width is the reason why we have not considered the
case of a narrow 3.5 TeV resonance in Figure 6.9. The ATLAS strategy is different from
CMS in two respects. First, it performs the shape analysis in the full mass range rather
than around the peak. In light of the above discussion, this is definitely a limitation.
Second, it employs a template signal shape obtained by a sequential Z ′ model [290].
In this manner ATLAS somehow takes the effect of the width into account, but in a
rather incomplete way because at each mass point the width is the one predicted by the
sequential Z ′ model. In other scenarios, with larger gV , the width could be larger and
the limit could change significantly. One might argue that at least the ATLAS limit,
differently from the CMS one, is strictly correct within the specific model assumed in the
simulation. However this is questionable as the interference effects, which are relevant
close to the exclusion limit as shown above, are not included in the simulations.
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The case of lepton-neutrino

In the discussion above we focused on the simple example of the di-lepton final state,
however our considerations are more general and apply to all those searches where the
resonance invariant mass distribution can be reconstructed. This clearly includes di-jets
[315, 322] and di-bosons in the hadronic channels [239], but also searches with one leptonic
W and reconstructed neutrino momentum [235, 236]. In all these cases, the invariant
mass distribution approximately follows the BW formula and the distortions due to the
PDF and interference effects could be analysed along the lines described above. Of course
we expect that in these more complicated examples the experimental resolution, which
we could safely ignore for di-leptons, could play an important role and should be taken
into account. However, no qualitative difference is expected.

A radically different situation is instead encountered when the invariant mass can not be
reconstructed, as in the CMS search [231] in the lepton-neutrino final state. Setting a
model-independent limit on σ×BR might seem hopeless in this case, because one can not
rely on the BW formula which of course only describes the invariant mass distribution
while the relevant observable is now the transverse mass MT . This problem has been
studied in detail in Ref. [301] with the conclusion that indeed a model-independent limit
can not be set and that the search must be reinterpreted in each given model separately.
However, there could be a way out. Any pair of massless leptons, of any chirality, produced
by the DY mechanism through the s–channel exchange of one vector, are characterised by
a universal angular distribution relative to the beam direction in the center of mass frame.
Namely, the angular dependence of the partonic cross-section is effectively 1 + cos2 θ

because the term linear in cos θ cancels out for a symmetric proton–proton collider such
as the LHC.15 Given that the angular dependence is fixed, the pT distribution of the final
states can be uniquely computed and expressed, as usual in the limit (6.37) of slowly
varying PDFs, in terms of σ × BR. If the resonance is produced at rest in the transverse
plane, which we expect to be a good approximation when it is sufficiently heavy, we have
MT = 2pT and we predict

dσ

dM2
T

= σ × BRV→lνTBW(MT ;MV ,Γ) (6.42)

where we denote as TBW a “transverse BW” distribution defined by the following integral

TBW(MT ;MV ,Γ) =
3Γ

8πMV

∫ s

M2
T

dŝ√
ŝ−M2

T

2ŝ−M2
T

(ŝ−M2
V )2 + Γ2M2

V

1√
ŝ
. (6.43)

Needless to say, eq. (6.42) is obtained by neglecting the interference, and in the approxi-

15Of course it does not cancel for asymmetric beams and this is why Z boson asymmetries could be
studied at the Tevatron.
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Figure 6.10 – Lepton-neutrino transverse mass distribution for the choices of M+ and Γ+/M+

analogous to the ones of the first two plots of Figure 6.9 at the LHC at 8 TeV. The Figures
show the dependence on Γ+/M+ of the difference between the full 2 → 2 calculation and a
simple TBW distribution normalized to the on-shell production cross-section and multiplied by
the corresponding BR into lepton-neutrino. The notation (dashing, colouring, “inset” plots) is
identical to Figure 6.9.

mation of slowly-varying PDF. The level of agreement with the “true” signal is illustrated
by Figure 6.10. We considered the same points of the parameter space that were used
in Figure 6.9 for the 2 TeV neutral resonances at the 8 TeV LHC and we show the MT

shape of the associated charged state. We see that the signal, defined as the cross-section
in the window MT ∈ [MV − Γ,MV ], is described by eq. (6.42) at the 10% level. However
in this case, differently from the previous one, most of the signal is lost when restricting
to the window we have selected, decreasing the sensitivity of the analysis. One should
probably try to enlarge the window, accepting a larger error. Notice however that the
interference, which is the dominant distortion effect, has been maximised in Figure 6.10
by choosing the smallest possible rate as described above. The accuracy of the method
would improve for higher rates, allowing at least to set a more conservative, but robust
and model-independent limit.

6.2.4 Explicit Models

In this section we present two examples of explicit models to populate the parameter space
of the Simplified Model. The first one, called model A, describes the vector triplet emerging
from the symmetry breaking pattern SU(2)1 × SU(2)2 × U(1)Y → SU(2)L × U(1)Y
achieved through a linear σ-model [286]. The second model, B, describes the vector triplet
considered in Ref. [97] based on a non-linearly realised SO(5)/SO(4) global symmetry.

6.2.4.1 Model A: extended gauge symmetry

We consider the gauge theory SU(2)1 × SU(2)2 × U(1)Y [286]. The SM fermions are
assumed to be charged under SU(2)1 and U(1)Y with their usual quantum numbers.
The SM Higgs doublet transforms as a (2,1)1/2 under the enlarged gauge group. We
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also introduce an additional scalar field Φ transforming as a real bidoublet (2,2)0. The
bosonic part of the Lagrangian is

L = − 1

4g2
1

W a
1µνW

aµν
1 − 1

4g2
2

W a
2µνW

aµν
2 +DµH

†DµH+Tr(DµΦ†DµΦ)−V(H,Φ) . (6.44)

In order to obtain the SM at low energies we assume the potential V in eq. (6.44) to be
such that Φ obtains a vacuum expectation value

〈Φ〉 =

(
f 0

0 f

)
. (6.45)

This VEV breaks the SU(2)1 × SU(2)2 gauge symmetry to its vectorial subgroup which
is identified with the SM SU(2)L gauge group. By going to the unitary gauge for the
heavy vector triplet one obtains the following mass term from the kinetic term of Φ

Tr(DµΦ†DµΦ) ⊃ f2

2
(W a

1µ −W a
2µ)2. (6.46)

A single gauge invariance under which both W1 and W2 shift in the same way is preserved.
It is thus useful to perform the following field redefinition

W a
2µ = V a

µ +W a
1µ. (6.47)

In this way V transforms as the triplet of section 6.2 and W1 is just the SM W boson
field (the index “1” will be dropped from now on).

The only part of the Lagrangian that transforms non trivially under the field redefinition
in eq. (6.47) is the kinetic term of W2. One has

W a
2µν = D[µV

a
ν] + εabcV b

µV
c
ν +W a

µν , (6.48)

which leads to

W a
2µνW

aµν
2 = W a

µνW
aµν +D[µV

a
ν]D

[µV aν] + 2W a
µνD

[µV aν]

+2εabcW a
µνV

bµV cν +O(V 4) .
(6.49)

After the redefinition, the Lagrangian develops a kinetic mixing between V and W and
thus it can be matched with eq. (6.2) only after the mixing is removed by one further
redefinition. This is performed in Appendix D.1, starting from a“tilded” field basis in
which the kinetic mixing term is present. By identifying

gV ≡ g2 and
1

g2
≡ 1

g2
1

+
1

g2
2

, (6.50)
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we have

m̃V = gV f, c̃VW = −c̃V VW = c̃V V V = −1, c̃H = c̃V V HH = c̃F = 0 , (6.51)

from which we obtain the parameters in eq. (6.2) by the relations in eq. (D.4). In
particular, we see that in all cases, g∗ ∼ g or g∗ � g

cH ∼ −g2/g2
V and cF ∼ 1 . (6.52)

Depending on the precise form of the potential V(H,Φ) and in particular depending on
the presence of a λ|H|2TrΦ†Φ term, an additional contribution to cV V HH proportional
to λg2

2f
2/m2

Φ is generated by integrating out the physical mode of Φ. We define our
benchmark model setting λ = 0. However, finite λ effects can be easily accounted for
by modifying eq. (6.51). We will come back to this point in section 6.2.4.3. Notice that
integrating out Φ also generates (irrelevant) contributions to the quartic interaction of V .

6.2.4.2 Model B: Minimal Composite Higgs Model

Models in which the Higgs boson emerges as a light state (a pseudo Nambu-Goldstone
boson) from an underlying strong dynamics predict the existence of heavy vector reso-
nances with electroweak quantum numbers. In the case of the Minimal Composite Higgs
Model (MCHM), where the Higgs doublet emerges from the spontaneous breaking of a
global SO(5) symmetry to an SO(4) subgroup, these resonances have been discussed in
Refs. [3, 97]. Here we want to show how the lightest vector resonance in these models
can be described by our Simplified Model. In order to enforce the constraints imposed
by the underlying symmetry structure a minimal amount of technical complications is
required. Here we follow Ref. [97] which uses the Callan-Coleman-Wess-Zumino (CCWZ)
formalism reviewed, for instance, in Appendix A of Ref. [240]. The matching with the
Lagrangian of the Simplified Model can be found at the end of this section and the reader
who is not interested in the derivation can jump there directly.

We introduce a spin 1 field ρµ transforming under the unbroken SO(4) subgroup as a
(3,1) irreducible representation

ρµ ≡ ρaµta → h4ρµh
T
4 − ih4∂µh

T
4 for a = 1, 2, 3 , (6.53)

where ta are generators of the SU(2)L subgroup of SO(4) in the vector representation
and h4 is a non-linear SO(4) transformation whose construction is described in Appendix
A of Ref. [240]. We consider the following Lagrangian

Lρ = − 1

4ĝ′2
(Bµν)2 − 1

4ĝ2
(W a

µν)2 +
f2

4
diµd

µi − 1

4g2
ρ

(ρaµν)2 +
m2
ρ

2g2
ρ

(
ρaµ − eaµ

)2
. (6.54)
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The ρ field strength is given by ρaµν = ∂µρ
a
ν − ∂νρaµ − εabcρbµρcν . The full expressions for

the d and e symbols for SO(5)/SO(4) are given in Appendix A of Ref. [240]. Here we
will only need approximate formulas in the large f limit

diµd
µ i =

4

f2
|DµH|2 +

2

3f4

[
(∂µ|H|2)2 − 4|H|2|DµH|2

]
+O(1/f6) , (6.55)

and

ρaµ − eaµ = ρaµ +W a
µ −

i

f2
H†τa

←→
DµH +

i

f4
|H|2H†τa

←→
DµH +O(1/f6). (6.56)

We can thus define the triplet V , which does not shift under the SM gauge group, as

V a
µ ≡ ρaµ +W a

µ . (6.57)

Under this field redefinition the ρ kinetic term transforms as

ρaµν = D[µV
a
ν] − εabcV b

µV
c
ν −W a

µν , (6.58)

and using the large f expressions in eq. (6.55) and (6.56) it is now straightforward to
match Lρ with the “tilded” basis of Appendix D.1. By identifying

gV = gρ,
1

g2
=

1

ĝ2
+

1

g2
ρ

and g′ = ĝ′ , (6.59)

and after normalising the kinetic term of V we obtain

m̃V = mρ, c̃VW = c̃V VW = c̃V V V = 1, c̃H = −
m2
ρ

g2
ρf

2
≡ −a2

ρ, c̃V V HH = c̃F = 0,

(6.60)

where aρ is an O(1) free parameter as defined in Ref. [97]. Using eq. (D.4) we see that

cH ∼ cF ∼ 1 . (6.61)

The difference with the linear model of the previous section arises from the fact that c̃H
is now non vanishing.

