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Abstract
The constant increase in single core frequency reached a plateau during recent years. This is

due to a physical phenomenon, known as power wall, where the produced heat inside the chip

is so high that cannot be cooled down by existing technologies. An alternative to harvest more

computational power per die is to fabricate more number of cores into a single chip. There-

fore manycore chips with more than thousand cores are expected by the end of the decade.

These environments provide a high level of parallel processing power while their energy con-

sumption is considerably lower than their multi-chip counterparts. Although shared-memory

programming is the classical paradigm to program these environments, there are numerous

claims that taking into account the full life cycle of software, the message-passing program-

ming model have numerous advantages. The direct architectural consequence of applying a

message-passing programming model is to support message passing between the processing

entities directly in the hardware. Therefore manycore architectures with hardware support

for message passing are becoming more and more visible. These platforms can be seen in

two ways: (i) as a High Performance Computing (HPC) cluster programmed by highly trained

scientists using Message Passing Interface (MPI) libraries; or (ii) as a mainstream computing

platform requiring a global operating system to abstract away the architectural complexities

from the ordinary programmer. In the first view, performance of communication primitives

is an important bottleneck for MPI applications. In the second view, kernel data structures

have been shown to be a limiting factor. In this thesis (i) we overview existing state-of-the-art

techniques to circumvent the mentioned bottlenecks; and (ii) we study high-performance

broadcast communication primitive and map data structure on modern manycore architec-

tures, with message-passing support in hardware, in two different chapters respectively.

In one chapter, we study how to make use of the hardware features to implement an efficient

broadcast primitive. We consider the Intel Single-chip Cloud Computer (SCC) as our target

platform which offers the ability to move data between on-chip Message Passing Buffers (MPB)

using Remote Memory Access (RMA). We propose OC-Bcast (On-Chip Broadcast), a pipelined

k-ary tree algorithm tailored to exploit the parallelism provided by on-chip RMA. Experimental

results show that OC-Bcast attains considerably better performance in terms of latency and

throughput compared to state-of-the-art solutions. This performance improvement highlights

the benefits of exploiting hardware features of the target platform: Our broadcast algorithm

takes direct advantage of RMA, unlike the other broadcast solutions which are based on a

higher-level send/receive interface.

In the other chapter, we study the implementation of high-throughput concurrent maps in
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message-passing manycores. Partitioning and replication are the two approaches to achieve

high throughput in a message-passing system. This chapter presents and compares different

strongly-consistent map algorithms based on partitioning and replication. To assess the

performance of these algorithms independently of architecture-specific features, we propose

a communication model of message-passing manycores to express the throughput of each

algorithm. The model is validated through experiments on a 36-core TILE-Gx8036 processor.

Evaluations show that replication outperforms partitioning only in a narrow domain.

Keywords : High Performance, Communication Primitive, Data Structure, Message Passing,

Manycore, Broadcast, Map, HPC, Operating System.

vi



Résumé
La fréquence des cœurs de calcul a arrêté d’augmenter depuis quelques années. Ceci est lié au

phénomène physique appelé "power wall", qui fait que, avec l’augmentation de la fréquence,

la chaleur dissipée par le processeur devient trop importante par rapport aux capacités des

systèmes de refroidissement. Pour continuer à améliorer les performances des processeurs,

une alternative est alors d’augmenter le nombre de cœurs par processeur. Donc des proces-

seurs manycore incluant des centaines de coeurs sont attendus pour la fin de la décennie.

Ces environnements offrent un haut niveau de puissance de calcul parallèle alors que leur

consommation énergétique est considérablement plus faible que celle des environnements

multi-processeurs. Bien que la programmation par mémoire partagée soit le paradigme clas-

sique pour programmer ces environnements, plusieurs personnes estiment qu’en tenant

compte du cycle de vie complet d’un logiciel, la programmation par échange de messages à de

nombreux avantages. La conséquence directe de l’utilisation du modèle de programmation

par échange de messages est l’émergence d’architectures supportant la transmission de mes-

sages entre les entités de calcul au niveau matériel. Ces plateformes peuvent être utilisées de

deux manières : (i) un cluster de calcul haute performance programmé par des scientifiques

hautement qualifiés utilisant, par exemple, une bibliothèque MPI (Message Passing Interface)

pour les communications ; (ii) une plateforme ordinaire nécessitant un système d’exploitation

permettant au programmeur de s’affranchir de la complexité matérielle. Dans le premier cas,

les performances des primitives de communication sont déterminantes pour les applications

MPI. Dans le second cas, ce sont les performances des structures de données du noyau qui

sont un facteur limitant. Dans cette thèse, (i) nous présentons les solutions de l’état de l’art

pour traiter ces deux problèmes, puis (ii) nous consacrons deux chapitres à l’étude de primi-

tives de broadcast (diffusion de type un-vers-tous) et à l’étude de structures de données de

type tableau associatif, sur des architectures manycore modernes fournissant un support pour

l’échange de messages au niveau matériel.

Dans le premier chapitre, nous étudions comment utiliser les fonctionnalités matérielles pour

mettre en œuvre la diffusion un-vers-tous de manière efficace. Nous considérons la puce

Single Chip Cloud (SCC) d’Intel comme plateforme cible. Cette plateforme offre la possibilité

de déplacer des données sur la puce entre les tampons de transmission de messages (Message-

Passing Buffer - MPB) des différents cœurs par accès mémoire distants (Remote Memory Acces

- RMA). Nous proposons un algorithme de diffusion en arbre pipeliné d’arité k, appelé OC-

Bcast, conçu pour exploiter le parallélisme offert par les accès mémoire distants. Les résultats

expérimentaux montrent qu’OC-Bcast atteint des performances nettement supérieures aux
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algorithmes de l’état de l’art en termes de latence et de débit. Ces résultats mettent en évidence

les avantages d’exploiter les fonctionnalités matérielles de la plateforme cible. Nos algorithmes

de diffusion profitent directement des avantages des accès mémoire distants contrairement

aux autres algorithmes qui sont fondés sur une interface de type émission/réception de plus

haut niveau.

Dans le second chapitre, nous étudions la mise en œuvre de tableaux associatifs efficaces dans

les architectures manycore à échange de messages. Partitionner et répliquer une structure de

donnée sont les deux approches pour en améliorer le débit dans un système à échange de

messages. Ce chapitre présente et compare différents algorithmes de tableau associatif avec

une cohérence forte, fondés sur le partitionnement et la réplication. Pour évaluer les perfor-

mances de ces algorithmes indépendamment des caractéristiques propres à une architecture

spécifique, nous proposons un modèle des communications par échange de messages au

sein des processeurs manycore pour exprimer le débit de chaque algorithme. Le modèle a été

validé grâce à des expériences réalisées sur un processeur TILE-Gx8036 incluant 36 cœurs. Les

résultats montrent que la réplication surpasse le partitionnement uniquement dans un petit

sous-ensemble de cas.

Mots clés : Haute performance, primitive de communication, structure de données, échange

de messages, manycore, diffusion, tableau associatif, calcul haute performance, système

d’exploitation.
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1 Introduction

Hitting the power wall prevents the semiconductor industry to improve the single core perfor-

mance according to the Moore law [21]. The alternative to obtain a higher performance is to

increase the level of parallelism by putting many ordinary cores on the same chip. With the

same power budget, it has been shown that the aggregate performance of a chip with big num-

ber of simple cores exceeds that of a chip with small number of complex cores [20]. Therefore

manycore processors featuring tens, if not hundreds, of ordinary cores communicating with a

highly efficient network-on-chip (NoC) are becoming more and more available.

Taking advantage of the high degree of parallelism provided by such architectures is challeng-

ing and raises questions about the programming model to be used [99, 72]. Most existing

processors are still based on cache-coherent shared memory. Designing a scalable concurrent

algorithm for cache-coherent processors is a difficult task because it requires understanding

the subtleties of the underlying cache coherence protocol which is not inherently scalable [27].

On the other hand, though less popular among mainstream programmers, message-passing

model looks appealing because it provides the programmer with explicit control of the com-

munication between cores which can lead to significant benefits for the full life-cycle of

software [57]. However, compared to the vast literature on concurrent programming in shared-

memory systems [49], message-passing programming on manycore processors is not yet a

mature research topic. The natural consequence of adopting a message-passing programming

model on the architecture of these platforms is to provide message-passing support in hard-

ware, although it can be also emulated on top of a shared address space with considerable

performance penalties.

Considering the low latency and high throughput of a NoC, manycore chips are very similar

to parallel High Performance Computing (HPC) clusters. In order to provide inter-process

communication, HPC applications take advantage of different Message Passing Interface(MPI)

libraries. Performance of MPI communication primitives are a major bottleneck in HPC

applications, and have been widely studied in different contexts. However, results show that

porting an HPC communication library to manycore platforms requires rethinking the design

of the communication primitives [83].
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Chapter 1. Introduction

Apart from running scientific HPC applications, these chips can be seen as the ordinary

computing platform to run general-purpose applications, where a global operating system

abstracts away the architectural complexities from the mainstream programmer. Kernel

data structures have been shown to be an important performance bottleneck for the oper-

ating systems designed for these environments [109, 16, 19]. To increase the performance

of data structures in shared memory architectures, several well-known techniques can be

used [49]. In message-passing systems, improving the performance of concurrent data struc-

tures requires fundamentally different approaches [36]. Existing studies made in distributed

message-passing systems are of little help because the high performance of NoCs provides a

completely different ratio between computation and communication costs compared to large

scale distributed systems.

In the rest of the introduction, we discuss the motivations for applying the message-passing

programming model on manycores as well as its architectural implications on these platforms.

Afterwards we briefly explain the existing techniques to improve the performance of MPI com-

munication primitives and kernel data structures on manycore environments, with different

communication infrastructures. Finally we present an overview of the thesis.

1.1 Message-Passing Programming Model and Manycore Platforms

Message passing and shared memory are the two models to program parallel applications. In a

message passing model, access to the shared data is managed by explicit communication with

no shared address space while in a shared memory model, shared data is located on a shared

address space. A study done in [57] by Intel tries to choose the right programming model to

address the specific features of manycore architectures. To do this comparison, they consider

full cycle of software development including writing, debugging, validating, optimizing and

maintaining of the parallel program. They evaluate different strategies for designing parallel

applications against different metrics, covering full life-cycle of a software development. The

chosen strategies, derived from [96], cover a broad range of parallel applications: agenda

parallelism, result parallelism and specialist parallelism. In agenda parallelism, an application

is divided into a particular agenda of tasks and each process is assigned to pick a task from the

agenda and do the tasks repeatedly until the job is done. In result parallelism, the ultimate

goal of the application is to come up with a data structure as the final result and each process

is assigned to produce one piece of the result. In specialist parallelism, an application is

based on some logical networks of specialists and each process is assigned to perform one

specific kind of work. Each strategy uses different patterns for designing parallel algorithms

(See Table 1.1). Each pattern is assessed with respect to a set of concrete metrics inspired

from [46], namely generality, expressiveness, viscosity, composition, validation and portability

(See Table 1.2 for a brief description of each).

The message-passing programming model is claimed to be a better choice with respect to

composition, validation and portability, independently of the chosen strategy for parallelism.

2



1.1. Message-Passing Programming Model and Manycore Platforms

Parallelization Strategies Design Patterns Means of Parallelism
agenda parallelism task parallelism / divide and conquer tasks
result parallelism geometric decomposition / data parallelism data structures
specialist parallelism producer consumer / event based coordination events

Table 1.1: Different strategies to implement parallel programs

Metric Description
composition ability to modularize parallel programs
validation possibility of validating program correctness
portability easy portability of the program to different platforms
generality ability to express any parallel algorithm
expressiveness existence of concise concurrency abstractions
viscosity possibility of implementing incremental changes to a working program

Table 1.2: Metrics to compare message-passing and shared-memory programming models

Parallel programs can be decomposed into different isolated modules, each working on its

own private memory, interacting with each other through a well-defined communication

interface. Decomposing a program in this way can be naturally expressed in a message-passing

programming model. To validate a program we need to guarantee that every legal interleaving

of active threads leads to a correct execution. In a message-passing programming model,

the programmer only needs to consider combinations of different messaging events. In a

shared-memory programming model, validating a program is shown to be an NP-complete

problem [55]. Moreover message-passing programming is more portable since it imposes less

constraints on the consistency model of different platforms.

Regarding other metrics, namely generality, expressiveness and viscosity, message-passing

model seems to be a better option if specialist parallelism is applied. Considering the pipeline

algorithms, movement of data between different levels can be naturally expressed in a message-

passing model. Moreover it does not suffer from the error-prone synchronization during

data movement, a phenomenon in which shared-memory programmer suffers from. Con-

sidering event-based algorithms, message-passing programmers should be careful about

unpredictable flow of messages between processes. However this issue can be circumvented

using a higher-level model in which flows of messages are controlled. The actor model can

provide such a coordination for event-based algorithms and it is a natural fit for message-

passing programming model. Implementing actor model in shared-memory needs complex

synchronization hassles. On the other hand, shared-memory model is argued to be a better

choice for agenda and result parallelism. For example, applying a divide and conquer pattern

is a better fit for shared-memory programming model since a task is recursively divided into a

number of smaller tasks where the data associated with each task must be decomposed. In

message-passing programming model, where decomposition of data is explicit, it is difficult

to apply when lots of tasks are created dynamically. Shared memory model avoids this prob-

lem since all threads have access to the shared data. Moreover considering data parallelism

pattern, shared memory model seems more suitable since it does not require complicated

3



Chapter 1. Introduction

data movements during execution of collective operations.

Whatever the choice of the programming model, it puts requirements on the hardware that

supports it. A programming model that requires a shared address space, in order to run

efficiently, requires hardware-supported cache coherence. By increasing the number of cores,

the overhead of the hardware-based cache coherency limits scalability. This is mainly due to

the increase in architectural complexity, coherency traffic on the interconnect and needed

storage to track the cached values. These increasing costs mean that, as the cores grow, a

cache coherency protocol eventually limits the achievable performance of the parallel cores.

On the other end of the spectrum, a programming model that needs message passing, in order

to run efficiently, requires an architecture with hardware-based message-passing interface 1.

A message-passing manycore chip, with no support for cache coherency, can be suitable for

software implemented using the message-passing model. In this case, there is no coherency

barrier and these architectures can scale up to a much larger number of cores.