In order to perform the matching we ignored both higher dimension operators coming
from subleading corrections to eq. (6.56) and higher derivative terms which could be
added to the Lagrangian in eq. (6.54). We will discuss their effects in the next section.
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6.2.4.3 The role of higher dimensional operators

The simple phenomenological Lagrangian in eq. (6.2) has been the starting point of our
discussion. Its usefulness stems from the fact that it contains just a handful of parameters
due to neglecting all the higher dimensional operators.

As already stressed throughout the chapter eq. (6.2) has to be understood as an intermedi-
ate step to compare a more or less complete model of New Physics with the experimental
data. That is, not as the leading subset of terms of the effective field theory describing
the interactions of V with the SM. From this point of view the fact that eq. (6.2) is all
that is needed has to be guaranteed by the underlying theory. We will now check this
assumption for the two models we presented in the last two sections.

This discussion is almost straightforward in the context of the linear model. Since the
model is renormalizable higher dimensional operators can only be generated by integrating
out the heavy physical fluctuations of the scalar field Φ. A hierarchy of masses mΦ � mV

is understood in order to be allowed to study the vector in isolation. The real bidoublet
Φ can be written as

Φ =
φ0

2
+ iτaφa. (6.62)

In this way eq. (6.45) can be rephrased as 〈φ0〉 = 2f . The three scalar fields φa are
unphysical and only φ0 remains in the spectrum with a mass mΦ which depends on the
parameters in the potential V(H,Φ). In the unitary gauge for Vµ, the only relevant φ0

interactions come from the kinetic term of Φ and from a mixed Φ-H quartic coupling
which can be present in V

Tr(DµΦ†DµΦ)− λH†HTr(Φ†Φ) =
1

2
(∂µφ0)2 +

g2
V

8
φ2

0V
a
µ V

µa − λ

2
φ2

0H
†H. (6.63)

By integrating out the heavy φ0 field we obtain the following Lagrangian containing
operators up to dimension 6

∆LA =
2λ2f2

m2
Φ

|H|4−λg
2
2f

2

m2
Φ

V a
µ V

µa|H|2+
3

2

λ2g2
2f

2

m4
Φ

V a
µ V

µa|H|4+O(V 4, |H|6, . . .) . (6.64)

The first term is an unobservable modification of the Higgs quartic coupling while the
second is the contribution to cV V HH that was already anticipated in section 6.2.4.1. It
modifies the matching in eq. (6.51) by

c̃V V HH =
λf2

m2
Φ

. (6.65)

The operator

O′V V HH ≡ V a
µ V

µa|H|4 , (6.66)
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is new and not included in the phenomenological model. It is easy to verify that all
its effects, both in the mass matrix and in the couplings of V to WL, ZL and h, are
suppressed by a factor λv2/m2

Φ with respect to those emerging from c̃V V HH in eq. (6.65).
In a reasonably weakly coupled theory these effects are small and can be safely neglected.

A similar discussion for the non-linear model described in section 6.2.4.2 is necessarily
more involved. This is due to its intrinsically finite energy range of validity. In order
to have any predictive power the theory has to be endowed with a criterion to estimate
the size of the coefficients of the higher dimensional operators. Using this criterion one
must be able to show that only a finite number of operators is relevant to achieve a given
precision. Here we adopt a slight modification of the partial UV completion criterion
used in Ref. [97]. We assume that a New Physics mass scale m∗ is defined (which could
for instance characterise the mass scale of other resonances) such that mV � m∗. We
furthermore assume that all “composite” states in the theory, which include V , H and
the other resonances at m∗, interact with a strength of order g∗ when probed at energies
of order m∗. More in detail we require that for E ∼ m∗, amplitudes involving “composite”
fields have size g∗m∗ and g2

∗ for three and four point functions respectively. Applying
this to the scattering amplitude of four Goldstone bosons, it implies in particular that
m∗ ∼ g∗f . This criterion has to be extended to estimate the size of those amplitudes
involving weakly coupled fields, for instance insertions of the SM gauge bosons. These
amplitudes originate from the EW force and not from the strong sector interactions. We
thus require them to be suppressed by an additional factor (g/g∗)n where n is the number
of weakly coupled field insertions. In this last point we depart from the prescription of
Ref. [97]. The first intuitive consequence of this criterion is the fact that, in order for the
model defined by eq. (6.54) to be consistent, it is not only necessary to have mV � m∗,
but also to have the vector ρ weakly coupled, gρ � g∗.

Before discussing the role of higher derivative terms in the model of section 6.2.4.2, it is
worth noticing that the Lagrangian in eq. (6.54) already contains dimension-6 and higher
operators which have not been included in the matching with the Simplified Model. The
existence of these operators, even in the absence of heavy matter fields to be integrated
out, is due to Higgs non-linearities emerging from the σ-model structure. Using eqs. (6.55)
and (6.56) one finds at the dimension-6 level

∆LB =
1

6f2

(
1−

3m2
ρ

4g2
ρf

2

)[
(∂µ|H|2)2 − 4|H|2|DµH|2

]
+
m2
ρ

gρf4
|H|2iV a

µH
†τa

↔
D
µ
H+. . . .

(6.67)

The first term renormalized the Higgs and Goldstones kinetic terms and through this
affects all their interactions. However its contribution is suppressed by ξ = v2/f2 which
is necessarily small in this scenario as mentioned already in section 6.2. The second term
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is a new dimension-6 operator

O′H = |H|2iV a
µH

†τa
↔
D
µ
H , (6.68)

with a coefficient of order gV /f2 (one should recall that gV ≡ gρ and mρ = aρgρf ∼ gρf).
Qualitatively O′H has the same effect as the cH operator both in the mass matrix and in
the coupling of V to WL, ZL and h and it induces small O(ξ) corrections relative to the
latter. Additional operators collectively denoted by “...” in eq. (6.67) and containing extra
insertions of |H|2 are always accompanied by more powers of 1/f2 so their contribution
to the mass matrix and to the decay widths are further suppressed by powers of ξ.

The addition of higher derivative terms to the leading order Lagrangian of the non-linear
model is thoroughly discussed in Ref. [97]. The analysis shows that only two CP even
operators can give a relative contribution to physical processes which is larger than the
typical size of a higher derivative correction, m2

V /m
2
∗. The two operators are

O1 = Tr(ρµνi[dµ, dν ]) and O2 = Tr(ρµνAµν). (6.69)

Here Aµν is defined by

Aµν = U †
(
T aLWµν + T 3

RBµν
)
U , (6.70)

in terms of the Goldstone matrix U and the SO(4) generators T aL,R, which are defined in
Appendix A of Ref. [240]. The two operators can be expanded at order 1/f2

Tr(ρµνi[dµ, dν ]) = − 4i

f2
ρµν aDµH

†τaDνH +O(1/f4) , (6.71)

Tr(ρµνAµν) = −W a
µνρ

a
µν

(
1− |H|

2

2f2

)
+

1

f2
Bµνρ

a
µνH

†τaH +O(1/f4). (6.72)

According to our refined partial UV completion they should appear in the Lagrangian as

∆LB = c1
1

gρg∗
O1 + c2

1

g2
ρ

O2 , (6.73)

with c1,2 ∼ 1. Let us start focusing on O1. Applying the field redefinition in eq. (6.58)
and normalising the kinetic term of V , we obtain

∆LB = − 4c1

g∗f2
iD[µV

a
ν]DµH

†τaDνH. (6.74)

We did not write operators contributing only to 4-point functions involving V , nor
operators involving only the SM fields. The main effect of O1 is to modify the width of V
to longitudinal gauge bosons. Using the equivalence theorem and the field redefinitions
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in eqs. (6.28) and (6.29) we obtain the corrections to eq. (6.30)

− gV
4(1− c2

Hζ
2)

[
4c1

M2
V

g2
ρf

2

MV

m∗

]
εabcV a

µ π
b∂µπc

+
gV

2
√

1− c2
Hζ

2

[
4c1

M2
V

g2
ρf

2

MV

m∗

]
hV a

µ ∂µπ
a. (6.75)

Relative to the leading term which is proportional to cH ∼ m2
ρ/g

2
ρf

2 the above contri-
butions are suppressed even though only by a single power of MV /m∗, the parameter
controlling the derivative expansion.

To discuss the effects of O2, we apply the shift of eq. (6.58) and obtain

∆LB = − c2

gV
D[µV

a
ν]W

µν a + c2εabcW
µν aV b

µV
c
ν (6.76)

− c2

2f2
|H|2εabcWµν aV b

µV
c
ν +

c2

2gV f2
|H|2D[µV

a
ν]W

µν a

− c2

f2
BµνεabcH

†τaH V b
µV

c
ν +

c2

gV f2
BµνD[µV

a
ν]H

†τaH + . . . .

The first line of eq. (6.76) contains O(1) corrections to the matching conditions in eq. (6.60)
which now become

c̃VW = c̃V VW = 1− 2c2. (6.77)

All the other operators except for the last one in eq. (6.76) induce negligible O(ξ)

corrections to the spectrum and to the width of V into transverse gauge bosons. Finally
the effect of

OV B = BµνD[µV
a
ν]H

†τaH , (6.78)

is qualitatively new. After EWSB it generates a kinetic mixing between the hypercharge
gauge boson and V 3

∆LB ⊃ c2 tan θW ζ
m̂W

mV

(
mV

gρf

)2

BµνV 3
µν . (6.79)

Such a mixing can be eliminated by a field redefinition of the form given in eq. (6.9) but
involving Bµ{

Bµ → Bµ + αV 3
µ

V 3
µ → βV 3

µ

, (6.80)

with α ∼ mW /MV and β ∼ 1. It is simple to show that after this field redefinition the
spectrum is only modified by corrections of order m2

W /M
2
V . The shift also affects the

couplings gNL,R of V 3 to fermions. The corrections are at most of order mW /MV , hence
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safely negligible.

To summarise, our study of higher derivative terms in the context of the non-linear model
shows that the only additional structure to consider is the operator O2. Its effects can be
included in the dimension four phenomenological Lagrangian by the modified matching
conditions in eq. (6.77). Notice that among those dimension-6 operators that have not
been listed in eq. (6.76) because they only involve SM fields one operator is particularly
relevant as it contributes to the Ŝ parameter

∆LB ⊃ −
c2

g2
V f

2
BµνW aµνH†τaH, ∆Ŝ = c2

m̂2
W

g2
V f

2
. (6.81)

If c2 ∼ 1 this correction is of the same size as those calculated in Appendix B and can
have both signs.