As you might already conclude, message-passing programming model seems attractive for

both programming model and architecture layers. The benefits magnify as the number of

cores increase. Following these observations, manycore architectures with programmer-

accessible message passing support in hardware are becoming more and more visible. These

architectures provide message passing between different cores through shared on-chip buffers.

The sender acts by putting its message into the shared buffer and the receiver acts by getting

those messages from the shared buffer. In some of these architectures, the programmer is in

charge of providing the required synchronization between senders and receivers during their

access to the shared buffer. Examples of such architectures include: Intel Polaris [50], Intel

SCC [52], Calray MPPA [4] and Adapteva Epiphany [1]. In another set of architectures, this

synchronization task is abstracted away from the programmer and is totally managed by the

hardware. Examples of such architectures include: Tilera TILE [8], Intellasys SEAfourth [3] and

Picochip DSP [7]. To the best of our knowledge, the TILE architecture from Tilera is the only

case where all cores have access to a cache-coherent shared address space while they are also

provided with a hardware-based message-passing interface.

1.2 High-Performance MPI Communication Primitives

Manycore environments resemble HPC clusters while occupying smaller space and consuming

less energy. The performance of MPI communication primitives is a major bottleneck for

HPC applications running on manycore environments [86]. We overview some of the existing

techniques used to improve the performance of MPI communication primitives in these

environments. We start by point-to-point communication primitives followed by collective

ones. A summary of these techniques are mentioned in Table 1.3. Note that we only mention

those which are specific to manycore environments, avoiding the general techniques which

1Ignoring faults, each of the two programming models can be implemented on top of an architecture which
suits with the requirements of the other one. However this sacrifices the performance.
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Communication Techniques
point to point avoid system calls

minimize copying (at run time)
minimize copying (at compile time)
hardware implementation

collective leverage kernel facilities
topology awareness
hardware implementation
exploit hardware features and properties

Table 1.3: Existing techniques for high-performance MPI primitives on manycores

are applicable independently of the target architecture.

1.2.1 Point-to-point communication

In the absence of hardware-based message-passing interface, implementing message passing

on top of shared memory is the only viable solution to benefit from the message passing

programming model. This leaves a rather vast space for performance optimizations. Proposed

techniques are mainly based on avoiding costly systems calls as well as minimizing the number

of memory copies during message transfers. We briefly go over some of these techniques.

Avoiding system calls

The most intuitive way to implement communication between processes, located on different

cores, is to use kernel facilities of the operating system. These facilities include Unix domain

sockets, TCP and UDP sockets, pipes, IPC and POSIX message queues. Despite some differ-

ences, their underlying mechanisms are similar. Using all facilities, a buffer in the kernel space

is shared amongst a set of senders and receivers. To send a message, a sender invokes a system

call which copies the message from the user space to the kernel space and adds it to the buffer.

To receive a message, a receiver invokes another system call that copies the incoming message,

if any, from the kernel-space buffer to a user-space buffer.

The main drawback of the above, is the costly system calls which are invoked during each

message transfer. Message-passing mechanism in the Barrelfish operating system [2] avoids

these costly system calls by functioning totally in user space. For each sender/receiver pair,

there are two limited size circular buffers of messages which act as unidirectional communi-

cation channels. Each message entry is composed of a header and of a content. The header

contains notification flags for the purpose of synchronization, e.g. to inform the receiver that

the message can be read. Whenever a sender wants to send a message from its private buffer, it

first checks if there is enough room in the channel for a new message. If it is the case, it copies

the message from its private buffer to the communication buffer. The receiver knows the

location of the next entry to be read from the communication channel. To receive a message,

it polls the header of the message at that location, waiting for the notification to be written.
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As soon as the notification is written by the sender, the receiver copies the message from the

communication buffer to its own buffer and sends an acknowledgement back to the sender. A

study done in [15] compares the throughput of kernel-based techniques with message-passing

mechanism implemented in Barrelfish on a shared-memory manycore architecture. As ex-

pected, the achievable throughput of message-passing mechanism in Barrelfish outperforms

the kernel-based techniques, especially for the case of small messages.

Minimize copying (at run time)

Previous techniques need two memory copies to transfer a message from the sender to the

receiver. Several techniques have been proposed to reduce the number of copies, during

point-to-point communication, to only one. Most of these techniques rely on the memory

mapping facilities of the operating system kernel. We overview some of these techniques.

A method based on Linux KNEM kenerl module [79], tries to improve the performance of MPI

communication on manycores by minimizing the number of memory copies. The main trick

roots in the kernel’s ability to access the memory of all user-space processes beyond its address

space boundary. Therefore inter-core communication via the kernel thread can be done using

only one memory copy. Although this method exhibits a better throughput compared to the

techniques based on an intermediate shared-memory buffer, its small-message latency suffers

from the context switch overhead between user and kernel threads.

ZIMP (Zero-copy Inter-core Message Passing) [15] is an efficient inter-core communication

mechanism for manycores functioning totally in user space which, unlike message-passing

mechanism in Barrelfish, provides a zero-copy send primitive by allocating messages directly

in the shared communication channels. To send a message, a sender first gets the address

of the next available entry in the channel. Afterwards it waits for that entry to become free,

i.e. all receivers have read the previous message at this entry, by polling on a flag. When it is

the case, the sender writes the content of the message in that entry followed by updating the

synchronization flags. To receive a message, a receiver first gets the index of the next message

that can be read. If there is a message to be read, it updates the index of the next message to

be read, copies the content of that entry and resets a flag indicating that the message is read.

Comparison of the message-passing mechanisms of ZIMP and Barrelfish shows an order of

magnitude throughput improvement in favor of ZIMP.

In [40], the authors have implement a Hybrid MPI (HMPI) library, as an abstraction layer on top

of existing MPI libraries, to investigate single-copy message-passing techniques on manycores.

To implement message passing on top of shared memory, memory used for communication is

mapped to the same virtual address on every process. They implement two incoming message

queues per receiver. The first queue is globally accessible by all processes. Senders write

messages to this global queue which is owned by the destination process. The second queue is

private. When a receiver attempts to match incoming messages to its local receives, it empties

its global queue and adds incoming messages to its private queue. However processes have to
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map the memory region of other processes to their own address space, which means that the

total size of the page tables can become large due to excessive mappings.

XPMEM [9] is a Linux kernel module that enables any process to map the memory space of

another process into its own virtual address space. After a process maps the memory region

of another process to its own address space, it can access that memory region using a single

memory copy operation. Similarly to HMPI, this mechanism suffers from a high number of

mappings and growing size of the page tables.

SMARTMAP [24] is another strategy based on address space mapping which is implemented

in some lightweight kernels. Similar to XPMEM, SMARTMAP enables a process to map the

memory of another process into its address space. On SMARTMAP, unlike XPMEM, page table

entries that are used for a remote address mapping are shared. A process can access memory

of another process by updating the corresponding shared entries. Therefore the total size of

the page tables does not grow as in the previous cases. However implementing SMARTMAP in

the Linux kernel is hard since the memory management of the Linux does not allow shared

page table entries.

PGAS (partitioned global address space) programming model [110] is becoming popular as

a suitable programming approach for manycore architectures. In PGAS applications, global

arrays are partitioned amongst participating processes. Access to remote part of a global array,

located on a remote process, takes place through inter-core communication. Most PGAS

languages currently use some shared-memory solutions to implement such communication.

However these solutions lead to either two memory copy operations in case of applying a

shared buffer or large page tables in case of applying a memory mapping schema. In [93],

a new process model named PVAS (partitioned virtual address space), provides a solution

that implements single-copy inter-core communication for PGAS languages without suffering

from the page table size issue. The main idea is to allow a PGAS process to access the memory

region of another process directly, by eliminating the address space boundary between them.

Minimize copying (at compile time)

The study in [25] presents a compiler-based optimization for MPI applications that directly

transfer application data structures from senders to receivers without paying the cost of

message serialization and deserialization on a shared-memory architecture. It exploits the

fact that the code to serialize and deserialize data structures typically does a simple iteration

through the communication buffer. This makes it possible to match the serialization writes in

the sender’s source code with the deserialization reads in the receiver’s source code. Therefore

a data structure can be transferred between senders and receivers using direct memory access.
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Hardware implementation

Implementing message passing on shared-memory architectures requires processor inter-

vention for the data movement and synchronization. By implementing these functions in

hardware, cores are freed from having to interfere with message transfers, which allows them

to perform some other useful work. Pronto message-passing system [58] provides a DMA-

based mechanism for message transfers which performs buffer management and message

synchronization directly in hardware. Messages are moved between local memories of each

tile through hardware-managed message-passing buffers. This shows an advantage over

message-passing architectures with one-way communication primitives, e.g. Intel SCC, where

message synchronization and buffer management are entirely done by the programmer. More-

over modern manycore chips, e.g. Tilera TILE series, provide a mechanism similar in the sense

that a high-performance message-passing system between cores is entirely implemented in

hardware. Therefore the programmer does not need to deal with message synchronization

and buffer management issues of inter-core communication.

1.2.2 Collective communication

A significant performance overhead of the HPC applications is caused by collective communi-

cation, which involves several tasks in one communication. Profiling study in [87] shows that

MPI applications spend more than eighty percent of their communication time in collective

operations. Improving performance of point-to-point communication indirectly improves

the performance of collective operations that are implemented on top of them. However

several proposed techniques directly improve the performance of collective operations. We

briefly present some of these techniques including: taking advantage of kernel facilities, taking

into account topology of on-chip network, direct implementation of collective primitives in

hardware and exploiting architectural features and properties during the design phase.

Leverage kernel facilities

Leveraging kernel facilities have shown to be beneficial for the performance of MPI collectives

on manycores. In [68], the author implements a high-performance broadcast operation on a

shared memory architecture, as an example of MPI collective operations, utilizing the KNEM

kernel facility. As mentioned earlier, KNEM is a Linux kernel module that enables inter-core

communication with only a single memory copy. Recent versions of this module support

multiple processes being able to read or write to the communication buffer simultaneously.

Utilizing this module not only decreases the on-chip traffic by reducing the number of memory

copies, but also results in higher level of parallelism in designing collective operations. Experi-

ments show a significant performance improvement of kernel-assisted collectives compared

to the existing state-of-the-art MPI implementations.
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Topology awareness

With the increasing number of computing cores and memory hierarchies integrated into

a single chip, the distribution of participating MPI processes inside a chip becomes more

critical for the performance of collective operations. As the first try to leverage on-chip

topology information to improve performance of collective operations, [69] proposes an

automated framework for MPI libraries to detect and take advantage of the process distances

during runtime. Based on runtime process distance information, the MPI library constructs

an adaptive communication topology for each collective operation. These topology-aware

operations provide optimal performance for a given placement of participating processes.

This automated optimization approach at the level of the MPI library can complement the

clever process placement approaches mentioned in the context of HPC clusters [29, 53].

Hardware implementation

Hardware support can prevent collective communication from becoming a system bottleneck.

Authors in [108] propose some hardware features to deal with the communication overheads

of on-chip message passing. The main idea is to offload the application from computation-

intensive tasks such as collective operations in a transparent way. They propose an interface

between processing cores and the on-chip network using a hardware module called Small

Network Adapter. Using this interface, they offload the basic mechanism of point-to-point

message passing to the hardware, which is leveraged subsequently to implement collec-

tive operations. Moreover some recent manycore products, e.g. Kalray MPPA [4], Adapteva

Epiphany [1] and Picochip DSP [7], provide hardware support for multicast operation with

a programmer-accessible interface. Such a support can achieve substantial throughput im-

provements and power savings, since cores are not involved in the actual transfer of messages.

Numerous works investigate implementation of other collective protocols. An an example

authors in [67] propose a hardware mechanism for reduction operations. However it targets

hardware protocols, e.g. cache coherency, and provides no software interface. We are not

aware of a manycore chip that provides hardware support for other MPI collectives.

Exploiting hardware features and properties

Implementations of MPI collectives take advantage of shared-memory manycore architectures

in the following ways: (i) collectives are built on top of point-to-point message-passing, which

uses shared memory as its transport layer; or (ii) collectives are implemented directly on top

of the shared memory, where processes can copy a message into the shared memory space so

that all communicating processes can have access to it. This feature can reduce the number

of memory transfers in collective operations which leads to a better performance [44, 71].

Moreover as the number of cores per chip grows, cores exhibit more and more non-uniform

memory access (NUMA) behaviour. A work done in [61], takes the NUMA property into

account for better implementation of MPI collectives.
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Techniques Flavours
improve synchronization increase parallel access (fine-grain locks / RW locks / RCU )

reduce memory contention (exponential backoff / queue locks)
reduce remote memory referrences (server-based / combining)
lock-free synchronization

minimize shared data address range / shares / kernel cores
avoid shared data replication / partitioning
relaxing consistency

Table 1.4: Existing techniques for high-performance kernel data structures on manycores

1.3 High-Performance Kernel Data Structures

Manycore architectures are becoming accessible to main-stream programmers. This in-

troduces important challenges for operating systems designed for these environments in

terms of scalability when the number of cores increases [16, 109, 22, 65, 23]. Some studies

reveal that poor scalability of some operating system services can dominate application per-

formance [43, 105]. An important source for poor scalability of such services is the use of

concurrent kernel data structures, which are accessed by multiple cores at the same time.

In this section, we discuss some of the state-of-the-art techniques proposed to improve the

performance of data structures in manycore environments. Note that we limit ourselves to

general techniques that are applicable to all data structures, and avoid techniques that target

a specific data structure. Performance improvement techniques can be classified into the

following categories: (i) improving synchronization; (ii) minimizing shared data; (iii) avoiding

shared data; and (iv) relaxing consistency. We overview different flavours of each category,

which are summarized in Table 1.4, throughout this section.

1.3.1 Improve synchronization

The usual technique to implement high-performance concurrent data structures in shared-

memory manycore architectures is to improve the synchronization methods which is used for

controlling mutual access to the shared data. This can be done using different approaches: (1)

by increasing the parallel access to the data structure; (2) by reducing the contention on the

cache lines; (3) by delegating the task of synchronization to another set of cores; and (4) by

applying lock free synchronization provided that hardware support is available. Some of these

techniques are extensively used in the Linux operating system [5] and its proposed extension

to support manycores [22]. We go briefly through each approach.