6.3 A Simplified Model for Top Partners

Searches for heavy spin-1/2 resonances with standard and exotic charges are already
ongoing (see for instance [335–343] and [344]). Their existence is particularly motivated in
the context of composite Higgs models where light coloured fermionic resonances coupling
to the top quark, the so-called top partners, are required to explain the observed value of
the Higgs mass. Although a simplified Lagrangian approach can be employed to study
spin-1/2 resonances, the effective description is fundamentally different from the general
approach used for the heavy vector triplet in section 6.2. The main reason lies in the
fact that heavy fermions are more sensitive to the Goldstone boson structure of the
theory, especially of the Higgs. In addition to the mass term, a Yukawa coupling can
be written if the Higgs is not a Goldstone boson and the Lagrangian does not obey the
shift symmetry. This leads to a mass splitting within the fermion multiplet resulting in
a completely different phenomenology compared to the Goldstone boson case (see for
example Refs. [229] and [240] for a detailed discussion of each case). A similar term is
present for the vector: cV V HH gives a contribution to the mass and c̃V V HH is indeed zero
in the minimal composite Higgs model as shown in eq. (6.60). However, for the triplet
cV V HH can not split the multiplet and hence, even if unsuppressed, would never have
such a drastic effect on the phenomenology. A further difference is that a Lagrangian for
fermionic resonances can not be truncated at dimension-4. Instead, dimension-5 operators
are relevant for single production and need to be included. With this in mind, it seems
difficult to find a small set of relevant parameters and to write an as simple and general
phenomenological Lagrangian as for the vector triplet. Nonetheless, we want to give a
brief summary of current progress in the effective description of heavy fermions based on
Refs. [240, 345]. For illustration and to make connection with the exotic charge fermion
predicted by the minimally tuned model discussed in section 3, we will restrict here to
the composite case with the Higgs emerging as a pNGB in the breaking of SO(5) to
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SO(4). We use partial compositeness, described in section 3.2, possibly improved with
additional flavour symmetries, as the most promising mechanism to generate a realistic
flavour structure.

As before, it is assumed that one SO(4) multiplet of coloured Dirac fermions is paramet-
rically lighter than the other states, living at a scale m∗, which can be integrated out
and we remain with an effective Lagrangian for the lightest multiplet. In the literature,
resonances transforming as a 5 and 14 of SO(5) have been explored [240]. In order to
make connection with the minimally tuned model (with the fermionic degrees of freedom
discussed in 3.3.2), we will focus here on the 142/3 of SO(5) × U(1)X . We restrict
to a discussion of the effective description of the 92/3 of SO(4) × U(1)X for brevity
since it embeds a coloured charge-8/3 resonance, Υ, the most striking prediction of the
minimally tuned model.16 We denote it by Ψ9

q given explicitly by the (i, j) components
of eq. (A.24) with i, j = 1, ..., 4. Following Ref. [345], the most general effective leading
order Lagrangian can be written using the CCWZ [138, 346] formalism

L = it̄R /DtR + iΨ̄9
q

(
/D + 2i/e

)
Ψ9
q −MΨqΨ̄

9
qΨ9

q

+c1λLfψ̄
IJ
q LUIiUJjΨ

9 i j
q R + λLfψ̄

IJ
q LUI5UJ5tR

+
c2

M∗
Ψ̄9 i j
L q d

i
µd

µ jtR + h.c. ,

(6.82)

where we have assumed a fully composite tR. c1,2 are dimensionless parameters expected
to be O(1). Remember that U is the Goldstone matrix defined in eq. (3.1) and ψq the
embedding of qL in a 142/3 of SO(5)× U(1)X given in eq. (3.27). The indices i and I
are SO(4) and SO(5) indices respectively. The CCWZ variables dâµ and eaµ are defined in
appendix A.1. The /e in the kinetic term is needed to respect the SO(5) symmetry while
the covariant derivative is given by

DµΨ9
q =

(
∂µ − iY g′Bµ − igSGµ

)
Ψ9
q , (6.83)

where gS is the SU(3)c gauge coupling and the hypercharge Y depends on the state inside
the multiplet and can be read from Table A.1. The first line of the above Lagrangian
represents the kinetic term for the tR and Ψ9

q and mass term for Ψ9
q . According to

partial compositeness, the second line describes linear mixings between the top partners
and the elementary fermions. In particular, the second term gives rise to the top quark
mass. In the last line we have a direct interaction among the strong resonances and the
composite tR. Note that this is a dimension-5 operator suppressed by the scale of the
heavier resonances which are integrated out. In contrast to the heavy vector triplet, here

16For discussions of other representations along the same lines see for instance Ref. [240].
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it is crucial to include higher dimensional operators to ensure the inclusion of all single
production channels.

6.3.1 Basic phenomenology

QCD pair production of the top partners is charge-independent and sizeable, ranging
(including NLO effects) from 170 (1460) fb for a 600 GeV top partner to 0.001 (0.38) fb
for a 1.9 TeV one, at the LHC for 8 (14) TeV center of mass energy. The charge is
however crucial to describe single production in association to either a b or t quark. As
discussed in Ref. [240] single production is the most relevant process for top partners
of higher masses due to the lower kinematical threshold. Furthermore the presence of a
forward jet in the final state provides an important experimental handle to reduce the
impact of backgrounds. For the particular case of a charge 8/3 resonance, however, single
production via W+t→ ΥW− or W+W+ → Υt̄ is suppressed either by the scale M∗ or
an additional power of the weak coupling and a phase space suppression and can therefore
be neglected.

The experimental signatures of the top partners depend strongly on their charge. Charge
2/3 and −1/3 resonances decay dominantly into third family quarks with an associated
vector or Higgs boson. More rare signals arise from the decay of the charge 5/3 (χ) and
8/3 (Υ) fermions. As discussed in detail in Ref. [345], the mass spectrum of the Ψ9

q

is mostly degenerate. Especially, the Υ and χ are exactly degenerate at tree level as
they do not mix with the elementary states. Their splitting is induced by electroweak
effects at 1-loop and is of order 200MeV [133]. This implies a relatively straightforward
phenomenology since cascade decays are kinematically disfavoured. Although generally
two-body decays into a SM fermion and gauge boson dominate, e.g. χ→Wt, by charge
conservation this is not the case for the Υ. Instead the interactions originating from the
kinetic term include a W and a charge 5/3 state χ, while the last term in eq. (6.82) gives
a contact interaction of the form ῩW+W+tR. Consequently, the Υ decays exclusively
into W+W+tR. Hence the decay chain of these exotic quarks will involve the emission
of up to three (for the charge 8/3 top partner) same sign W s resulting in a final state
involving up to six W bosons (plus at least 2 b quarks). This results in a sizeable fraction
of same-sign di-lepton and tri-lepton events.

6.3.2 Data and Bounds

The actual bounds depend not only on the charge of the top partners but also on
their embedding in the SO(4) multiplet. While the partners in the 4 are excluded
below 600 − 1000GeV depending on the choice of parameters, the singlet can still be
allowed above 440GeV.17 For the exotic charges in the 9, a rough estimate of the current

17For a detailed analysis see Ref. [240].
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experimental bounds can be inferred from the analysis of Ref. [347] looking for same-sign
di-leptons in a sample of 19.6 fb−1 from the 8TeV LHC run. In the analysis the SM
is extended by the addition of a single charge 5/3 Dirac fermion decaying with unit
branching ratio into W+t. A 95% C.L. lower bound of 770GeV is set on the mass of the
fermion. The actual bound will be stronger in the minimally tuned model. Neglecting
the other states inside Ψ9

q and other SO(4) multiplets, we still have two charge 5/3 and
one charge 8/3 quarks. The pair production of the charge 5/3 fermions will give rise to
same-sign di-leptons with a branching ratio of 4.5% and to tri-leptons with a branching
ratio of 3%.

To date no dedicated searches for a charge 8/3 resonance have been conducted by the
experiments, however, the two same sign lepton searches (ssl) designed for charge 5/3

resonances can be recast to set bounds on Υ. Following Ref. [345], the most conservative
bound can be obtained assuming that only a charge 8/3 resonance contributes to the
signal. This can be modelled by the effective interaction

cg2

M∗
ῩW+

µ W
+µt+ h.c. , (6.84)

where c is a dimensionless parameter. The Υ thus decays always into W+W+t with a
subsequent t→W+b. Since the W decays hadronically with BR = 67%, the dominant
signature of a pair produced charge 8/3 resonance would be a large number of jets.
Searches for multi-particle final states have been performed in the context of microscopic
black holes [348, 349] but are not yet sensitive to Υ. Recasting the 2ssl analysis in
Ref. [347] achieves a better sensitivity and allows one to set a lower bound of 940GeV
at 95% C.L. at 8TeV and 20 fb−1 on the mass of the 8/3 resonance [345]. The bound
is more stringent due to a higher branching fraction of the Υ into 2ssl and a higher
cut acceptance explained by a larger multiplicity of the decay products. The authors of
Ref. [345] furthermore show that a dedicated search for 3ssl will not yield competitive
bounds despite providing an important independent probe of a charge 8/3 top partner.

Considering the complete effective Lagrangian for Ψ9
q discussed in eq. (6.82) gives similar

but slightly more stringent bounds. In addition to the contact interaction, also off-shell
decays into χ’s are now present. Summing all possible contributions to a 2ssl signal hence
leads to mΥ ≥ 990GeV at 95% C.L. for c1 = c2 = 1, ξ = 0.1 and M∗ = 3TeV. In the
minimally tuned model originating from an extra dimension, the coefficients c1 and c2 in
eq. (6.82) are related and can be obtained by integrating out all multiplets except for Ψ9

q .
Assuming them to be of order one, the current results already imply some tension with
the minimally tuned model predicting mΥ to be around, or even below, 1TeV. Potential
stronger bounds from forthcoming experiments will push the model into a more fine-tuned
corner of parameter space.
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6.4 Conclusions

We described a model-independent strategy to study heavy spin one particles in the triplet
of the SM gauge group. Our method, depicted as a bridge in Figure 6.1, is based on a
Simplified Model Lagrangian, introduced in section 6.2, designed to reproduce a large class
of explicit descriptions of the heavy vector in different regions of its parameter space. Two
explicit examples, describing vectors with rather different properties and physical origin,
are discussed in section 6.2.4. Those are denoted as model A and model B and correspond,
respectively, to heavy vectors emerging from an underlying weakly-coupled extensions of
the SM gauge group [286] and a strongly coupled Composite Higgs scenario [97].