Increase parallel access

The first version of Linux kernel with multi threading support, applied a single lock to protect

critical kernel data structures. Soon it became a major performance bottleneck of the kernel

and was subsequently replaced by fine grain locking [100]. Fine grain locking is a mechanism
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used to break a single lock into smaller locks where each of them is responsible to protect a

single portion of the shared data structure. Operations on the data structure are required to

obtain one or more of these locks in order to read or write the corresponding portion of the

data structure. Fine-grain locking is able to improve the performance of the operating system

due to its ability to let more operations proceed in parallel.

A similar benefit can be provided by having locks that allow multiple concurrent readers,

known as reader-writer locks [32]. They allow reader threads to access the shared data concur-

rently, but exclusively from the writer threads. However depending on the implementation,

either readers or writers might face with starvation if other threads keep performing the oppo-

site operation. Therefore variants of these locks with different fairness properties between

reader and writer threads are also proposed.

The read-copy-update (RCU) algorithm [75] is a special form of reader-writer locks which is

used in Linux kernel. In contrast with conventional locking primitives that provide mutual

exclusion among concurrent threads, no matter whether they are readers or writers, or with

reader-writer locks that allow concurrent reads but not in the presence of writes, RCU supports

a single writer and multiple readers to occur concurrently. This property ensures unconditional

progress for read operations.

Reduce memory contention

An important aspect of designing a lock, is to come up with a strategy if trying to acquire a

taken lock fails. In a unicore machine, the common solution is to give the core to another

thread. However in the case of more than one cores inside a single machine, trying repeatedly

to acquire a lock is needed since the lock can be released at any time by a thread which is

executing in another core. Spinlocks are made based on this technique. Spinning threads can

also be scheduled to get blocked, but this makes sense if the scheduling overhead does not

exceed the spinning overhead and cores have something else to do. However spinning on a

single synchronization variable can be a severe performance bottleneck, since it can introduce

a high memory contention and interconnect traffic.

A solution to deal with pitfalls of spinning is to apply a technique known as exponential

backoff [10]. Using this solution, a thread with unsuccessful spinning attempts, waits for a

while before trying again. The waiting time grows with the number of failed attempts. This

leads to less memory contention and interconnect traffic due to the less unsuccessful attempts.

Exponential backoff can lead to a situation where the lock is free, while all threads trying to

acquire it have been delayed and none of them can make progress. A way to avoid such a

scenario is to create a logical queue of competing threads so that a lock, upon its release, can

be owned by the next waiting thread. Each queue thread can have a flag to inform the next

thread to get the lock upon its release. To obtain a lock, a thread adds itself atomically to the

tail of the waiting queue. Afterwards it spins on the flag of its predecessor to know whether it
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can obtain the lock. Note that each thread spins on its local cacheline in a cache-coherent

architecture. Some variants of queue locks implement the queue using an array [12, 45], while

other variants implement the queue using a list [33, 70, 76]. Several reader-writer locks are

also proposed, applying a similar queue-based technique [77, 56, 91].

Reduce remote memory references

The number of Remote Memory References (RMR) during a synchronization protocol is an

important performance bottleneck in a cache-coherent architecture, since accessing memory

is an order of magnitude more expensive than accessing local caches. The previous techniques

based on queue-locks require a constant number of RMRs to acquire a lock, thanks to the

local spinning. However other solutions try to further reduce the number of RMRs. The key

idea of these solutions is to delegate execution of the critical section to the core where shared

data is located. Two main proposed approaches to achieve this goal include: the server-based

approach [66, 31], and the combining approach [48, 38, 39].

In server-based approach, clients send operations to a dedicated server, that contains the

shared data structure, to execute them on their behalf. The shared data structure remains in

the cache of the server, since it is the only entity that accesses the data structure. Therefore the

only possible RMRs during execution of a critical section, are related to the communication

between the clients and the server. This simple approach is very efficient when a small number

of critical sections are highly contended [66].

An approach based on combining does not require dedicated servers. A so called combiner

thread which holds a lock on a shared data structure, executes operations of other threads on

the critical section in addition to its own. In order to prevent combiner from being starved, if

the number of requests are high, its role changes among different threads over time. Similar

to server-based approach, possible RMRs only happen during the communication between

the combiner and other threads. Despite complexities involved in synchronizing threads, this

approach prevents wasting of CPU cycles in case of no pending critical section requests.

As a further optimization, in [82] authors take advantage of hardware-based message passing

to perform the communication between clients and server/combiner. Their message-passing

variants of server-based and combining approaches show a considerable gain of performance

compared to their shared-memory counterparts, specially in case of small critical sections.

Their results clearly shows benefits of using hardware message passing, which leads to de-

creased number of RMRs during communication between clients and the entity who executes

critical section operations.

Lock-free synchronization

Using locks to provide mutual exclusion inherently suffers from several liveness issues includ-

ing: deadlock, preemption or interruption of the lock holder, priority inversion and convoying.
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Moreover there should be a strategy to release the shared resources in case the lock holder fails.

An alternative to avoid these issues is to provide synchronization without locks, a method

which is known as lock-free synchronization. Concurrent access to a lock-free data structure

guarantees that some thread makes progress independently of the behaviour of other threads.

However lock-free synchronization requires support of special atomic operations in hardware,

such as atomic swap, test-and-set, fetch-and-add, compare-and-swap and load-link/store-

conditional. Lock-free synchronization can provide better performance without suffering

from liveness issues of locks, although contention and starvation are still a possibility. The

difficulty of applying this approach comes from the lack of a general recipe to design a lock-

free data structure, hence each data structure should be studied on its own [49]. The authors

of [73] propose a multicore operating system kernel which is implemented based on lock-free

data structures.

1.3.2 Minimize shared data

To deal with the scalability challenges of traditional operating systems on cache-coherent

manycores with respect to kernel data structures, the Corey operating system [23] proposes

a new policy: the kernel assumes each data structure is modifiable by only one core, unless

applications request a different policy. In this way applications are in charge of controlling

sharing of data structures. The application is the entity that has enough information to make

sharing decisions. This can include operating system services, application-level libraries and

user-level applications. Therefore the operating system pays the sharing costs (e.g. cache

misses) only when the application logic finds it necessary. To achieve this goal, they introduced

three operating system abstractions: address ranges, shares and kernel cores. We introduce

each abstraction briefly.

Address ranges allow applications to decide which portions of the address space is private to

each core and which are shared amongst all. Accessing private regions does not suffer from

contention and invalidations of TLB on other cores. Declaration of shared regions allows

sharing of hardware page tables. This reduces the number of page faults, which can happen

when a core references pages that are present in physical memory but are not mapped in the

hardware page table. Shares are lookup tables for kernel data structures that allow applications

to control which data structures are visible to different cores. Finally kernel cores are dedicated

cores that are asked by applications to run a specific kernel task. Kernel cores avoid contention

on the data that are used by their specified function.

1.3.3 Avoid shared data

Recent operating system prototypes targeting architectures with a very large number of cores,

consider a fundamentally different approach to implement kernel data structures. They look

at the operating system as a distributed system of functional units, communicating explicitly

using message passing. Implementation of kernel data structures avoids sharing to provide
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scalability through different approaches: while some consider replication of a shared data

structure on client cores, others consider a set of servers to provide the functionality of a

shared data structure.

Barrelfish [16] considers the operating system as a distributed system of cores, communicating

with each other through explicit message passing. Unlike kernel data structures in traditional

operating systems, which are shared and protected by locks, kernel data structures in Barrelfish

are replicated across cores. Therefore any potentially shared data structure is considered as

if it is a local replica. Consistency amongst replicas is maintained by exchanging messages.

Their claim to improve scalability by replication comes from reducing the interconnect traffic,

memory contention, synchronization overhead and access latencies.

FOS [109] and Tessellation [65] operating systems consider a set of servers to provide func-

tionality of kernel data structures to applications through message-passing requests. Kernel

data structures can be replicated or partitioned amongst servers to further improve the perfor-

mance. This architecture behaves similarly to the internet servers, which allows them to scale

up to a large number of machines.

1.3.4 Relaxing consistency

All previous approaches try to improve the implementation of a kernel data structure to

achieve a better performance. However performance can also be improved through relaxing

the semantics of a data structure. As the number of cores grows, similarly to the internet

services, this relaxation can be more beneficial. Although the concurrent data structures

designed for shared memory architectures mostly ensure linearizability [49], recent manycore

operating systems might tolerate kernel data structures with weaker consistency criteria.

As an example, an implementation of a replicated naming service for the FOS operating

system ensures eventual consistency [18]. In [92], authors claim that relaxation of consistency

criteria is a necessary step towards providing scalable data structures for future manycores and

propose a concurrent quiescent-consistent stack as their proof of concept. However relaxing

the consistency semantics of different data structures on manycore architectures is not yet a

well studied topic.

1.4 Thesis Overview

In this thesis, we consider a message-passing programming model on top of manycore ar-

chitectures with programmer-accessible message-passing support in hardware. We study

important performance bottlenecks of HPC applications and operating systems designed

for these environments, i.e. MPI communication primitives and kernel data structures re-

spectively. More specifically, we study high-performance MPI communication primitives,

considering the case of broadcast, as well as high-performance kernel data structures, consid-

ering the case of a map, in two different chapters. We overview the context and contributions
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of each chapter.

1.4.1 High-performance broadcast

High Performance Computing (HPC) is defined as employing aggregating computing power

to deliver a much higher performance than one can obtain from a typical workstation in

order to solve computationally-intensive problems in science, engineering, and business.

Single Program Multiple Data (SPMD) programming, where multiple independent processors

simultaneously execute the same program in parallel, is a popular programming technique

for implementation of HPC applications. The Message Passing Interface (MPI) [80] is the de

facto standard for programming SPMD HPC applications. MPI defines a set of primitives for

point-to-point as well as collective communication, i.e. operations involving more than two

parties, between processes. Performance of collective operations have been shown to be an

important bottleneck for MPI applications [86].

Architecture of recent manycore chips, e.g. the low latency and high throughput of a NoC as

well as lack of cache coherency between the cores, makes them very similar to parallel HPC

clusters. However they are fabricated inside a much smaller space while consuming much

less energy. In order to provide inter-process communication, manycore HPC applications

take advantage of different MPI libraries which are ported to these environments. However,

porting of MPI communication libraries to a specific manycore platform, without tailoring the

design of communication primitives to the underlying architecture, can lead to non-optimal

performance.

The Intel Single-Chip Cloud Computer (SCC) is an example of a message-passing manycore

chip [52] that resembles an HPC cluster. It integrates 24 2-core tiles on a single chip connected

by a high-performance 2D-mesh NoC. Each tile has its own private memory, hence there is

no coherency among the caches of different cores. It is provided with on-chip low-latency

memory buffers, called Message Passing Buffers (MPB), physically distributed across the

tiles. Remote Memory Access (RMA) to these MPBs allows fast inter-core communication

using one-sided put and get primitives. Several works study the implementation of point-

to-point communications on the Intel SCC, but only little attention has been paid to the

implementation of collective operations.

In this chapter, we investigate a high-performance implementation for the most useful MPI

collective operation, i.e. broadcast, on a message-passing manycore chip, i.e. the Intel

SCC. The broadcast operation allows one process to send a message to all processes in the

application. Considering the SPMD paradigm, e.g. MPI applications, the broadcast operation

is executed by having all processes in the application call the communication function with

matching arguments: the sender calls the broadcast function with the message to broadcast,

while the receiver processes call it to specify the reception buffer. We focus on understanding

how to exploit the on-chip RMA-based communication to come up with a high-performance

broadcast algorithm.
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Contributions of this chapter include:

• Identifying contention sources on the Intel SCC

• Coming up with a new contention-aware broadcast algorithm based on on-chip RMA

• Evaluating the new algorithm against existing solutions and confirm its significant gains

1.4.2 High-performance map

Manycore chips can be seen as ordinary computing platforms to run the general-purpose

applications, where a global operating system abstracts away the architectural complexities

from the mainstream programmer. Traditional kernel data structures, located on a shared

address space, have been shown to be an important performance bottleneck for the operating

systems designed for these environments [23]. The main performance penalties come from

contention on the locks as well as unnecessary costs of cache coherency. These costs can

increase linearly with the grow in number of cores.

In order to avoid the scalability issues of shared kernel data structures, several manycore

operating systems prototypes [16, 109, 65] consider operating systems as a distributed sys-

tem where different entities communicate with each other using explicit message passing,

therefore avoiding sharing data in a shared address space. In a message-passing system,

partitioning and replication are the two main approaches to improve the throughput of con-

current data structures [36]. Using partitioning, a data structure is partitioned among a set

of servers that answer clients requests. Using replication, each client has a local copy of data

structure in its private memory and replicas maintain their consistency by exchanging mes-

sages amongst themselves. Both strategies have been considered in recent message-passing

operating systems for manycores, but performance comparisons are lacking.

Among different data structures, maps are heavily used in many systems including operating

system kernels [60]. Their performance is often crucial to the operating systems and have

been shown to be an important performance bottleneck [16, 109]. Implementation of a map

can benefit from both partitioning and replication: since operations on different keys are

independent, maps are easily partitionable [19]; and because a large majority of operations are

usually lookup operations [14], replication can help handling a large number of local lookup

requests concurrently.

In this chapter, we present a performance comparison of replication and partitioning for

the implementation of strongly-consistent concurrent maps in message-passing manycores.

Note that existing studies made in distributed message-passing systems are only of little

help because the high performance of NoCs provides a completely different ratio between

computation and communication costs compared to large scale distributed systems.

Contributions of this chapter include:
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• Devising different strongly-consistent concurrent map algorithms to represent the

design space of partitioning and replication

• Coming up with a performance model to be able to compare different algorithms

independently of their underlying architecture

• Evaluating our algorithms using our model under different assumptions and settings

and showing that, under strong consistency, replication can outperform partitioning

only in a narrow domain
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2 High-Performance Broadcast

Publication : D. Petrovic, O. Shahmirzadi, T. Ropars, and A. Schiper. High-Performance RMA-

Based Broadcast on the Intel SCC. In 24th ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA), Pittsburg, PA, USA, June 2012.

Manycore environments could be seen as HPC clusters, providing a high degree of parallelism

with much lower energy consumption. Performance of HPC applications is directly affected by

efficiency of collective operations, such as broadcast. The Intel Single-Chip Cloud Computer

(SCC) is a prototype of a message-passing manycore chip. It offers the ability to move data

between on-chip Message Passing Buffers (MPB) using Remote Memory Access (RMA). In

this chapter, we study how to make use of the MPBs to implement an efficient broadcast

algorithm for the SCC. We propose OC-Bcast (On-Chip Broadcast), a pipelined k-ary tree

algorithm tailored to exploit the parallelism provided by on-chip RMA. Experimental results

show that, compared with the state-of-the-art solutions, OC-Bcast attains almost three times

better throughput, and improves latency by at least 27%. These performance gains highlight

the benefits of exploiting hardware features of the target platform: Our broadcast algorithm

take direct advantage of RMA, unlike the other broadcast algorithms based on a higher-level

send/receive interface.