By studying the Simplified Model we derived a set of generic phenomenological features of
the heavy vectors in section 6.2. In particular, we have seen that the charged and neutral
states are essentially degenerate in mass and thus have comparable production rates. As
discussed in Ref. [282], this fact is a strong motivation for combining the searches of the
two charge states. We have also seen that the heavy vector always has a negligible coupling
with the transversely polarised EW bosons and the only relevant interactions are with the
longitudinals. The longitudinal coupling is generically comparable with the one to the SM
fermions in the region of the parameter space that corresponds to weakly coupled models
and it becomes dominant in the strongly-coupled case. This is the main phenomenological
difference between the two scenarios. Finally, we showed that not all the parameters of the
model are equally relevant. The partial decay widths, and in turn the single production
rate, are to a good approximation completely determined by the parameter combinations
gV cH and g2cF /gV . If we assume, for simplicity, a universal coupling to fermions, then
the experimental limits on the heavy vector can be conveniently represented, for a given
mass, on a two-dimensional plane as we did in Figure 6.6. The dependence on the other
parameters is extremely mild and can be safely ignored. Moreover, the phenomenology
being controlled by a few parameters implies tight model-independent correlations among
different observables. For instance, the relative BRs of the charged and neutral states
in different bosonic decay channels, including the ones with the Higgs boson in the final
state, are basically fixed. This would make the combination of different experimental
searches extremely easy.

In section 6.2.3 we quantified the impact of the present experimental searches. Following
the Bridge method we firstly translated the experimental results into limits on the Simpli-
fied Model parameters (Figure 6.1) and afterwards converted them into the “fundamental”
parameters of the explicit models A and B. The results are shown in Figure 6.7 in a
mass-coupling two-dimensional plane. We see that model A is excluded for masses below
around 2 or 3 TeV, depending on the coupling, while the limit is weaker in model B.
For large coupling, which is expected in model B as this is supposed to represent a
strongly-coupled scenario, the exclusion never exceeds 2 TeV and is still comparable with
the indirect limits from EWPT.
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For our analysis we took all the experimental results at face value, and used the exclusions
on σ×BR at each mass point. However we pointed out in section 6.2.3.3 that this might
not be completely correct because of the effects associated with the finite resonance width,
which might affect the limit setting procedures adopted by the experimental collaborations.
We illustrated the expected impact of these effects on the invariant mass and transverse
mass distributions that are employed in the di-lepton and in the lepton-neutrino searches
respectively. Our conclusion is that finite-width effects can be considerable and can distort
the signal shape in a significant way. In spite of this, we identified some strategies by which
their impact could be reduced and a robust model-independent limit on σ×BR could be
extracted. We plan to elaborate more on these aspects in a forthcoming publication.

Our work could be extended in at least three directions. First, one could easily consider
other representations of the SM group. Aside from the triplet which we studied in the
present chapter, another relevant representation is the singlet, either neutral like a Z ′

[290–292] or charged like a W ′ [278]. These particles emerge together in strongly-coupled
models where they arise from a (1,3) representation of the custodial group. Another
interesting representation, which is present in models with a Composite pseudo-Nambu-
Goldstone boson Higgs, is the doublet with 1/2 hypercharge [304]. A second limitation of
our approach, which could be easily overcome, is the assumption of a linearly realised
EW group, broken by the VEV of the Higgs doublet like in the SM. This is clearly a
well-motivated assumption, but it might be worth studying also technicolor-like theories
where the strong sector condensate breaks the EW symmetry directly. For this purpose
our parameterization is insufficient because some higher dimensional operators involving
extra powers of the Higgs field would be unsuppressed and should be included in the
Simplified Model Lagrangian. Finally, in this chapter we did not discuss the possibility of
non-universal fermion couplings cF = {cl, cq, c3} in detail. In particular, c3 being different
from the light fermions couplings cl,q is well-motivated in strongly coupled scenarios with
partial fermion compositeness [80]. In this case, the large compositeness of the top quark
induces a potentially large coupling to the third family quarks. Its effect on the searches
with third family final states should be investigated.
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7 Conclusions

Conclusions of the individual projects, including discussions and some further outlook,
were already given at the end of each chapter. Here we want to collect the above results
to build a physics case for the estimated impact of the LHC and future colliders on the
parameter space of a composite Higgs model. Generically, direct and indirect evidence, or
the lack thereof, probe the parameter space of a specific model from complementary sides.
Lepton colliders are generally more suited to perform precision measurements due to
their clean collision environment. The sensitivity on individual couplings and, indirectly,
the reach on model-specific parameters are typically large. Hadron colliders can usually
reach greater centre of mass energies than lepton colliders and thus probe new particles
with high masses. A choice between a future lepton and hadron collider is delicate and
needs to be assessed carefully taking current and forthcoming LHC data into account.

In Figure 7.1, we present a summary of the current constraints and expected LHC and
future collider reach in the (ξ,mρ) plane of the minimal composite Higgs model. This
plot has already partly been shown and discussed extensively in section 5.2. Let us briefly
summarise the main features. We focus on the interesting parameter region 1 < gρ < 4π

for the typical strength of the new physics interactions gρ. The constraints from EWPT
assuming no loop contribution from heavy states (∆T̂ = 0) are depicted in green. An
additional positive contribution to T̂ can arise, for example, from loops of light top
partners which could open up regions of larger ξ = v2/f2 [157]. Indirect bounds are
discussed in detail in chapter 5. While the LHC is sensitive to ξ ∼ 0.1 in single Higgs
production, double Higgs production is merely visible for ξ of O(1) at 95% C.L.. Following
our analysis of double Higgs production at a future linear collider, such as CLIC, values of
ξ at the percent level can be reached. From single Higgs production, a permille sensitivity
is expected at CLIC. In addition to the previously discussed plot, we show the current and
extrapolated reach from direct heavy vector searches in the lepton neutrino [231, 232] and
diboson [235, 236] channels. We focus on heavy SU(2)L triplets whose current bounds are
presented in section 6.2. The leftmost violet region up to ∼ 3TeV shows the parameter
space currently excluded by the 8TeV LHC with 20 fb−1. We extrapolate the current
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Figure 7.1 – Summary of current constraints and expected sensitivities at 95% C.L. at
CLIC, the FCC and the LHC on ξ = (v/f)2 and the mass of the lightest spin-1 resonance
mρ for SO(5)/SO(4) composite Higgs theories. For a detailed discussion see text.

limits from the lepton neutrino and diboson analyses to bounds expected at higher centre
of mass energies and integrated luminosities according to appendix D.4. The LHC at
14TeV is expected to reach masses up to ∼ 5TeV with 300 fb−1 and ∼ 7TeV with 3 ab−1

for small values of ξ. A future circular collider with 100TeV centre of mass energy could
exclude vectors up to 30TeV with 1 ab−1 and more than 35TeV with 10 ab−1. The mass
reach is highest for small values of ξ and decreases as ξ is O(1). Note that the apparent
lower cutoff of the bounds arises as an artefact of our rescaling procedure: current limits
on heavy vectors start at ∼ 500GeV and are simply mapped to larger masses. This gap is
most likely going to be closed in reality. It could, however, be that gaps in direct searches
remain for ξ ∼ O(1), since gρ varies rapidly in that region and dramatically decreases
the production cross section, analogously to the discussion below Figure 6.7. Moreover,
large values of gρ lead to resonances too broad for direct searches to be sensitive. This
region is hence unlikely to be excluded by resonance searches. The gap in this region of
parameter space can easily be closed by precision measurements, e.g. single and double
Higgs production, at the LHC and future colliders.

As can be seen from the figure, a clear favourite between lepton and hadron collider
is impossible to find since both contribute complementary information on the model
parameters and access unique regions in parameter space. While the superiority of a
100TeV FCC is undebatable in terms of direct reach, its sensitivity on ξ via single and
double Higgs production is a crucial missing piece of information. Moreover, a careful
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assessment of the precision capabilities of the FCC (for example in WW scattering and
Higgs production) is necessary to obtain a complete picture. Since the center of mass
energy is well above the electroweak scale at which these processes occur, a good sensitivity
can be expected, proportionally better than at the LHC. If it were at all comparable
to the reach of CLIC, a FCC would probably yield more information on a new strongly
coupled sector responsible for electroweak symmetry breaking.

The study of the potential of future colliders is going to continue in the next years.
Minimal models, both in the supersymmetric and composite framework, are already in a
fine tuned territory. However, to seriously challenge naturalness as a guiding principle we
need to go beyond the LHC and, most likely, also beyond the minimal models.
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A The Minimal Composite Higgs
Model

A.1 The CCWZ chiral Lagrangian

The effective Lagrangian for a spontaneously broken symmetry can be build systematically
through the CCWZ construction introduced by Callan, Coleman, Wess and Zumino in
Refs. [138, 346].

The gauging of the SM group is realised by first gauging the full SO(5) with the sources
Aµ

Aµ = AIµT
I → Aµ = g (Aµ + i∂µ) gT , (A.1)

where T I are the SO(5) generators given in eq. (A.13). The physical gauge fields

Aµ =
g√
2
W+
µ

(
T 1
L + iT 2

L

)
+

g√
2
W−µ

(
T 1
L − iT 2

L

)
+g (cos θWZµ + sin θWAµ)T 3

L + g′ (cos θWAµ − sin θWZµ)T 3
R

(A.2)

will later remain dynamical, while the unphysical ones can be set to zero. We can now
dress Aµ by the Goldstone boson matrix in eq. (3.1)

Āµ = UT (Aµ + i∂µ)U , (A.3)

which transforms as

Āµ → ĥ
(
Āµ + i∂µ

)
ĥT . (A.4)

The shift iĥ∂µĥT lives in the SO(4) subalgebra since ĥ ∈ H. Āµ can thus be decomposed
into broken and unbroken generators

Āµ = −dâµT â − eaµT a (A.5)
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Appendix A. The Minimal Composite Higgs Model

transforming under H as

dµ → ĥdµĥ
T , eµ → ĥ (eµ − i∂µ) ĥT (A.6)

Note, that eµ transforms as a gauge field. Explicitly, the fields are given by

dâµT
â = −AâµT â +

√
2

f
∂µh

âT â −
√

2i

f

[
T a, T b̂

]
Aaµh

b̂ + . . .

eaµT
a = −AaµT a −

i

f2

[
T â, T b̂

]
hâ∂µhb̂ −

√
2i

f

[
T â, T b̂

]
Aâµh

b̂ + . . .

(A.7)

While the standard covariant derivative ∇µ = ∂µ − iAaµT a acts on dâµ, we can define a
CCWZ covariant derivative

∇µ = ∂µ + ieaµT
a , (A.8)

acting on eaµ. It is used to construct the field strength

eµν = ∂µeν − ∂νeµ + i [eµ, eν ] , (A.9)

transforming as eµν → ĥeµν ĥ
T . The chiral Lagrangian can be build from combinations of

the covariant variables dµ, eµν and their covariant derivative. At order O(p2), only one
operator can be formed

L(2) =
f2

4
Tr (dµd

µ) (A.10)

which can be proven to coincide exactly with the one written in eq. (3.6). At order O(p4),
10 invariant operators can be built.