2.1 Introduction

The Intel Single-Chip Cloud Computer (SCC) is an example of a message-passing manycore

chip [52]. The SCC integrates 24 2-core tiles on a single chip connected by a 2D-mesh NoC. It

is provided with on-chip low-latency memory buffers, called Message Passing Buffers (MPB),

physically distributed across the tiles. Remote Memory Access (RMA) to these MPBs allows fast

inter-core communication.

The natural choice to program a high-performance message-passing system is to use Single

Program Multiple Data (SPMD) algorithms. The Message Passing Interface (MPI) [80] is the de

facto standard for programming SPMD HPC applications. MPI defines a set of primitives for

19



Chapter 2. High-Performance Broadcast

point-to-point communication, and also defines a set of collective operations, i.e. operations

involving a group of processes. Several works study the implementation of point-to-point

communications on the Intel SCC [104, 90, 85], but only little attention has been paid to

the implementation of collective operations. This chapter studies the implementation of

collective operations for the Intel SCC. It focuses on the broadcast primitive (one-to-all), with

the aim of understanding how to efficiently leverage on-chip RMA-based communication.

Note that the need for efficient collective operations for manycore systems, especially the

need for efficient broadcast, goes far beyond the scope of MPI applications, and is of general

interest in these systems [99].

We are investigating the implementation of efficient broadcast algorithms for a message-

passing manycore chip, such as the Intel SCC. The broadcast operation allows one process to

send a message to all processes in the application. Considering the SPMD paradigm, e.g. MPI

applications, the broadcast operation is executed by having all processes in the application

call the communication function with matching arguments: the sender calls the broadcast

function with the message to broadcast, while the receiver processes call it to specify the

reception buffer.

To take advantage of on-chip RMA, we propose OC-Bcast (On-Chip Broadcast), a pipelined

k-ary tree algorithm based on one-sided communication: k processes get the message in

parallel from their parent to obtain a high degree of parallelism. The degree of the tree is

chosen to avoid contention on the MPBs. To provide efficient synchronization between a

process and its children in the tree, we introduce an additional binary notification tree. Double

buffering is used to further improve the throughput.

We confirm the gains of our broadcast algorithms through experiments. The comparison

of OC-Bcast with the RCCE_comm binomial tree and scatter-allgather algorithms based on

two-sided communication shows that: (i) our algorithm has at least 27% lower latency than

the binomial tree algorithm; (ii) it has almost 3 times higher peak throughput than the scatter-

allgather algorithm. These results clearly show that collective operations for message-passing

manycore chips should be based on one-sided communication in order to fully exploit the

hardware resources. The main reason is that OC-Bcast reduces the amount of data moved

between the off-chip memory and the MPBs on the critical path.

To sum up, contributions of this chapter include:

• Identifying contention sources on the Intel SCC: we identify three possible sources of

contention on this platform, which include the NoC mesh, the off-chip memory and

the MPBs. Our evaluations show that at the current scale, excessive load on the network

links and on the off-chip memory do not degrade the performance. However evaluations

show that more than a certain number of cores accessing the same MPB at the same

time can create measurable contention. In our algorithms, we take into account this

property to limit the number of cores who access the same MPB simultaneously.
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• Coming up with a new contention-aware broadcast algorithm based on on-chip RMA:

to exploit the on-chip RMA, we propose a pipelined k-ary tree algorithm based on

one-sided communication where k processes get the message in parallel from their

parent’s MPB to obtain a high degree of parallelism. The degree of the tree is chosen to

avoid contention on the MPBs. To provide efficient synchronization between a process

and its children in the tree, we introduce an additional binary notification tree. Double

buffering technique is added to further improve the throughput.

• Evaluating the new algorithm against existing solutions and confirm its significants gains:

to confirm the benefits of our algorithm, we compare its latency and throughput against

the best existing solutions through experiments. Our results show that our algorithm

has at least 27% lower latency as well as almost 3 times higher peak throughput than the

state-of-the-art solutions. These results clearly show that design of collective operations

for message-passing manycore chips should take into account the specific hardware

features of the target architecture to achieve optimal performance.

This chapter is structured as follows. In Section 2.2 we describe the architecture and the com-

munication features of our testbed architecture. Section 2.3 presents assumptions and goal

of this chapter. Section 2.4 is devoted to our RMA-based broadcast algorithm. Experimental

evaluations on our testbed architecture are presented in Section 2.5. Finally related work are

discussed in 2.6.

2.2 The Intel SCC

The SCC is a general-purpose manycore prototype developed by Intel Labs. We consider

this platform as the testbed of our studies in this part. In this section we describe the SCC

architecture and inter-core communication.

2.2.1 Architecture

The cores and the NoC of the SCC are depicted in Figure 2.1. There are 48 Pentium P54C

cores, grouped into 24 tiles (2 cores per tile) and connected through a 2D mesh NoC. Tiles are

numbered from (0,0) to (5,3). Each tile is connected to a router. The NoC uses high-throughput,

low-latency links and deterministic virtual cut-through X-Y routing [54]. Memory components

are divided into (i) message passing buffers (MPB), (ii) L1 and L2 caches, as well as (iii) off-chip

private memories. Each tile has a small (16KB) on-chip MPB equally divided between the

two cores. The MPBs allow on-chip inter-core communication using RMA: each core is able

to read and write in the MPB of all other cores. There is no hardware cache coherence for

the L1 and L2 caches. By default, each core has access to a private off-chip memory through

one of the four memory controllers, denoted by MC in Figure 2.1. The off-chip memory is

physically shared, so it is possible to provide portions of shared memory by changing the

default configuration. However we view the SCC as a pure message-passing platform. In
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Figure 2.1: SCC architecture

addition, an external programmable off-chip component (FPGA) is provided to add new

hardware features to the prototype.

2.2.2 Inter-core communication

To leverage on-chip RMA, cores can transfer data using the one-sided put and get primitives

provided by the RCCE library [102]. Using put, a core (a) reads a certain amount of data from

its own MPB or its private off-chip memory and (b) writes it to some MPB. Using get, a core (a)

reads a certain amount of data from some MPB and (b) writes it to its own MPB or its private

off-chip memory. The unit of data transmission is the cache line, equal to 32 bytes. If the data

is larger than one cache line, it is sequentially transferred in cache-line-sized packets. During

a remote read/write operation, each packet traverses all routers on the way from the source to

the destination. The local MPB is accessed directly or through the local router1. Cores are also

able to notify each other using inter-process interrupts (IPI).

2.3 Assumptions and Goal

The study assumes a fault-free manycore architecture where a large set of single-threaded

cores are connected through a network on chip. We assume that each core executes a single

thread and that threads do not migrate between cores. Cores have their own on-chip private

memory and can only communicate through message passing. Communication channels are

asynchronous and FIFO. Messages are composed of a set of words and can have various size.

Two one-way communication primitives are available to transfer messages: put and g et .

Each core is able to have remote memory access (RMA) to on-chip message-passing buffer of

other cores using this two operations. Operation ’put src −→ dest’ writes src (local memory or

local MPB) to the dest (remote MPB) and operation ’get dest ←− src’ writes src (remote MPB)

to the dest (local memory or local MPB).

This chapter studies high-performance broadcast primitive in SPMD programs. We consider

1Direct access to the local MPB is discouraged because of a bug in the SCC hardware.
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latency and throughput as our performance metrics. The source and destinations participate

in broadcast by calling the broadcast function broadcast(msg,root), where root is the source

process and msg is the the message buffer containing the original message on the root and

the received message on the destinations. Therefore the root is known to all destinations.

2.4 RMA-based Broadcast

To simplify the presentation, we assume first that messages to be broadcast fit in the MPB.

This assumption is later removed. The core idea of the algorithm is to take advantage of the

parallelism that can be provided by the RMA operations. When a core c wants to send message

msg to a set of cores cSet , it puts msg in its local MPB, so that all the cores in cSet can get

the data from there. If all gets are issued in parallel, this can dramatically reduce the latency

of the operation compared to a solution where, for instance, the sender c would put msg

sequentially in the MPB of each core in cSet . However, having all cores in cSet executing get

in parallel may lead to contention. To avoid contention, we limit the number of parallel get

operations to some number k, and base our broadcast algorithm on a k-ary tree; the core

broadcasting a message is the root of this tree. In the tree, each core is in charge of providing

the data to its k children: the k children get the data in parallel from the MPB of their parent.

Note that the k children need to be notified that a message is available in their parent’s MPB.

This is done using a flag in the MPB of each of the k children. The flag, called notifyFlag, is

set by the parent using put once the message is available in the parent’s MPB. Setting a flag

involves writing a very small amount of data to remote MPBs, but nevertheless sequential

notification could impair performance especially if k is large. Thus, instead of having a parent

setting the flag of its k children sequentially, we introduce a binary tree for notification to

increase the parallelism. This choice is not arbitrary: It can be shown analytically that a binary

tree provides the lowest notification latency, when compared to trees of higher output degrees.

Figure 2.2 illustrates the k-ary tree used for message propagation, and the binary trees used for

notification. C0 is the root of the message propagation tree; the subtree with root C1 is shown.

Node C0 notifies its children using the binary notification tree shown at the right of Figure 2.2.

Node C1 notifies its children using the binary notification tree, as depicted at the bottom of

Figure 2.2.

Apart from the notifyFlag used to inform the children about message availability in their

parent’s MPB, another flag is needed to notify the parent that the children have got the message

(in order to free the MPB). For this we use k flags in the parent MPB, called doneF l ag , each

set by one of the k children.

To summarize, considering the general case of an intermediate core, i.e., the core that is

neither the root nor a leaf, a core is performing the following steps. Once it has been notified

that a new chunk is available in the MPB of its parent Cs : (i) it notifies its children, if any, in

the notification tree of Cs ; (ii) it gets the chunk in its own MPB; (iii) it sets its doneF l ag in the

MPB of Cs ; (iv) it notifies its children in its own notification tree, if any; (v) it gets the chunk
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Figure 2.2: k-ary message propagation tree (k = 7) and binary notification trees

from its MPB to its off-chip private memory.

Finding an efficient k-ary tree taking into account the topology of the NoC is a complex

problem [17] and it is orthogonal to the design of OC-Bcast. It is outside the scope of this

chapter since our goal is to show the advantage of using RMA to implement broadcast. In the

rest of this chapter, we assume that the tree is built using a simple algorithm based on the core

ids: Assuming that s is the id of the root and P the total number of processes, the children of

core i are the cores with ids ranging from (s + i k +1)mod P to (s + (i +1)k)mod P . Figure 2.2

shows the tree obtained for s = 0, P = 12 and k = 7.

Broadcasting a message larger than an MPB can easily be handled by decomposing the large

message in chunks of MPB size, and broadcasting these chunks one after the other. This can

be done using pipelining along the propagation tree, from the root to the leaves.

We can further improve the efficiency of the algorithm (throughput and latency) by using a

double-buffering technique, similar to the one used for point-to-point communication in

the iRCCE library [30]. Up to now, we have considered messages split into chunks of MPB

size,2 which allows an MPB buffer to store only one message chunk. With double-buffering,

messages are split into chunks of half the MPB size, which allows an MPB buffer to store two

message chunks. The benefit of double-buffering is easy to understand. Consider message

msg split into chunks ck1 to ckn being copied from the MPB buffer of core c to the MPB buffer

of core c ′. Without double buffering, core c copies cki to its MPB in a step r ; core c ′ gets cki

in step r +1; core c copies to its MPB cki+1 in step r +2; etc. If each of these steps takes δ

time units, the total time to transfer the message is roughly 2nδ. With double buffering, the

message chunks are two times smaller and so, message msg is split into chunks ck1 to ck2n .

In a step r , core c can copy cki+1 to the MPB while core c ′ gets cki . If each of these steps takes

2Of course, some MPB space needs to be allocated to the flags.
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δ/2 time units, the total time is roughly only nδ.

The pseudocode of OC-Bcast for a core c is presented in Algorithm 1. To broadcast a message,

all cores invoke the broadcast function (line 20). The input variables are msg , a memory

location in the private memory of the core, and r oot , the id of the core broadcasting the

message. The broadcast function moves the content of msg on the r oot , to the private

memory of all other cores.

The pseudocode assumes that the total number of processes is P and that the degree of

the data propagation tree used by OC-Bcast is k. Each core c has a unique data parent

d at aPar entc in the data propagation tree, and a set of children d at aC hi l dr enc . The set

noti f yC hi ldr enc includes all the cores that core c should notify during the algorithm. Note

that a core c can be part of several binary trees used for notifications. In the example of

Figure 2.2, if we consider core c1: d at aPar entc1 = c0; d at aC hi l dr enc1 = {c8,c9,c10,c11};

noti f yC hi ldr enc1 = {c3,c4,c8,c9}. These sets are computed at the beginning of the broad-

cast (line 15). MPBs are represented by the global variable MPB where MPB [c] is the MPB of

core c. A noti f yF l ag and k doneF l ag (one per child) are allocated in each MPB to manage

synchronizations between cores. The rest of the MPB space is divided into two buffers to

implement double buffering.

The br oadcast_chunk function is used to broadcast a chunk. Each chunk is uniquely iden-

tified using a tuple <bcast I D,chunkI D>. Chunk ids are used for notifications. To imple-

ment double buffering, the two buffers in the MPB are used alternatively: for the chunk

<bcast I D,chunkI D>, the buffer ’chunkI D mod 2’ is used. By setting the noti f yF l ag of

a core c to <bcast I D ,chunkI D>, core c is informed that the chunk <bcast I D ,chunkI D> is

available in the MPB of its d at aPar entc . Notifications are done in two steps. First, if a core

is an intermediate node in a binary notification tree, it forwards the notification in this tree

as soon as it receives it (line 28): in Figure 2.2, core c1 notifies c3 and c4 when it gets the

notification from core c0. Then, after copying the chunk to its own MPB, it can start notifying

the nodes that will get the chunk from its MPB (line 32): in Figure 2.2, core c1 then notifies c8

and c9. When a core finishes getting a chunk, it informs its parent using the corresponding

doneF l ag (line 30). A core can copy a new chunk chunkI D in one of its MPB buffers, when

all its children in the message propagation tree got the previous chunk (chunkI D −2) that

was in the same buffer (line 22). Note that the bcast I D is needed to be able to differentiate

between chunks of two messages that are broadcast consecutively. The broadcast function on

core c returns when c has got the last chunk in its private memory (line 34), and it knows that

the data in its MPB buffers is not needed by any other core (line 19).