A.2 SO(5) generators

A basis for the generators in the fundamental representation of the SO(5) algebra is given
by

(T aR)IJ =
i

2

[
1

2
εabc

(
δbIδ

c
J − δbJδcI

)
+
(
δaI δ

4
J − δaJδ4

I

)]
(−1)δ

a
2 ,

(T aL)IJ =
i

2

[
1

2
εabc

(
δbIδ

c
J − δbJδcI

)
−
(
δaI δ

4
J − δaJδ4

I

)]
(−1)δ

a
1 ,

(T â1̂ )IJ = − i√
2

(
δâI δ

5
J − δâJδ5

I

)
, (A.11)

where I, J = 1, . . . , 5, while â = 1, . . . , 4 and a = 1, 2, 3. The generators {T aR,L} and
{T â

1̂
} represent the SO(4) ∼= SU(2)L×SU(2)R and the SO(5)/SO(4) subspaces of SO(5)
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A.3. 5D implementation in AdS5 space

respectively. Here the generators obey the following commutation relations[
T aL,R, T

b
L,R

]
= iεabcT cL,R

[
T aL, T

b
R

]
= 0[

T â, T 4̂
]

=
i

2
δâa
(

(−1)δ
a
1T aL − (−1)δ

a
2T aR

) [
T â, T b̂

]
= − i

2
εâb̂c

(
(−1)δ

c
1T cL + (−1)δ

c
2T cR

)
[
T â, T aL

]
= − i

2
(−1)δ

a
1

(
δâaT 4̂ + εâab̂T b̂

) [
T â, T aR

]
=

i

2
(−1)δ

a
2

(
δâaT 4̂ − εâab̂T b̂

)
[
T 4̂, T aL

]
= (−1)δ

a
1
i

2
δaâT â

[
T 4̂, T aR

]
= −(−1)δ

a
2
i

2
δaâT â

(A.12)

Note that this basis differs from the usual SO(5) basis by the factors (−1)δ
a
1,2 . This is

due to the fact that it is written as the SO(5) subspace of an SO(6) basis of generators.
The standard SO(5) generators are given by

(T aL,R)IJ = − i
2

[
1

2
εabc

(
δbIδ

c
J − δbJδcI

)
±
(
δaI δ

4
J − δaJδ4

I

)]
,

(T â1̂ )IJ = − i√
2

(
δâI δ

5
J − δâJδ5

I

)
, (A.13)

A.3 5D implementation in AdS5 space

In this Appendix we describe the implementation of the MCHM14 in AdS5 space and
illustrate some details about the flat space construction which were not discussed in the
text. We consider a 5D space-time with metric

ds2 = a (z)2 (ηµνdxµdxν − dz2
)
, (A.14)

where the coordinate z varies on the interval [zUV, zIR] and the warp function a (z) is a
regular and positive function satisfying a(zUV ) = 1. This parameterization includes flat
and AdS5 spaces with

flat : a(z) = 1, zUV = 0, zIR ≡ L ,

AdS5 : a(z) =
1

kz
, zUV =

1

k
, zIR > zUV .

(A.15)

A.3.1 Gauge degrees of freedom

The Lagrangian for the gauge fields in terms of the general metric of eq. (A.14) is given
by

Sg5D =

∫
d4x

∫ zIR

zUV

dz
√
g

[
1

4g2
5L0

Tr[F 2
MN ] +

1

4g2
XL0

(
FXMN

)2]
, (A.16)
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Appendix A. The Minimal Composite Higgs Model

where L0 has the dimensions of length and is equal to L in flat space and to 1/k in
AdS5. We also add a UV localised term exactly as in eq. (3.48). To derive the effective
Lagrangian in AdS5, we can follow the same procedure as discussed in section 3.3.1. The
whole difference with respect to flat space is encoded in the two form factors ΠV and Π̂V

which read in AdS5

ΠV (p) = p
J0(pzUV )Y0(pzIR)− J0(pzIR)Y0(pzUV )

J1(pzUV )Y0(pzIR)− J0(pzIR)Y1(pzUV )
, (A.17)

Π̂V (p) = p
J1(pzIR)Y0(pzUV )− J0(pzUV )Y1(pzIR)

J1(pzIR)Y1(pzUV )− J1(pzUV )Y1(pzIR)
. (A.18)

The Higgs decay constant in this case is given by

f2 =
4

g2
5

1

z2
IR − z2

UV

≈ 4

g2
5

1

z2
IR

, (A.19)

where, in the last step, we assumed zIR � zUV . In the same limit the SM gauge couplings
can be written as

1

g2
=

1

g2
2

+
1

g2
5

(
log

zIR
zUV

− 3

8
s2
h

)
≈ 1

g2
2

+
1

g2
5

log
zIR
zUV

,

1

g′2
=

1

g2
1

+

(
1

g2
5

+
1

g2
X

)(
log

zIR
zUV

− 3
8s

2
h

g2
X

g2
5 + g2

X

)
≈ 1

g2
1

+

(
1

g2
5

+
1

g2
X

)
log

zIR
zUV

,

(A.20)

where we approximated log zIR
zUV
� 1. In the same limit the W boson mass is given by

m2
W =

s2
h

z2
IR log zIR

zUV

. (A.21)

The KK mass scale (looking for instance at the W boson tower) is

MKK ≈
2.4

zIR
+O

(
1

zIR log zIR
zUV

)
. (A.22)

and the Ŝ parameter is

Ŝ ≈ 3

8

s2
h

log zIR
zUV

. (A.23)

Note that the inclusion of UV localised kinetic terms for the gauge fields is not strictly
necessary to realise partial compositeness in AdS5 space. The value of g2 and g1 may be
interpreted as the strength of the gauge coupling at the scale k [350]: when the localised
kinetic terms vanish, the gauge fields are strongly coupled at that scale.

162



A.3. 5D implementation in AdS5 space

A.3.2 Fermionic degrees of freedom

Here we discuss various details about the fermionic sector of the model both in AdS5 and
flat space. The expression of Ψq in terms of eigenstates of the SM quantum numbers is

Ψq =



1
2 (ζ + iΥ− T) 1

2 (iζ + Υ) 1√
2

(B + X ) i√
2

(B∗ + X ∗) 1
2

(
b(1) + χ(1)

)
1
2 (iζ + Υ) − 1

2 (ζ + iΥ + T) i√
2

(B − X ) − 1√
2

(B∗ −X ∗) i
2

(
b(1) − χ(1)

)
1√
2

(B + X ) i√
2

(B − X ) 1
2T + T iT 1

2

(
t(1) + it(2)

)
i√
2

(B∗ + X ∗) − 1√
2

(B∗ −X ∗) iT 1
2T− T 1

2

(
it(1) + t(2)

)
1
2

(
b(1) + χ(1)

)
i
2

(
b(1) − χ(1)

)
1
2

(
t(1) + it(2)

)
1
2

(
it(1) − t(2)

)
2√
5
t(3)

 .

(A.24)

where the fields t(i), b(i), χ(i), ζ and Υ have charges 2/3, −1/3, 5/3, −4/3, 8/3 respectively
and

B(∗) = 1
2

(
b(2) +(−) ib(3)

)
,

X (∗) = 1
2

(
χ(2) +(−) iχ(3)

)
,

T = 1
2

(
t(5) + t(6)

)
,

T = 1
2

(
t(5) − t(6)

)
,

T = t(4) + 1√
5
t(3) ,

T = t(4) − 1√
5
t(3) .

(A.25)

The total 5D action for the fermionic sector of the model is given by

Sftotal = Sf5D + SfIR + ∆SUV + ∆SIR , (A.26)

where

Sf5D =

∫
d4x

∫ ZIR

zUV

dz

L0

√
g

[
i

2
Tr
[
Ψ
q
eMA ΓADMΨq − (DMΨq†)eMA Γ0ΓAΨq

]
−MΨQΨ

q
Ψq

+
i

2

(
Ψ
u
eMA ΓADMΨu − (DMΨu†)eMA Γ0ΓAΨu

)
−MΨuΨ

u
Ψu

]
,

(A.27)

SfIR =

∫
d4x
√
gIR

[ (
m11ψ

(1)
qRψtL + h.c.

)
+
(
ikt1 ψtLe

µ
aγa∂µψtL + ikq1 ψ

(1)
qRe

µ
aγa∂µψ

(1)
qR

+ ikq4 ψ
(4)
qL e

µ
aγ

a∂µψ
(4)
qL + ikq9 ψ

(9)
qL e

µ
aγ

a∂µψ
(9)
qL

)]
,

(A.28)

∆SUV =
1

L0

∫
d4x
√
gUV

1

2

[
ΨqΨq −ΨtΨt

]
, (A.29)

∆SIR =
1

L0

∫
d4x
√
gIR

1

2

[
ψ

(1)
q ψ(1)

q − ψ
(4)
q ψ(4)

q − ψ
(9)
q ψ(9)

q −Ψ
u
Ψu
]
. (A.30)
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L0 is a length we use to normalise the bulk action in order to have 5D fermions with the
same mass dimension as 4D fermions. As in the case of the gauge action it is equal to L
in flat space and to 1/k in AdS5. gIR and gUV are the induced metrics on the IR and
UV boundaries respectively. eMA is the fünfbein and eµa its projection on the 4D indices.
It is given by δMA /a(z) for flat and AdS5 metric. Covariant derivatives in Sf5D include
both gauge and spin connections. The latter cancel out in the equations of motion. In
flat space we also add localised kinetic terms on the UV boundary, as in eq. (3.64), to
properly implement partial compositeness.

The bulk equations of motion corresponding to eq. (A.26) are[
∂5 + 2

∂5a (z)

a (z)
±MΨia (z)

]
Ψi
L,R = ±p/Ψi

R,L . (A.31)

These are supplemented by the following boundary conditions:

• UV boundary conditions

ΨqL (zUV ) = UΨ0
qLU

T δΨqL (zUV ) = δΨ0
qL = 0 , (A.32)

with Ψ0
qL given by eq. (A.24) where all the fields but t1 = tL and b1 = bL are set to

zero while ΨqR (zUV ) is free to vary and

ΨtR (zUV ) = Ψ0
tR δΨtR (zUV ) = δΨ0

tR = 0 , (A.33)

with Ψ0
tR = tR and ΨtL (zUV ) free to vary.

• IR boundary conditions

ΨtR (zIR) = L0m11 ψ
(1)
qR (zIR) , ΨtL (zIR) = − 1

L0m11
ψ

(1)
qL (zIR) ,

(A.34)

ψ
(4)
qR (zIR) = kq4

L0

a(zIR)
p/ψ(4)

qL (zIR) ψ
(9)
qR (zIR) = kq9

L0

a(zIR)
p/ψ(9)

qL (zIR) .

(A.35)

where, without loss of generality, we have set kq1 = kt1 = 0.

The U transformation in the ΨqL UV boundary condition has been introduced to take
the SO(5) transformation in eq. (3.47) into account, needed to rotate the Higgs (A5)
away from the bulk and the IR boundary. The SM quantum numbers and the boundary
conditions for all fermionic fields of the 5D model are summarised in Table A.1.

Solving the bulk equations of motion (A.31) with the boundary conditions above, in-
tegrating out the bulk fields and matching to the 4D effective action (3.28) gives the
form factors as functions of the fermion bulk-to-boundary propagators G+ (z,m) and
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G− (z,m), which are functions of the metric gµν . Defining ω2
q,t = p2 −m2

q,t in flat space
and ωq = 2/(πzUV ) and ωt = 2/(πzIR) in AdS5 the form factors can be written in the
form

ΠQ
0 =

G+
R(zUV ,MΨq )− kq9 pL0G

−
R(zUV ,MΨq )

pL0

[
G+
L(zUV ,MΨq )− kq9 pL0G

−
L (zUV ,MΨq )

] , (A.36a)

Π̃Q
0 = Zq + ΠQ

0 , (A.36b)

ΠQ
1 =

ω2
q (kq4 − kq9 )

2p2
[
G+
L(zUV ,MΨq )− kq4 pL0G

−
L (zUV ,MΨq )

][
G+
L(zUV ,MΨq )− kq9 pL0G

−
L (zUV ,MΨq )

] ,
(A.36c)

ΠQ
2 =

ω2
q

4p2G+
L(MΨq )

[
3kq9

G+
L(zUV ,MΨq )− kq9 pL0G

−
L (zUV ,MΨq )

− 8kq4
G+
L(zUV ,MΨq )− kq4 pL0G

−
L (zUV ,MΨq )

− 5G+
R(zUV ,MΨt)

p2L0

[
G−L (zUV ,MΨq )G

+
R(zUV ,MΨt) +m2

11L
2
0G

+
L(zUV ,MΨq )G

−
R(zUV ,MΨt)

]] ,
(A.36d)

Πt
0 = − G−L (zUV ,MΨq )G

+
L(zUV ,MΨt) +m2

11L
2
0G
−
L (zUV ,MΨt)G

+
L(zUV ,MΨq )

pL0

[
G−L (zUV ,MΨq )G

+
R(zUV ,MΨt) +m2

11L
2
0G

+
L(zUV ,MΨq )G

−
R(zUV ,MΨt)

] ,
(A.36e)

Π̃t
0 = Zt + Πt

0 , (A.36f)

M t
1 =

−i
√

5m11ωqωt

2p2
[
L2

0m
2
11G

+
L(zUV ,MΨq )G

−
R(zUV ,MΨt) +G−L (zUV ,MΨq )G

+
R(zUV ,MΨt)

] .
(A.36g)

The bulk-to-boundary propagators G±L (z,m) and G±R (z,m) are given by the following
expressions:

• Flat space (zIR = L)

G+
L (z,m) =

1

p
(ω cosω (L− z) +m sinω (L− z)) ,

G−L (z,m) = sinω (L− z) ,
G+
R (z,m) = sinω (L− z) ,

G−R (z,m) = −1

p
(ω cosω (L− z) +m sinω (L− z)) .

(A.37)

• AdS5

G±L (z,m) = YML∓1/2 (pzIR) JML+1/2 (pz)− JML∓1/2 (pzIR)YML+1/2 (pz)

G±R (z,m) = YML∓1/2 (pzIR) JML−1/2 (pz)− JML∓1/2 (pzIR)YML−1/2 (pz) .

(A.38)
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TL3 TR3 X Y Q ψL BC (UV,IR) ψR BC (UV,IR)
t(1) +1

2 −1
2 +2

3 +1
6 +2

3 (tL, /) (/, kq4 L0p/ t
(1)
L )

t(2) −1
2 +1

2 +2
3 +7

6 +2
3 (0, /) (/, kq4 L0p/ t

(2)
L )

t(3) 0 0 +2
3 +2

3 +2
3 (0,− 2√

5
L0m11t

(7)
L ) (/, t

(3)
R )

t(4) 0 0 +2
3 +2

3 +2
3 (0, /) (/, kq9 L0p/ t

(4)
L )

t(5) +1 −1 +2
3 −1

3 +2
3 (0, /) (/, kq9 L0p/ t

(5)
L )

t(6) −1 1 +2
3 +5

3 +2
3 (0, /) (/, kq9 L0p/ t

(6)
L )

b(1) −1
2 −1

2 +2
3 +1

6 −1
3 (bL, /) (/, kq4 Lp/b

(1)
L )

b(2) 0 −1 +2
3 −1

3 −1
3 (0, /) (/, kq9 L0p/b

(2)
L )

b(3) −1 0 +2
3 +2

3 −1
3 (0, /) (/, kq9 L0p/b

(3)
L )

χ(1) +1
2 +1

2 +2
3 +7

6 +5
3 (0, /) (/, kq4 L0p/χ

(1)
L )

χ(2) +1 0 +2
3 +2

3 +5
3 (0, /) (/, kq9 L0p/χ

(2)
L )

χ(3) 0 +1 +2
3 +5

3 +5
3 (0, /) (/, kq9 L0p/χ

(3)
L )

ζ −1 −1 +2
3 −1

3 −4
3 (0, /) (/, kq9 L0p/ζL)

Υ +1 +1 +2
3 +5

3 +8
3 (0, /) (/, kq9 L0p/ΥL)

Ψt ≡ t(7) 0 0 +2
3 +2

3 +2
3 (/, t

(7)
L ) (tR,

√
5

2 L0m11 t
(3)
R )

Table A.1 – Quantum numbers of the 5D fermion fields of the model. In the last row the
boundary conditions on the UV and IR branes are shown. In red (blue) we indicate the
states with the same SM quantum numbers of the qL and tR. The holographic fields are
tL, bL and tR.

As the propagators appear only as functions of zUV in eq. (A.36), for clarity we
have absorbed a factor of z5/2, originating from the G, inside ωq,t.

A.4 The electroweak fit

We use the following experimental determination of the Ŝ and T̂ parameters taken from
Ref. [108] where U was constrained to 0 in the fit1

Ŝ = (0.39± 0.70) 10−3

T̂ = (0.60± 0.56) 10−3 (A.39)

with the corresponding correlation matrix

ρ =

(
1 0.91

0.91 1

)
. (A.40)

The current world average mW = (80.385± 0.015)GeV [101] was used as input, as well as
the latest Tevatron measurement for the top mass mt = 173.18± 0.94GeV. The resulting

1Note that this is the reason why the fit does not coincide with the one presented in eq. (2.52).
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A.4. The electroweak fit

χ2 function is given by

χ2(Ŝ, T̂ ) = Vi(σ
2)−1
ij Vj ,

V = (Ŝ − Ŝ0, T̂ − T̂0), σ2
ij = σiρijσj . (A.41)

The contributions to Ŝ and T̂ in our model are estimated by

Ŝ = ŜUV +
αEM (mZ)

48πs2
W

ξ log

(
Λ2

m2
h

)
, (A.42)

T̂ = −3αEM (mZ)

16πc2
W

ξ log

(
Λ2

m2
h

)
, (A.43)

where Λ is the scale at which the logs are cut off. We fix Λ to be the mass of the first vector
KK resonance. Ŝ and T̂ are defined to vanish for a SM Higgs boson with mh = 125GeV.
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B Indirect Probes of NP at the LHC

B.1 Forward Wb→ th scattering

The forward cross section for the partonic process Wb→ th, defined for example by a cut
on |η| > η̄, can be computed for large s in a very simple way. In fact, for this purpose
the diagram with top exchange in the s-channel can be neglected, and we only need to
look at the diagram with W exchange in the t-channel. In the regime we are interested
in, i.e. large s, the longitudinal polarisation of the W dominates. The leading term in
the amplitude, which is enhanced at small |t|, goes as ∼ s/(t−m2

W ) and reads

AfwL '
g cV mW√

2v

1

t−m2
W

ū(pt) /pW (1− γ5)u(pb) (B.1)

At large s and generic t, the fermion bilinears relevant to the amplitude read

ū(pt)(1− γ5)u(pb) = 2
√
sA (t/s, ϕ; ξt, ξb) + 2mtB (t/s, ϕ; ξt, ξb) + . . . (B.2)

ū(pt) /pW (1− γ5)u(pb) = 2sB (t/s, ϕ; ξt, ξb) + . . . (B.3)

where the functions A,B have been defined in eqs. (4.2-4.3), and the dots stand for
subleading terms. Thus squaring the amplitude in eq. (B.1), summing and averaging over
polarisations (we neglect the contributions of the transverse components of the W ) and
recalling that we are interested in the region s� |t| we find

|Afw|2 =
g2c2

Vm
2
W

3v2

(
s

t−m2
W

)2

(B.4)

from which we derive the approximate expression of the forward cross section

σ(|η| > η̄, s) ' c2
V g

2

48πv2
R(η̄, s) , R(η̄, s) =

(s/2m2
W )(1− tanh η̄)

1 + (s/2m2
W )(1− tanh η̄)

(B.5)
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valid for tanh η̄ ≈ 1 (i.e. for large η̄). We note that as expected, the forward cross section
is controlled only by cV and is insensitive to the value of cF . As a consequence, the
forward cross section is insensitive to the growth with energy of the “hard scattering”
amplitude, which takes place for cV 6= cF and was discussed in Sec. 4.2. As a numerical
example, let us consider cV = 1, a cut |η| > 3 and let us set the center of mass energy to√
s = 5 TeV. Then computing the cross section without approximations gives

σfull(|η| > 3) = {16.3, 16.5, 16.8}pb, for cF = {1, 0, −1} (B.6)

whereas using the approximate formula in (B.5) yields σ(|η| > 3,
√
s = 5 TeV) = 16.4 pb,

a very accurate result. The factor R has the value R(η̄ = 3,
√
s = 5 TeV) ' 0.91.
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C Indirect Probes of NP at Future
Colliders

C.1 Dimension-8 operators for strong scatterings

At the dimension-8 level, the following three operators can be constructed with two
derivatives and six Higgs fields

c′rO′r =
c′r
f2
|H|4|DµH|2 = |H|2c′rOr ,

c′HO′H =
c′H
2f2
|H|2∂µ|H|2∂µ|H|2 = |H|2c′HOH ,

c′TO′T =
c′T
2f2
|H|2

(
H†
←→
D µH

)(
H†
←→
D µH

)
= |H|2c′TOT ,

(C.1)

which can be found by constructing all possible SU(2)L-invariant structures and using
integration by parts and the identities

σAijσ
A
hk = 2δikδjh − δijδhk ,

σ2
ijσ

2
hk = −δihδjk + δjhδik .

(C.2)

The operators of eq. (C.1) consist of the dimension-6 structures discussed in Ref. [80]
extended by two Higgs fields. Note that O′T violates custodial symmetry, in analogy to
OT . At the dimension-8 level there is also the operator O8 = −c8(H†H)4/f2 defined in
eq. (2.30), which involves no derivative. The operator Or can be redefined away by the
following field redefinition

H → H + αH
|H|2
f2

+ βH
|H|4
f4

, (C.3)

under which the kinetic term transforms as follows

|DµH|2 → |DµH|2 +
2α

f2
Or +

α

f2
OH +

α2 + 2β

f4
(O′r + 2O′H) , (C.4)
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while the dimension-6 operators give

OT → OT +
5α

f2
O′T +. . . , OH → OH+

8α

f2
O′H+. . . , Or → Or+

8α

f2
O′r+

2α

f2
O′H+. . .

(C.5)

Hence by choosing α and β appropriately both Or and O′r can be redefined away. We
thus remain with only one custodially-invariant operator: O′H .