Contention issues

We identify two possible sources of contention related to RMA communication: the NoC

mesh and the MPBs. Generally speaking, concurrent accesses to the off-chip private memory

could be another source of contention. However, in the configuration without shared memory,
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assumed throughout this chapter, each core has one memory rank for itself and there is no

measurable performance degradation even when the 48 cores are accessing their private

portion of the off-chip memory at the same time [104]. For better understanding of the

possible sources of contention, we do the following experiments (Experimental settings are

detailed in Section 2.5).

To understand if the mesh could be subject to contention, we have run an experiment that

highly loads one link. We selected the link between tile (2,2) and tile (3,2). To put a maximum

stress on this link, all cores except the ones located on these two tiles are repeatedly getting

128 cache lines from one core in the third row of the mesh, but on the opposite side of the

mesh compared to their own location. For instance, a core located on tile (5,1) gets data from

tile (0,2). Because of X-Y routing, all data packets go through the link between tile (2,2) and

tile (3,2). The measurement of a MPB-to-MPB get latency between tile (2,2) and tile (3,2) with

the heavily loaded link did not show any performance drop, compared to the load-free get

performance. Therefore, at the current scale, the network cannot be a source of contention.

Contention could also arise from multiple cores concurrently accessing the same MPB. To

evaluate this, we have run a test where cores are getting data from the MPB of core 0 (on

tile (0,0)), and another test where cores are putting data into the MPB of core 0. For these

tests, we select two representative scenarios of the access patterns in our broadcast algorithm

presented in Section 2.4: parallel gets of 128 cache lines and parallel puts of 1 cache line. Note

that having parallel puts of a large number of cache lines is not a realistic scenario since it

would result in several cores writing to the same location. Figure 2.3(a) shows the impact on

latency when increasing the number of cores executing get in parallel. Figure 2.3(b) shows the

same results for parallel put operations. The x axis represents the number of cores executing

get or put at the same time. The results are the average values over millions of iterations. In

addition to the average latency, the performance of each core is displayed to better highlight

the impact of contention (small circles in Figure 2.3). When all 48 cores are executing get

or put in parallel, contention can be clearly noticed. In this case, the slowest core is more

than two times slower than the fastest one for get, and more than four times slower for a put

operation. Moreover we observed non-deterministic overhead after the contention threshold,

by running the same experiment on other cores than core 0. It can be noticed that contention

does not equally affect all cores, which makes it hard to model.

These experiments indicate that MPB contention has to be taken into account in the design of

algorithms for collective operations. They show that up to 24 cores accessing the same MPB do

not create any measurable contention. In our algorithms, this property justifies the necessity

of limiting the number of the children, parameter k, at each level of the data propagation tree

to avoid contention.
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Figure 2.3: MPB contention evaluation

2.5 Experimental Evaluation

In this section we evaluate the performance of OC-Bcast on Intel SCC and compare it with

the two state-of-the-art broadcast algorithms based on two-sided communication: binomial

tree and scatter-allgather. We consider their implementations from the RCCE_comm library

[28]. RCKMPI library [101] uses the same algorithms, but still keeps their original MPICH2

implementation, not optimized for the SCC. Also, our experiments have confirmed that

RCCE_comm currently performs better than RCKMPI. Thus, we have chosen to conduct the

experiments using RCCE_comm, as the fastest available implementation of collectives on the

SCC, to the best of our knowledge.

Our comparison metrics are latency and throughput of the broadcast primitive. The latency

of the broadcast primitive is defined as the time elapsed between the call of the broadcast

function by the source, and the time at which the message is available at all cores (including

the source), i.e., when the last core returns from the function. The throughput of the broadcast

primitive is defined as the number of broadcasts completed, i.e. the corresponding message

arrived at all destinations, by a single source in one second.

2.5.1 Setup

The experiments have been done using the default settings for the SCC: 533 MHz tile frequency,

800 MHz mesh and DRAM frequency and the standard LUT entries. We use the sccKit version

1.4.1.3, running a custom version of sccLinux, based on Linux 2.6.32.24-generic. We fix the

chunk size used by OC-Bcast to 96 cache lines, which leaves enough space for flags (for any

choice of k). The presented experiments use core 0 as the source. Selecting another core as the

source gives similar results. A message is broadcast from the private memory of core 0 to the

private memory of all other cores. The results are the average values over 10’000 broadcasts,

discarding the first 1’000 results. For time measurement, we use global counters accessible by

all cores on the SCC, which means that the timestamps obtained by different cores are directly
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Algorithm 1 OC-Bcast (code for core c)
Global Variables:
1: P {total number of cores}
2: k {data tree output degree}
3: MPB [P ] {MPB [i ] is the MPB of core i }
4: noti f yF l ag {MPB address of the flag, of the form <bcastID,chunkID>, used to notify data availability}
5: doneF l ag [k] {MPB address of the flags, of the form <bcastID,chunkID>, used to notify broadcast completion of a

chunk}
6: bu f f er [2] {MPB address of the two buffers used for double buffering}

Local Variables:
7: bcast I D ← 0 {current broadcast id}
8: chunkI D {current chunk ID}
9: d at aPar entc {core from which c should get data}

10: d at aC hi l dr enc {set of data children of c}
11: noti f yC hi ldr enc {set of notify children of c}

12: broadcast (msg , r oot)
13: bcast I D ← bcast I D +1
14: chunkI D ← 0
15:

{
d at aPar entc ,d at aC hi l dr enc ,noti f yC hi ldr enc

}← prepareTree(r oot , k, P )
16: for all chunks at offset i of msg do
17: chunkI D ← chunkI D +1
18: broadcast_chunk(msg [i ], r oot)
19: wait until ∀chi l d ∈ d at aC hi l dr enc : MPB [c].doneF l ag [chi l d ] = (bcast I D,chunkI D)

20: broadcast_chunk (chunk, r oot)
21: if chunkI D > 2 then
22: wait until ∀chi l d ∈ d at aC hi ldr enc : MPB [c].doneF l ag [chi l d ] ≥ (bcast I D,chunkI D −2)
23: if c = r oot then
24: put chunk −→ MPB [c].bu f f er [chunkI D mod 2]
25: else
26: wait until MPB [c].noti f yF l ag ≥ (bcast I Dc ,chunkI Dc )
27: for all chi l d such that chi l d ∈ noti f yC hi ldr enc \ d at aC hi ldr enc do
28: put (bcast I D,chunkI D) −→ MPB [chi l d ].noti f yF l ag
29: get MPB [c].bu f f er [chunkI D mod 2] ←− MPB [d at aPar entc ].bu f f er [chunkI D mod 2]
30: put (bcast I D,chunkI D) −→ MPB [d at aPar entc ].doneF l ag [c]
31: for all chi l d such that chi l d ∈ noti f yC hi ldr enc ∩d at aC hi l dr enc do
32: put (bcast I D,chunkI D) −→ MPB [chi l d ].noti f yF l ag
33: if c 	= r oot then
34: get chunk ←− MPB [c].bu f f er [chunkI D mod 2]

comparable. To avoid cache effects in repeated broadcasts, we preallocate a large array and in

every broadcast we operate on a different (currently uncached) offset inside the array.

2.5.2 Evaluation of OC-Bcast

We have tested the algorithms with message sizes ranging from 1 cache line (32 bytes) to 32’768

cache lines (1 MiB). We first focus on the latency of short messages, and then analyze the

throughput of large messages. Regarding the binomial tree and scatter-allgather algorithms,

our experiments have confirmed that the former performs better with small messages, whereas

the latter is a better fit for large messages. Therefore, we compare OC-Bcast only with the

better one for a given message size. We consider three values of k (2, 7, 47) to represent

different OC-Bcast tree depths.
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Figure 2.4: Message propagation using binomial tree

Latency of OC-Bcast vs. binomial tree broadcast for small messages

The binomial tree broadcast algorithm is based on a recursive tree. The set of nodes is divided

into two subsets of 
P
2 � and �P

2  nodes. The root, belonging to one of the subsets, sends the

message to one node from the other subset. Then, broadcast is recursively called on both

subsets. Figure 2.4 depicts the mechanism of this algorithm.

Figure 2.5(a) shows the latency of messages of size m ≤ 2Moc . Even for messages of one cache

line, OC-Bcast with k = 7 provides 27% improvement compared to the binomial tree (16.6μs

vs. 21.6μs). As expected, the difference grows with the message size, since a larger message

implies more off-chip memory accesses in the RCCE_comm algorithms, but not in OC-Bcast.

It can also be noticed that large values of k help improving the latency in OC-Bcast by reducing

the depth of the tree. For message size between 96 and 192 cache lines, the latency of OC-Bcast

with k = 7 is around 25% better than with k = 2.

Throughput of OC-Bcast vs. scatter-allgather broadcast for large messages

The scatter-allgather broadcast algorithm has two phases. During the scatter phase, the

message is divided into P equal slices3, where P is total number of cores, of size ms = m/P .

Each core then receives one slice of the original message. The second phase of the algorithm

is allgather, during which a node should obtain the remaining P −1 slices of the message.

The allgather phase implemented in RCCE_comm uses the Bruck algorithm [26]: At each

step, core i sends to core i −1 the slices it received in the previous step. Figure 2.6 depicts the

mechanisms of this algorithm.

3For simplicity, we assume that P |m.
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Figure 2.5: Experimental comparison of broadcast algorithms (k=x : OC-Bcast with the corre-
sponding value of k; binomial : RCCE_comm binomial; s-ag : RCCE_comm scatter-allgather)

The results of the throughput evaluation are given in Figure 2.5(b) (note that the x-axis is

logarithmic). OC-Bcast gives an almost threefold throughput increase compared to the two-

sided scatter-allgather algorithm. The OC-Bcast performance drop for a message of 97 cache

lines is due to the chunk size. Recall that the size of a chunk in OC-Bcast is 96 cache lines.

A message of 97 cache lines is divided into a 96 cache lines chunk and 1 cache line chunk.

The second chunk is then limiting the throughput. For large messages, this effect becomes

negligible since there is always at most one non-full chunk.

2.6 Related Work

A message-passing manycore chip, such as the SCC, is very similar to many existing HPC sys-

tems since it gathers a large number of processing units connected through a high-performance

RMA-based network. Broadcast has been extensively studied in these systems. Algorithms

based on a k-ary tree have been proposed [17]. In MPI libraries, binomial trees and scatter-

allgather [94] algorithms are mainly considered [41, 98]. A binomial tree is usually selected to

provide better latency for small messages, while the scatter-allgather algorithm is used to opti-

mize throughput for large messages. These solutions are implemented on top of send/receive

point-to-point functions and do not take topology issues into account. This is not an issue

for small to medium scale systems like the SCC. However, it has been shown that for mesh

or torus topologies, these solutions are not optimal at large scale: non-overlapping spanning

trees can provide better performance [11].

To take advantage of the RMA capabilities of high-performance network interconnects such

as InfiniBand [13], one-sided put and get operations, have been introduced [80]. In one-

sided communication, only one party (sender or receiver) is involved in the data transfer

and specifies the source and destination buffers. One-sided operations increase the design
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space for communication algorithms, and can provide better performance by overlapping

communication and computation. On the SCC, RMA operations on the MPBs allow the

implementation of efficient one-sided communication [74].

Most high-performance networks provide Remote Direct Memory Access (RDMA) [11, 13],

i.e., the RMA operations are offloaded to the network devices. Some works try to directly

take advantage of these RDMA capabilities to improve collective operations [47, 51, 63, 97].

However, it is hard to reuse the results presented in these works in the context of the SCC for

two main reasons: (i) they leverage hardware specific features not available on the SCC, i.e.,

hardware multicast [51, 63], and (ii) they make use of large RDMA buffers [47, 97], whereas the

on-chip MPBs have a very limited size (8 KB per core). Note also that accesses to the MPBs are

not RDMA operations since message copying is performed by the core issuing the operation.

Two-sided communication can be implemented on top of one-sided communication [64].

This way, collective operations based on two-sided communication can benefit from efficient

one-sided communication. Currently available SCC communication libraries adopt this

solution. The RCCE library [74] provides efficient one-sided put/get operations and uses them

to implement two-sided send/receive communication. The RCCE_comm library implements

collective operations on top of two-sided communication [28]: the RCCE_comm broadcast

algorithm is based on a binomial tree or on scatter-allgather depending on the message size.

The same algorithms are used in the RCKMPI library [101].

The assumption of having only one program running at a time, as well as synchronous com-

munication among cores, which holds for HPC applications, is not valid in general-purpose

distributed systems. Therefore, using interrupts for asynchronous communication is a nat-

ural requirement for porting such systems to the SCC. Examples of SCC software relying

upon inter-core interrupts are numerous [59, 62, 81, 102, 106]. However, to the best of our
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knowledge, there are very few works that leverages Inter Process Interrupts (IPI) for collective

communication. In [84] we took advantage of parallel IPIs on the SCC to implement high-

performance asynchronous broadcast based on OC-Bcast. We show that although the use of

IPIs for point-to-point communication is not efficient, but they could be useful to implement

high-performance asynchronous collectives, e.g. broadcast.
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3 High-Performance Map

Publication : O. Shahmirzadi, T. Ropars and A. Schiper. High-Throughput Maps on Message-

Passing Manycore Architectures: Partitioning versus Replication, In 20th International Euro-

pean Conference on Parallel Processing (EUROPAR), Porto, Portugal, August 2014.

The advent of manycore architectures raises new scalability challenges for concurrent ap-

plications and operating systems. Implementing scalable data structures is one of them.

Several manycore architectures provide hardware message passing as a means to efficiently ex-

change data between cores. In this chapter, we study the implementation of high-throughput

concurrent maps in message-passing manycores. Partitioning and replication are the two

approaches to achieve high throughput in a message-passing system. This chapter presents

and compares different strongly-consistent map algorithms based on partitioning and replica-

tion. To assess the performance of these algorithms independently of architecture-specific

features, we propose a communication model of message-passing manycores to express the

throughput of each algorithm. The model is validated through experiments on a 36-core

TILE-Gx8036 processor. Evaluations show that replication outperforms partitioning only in a

narrow domain.

3.1 Introduction

Implementing scalable data structures is one of the basic problems in concurrent program-

ming. To increase the throughput of data structures in shared memory architectures, several

well-known techniques can be used including fine-grained locking, optimistic synchroniza-

tion and lazy synchronization [49]. In message-passing systems, partitioning and replication

are the two main approaches to improve the throughput of concurrent data structures [36].

Using partitioning, a data structure is partitioned among a set of servers that answer clients

requests. Using replication, each client has a local copy of data structure in its private memory.

Both have been considered in recent work on message-passing manycores [16, 109, 19], but

performance comparisons are lacking. In this chapter we present a performance comparison

of these two approaches for the implementation of high-throughput concurrent objects in
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message-passing manycores, considering cases of linearizable and sequentially consistent

maps. Note that existing studies made in distributed message-passing systems are only of little

help because the high performance of NoCs provides a completely different ratio between

computation and communication costs compared to large scale distributed systems.

Maps are used in many systems ranging from operating systems to key-value stores. Their

performance is often crucial to the systems using them and have been shown to be an impor-

tant performance bottleneck [16, 109, 19]. A map is an interesting case study because it is a

good candidate to apply both partitioning and replication techniques. Since operations on

different keys are independent, maps are easily partitionable [19]. Because a large majority of

operations are usually lookup operations [14], replication can help handling a large number

of local lookup requests concurrently.

Since message-passing manycore is a new technology, only few algorithms targeting this kind

of architectures are available. Thus, to compare partitioning and replication in this context, we

devise simple map algorithms that have been chosen to be representative of the design space.

To compare our algorithms, we present a model of the communication in message-passing

manycores, and express the throughput of our algorithms in this model. Using a performance

model allows us to compare the algorithms independently of platform-specific features and to

cover a large scope of manycore architectures. We use a 36-core Tilera TILE-Gx8036 processor

to validate our model. Evaluations on the TILE-Gx shows an extremely poor performance for

replication compare to partitioning. However some limitations of this platform, i.e. costly

interrupt handling and lack of broadcast service, can be blamed for the poor performance

of replication. Our model allows us to come up with a hypothetical platform based on the

TILE-Gx, which does not suffer form its limitations. Our evaluations on this ideal platform

show that even in the best setting in favor of replication, i.e. having highly efficient interrupt

handling and hardware-based broadcast service, replication can outperform partitioning only

when update operations are rare and replicas are located in the cache system of the cores.

To sum up, contributions of this chapter include:

• Devising different algorithms to represent the design space of partitioning and replication:

since message-passing manycores are a new technology, only few algorithms targeting

this kind of architectures are available. To compare partitioning and replication in this

context, we propose simple map algorithms that have been chosen to be representative

of the design space.

• Coming up with a communication model to be able to compare different solutions in-

dependently of their underlying architecture: to compare our algorithms, we present a

model of the communication in message-passing manycores to express the through-

put of our algorithms. Using a performance model let us to compare the algorithms

independently of platform-specific features and to cover a large scope of manycore

architectures. We use a 36-core Tilera TILE-Gx8036 processor to validate our model.
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• Evaluating our algorithms using our model under different assumptions and settings and

showing that, under strong consistency, replication can outperform partitioning only in

a narrow domain: evaluations on the TILE-Gx shows an extremely poor performance

for replication compare to partitioning. However some limitations of this platform, i.e.

costly interrupt handling and lack of broadcast service, can be blamed for the poor per-

formance of replication. Our model allows us to come up with a hypothetical platform

based on the TILE-Gx, which does not suffer form its limitations. Our evaluations on

this ideal platform show that even in the best setting in favor of replication, i.e. having

highly efficient interrupt handling and hardware-based broadcast service, replication

can outperform partitioning only when update operations are rare and replicas are

located in the cache system of the cores.

This chapter is structured as follows. Section 3.2 introduces our baseline architecture. Sec-

tion 3.3 specifies the underlying assumptions and goal of this part. Section 3.4 introduces

the performance model and computes the throughput of different algorithms in this model.

Section 3.5 provides a model validation on our baseline architecture and presents an extensive

study of the performance of the different algorithms. Finally, related work is presented in

Section 3.6.

3.2 The Tilera TILE-Gx8036

The TILE-Gx8036 is a general-purpose manycore developed by TILERA Corporation [8]. We

use this platform as the baseline architecture for our studies in this part. In this section we

describe the high level TILE-Gx8036 architecture and inter-core communication.

3.2.1 Architecture

The cores and the NoC of the TILE-Gx8036 are depicted in Figure 3.1. There are 36 full-fledged

1.2 Ghz, 64-bit processor cores with local cache, connected through a 2D mesh NoC. Each

tile is connected to a router. The NoC uses high-throughput, low-latency links as well as

deterministic X-Y routing. Cores and mesh operate at the same frequency.

Memory components are divided into (i) L1 data and instruction cache (32 KB each), (ii) 256

KB of L2 cache, and (iii) off-chip global memory. There is full hardware cache coherence

among the L1 and L2 caches of different cores. Each core has access to the off-chip global

memory through one of the two memory controllers, denoted by MC in Figure 3.1. Regions of

the global memory can be declared private or shared (a page is a unit of granularity). We see

this platform as a pure message-passing manycore, where each thread binds to a specific core

and has its own private memory space.
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Figure 3.1: TILE-Gx8036 architecture

3.2.2 Inter-core communication

Each core has a dedicated hardware message buffer, capable of storing up to 118 64-bit words.

The message buffer of each core is 4-way multiplexed, which means that every per-core buffer

can host up to four independent hardware FIFO queues, containing incoming messages. The

User Dynamic Network (UDN) allows applications to exchange messages directly through the

mesh interconnect, without OS intervention, using special instructions. When a thread wants

to exchange messages, it must be pinned to a core and registered to use the UDN (but it can

unregister and freely migrate afterwards). When a message is sent from core A to core B , it is

stored in the specified hardware queue of core B . The send operation is asynchronous and

does not block, except in the following case. Since messages are never dropped, if a hardware

queue is full, subsequent incoming messages back up into the network and may cause the

sender to block. It is the programmer’s responsibility to avoid deadlocks that can occur in such

situations. When a core executes the receive instruction on one of the four local queues, the

first message from the queue is returned. If there are no messages, the core blocks. The user

can send and receive messages consisting of one or multiple words. Moreover a core, upon

receipt of a new message in either of its incoming buffers, has the option of being notified by

an inter core interrupt followed by executing an interrupt handler routine.

3.3 Assumptions and Goal

The study assumes a fault-free manycore architecture where a large set of single-threaded cores

are connected through a network on chip. We assume that each core executes a single thread

and that threads do not migrate between cores. Cores have their own private memory and can

only communicate through message passing. Communication channels are asynchronous

and FIFO. Messages are composed of a set of words and can have various size.
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Three operations are available to send messages: send , br oadcast and mul ti cast . Opera-

tion send(m, i ) sends message m to thread i . Operation br oadcast (m) sends m to all threads.

Operation mul ti cast (m, l i st ) sends m to all threads in l i st . Messages can be received using a

synchronous r ecei ve function. Operation r ecei ve(m) blocks until message m can be received.

Alternatively, threads can be interrupted when a new message is available.

This chapter studies the implementation of a concurrent map with strong consistency criteria,

i.e. linearizability and sequential consistency. A map is a set of items indexed by unique

keys that provides l ookup, upd ate and del ete operations. Operation upd ate(ke y, val )

associates ke y with the value val . Operation lookup(ke y) returns the value associated with

ke y (or null if no value is associated with ke y). We assume that del ete(ke y) is implemented

using upd ate(ke y,null ).

3.4 Algorithms and Analytical Modeling

This section describes the algorithms studied in this chapter and presents their performance

model. We start by describing our methodology for performance modeling followed by de-

scribing and modeling the linearizable and sequential consistent map algorithms. The main

reason to use an analytical model is to be able to compare replication and partitioning in

a general case so that the final conclusions are not biased towards features of an existing

platforms, e.g. TILE-Gx. However, as we will see in Section 3.5, analytical modeling also

helps us to concretely understand the performance bottlenecks and to be able to assess the

algorithms under different architectures, configurations and load distributions. Moreover it

can help manycore programmers to decide about their implementation choice on different

platforms.

3.4.1 Performance modeling

Manycore processors are usually provided with a highly efficient NoC. Therefore, we assume

that the throughput of the algorithms presented in this section is limited by the performance of

the cores. This assumption is validated by the experimental results presented in Section 3.5.2.

Hence, to obtain the maximum throughput of one algorithm executed on a given number

of cores, we need to compute Tl up and Tupd , the total number of CPU cycles1 required to

execute a lookup and an upd ate operation respectively.

All algorithms make the difference between cores that execute as clients, i.e., cores executing

the user code and issuing operations on the concurrent map, and servers, i.e., cores that are

earmarked to execute map-related and/or protocol code. Depending on the number c of cores

that execute the client code and the number s of cores that execute as server, clients or servers

can be the bottleneck for the system throughput. Thus, for each operation op, we actually

1Obtaining a duration in seconds from a number of CPU cycles simply introduces a constant factor
1/C PU _F r eq .
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have to compute the number of CPU cycles it takes on the client (T c
op ) and on the server (T s

op ).

Considering a load where the probability of having a lookup operation is p, and assuming

that the load is evenly distributed among clients, the maximum throughput T c achievable by

clients is:

T c = c

p ·T c
lup + (1−p) ·T c

upd

(3.1)

An equivalent formula applies to servers. Hence, the maximum throughput T of an algorithm

is:

T = mi n(T c ,T s ) (3.2)

Table 3.1 lists the parameters that we use to describe the performance of our algorithms. To

model the operations on the map, we consider a generic map implementation defined by

three parameters opr e , olup and oupd . The underlying data structure used to implement the

map is not the focus of the study. Parameter opr e corresponds to the computation that a client

has to do before accessing the map, e.g., executing a hash function if a hash table is used to

implement the map. Parameters olup and oupd are the overheads corresponding to accessing

the underlying data structure during a l ookup and an upd ate operation respectively.

We associate an overhead (i.e., duration) in CPU cycles with each of the communication primi-

tives introduced in Section 3.3. Additionally, we introduce the parameter Tr t t , representing

round-trip time. More precisely, Tr t t (send_op,r cv_op) is the round-trip time for messages

sent with the send_op operation (i.e., send , br oadcast or mul ti cast ) and received with

the r cv_op operation (i.e., r cv or ar cv)2. If the round trip is initiated with br oadcast or

mul ti cast , it finishes when the answer from all destinations have been received.

Finally, in a configuration that uses multiple servers, a client needs to decide which server

to contact for a given operation. In all our algorithms, the server selection depends on the

key the operation applies to. Typically, it is based on a modulo operation that can have a

non-negligible cost. Thus, osel stands for the server selection overhead. We assume that all

other computational costs related to the execution of the algorithms are negligible.

In the following, we describe the different algorithms studied in this chapter, considering

linearizable maps and sequential consistent maps respectively. For each algorithm, we provide

a figure describing the communication patterns where all CPU overheads appear. We obtain

the performance models directly from these figures.

2The answer is always sent using send and received using r cv .
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parameter description
c number of clients
s number of servers

osend overhead of send(m)
obcast overhead of br oadcast (m)
omcast overhead of mul ti cast (m, l i st )

or cv overhead of a synchronous receive
oar cv overhead of an asynchronous receive

Tr t t (s_op,r _op) round-trip time with s_op and r _op
opr e computation done before a map access
olup access to the map for a l ookup
oupd access to the map for an upd ate

osel server selection overhead
p probability of a lookup operation

Table 3.1: Model parameters

3.4.2 Linearizable map

Our goal is to propose linearizable map algorithms that are representative of the design space

in a message-passing manycore. Hence, as a basic solution based on partitioning, we consider

the approach proposed in [19]: the map is partitioned among a set of servers that clients access

for every requests. A typical improvement of such a client/server approach is to introduce

caching on client side [103]. We study a second algorithm based on this solution. Regarding

replication, the solutions used in distributed systems cannot be directly applied to message-

passing manycores: In a distributed system, a server is typically replicated to reduce the

latency observed by clients by placing the replicas closer to the clients. In a manycore chip, the

NoC provides very low latency between cores. Creating a few replicas of a server hosting a map

is not an interesting approach. The only advantage it provides is to allow processing multiple

lookup operations in parallel. However, this cannot make replication attractive compared

to partitioning since partitioning provides the same advantage without the complexity of

ensuring replica consistency during update. Thus, the only way for replication to provide

benefits in the context of manycores, is to have a replica of the map on each core, so that clients

can lookup the keys locally. We study three replication algorithms based on this idea. The

first is based on the traditional approach consisting in using atomic broadcast to implement

update operations. With such a solution, lookups require remote synchronization to ensure

linearizability. Hence, one can argue that the goal of replication is not achieved. That is why

we propose a second algorithm where lookups do not require any remote synchronization. In

this case, update operations have to be made more complex to ensure linearizability. However

both of the former replication solutions need sequencer servers to provide total order. To

come up with a server-less protocol, we bring a variant of two phase commit protocol in which

the lookups are purely local without any remote synchronization. However getting rid of the

servers, comes at a price: the issuer of the update needs to abort the operation and issue it

again in case another conflicting update exists.
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(a) Update (b) Lookup

Figure 3.2: Simple partitioning

We describe now the five algorithms and model their throughput. We present first the simple

partitioning algorithm, then the three replication ones, and finally the one based on partition-

ing with caching. They are presented is this order to gradually introduce the techniques we

use to model their throughput.

I) Partitioned map (PART_SIMPLE)

In this approach called PART_SIMPLE, each server handles a subset of the keys. In this algorithm

each client contacts a corresponding server to perform lookup and update on a key. Both

operations block until the client receives a response from the server, which trivially ensures

linearizability. The pseudocode of this algorithm is given in Figure 3.33. The communication

pattern is described in Figure 3.2. It is the same for a l ookup and an upd ate operation.