C.2 Double Higgs-strahlung

The differential cross section for double Higgsstrahlung can be expressed in term of
the Dalitz variables xi ≡ 2Ei/

√
s where E1,2 are the energies of the two Higgses and

x3 ≡ 2E3/
√
s for the Z boson [269, 270]:

dσ

dx1dx2
=

G3
Fm

6
Z

384
√

2π3s

1 + (1− 4s2
W )2

(1− µZ)2
A . (C.6)

Here
√
s is the collider center-of-mass energy. We define µi ≡ m2

i /s, µij ≡ µi − µj ,
yi ≡ 1− xi, so that x3 = 2− x1 − x2 follows by energy conservation. We have

A = A2
0f0 +

a2

4µZ(y1 + µhZ)

(
a2f1

y1 + µhZ
+

a2f2

y2 + µhZ
+ 2µZA0f3

)
+ (y1 ↔ y2) (C.7)

with

A0 = 3
m2
h

m2
Z

ad3

y3 − µhZ
+

2a2

y1 + µhZ
+

2a2

y2 + µhZ
+

b

µZ
(C.8)

and

f0 =
1

8
µZ((y1 + y2)2 + 8µZ),

f1 = (y1 − 1)2(µZ − y1)2 − 4µhy1(y1 + y1µZ − 4µZ) + µZ(µZ − 4µh)(1− 4µh)− µ2
Z ,

f2 = (µZ(y3 + µZ − 8µh)− (1 + µZ)y1y2)(1 + y3 + 2µZ)

+ y1y2(y1y2 + 1 + µ2
Z + 4µh(1 + µZ)) + 4µhµZ(1 + µZ + 4µh) + µ2

Z ,

f3 = y1(y1 − 1)(µZ − y1)− y2(y1 + 1)(y1 + µZ) + 2µZ(1 + µZ − 4µh) .

(C.9)

The kinematical boundaries of the phase space integration are defined by

|2(1− x1 − x2 + 2µh − µZ) + x1x2| ≤
√
x2

1 − 4µh

√
x2

2 − 4µh . (C.10)
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Using

x1 =
s+m2

h −m2
23

s
, x2 =

m2
12 +m2

23 −m2
h −m2

Z

s
(C.11)

and

dσ

dx1dx2
= s2 dσ

dm2
12dm

2
23

, (C.12)

one can obtain the differential cross section as a function of m12 ≡ mhh and m23 ≡ mhZ .
Figure 5.9 in particular is derived by integrating over m23 and varying mhh.

It is interesting to analyse the enhancement of the differential cross section dσ/dmhh near
the kinematic boundary mhh '

√
s. As mentioned in footnote 15, the enhancement is due

to the singularity associated with the soft emission of a transversely-polarised Z boson
in the diagrams in the first row of Fig. 5.7. The leading singular behaviour can be thus
isolated by setting d3 = 0, to switch off the Higgs trilinear coupling, and by fixing the
couplings a and b to their SM value (δb = 0). It is useful to make a change of variables in
eq. (C.6) from (x1, x2) to (r ≡ m2

hh/s, x2), where the energy of the Z is related to the
invariant mass of the two Higgses by

r = 1− x3 +
m2
Z

s
. (C.13)

By integrating x2 over the interval r + ε ≤ x2 ≤ 1− ε and expanding for ε = m2
Z/s small,

we obtain

dσ

dr
' G3

Fm
6
Z [1 + (1− 4s2

W )2]

192
√

2π3s

[
(1− r) +

r

1− r log (1− r)− r

1− r log ε

]
, (C.14)

which shows the singularity at r = 1. The logarithmic terms in the above formula follow
from the collinear singularity also associated with the Z emission. Notice that events with
a final longitudinally-polarised Z have no soft singularity. At very large c.o.m. energies
the process e+e− → hhZL dominates the total cross section and its leading contribution,
which is proportional to δb, peaks at mhh/

√
s ∼ 1/

√
7, see eq. (C.22). The left plot

of Fig. 5.9 shows that for
√
s = 1TeV the values of the differential cross section near

the kinematic edge increases when going from δb = 0 to δb = 0.5. This means that the
contribution from transversely-polarised final Z bosons is still large in this case, as also
shown by the right plot of Fig. 5.8. We have checked that for larger c.o.m. energies
(or, similarly, much larger values of δb), the differential cross section dσ/dmhh eventually
peaks at the intermediate values mhh/

√
s ∼ 1/

√
7.

The high-energy limit of the double Higgs-strahlung total cross section can be easily
calculated explicitly. In a gauge in which the equivalence theorem is manifest, the
diagrams contributing to the leading high-energy behaviour are those depicted in Fig. C.1.
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+ +

e+(k2)

e−(k1)

h(p1)

h(p2)

ZL(p3)

Figure C.1 – Diagrams contributing to the leading high-energy behaviour of the double Higgs-
strahlung cross section.

The relevant vertices are found by expanding the Lagrangian of eq. (2.16)

∆L = a
h

v
(∂µχ

3)2 −mZ

(
2a
h

v
+ b

h2

v2

)
∂µχ

3Zµ. (C.15)

Neglecting the masses of the initial state leptons, as well as those of the Higgs and the Z
boson, the amplitude can be written as

iA(e+e− → hhZL) ' (
√

2GF )3/2 2m2
Z

s
(b− a2)v̄(k2)/p3

(gV − gAγ5)u(k2) , (C.16)

where k1 and k2 are the momenta of the incoming electron and positron, p3 is the
momentum of the outgoing Z boson and s is the center-of-mass energy. The vector and
axial-vector couplings of the electron are given by

gV = −1

2
+ 2s2

W , gA = −1

2
. (C.17)

Squaring and averaging the amplitude over the initial spins one gets

|A|2 ' 8m4
Z(
√

2GF )3(g2
V + g2

A)(b− a2)2 p3 · k1 p3 · k2

s2
. (C.18)

The total cross section is written as

σ(e+e− → hhZL) =
1

2
× 1

2s

∫
|A|2 dΦ(3) , (C.19)

where the extra 1/2 factor accounts for the two Higgs particles in the final state. The
phase space integral can be done by using the recursive formula

dΦ(3)(P ; p1, p2, p3) =

∫
dp2

12

2π
dΦ(2)(p12; p1, p2) dΦ(2)(P ; p12, p3) . (C.20)

Notice that p2
12 is the invariant mass of the two Higgses. Since the amplitude in eq. (C.18)

does not depend on the momenta of the two Higgs bosons, p1 and p2, the first phase
space integral in eq. (C.20) is trivial and gives

dΦ(2)(p12; p1, p2) =
1

8π
. (C.21)
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Taking into account the energy and angular dependence of the amplitude one obtains

dσ

dm2
hh

' (
√

2GF )3(g2
V + g2

A)

1536π3

m4
Z

s
(b− a2)2

(
1− m2

hh

s

)3

, (C.22)

and integrating over 0 ≤ m2
hh ≤ s it follows

σ ' (
√

2GF )3(g2
V + g2

A)

6144π3
m4
Z(b− a2)2 = 0.15 fb (b− a2)2 . (C.23)
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D Direct Probes of NP

D.1 The tilded basis

The field redefinition in eq. (6.9) allows many equivalent Lagrangian description of the
Simplified Model. In all but one of them a kinetic mixing between V and W is present.
We define each of these bases by the same Lagrangian in eq. (6.2) with all the couplings
replaced by “tilded” ones

c→ c̃, mV → m̃V , (D.1)

and with the addition of the kinetic mixing term

c̃VW
g

2gV
D[µV

a
ν]W

µνa. (D.2)

Using the field redefinition of eq. (6.9) with

α =
g c̃VW√

g2
V − c̃2

VW g
2

and β =
gV√

g2
V − c̃2

VW g
2
, (D.3)

177



Appendix D. Direct Probes of NP

we get the following relations between the parameters in the two bases

m2
V =

g2
V

g2
V − c̃2

VW g
2
m̃2
V ,

cV VW =
g2
V

g2
V − c̃2

Wρg
2

[
c̃V VW −

g2

g2
V

c̃2
VW

]
,

cV V V =
g3
V(

g2
V − c̃2

VW g
2
)3/2[c̃V V V − g2

g2
V

c̃VW (c̃V VW + 2) + 2
g4

g4
V

c̃3
VW

]
,

cH =
gV√

g2
V − c̃2

VW g
2

[
c̃H +

g2

g2
V

c̃VW

]
,

cV V HH =
g2
V

g2
V − c̃2

VW g
2

[
c̃V V HH +

g2

2g2
V

c̃VW c̃H +
g4

4g4
V

c̃2
VW

]
,

cF =
gV√

g2
V − c̃2

VW g
2

[c̃F + c̃VW ] .

(D.4)

D.2 Electroweak precision tests

In this Appendix we discuss the constraints of EWPT on the Simplified Model parameter
space. In order to do this we integrate out the vector triplet and describe the resulting
theory as the SM supplemented by higher dimensional operators. We expect all the
relevant corrections to be oblique, that is encoded in corrections to the vacuum polarisation
of the SM gauge bosons. This is not immediate to see in the basis of eq. (6.2) as V
couples, though universally, to the light fermions. It is then useful to remove this coupling
through the field redefinition1

W a
µ →W a

µ − cF
g2

gV
V a
µ . (D.5)

The resulting Lagrangian reads

LV = −1

4

(
1 + c2

F

g2

g2
V

)
D[µV

a
ν]D

[µV ν] a +
m2
V

2
V a
µ V

µ a

+ i gV

(
cH − cF

g2

g2
V

)
V a
µH

†τa
↔
D
µ
H +

cF
2gV

D[µV
a
ν]W

µνa

+ g2
V

(
cV V HH +

c2
F

4

g4

g4
V

− cF cH
2

g2

g2
V

)
V a
µ V

µ aH†H + . . . ,

(D.6)

while the coupling of V to the light fermions is removed. Notice that a kinetic mixing
between the W and V is reintroduced. The dots include terms of order WV 2, V 3, V 4.