The only difference is that applying the update can be removed from the critical path of the

client (see Figure 3.2(a)). Computing T s
op (where op is upd or lup), T c

lup and T c
upd based on

Figure 3.2 is trivial:

T s
op = or cv +oop +osend (3.3)

T c
lup = opr e +osel +Tr t t (send ,r cv)+olup (3.4)

T c
upd = opr e +osel +Tr t t (send ,r cv) (3.5)

II) Replicated map – Lookups with remote synchronization (REP_REMOTE)

In replication approaches, lookups should be synchronized with updates to avoid violating

linearizability as illustrated by Figure 3.4, where lookups return locally with no synchronization.

Moreover all updates should be applied in total order in all replicas. The first two replication

solutions provide total order among updates using atomic broadcast while the third solution

ensures it using a variant of two phase commit protocol. In the first replication algorithm,

called REP_REMOTE, lookups are totally ordered with respect to update operations.

Before detailing the algorithm, we need to discuss the atomic broadcast (abcast) implementa-

3For simplicity, we present the algorithms only for a single given ke y .
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Algorithm 2 PART_SIMPLE (code for client c)

Global Variables:
1: S {total number of server cores}

2: lookup (ke y)
3: mySer ver ← ke y%S
4: send(LU P,ke y) to mySer ver
5: wait until val is received from mySer ver

6: r etur n(val )

7: update (ke y, val )
8: mySer ver ← ke y%S
9: send(U PD,ke y, val ) to mySer ver

10: wait until AC K is received from mySer ver

Algorithm 3 PART_SIMPLE (code for server s)

Local Variables:
1: map {map partition }

2: upon rcv (command ,ke y, val ) from client c
3: if command =U PD then

4: map.upd ate(ke y, val )
5: send(AC K ) to c
6: else
7: val = map.lookup(ke y)
8: send(val ) to c

Figure 3.3: Linearizable partitioned map without caching

c

c’

c’’

t0

t2

t1

update(key,newval)

lookup(key) � newval

lookup(key) � oldval

Figure 3.4: Non-linearizable execution with a replicated map

tion. To choose among the five classes of atomic broadcast algorithms presented in [35], we

use three criteria. First, the number of messages exchanged during abcast should be mini-

mized to limit the CPU cycles used for communication. This implies that solutions relying on

multiple calls to broadcast should be avoided. Second, the solution should allow to increase

the throughput by instantiating multiple instances of the abcast algorithm. Indeed, to obtain a

linearizable map, only the operations on the same key have to be ordered. Thus, if abcast is the

bottleneck, being able to use multiple instances of abcast, each associated with a subset of the

keys, can increase the system throughput. Finally, the performance of the algorithm should

not be impacted if some processes do not have messages to broadcast. Clearly, if multiple

instances of abcast are used, we cannot assume that all processes will always have requests to

abcast for each subset of keys. Only fixed-sequencer-based algorithms meet all the criteria.

In a fixed sequencer atomic broadcast algorithm, one process (called server in the following)

is in charge of assigning sequence numbers to messages. After contacting the sequencer, the

thread calling abcast can broadcast the message and the sequence number. The communica-
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tion pattern of REP_REMOTE for an update issued by client c is shown in Figure 3.5(a). For each

lookup, the client has to contact the server in charge of the key to know the sequence number

sn of the last update ordered by this server (see Figure 3.5(b)). Then, the lookup terminates

once the client has delivered the update with sequence number sn. Pseudecode of this algo-

rithm is given in Figure 3.6 and its correctness trivially follows. Note that in this algorithms

delegating the task of broadcast to the server could lead to violation of linearizability: if an

update on a key finishes on the issuing client before the corresponding value on the server is

updated, a later lookup could still return the old value.

In this algorithm, interrupts are used to notify a client that it has a new update message to

deliver. An alternative to avoid interrupts would be to buffer updates until the client tries to

execute an operation on the map. At this time the client would deliver all pending updates

before executing its own operation. However, such a solution would potentially require large

hardware buffers to store pending updates. Relying on interrupts avoids this issue. Moreover

receiving a batch of messages instead of one, upon raising an interrupt, could be translated

into lower cost for asynchronous receives.

Computing the throughput of clients in this algorithm is complex because clients can be

interrupted to deliver updates. But handling the interrupts is not always on the critical path

of the clients. Indeed, one can notice that clients are idle during an operation while waiting

for an answer from the server. An interrupt handled during this period would not be on the

critical path. We define Oc as the maximum amount of time spent in interrupts handling

that can be removed from the critical path of clients execution and update formula 3.1 in the

following way:

T c = c

p ·T c
lup + (1−p) ·T c

upd −Oc (3.6)

We deduce the cost of an update and a lookup operation from Figure 3.5.

T s
op = or cv +osend (3.7)

T c
lup = opr e +osel +olup +Tr t t (send ,r cv) (3.8)

T c
upd = opr e +osel +oupd +Tr t t (send ,r cv)+obcast + (c −1) · (oar cv +oupd ) (3.9)

Oc depends on Ti dl e , the idle time on a client during one operation, ni dle , the average number

of idle periods per operation, Ti nt , the time required to handle an interrupt (green-border
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(a) Update (b) Lookup

Figure 3.5: Replication with remote synchronization for lookups

boxes in Figure 3.5(a)), and ni nt , the average number of asynchronous requests per operation:

Ti dl e = Tr t t (send ,r cv)−osend −or cv (3.10)

ni dl e = 1 (3.11)

Ti nt = oar cv +oupd (3.12)

ni nt = (c −1) · (1−p) (3.13)

We compute Oc in three steps. We first compute the number of asynchronous requests that

can be fully handled during one idle period (k), then the number of interrupts that can be

fully overlapped with idle time on one client (n f ul l ), and finally, the number of interrupts that

can be partially overlapped with idle time on one client (npar ti al ).

k = 
Ti dle

Ti nt
� (3.14)

n f ul l = mi n(k ·ni dle ,ni nt ) (3.15)

npar ti al = mi n(ni nt −n f ul l ,ni dle ) (3.16)

Oc = n f ul l ·Ti nt +npar ti al · (Ti dle −k ·Ti nt ) (3.17)

III) Replicated map – Lookups without remote synchronization (REP_LOCAL)

In REP_LOCAL, lookups do not require any remote synchronization (Figure 3.7(b)) but up-

dates are more complex than in REP_REMOTE (Figure 3.7(a)). To provide linearizability, this

algorithm ensures that during an update, no lookup can return the new value if a lookup by

another client can return an older value. To do so, the update operation includes two phases

of communication as shown in Figure 3.7(a). When client c runs an update, it first asks for a

sequence number from the server, before atomically broadcasting the update message to all

clients. Then it waits until all clients acknowledge the reception of this message. Finally, it

broadcasts a second message to validate the update. If a client tries to lookup the key after
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Algorithm 4 REP_REMOTE (code for replica c)

Global Variables:
1: S {total number of servers}

Local Variables:
2: map {map replica }
3: maxsn {keeps the sequence number of the latest update

for the key }

4: lookup (ke y)
5: mySer ver ← ke y%S
6: send(SN REQ,ke y) to mySer ver
7: wait until sn is received from myServer and maxsn ≥

sn
8: val ← map.l ookup(ke y)

9: r etur n(val )

10: update (ke y, val )
11: mySer ver ← ke y%S
12: send(I NC ,ke y) to mySer ver
13: wait until sn is received from myServer
14: bcast (U PD,ke y, val , sn)

15: upon adel(U PD,ke y, val , sn) from some replica c ′
16: map.upd ate(ke y, val ) {asynchronous total order de-

livery}
17: maxsn ← maxsn +1

Algorithm 5 REP_REMOTE (code for server s)

Local Variables:
1: abC tr {counter to assign total order sequence numbers}

2: upon rcv (command ,ke y) from replica c
3: if command = SN REQ then

4: send(abC tr ) to c
5: else
6: abC tr ← abC tr +1
7: send(abC tr ) to c

Figure 3.6: Linearizable replicated map with local lookups with remote synchronization

it has received the update message, the lookup cannot return until the validation has been

received. This way a lookup that returns the new value always finishes after all clients have

received the update message, which is enough to ensure linearizability 4. The pseudocode of

this algorithm is given in Figure 3.8. Theorem 3.4.1 proves the correctness of this algorithm.

Theorem 3.4.1 Algorithms in Fig. 3.8 ensure linearizability with respect to the map operations.

Proof If we prove that a map with only a single key is linearizable, due to the composability

of linearizability, the whole map, which is composed of a set of independent key entries, is

linearizable too. Considering only one key, the total order of updates is trivially ensured.

Moreover if two updates on a key are executed with no timing overlap, in the global history of

updates the second update is placed after the first one, since the first update is assigned with a

smaller sequence number. Considering lookups, we show that the two following scenarios

are not possible: (1) having two non-overlapping lookups, where the former one returns the

new value and the latter one returns the old value, as it is shown in Figure 3.9(a); and (2)

4Update messages can be also received synchronously. In this case the time between sending the ACK back to
the issuer and receiving the update from the issuer cannot be used to perform some other useful task, while on the
positive side it avoids the cost of asynchronous receive. Our evaluations show that this trade-off is not in favor
of the algorithm throughput, especially at scale. The main reason is that the length of waiting periods increases
linearly with the increase in the number of replicas.
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(a) Update (b) Lookup

Figure 3.7: Replication with no remote synchronization for lookups

having a non-overlapping update and lookup, where the update happens before the lookup

and lookup returns the old value, as it is shown in Figure 3.9(b). Apart from these two cases, all

other scenarios, with respect to the relative position of two operations, are safe with respect to

linearizability, i.e. a linearizable history can be made.

Case (1): suppose this scenario happens according to Figure 3.9(a). In this case, we assume

replica c1 updates the new value. Assume t1 and t2 are the beginning and the end of the

lookup operation on c2 and t3 and t4 are the beginning and the end of the lookup operation

on c3 and t1 > t4. Replica c3 should receive the AC K ALL for this update at some point before

t4, called A (execution of line 18). However replica c1 should have sent this update to the

replica c2 at some point after t1, called B (execution of line 14). Note that B is not necessarily

before t2. This means that B → A since replica c2 should have sent the AC K message to the

replica c1 (execution of line 23), before replica c1 could send the AC K ALL message to replica

c3 (execution of line 16). Therefore t1 → B , B → A , A → t4 , and so t1 → t4. This means that

t1 ≤ t4, a contradiction.

Case (2): Suppose this scenario happens according to Figure 3.9(b). Assume t1 and t2 are the

beginning and the end of the lookup operation on c2 and t3 and t4 are the beginning and the

end of the update operation on c1 and t1 > t4. It means that replica c2 atomically delivers

the update from replica c1 at some point after t1, called A (execution of line 20). Moreover it

means that replica c1 receives the AC K for this update from replica c2 at some point before t4,

called B (execution of line 15). Therefore we have t1 → A , A → B , B → t4, and so t1 → t4. This

means t1 ≤ t4, a contradiction. ��

Since this algorithm introduces idle time on clients and uses interrupts, computing the

throughput of clients is based on Formula 3.6. Notice that update operations introduce
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Algorithm 6 REP_LOCAL (code for replica c)

Global Variables:
1: C {total number of replicas}
2: S {total number of sequencer servers}

Local Variables:
3: map {map replica }
4: maxsn {keeps sequence number of the latest update for

the key}
5: f l ag [C ] {set of C local flags}

6: lookup (ke y)
7: wait until �i | f l ag [i ] = ke y
8: val ← map.l ookup(ke y)
9: r etur n(val )

10: update (ke y, val )
11: mySer ver ← ke y%S

12: send(I NC ,ke y) to mySer ver
13: wait until sn is received from myServer
14: bcast (U PD,ke y, val , sn)
15: wait until r cv(AC K ,ke y) from all
16: bcast (AC K ALL,ke y)

17: upon arcv(AC K ALL,ke y) from some replica c ′
18: f l ag [c ′] ← ni l
19: map.upd ate(ke y, val ) {asynchronous total order de-

livery}

20: upon adel(U PD,ke y, val , sn) from some replica c ′
21: maxsn ← maxsn +1
22: f l ag [c ′] ← ke y
23: send(AC K ,ke y) to c ′

Algorithm 7 REP_LOCAL (code for server s)

Local Variables:
1: abC tr {counter to assign total order sequence numbers}

2: upon rcv (I NC ,ke y) from some replica c
3: abC tr ← abC tr +1
4: send(abC tr ) to c

Figure 3.8: Linearizable replicated map with local lookups with no remote synchronization

two idle periods with different durations as well as two different costs for handling interrupts:

Ti dl e_1 = Tr t t (send ,r cv)−osend −or cv (3.18)

Ti dl e_2 = max
(
Tr t t (bcast , ar cv)−obcast − (c −1) ·or cv −oupd ,0

)
(3.19)

ni dl e_1 = ni dle_2 = 1−p (3.20)

Ti nt_1 = oar cv +osend (3.21)

Ti nt_2 = oar cv +oupd (3.22)

ni nt_1 = ni nt_2 = (c −1) · (1−p) (3.23)

Here i nt_1 and i nt_2 correspond to the delivery of the first and second broadcast message re-

spectively. Note that Ti dle_2 needs to consider the maximum between the actual computation

and 0 to account for the fact that if oupd is large, there might not be any idle time.

Computing the exact value of Oc in this case is a complex problem. Instead, we approximate

this value using Formulas 3.14-3.17 with weighted averages for Ti dle and Ti nt . For instance,
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Figure 3.9: Scenarios used to prove the Theorem 3.4.1

here are the values we use for ni dl e and Ti dle :

ni dle = ni dle_1 +ni dle_2 (3.24)

Ti dle = Ti dl e_1 ·ni dl e_1 +Ti dle_2 ·ni dle_2

ni dle
(3.25)

Finally, we deduce the cost of lookups and updates from Figure 3.7:

T s
upd = or cv +osend (3.26)

T c
upd = opr e +osel +Tr t t (send ,r cv)+max

(
Tr t t (bcast , ar cv),obcast +oupd + (c −1) ·or cv

)+obcast

+ (c −1) · (2 ·oar cv +osend +oupd ) (3.27)

T c
lup = opr e +olup (3.28)

IV) Replicated map – Based on two phase commit (REP_2PC)

Previous replicated solutions rely on some dedicated servers to assign the sequence numbers

to the messages, in order to ensure total order delivery of updates. However one might save

these dedicated servers, by applying some variants of atomic commit protocols. In this way

the solution does not rely on any sequencer, but upon detecting another update on the same

key the current update should be aborted. Therefore in REP_2PC, lookups do not require

any remote synchronization (Figure 3.10(b)), but updates are more complex compared to

REP_LOCAL (Figure 3.10(a)).