1For convenience we work in the basis in which the gauge coupling appears only in front of the gauge
kinetic term.
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These are not relevant in the discussion of the EWPT. Normalising the kinetic term gives
the leading order equation of motion of V

[
(�+ µ2

V )gµν − ∂µ∂ν
]
V a
ν = −igV γHH†τa

←→
DµH + γF

1

gV
DνW

a
νµ ≡ J aµ , (D.7)

where (
1 + c2

F

g2

g2
V

)
µ2
V = m2

V + 2

(
cV V HH +

c2
F

4

g4

g4
V

− cF cH
2

g2

g2
V

)
g2
V |H|2, (D.8)(

1 + c2
F

g2

g2
V

)1/2

γH = cH − cF
g2

g2
V

, (D.9)(
1 + c2

F

g2

g2
V

)1/2

γF = cF . (D.10)

The solution of eq. (D.7) is

V a
µ = DµνJ aν , Dµν =

gµν + ∂µ∂ν/µ
2
V

�+ µ2
V

. (D.11)

Plugging this solution into eq. (D.6) with a normalised kinetic term and expanding in
derivatives we get the leading terms contributing to the EWPT

LV = − 1

2µ2
V

(
−igV γHH†τa

←→
DµH + γF

1

gV
DνW

a
νµ

)2

+
1

2µ2
V

(
−igV γHH†τa

←→
DµH

)
�Tµν
µ2
V

(
−igV γHH†τa

←→
DνH

)
+ . . . ,

(D.12)

where we defined �Tµν = gµν�− ∂µ∂ν . All other terms in the expansion, represented by
the dots, give subleading contributions to the EWPT in a m̂2

W /µ
2
V expansion. Following

Ref. [132] we rewrite the quadratic part of LV as

L = −1

2
W 3
µΠ33(p2)Wµ3− 1

2
BµΠ00(p2)Bµ−W 3

µΠ30(p2)Bµ−W+
µ Π±(p2)Wµ− . (D.13)

The various form factors are then expanded in powers of p2

Π(p2) = Π(0) + p2Π′(0) +
p4

2
Π′′(0) + . . . . (D.14)

Starting from eq. (D.12) and following the procedure we outlined above we get the
leading order contributions (as in the text we define z ≡ gV v̂/2µV , m̂W = gv̂/2 and
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tW ≡ tan θW = g′/g)

Π00(0) = Π33(0) = Π±(0) = −Π30(0) = − v̂
2

4

(
1− z2γ2

H

)
, (D.15)

Π′00(0) =
1

g′2

(
1 + t2Wγ

2
Hz

2 m̂
2
W

µ2
V

)
,

Π′30(0) =
1

g2

(
γ2
Hz

2 m̂
2
W

µ2
V

− γHγF
m̂2
W

µ2
V

)
,

Π′±(0) = Π′33(0) =
1

g2

(
1 + γ2

Hz
2 m̂

2
W

µ2
V

+ 2γHγF
m̂2
W

µ2
V

)
,

Π′′±(0) = Π′′33(0) =
1

g2m̂2
W

(
2γ2

F

g2

g2
V

m̂2
W

µ2
V

)
.

We thus obtain the following relations

v2|exp ≡ −4Π±(0) = v̂2
(
1− z2γ2

H

)
, (D.16)

1

g2

∣∣∣∣
exp

≡ Π′±(0) =
1

g2

(
1 + γ2

Hz
2 m̂

2
W

µ2
V

+ 2γHγF
m̂2
W

µ2
V

)
,

1

g′2

∣∣∣∣
exp

≡ Π′00(0) =
1

g′2

(
1 + t2Wγ

2
Hz

2 m̂
2
W

µ2
V

)
.

The relevant custodial invariant oblique parameters are defined by

Ŝ = g2Π′30(0), W =
g2m2

W

2
Π′′33(0). (D.17)

The natural size of the coefficients γH and γF is γH ∼ γF ∼ 1. This implies that the
oblique parameters will be at most of order m̂2

W /µ
2
V , while

g|exp = g +O(m̂2
W /µ

2
V ), g′|exp = g′ +O(m̂2

W /µ
2
V ) , (D.18)

so that the corrections to g and g′ can be neglected in the calculation of the oblique
parameters. Notice on the other hand that v̂ can depart from its measured value 246GeV
by O(1) corrections

v2|exp = v̂2(1− γ2
Hz

2). (D.19)

One thus finds

Ŝ = γ2
Hz

2 m̂
2
W

µ2
V

− γHγF
m̂2
W

µ2
V

, W = γ2
F

g2

g2
V

m2
W

µ2
V

. (D.20)

where one has still to express v̂ in terms of the physical v ' 246GeV. Notice that under
the assumption that γF ∼ 1 the correction to the V kinetic term which is present in
eq. (D.6) is always subleading in a m̂2

W /µ
2
V expansion and can be neglected.
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In addition to the present section we provide a set of tools useful to perform analyses
using the Simplified Model. We make them available on the webpage of this project [324].

The Simplified Model Lagrangian in eq. (6.2) in the mass eigenstate basis and in the
unitary gauge was implemented into different Matrix Element Generators (MEG) using
the FeynRules [351, 352] Mathematica package. Model files for the CalcHEP [353, 354]
and MadGraph5 [189] MEG and the FeynRules source model are registered in the
HEPMDB model database [355] with the unique number hepmdb:0214.0151 and are
available at the link [356].

The model was implemented into FeynRules taking αEW , GF and MZ as SM electroweak
input parameters and the mass of the neutral heavy vector M0, the overall coupling
gV and all the parameters ci’s as described in this section as the new vector input
parameters. The Higgs mass is also an input parameter, that we fixed to a default value
of 125.5GeV. All the other parameters are dependent parameters, defined as functions of
the aforementioned inputs. Free parameters a, b, c, d3, d4 for the Higgs sector were also
implemented with the notation of Ref. [64]. For a = b = c = d3 = d4 = 1 the Higgs sector
is exactly SM like.

In addition to the MEG model files, we made available a Computable Document Format
CDF c© [357] notebook at the webpage [324]. This is an interactive web interface to a
Mathematica notebook which allows the user to compute the dependent parameters,
the widths and the BRs in the model and to plot the relevant cross-sections at 8, 14 and
100TeV by simply inputing the independent parameters. It also automatically generates
the MadGraph5 “param_card.dat” for the chosen point of the parameter space. Further
information and possibly additional tools can be found directly at the webpage of this
project [324].

D.4 Extrapolation of experimental bounds

In order to extrapolate the current LHC bounds on heavy vectors, obtained at a centre
of mass energy

√
s0 and integrated luminosity L0, to future colliders with a different,

increased centre of mass energy
√
s and integrated luminosity L, we use the following

rescaling procedure. The exclusion bounds on σ ×BR given by the experimental collabo-
rations contain information only on the background cross section. The excluded signal
can be inferred from NS/

√
NB = 3, the definition of the exclusion bound for non-zero

background. This implies

σS(s0, ŝ0)L0√
σB(s0, ŝ0)L0

=
σS(s, ŝ)L√
σB(s, ŝ)L

, (D.21)
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where each cross section depends not only on the center of mass energy s, but also on the
scale ŝ at which the parton luminosities are computed (see Figures 6.3). Solving gives

σS(s, ŝ) =

√
L0

L

√
σB(s, ŝ)

σB(s0, ŝ0)
σS(s0, ŝ0) . (D.22)

At this point, we assume that the background cross section rescales with the parton
luminosities as

σB(s, ŝ) = k
dL

dŝ
(s, ŝ) . (D.23)

Substituting into eq. (D.21) yields

σS(s, ŝ) =

√
L0

L

√
dL
dŝ |s,ŝ
dL
dŝ |s0,ŝ0

σS(s0, ŝ0) . (D.24)

From eq. (D.23), the following relations can be inferred by multiplying and dividing by
the corresponding integrated luminosities

L

L1

σB(s, ŝ)
dL
dŝ |s,ŝ

=
L

L0

σB(s0, ŝ0)
dL
dŝ |s0,ŝ0

, ⇒ NB(s, ŝ, L)

LdLdŝ |s,ŝ
=
NB(s0, ŝ0, L0)

L0
dL
dŝ |s0,ŝ0

. (D.25)

Now, when the number of background events at the old and new collider and old and
new centre of mass are the same, NB (s, ŝ, L) = NB (s0, ŝ0, L0), which corresponds to the
same number of excluded signal events, NS (s, ŝ, L) = NS (s0, ŝ0, L0), this equation gives

dL
dŝ |s,ŝ
dL
dŝ |s0,ŝ0

=
L0

L
, (D.26)

which is universal and does not depend on the way the signal rescales. Plugging this
equation into eq. (D.24) we finally obtain the rescaling relation

σS(s, ŝ) =
L0

L
σS(s0, ŝ0) . (D.27)

In practise, this means that the excluded signal cross section for a vector of massM0 =
√
ŝ0

obtained at a collider with s0 and L0 gets mapped into a limit on a vector of mass M at
a collider with s and L. M is obtained from M0 by evaluating the parton luminosities at
ŝ0 for a collider s0, rescaling them by the ratio of the luminosities L0/L and finding the
corresponding mass M =

√
ŝ of this value at the new collider with s.
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Institut de Théorie des Phénomènes Physiques andrea.thamm@cern.ch

CH - 1015 Lausanne

Switzerland

Date of Birth 2 July 1987, Rostock, Germany

Nationality German

Ph.D. at ÉPFL (Lausanne, Switzerland)

09/2010 - 08/2014 pursuing Ph.D. in beyond the Standard Model phenomenology

Topic: Effective Lagrangian approach to electroweak symmetry breaking

Supervisors: Prof. Riccardo Rattazzi and Prof. Christophe Grojean

02/2012 - present teaching assistant for Quantum Field Theory course

by Prof. Riccardo Rattazzi

09/2010 - 08/2012 Marie Curie (ITN) Fellow at CERN

UNILHC Grant

Education at the University of Edinburgh (UK)

09/2008 - 06/2010 Degree of Master of Physics with First Class Honours

in Mathematical Physics

Master Thesis: Decoupling in Effective Field Theories

Supervisor: Prof. Luigi Del Debbio

09/2006 - 08/2008 Direct entry into second year, pursuing

Master of Physics with Honours Computational Physics

Change of degree specialisation to Mathematical Physics

Education in Leipzig (Germany)

09/2002 - 06/2006 Wilhelm-Ostwald-Gymnasium, secondary school

with emphasis on mathematics and natural sciences

Graduation with Abitur, average grade 1.0 (highest possible grade)

I



List of Publications

1. G. Brooijmans et al. Les Houches 2013: Physics at TeV Colliders: New Physics Working

Group Report, arXiv:1405.1617 [Inspire]

2. D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Heavy Vector Triplets: Bridging

Theory and Data, arXiv:1402.4431 [Inspire]

3. R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi and A. Thamm, Strong Higgs

Interactions at a Linear Collider, JHEP 1402 (2014) 006, arXiv:1309.7038 [Inspire]

4. H. Abramowicz et al. [CLIC Detector and Physics Study Collaboration], Physics at the

CLIC e+e− Linear Collider – Input to the Snowmass process 2013, arXiv:1307.5288

[Inspire]

5. D. Pappadopulo, A. Thamm and R. Torre, A minimally tuned composite Higgs model

from an extra dimension, JHEP 1307 (2013) 058, arXiv:1303.3062 [Inspire]

6. A. De Simone, A. Monin, A. Thamm and A. Urbano, On the effective operators for

Dark Matter annihilations, JCAP 1302 (2013) 039, arXiv:1301.1486 [Inspire]

7. M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in

Higgs couplings using single top production in association with a Higgs boson, JHEP

1305 (2013) 022, arXiv:1211.3736 [Inspire]

Proceedings

1. A. Thamm, Strong multiple Higgs production at CLIC, PoS CORFU 2011 (2011) 035

[Inspire]

II



Talks

Heavy Vector Triplets: Bridging Theory and Data

Seminar, Universität Mainz, Germany, 3 June 2014

Seminar, Universitat Autónoma de Barcelona, Spain, 9 May 2014

Workshop: After the Discovery, Benasque, Spain, 17 April 2014

Anomalous Higgs couplings in composite models at the LHC and beyond

Phenomenology seminar, Scuola Normale Superiore, Italy, 11 December 2013

Theoretical physics seminar, Vrije Universiteit Brussel, Belgium, 28 November 2013
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