A variant of two phase commit protocol provides total order of updates since as long as an

update on a key is executing, other conflicting updates on that key will abort. To be more

precise, upon issuing an update, a V REQ message is broadcast to all the replicas and the

issuer is blocked until it receives a vote from all. A Y ES vote from replica c means that another

update on that key is executing on replica c. In this case, the issuer broadcasts an ABORT

message to all replicas to abort the current update and returns unsuccessfully. Otherwise it

sends a commit message to all other replicas, meaning that it is safe for them to apply the

update on that key. Each replica after applying the update sends an AC K back. Upon receiving
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(a) Update with no conflicts (b) Lookup

Figure 3.10: Replication using two phase commit

Algorithm 8 REP_2PC (code for replica c)

Global Variables:
1: C {total number of clients}

Local Variables:
2: map {map replica }
3: f l ag {local flags to synchronize lookups on key to ensure

linearizability}

4: lookup (ke y)
5: wait until f l ag =−1
6: val ← map.l ookup(ke y)
7: r etur n(val )

8: update (ke y, val )
9: bcast (V REQ,ke y)

10: wait until vote is received from all
11: if all votes are NO then
12: bcast (COM M I T,ke y, val )
13: wait until AC K is received from all
14: r etur n(0) {no conflict}

15: else
16: bcast (ABORT,ke y)
17: r etur n(1) {conflict}

18: upon arcv(command ,ke y, val ) from some replica c ′
19: if command =V REQ then
20: if f l ag < c ′ then
21: send(NO) to c ′
22: f l ag ← c ′
23: else
24: send(Y ES) to c ′
25: if command =COM M I T then
26: f l ag ←−1
27: send(AC K ) to c ′
28: map.upd ate(ke y, val )
29: if command = ABORT then
30: if f l ag = c ′ then
31: f l ag =−1

Figure 3.11: Linearizable replicated map with local lookups using two phase commit

the AC K from all, the issuing replica terminates the update successfully. However lookups

still need to use a similar synchronization technique which is used in REP_LOCAL to ensure

linearizability: as far as f l ag is not equal to −1, meaning that an update is pending on a ke y ,

the lookup is not allowed to return the value of that key. The pseudocode of this algorithm

is given in Figure 3.11. Correctness of this algorithm can be proved similarly to the proof of

Theorem 3.4.1. Just note that to ensure liveness, we use replica ids to break the ties when

multiple replicas issue update on the same key at the same time (line 20).

The parameters needed to obtain the maximum throughput of this algorithm are computed

using Figure 3.10. Note that in this algorithm there is no notion of server, and so server
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(a) Update with invalidation of local caches (b) Lookup with cache miss

Figure 3.12: Partitioning with local caches

selection cost. The calculation methods are similar to those of REP_LOCAL:

Ti dle_1 = max
(
Tr t t (bcast , ar cv)−obcast − (c −1) ·or cv ,0

)
(3.29)

Ti dle_2 = max
(
Tr t t (bcast , ar cv)−obcast − (c −1) ·or cv −oupd ,0

)
(3.30)

ni dle_1 = ni dle_2 = 1−p (3.31)

Ti nt_1 = oar cv +osend (3.32)

Ti nt_2 = oar cv +osend +oupd (3.33)

ni nt_1 = ni nt_2 = (c −1) · (1−p) (3.34)

T c
upd = opr e +Tr t t (bcast , ar cv)+max

(
Tr t t (bcast , ar cv),obcast +oupd + (c −1) ·or cv

)

+ (c −1) · (2 ·oar cv +2 ·osend +2 ·or cv +oupd ) (3.35)

T c
lup = opr e +olup (3.36)

V) Partitioned map - With local caches (PART_CACHING)

The PART_CACHING algorithm extends PART_SIMPLE to introduce caching on client side. If

a lookup hits the cache, the pattern is the same as the one in Figure 3.7(b). Otherwise, the

communication pattern is shown in Figure 3.12(b). It includes a first local lookup that fails

and an update of the local cache once the value has been retrieved from the server.

When a key is updated, local copies of the associated value need to be invalidated. As shown in

Figure 3.12(a), the server invalidates local copies using multicast. Once the server has received

an acknowledgment from all clients involved, the operation can terminate. This algorithm

could also be viewed as a hybrid solution between partitioning and replication, since the local

caches are replicated on different clients and need to remain consistent among each other

using invalidations. The pseudocode of this algorithm is given in Figure 3.13. Theorem 3.4.2

proves the correctness of this algorithm.

Theorem 3.4.2 Algorithms in Fig. 3.13 ensure linearizability with respect to the map operations.
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Algorithm 9 PART_CACHING (code for client c)

Global Variables:
1: S {total number of servers}

Local Variables:
2: map {map local cache }

3: lookup (ke y)
4: val ← map.l ookup(ke y)
5: if ke y is in the local cache then
6: r etur n(val )
7: else
8: mySer ver ← ke y%S
9: send(LU P,ke y) to mySer ver

10: wait until val is received from mySer ver
11: map.upd ate(ke y, val )
12: r etur n(val )

13: update (ke y, val )
14: mySer ver ← ke y%S
15: send(U PD,ke y) to mySer ver
16: wait until (AC K ) is received from mySer ver

17: upon rcv (I NV ,ke y,c ′) from some server s′
18: map.upd ate(ke y,ni l )
19: send(AC K I NV ) to s′

Algorithm 10 PART_CACHING (code for server s)

Local Variables:
1: map {map partition}

2: upon rcv (command ,ke y, val ) from client c
3: if command =U PD then
4: bcast (I NV ,ke y,c) to invalidation set of ke y
5: wait until rcv(AC K I NV ) from all clients in invali-

dation set of ke y

6: map.upd ate(ke y, val )
7: send(AC K ) to c
8: else
9: val = map.lookup(ke y)

10: add c to invalidation set of ke y
11: send(val ) to c

Figure 3.13: Linearizable partitioned map with caching

Proof Similarly to the proof of Theorem 3.4.1, we show that the two cases in Figures 3.14(a)

and 3.14(b) cannot happen:

Case (1): Suppose that the scenario of Figure 3.14(a) happens. Assume t1 and t2 are the

beginning and the end of lookup operation on c1 and t3 and t4 are the beginning and the end

of lookup operation on c2 and t1 > t4. There are four different subcases considering these

two lookup operations. (i) Both lookups are remote: in this case the mentioned scenario in

Figure 3.14(a) is not possible clearly since the second lookup returns a value which is not older

than the new val . (ii) The first lookup is remote and the second lookup is local: this means

that client c1 receives the invalidation at some point after t1, called B (not necessarily before

t2). Moreover assume that update of the new value at server s finished at point C (execution

of line 6 of the server code). We will have C → t4 , B →C and t1 → B , which means t1 → t4,

a contradiction. (iii) The first lookup is local and the second lookup is remote: this means

that client c2 updates its local value to the new val at some point before t4 which is called

A (execution of line 11 of the client code). Assume server s sends the new value to client

c2 at point C (execution of line 11 of the server code) and B is the point when the client c1

executes line 9 of the client code. Therefore we have t1 → B , B →C , C → A and A → t4 which

implies t1 → t4, a contradiction. (iv) Both lookups are local: assume C and C ′ are the times

on the server when it sends to the clients c1 and c2 the old and the new values respectively
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Figure 3.14: Scenarios used to prove the Theorem 3.4.2

by execution of line 11 of the server code. Clearly C should be before C ′. Therefore we have

C ′ → t4 and t1 →C , and so t1 → t4 , a contradiction.

Case (2): Suppose this scenario happens according to Figure 3.14(b), where client c1 issues an

update with new value and client c2 issues a lookup which returns the old value. Assume t1

and t2 are the beginning and the end of lookup operation on c2 and t3 and t4 are the beginning

and the end of the update operation on c1 and t1 > t4. Assume that client c2 returns the

lookup value at time A. In this case the invalidation will be received after point A on client c2.

Therefore t1 → A and A → t4 , and so t1 → t4, a contradiction. ��

To model the performance of this algorithm, we need to introduce two additional parame-

ters: pll is the probability that a lookup hits the local cache; ni nv is the average number of

copies that needs to be invalidated when a key is updated. Note that the two parameters are

correlated:

ni nv = p

1−p
· (1−pll ) (3.37)

Indeed, the number of lookups on a key that requires an access to the server correspond to

the number of copies that will have to be invalidated during the next update of that key. Thus,

ni nv is equal to the average number of lookups between two updates ( p
1−p ) multiplied by the

probability for lookups to require accessing the server.

The probability that a lookup hits the cache depends on the distribution of the accesses to one

key among the clients: If some clients access a key much more often than others, the number

of cache hits will be high. For a given probability distribution, we can use its probability mass

function pm fke y (c) to compute pll . For a cache hit to occur, a client should lookup a key two

times and the key should not be updated in the meantime. Thus, we compute the probability

that a lookup on ke y by client k is preceded by a sequence of i consecutive lookups made

by other clients and by one lookup made by k, that is p · pm fke y (k) · (p · (1− pm fke y (k)))i .

To obtain pll , we need then to consider all possible values of i and to compute a weighted
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average among all clients:

Pll =
c−1∑
k=0

pm fke y (k) ·
∞∑

i=0
p ·pm fke y (k) ·

(
p · (1−pm fke y (k)

))i
(3.38)

For a uniform distribution of the key accesses, i.e. all the clients have the same probability of

accessing a given key (pm fke y (k) = 1
C ), the general formula simplifies as follows:

Pll =
∞∑

i=0

p

C
· ( p · (C −1)

C

)i = p

p +C · (1−p)
(3.39)

Since the communication patterns for this algorithm includes two idle periods of different

duration, we apply Formulas 3.24-3.25 to compute Oc with:

Ti dl e_1 = ol up +Tr t t (send ,r cv)−osend −or cv (3.40)

ni dl e_1 = p · (1−pl l ) (3.41)

Ti dl e_2 = max
(
0,Tr t t (send ,r cv)−osend −or cv +Tr t t (mcast , ar cv)−oupd

)
(3.42)

ni dl e_2 = 1−p (3.43)

Ti nt = oar cv +osend +oupd (3.44)

ni nt = (1−p) ·ni nv (3.45)

Note that the formula for Ti dle_2 assumes that the cost of Tr t t (mcast , ar cv) depends on ni nv .

If ni nv = 0, then Tr t t (mcast , ar cv) = 0.

The cost of a lookup depends whether there is a cache hit or a cache miss. The cost of a cache

hit is the same as a lookup with REP_LOCAL (Formula 3.56). Otherwise, the cost is given by

Figure 3.12(b). Together we get:

T c
lup = pl l · (opr e +olup )+ (1−pll ) · (opr e +2 ·olup +osel +Tr t t (send ,r cv)+oupd

)
(3.46)

T s
lup = (1−pll ) · (or cv +olup +osend ) (3.47)

The cost of updates is computed based on Figure 3.12(a). To compute the cost on the server,

we do not consider the time it waits for acks of the invalidation messages as idle time. We

assume that the server always have requests from other clients to handle during this time:

T c
upd = opr e +osel +max

(
oupd +osend +or cv ,Tr t t (send ,r cv)+Tr t t (mcast , ar cv)

)

+ni nv · (oar cv +osend +oupd ) (3.48)

T s
upd = (ni nv +1) ·or cv +omcast +osend +oupd (3.49)

52



3.4. Algorithms and Analytical Modeling

(a) Update (b) Lookup

Figure 3.15: Sequential consistent replication

3.4.3 Sequential consistent map

To be able to assess the affect of consistency criteria on the relative performance of different

algorithms, we consider a weaker consistency criteria. Sequential consistency is weaker than

linearizability since providing a global history of operations as well as keeping the local order

of operations are enough to provide sequential consistency. Weaker consistency criteria such

as fifo consistency and eventual consistency could also be useful, however they come up with

a much broader design space for the algorithms, which is out of the scope of this chapter. In

this subsection, we try to exploit sequential consistency in favor of our algorithms.

I) Replicated map

Considering replication, providing a total order of updates is enough to satisfy sequential

consistency. Lookups can return immediately with no synchronization, and they can be freely

placed in the global history of update operations to create a global history. Therefore replica-

tion algorithms that use a fixed sequencer to create a total order of updates, i.e. REP_REMOTE

and REP_LOCAL, can be weakened to the algorithm depicted in the Figure 3.16 (We call this

algorithm REP_SC for short). In this algorithm, updates are propagated using fixed-sequencer

atomic broadcast and lookups return local values immediately. The communication pattern

of this algorithm is shown in Figure 3.15 and its parameters are calculated as follows:

Ti dle = max
(
Tr t t (send ,r cv)−osend −or cv −oupd ,0

)
(3.50)

ni dle = 1−p (3.51)

Ti nt = oar cv +oupd (3.52)

ni nt = (c −1) · (1−p) (3.53)

T s
upd = or cv +osend (3.54)

T c
upd = opr e +osel +max

(
Tr t t (send ,r cv),osend +or cv +oupd

)+obcast + (c −1) · (oar cv +oupd ) (3.55)

T c
l up = opr e +olup (3.56)
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Algorithm 11 REP_SC (code for replica c)

Global Variables:
1: S {total number of sequencer servers}

Local Variables:
2: map {map replica }
3: maxsn {keeps sequence number of the latest update for

the key}

4: lookup (ke y)
5: val ← map.l ookup(ke y)
6: r etur n(val )

7: update (ke y, val )
8: mySer ver ← ke y%S
9: send(SN REQ,ke y) to mySer ver

10: wait until sn is received from myServer
11: bcast (U PD,ke y, val , sn)

12: upon adel(U PD,ke y, val , sn) from some replica c ′
13: map.upd ate(ke y, val ) {asynchronous total order de-

livery}
14: maxsn ← maxsn +1

Algorithm 12 REP_SC (code for server s)

Local Variables:
1: abC tr {counter to assign total order sequence numbers}

2: upon rcv (SN REQ,ke y) from some replica c
3: abC tr ← abC tr +1
4: send(abC tr ) to c

Figure 3.16: Sequential consistent replicated map

The replication algorithm based on two phase commit cannot exploit the sequential consis-

tency for update operations: still a two phase commit protocol is needed to avoid conflicts

and to provide a total order among updates. However lookups can return immediately. Since

in our analysis, we are interested in the maximum throughput of each algorithm, the variant

of replication based on two phase commit cannot provide better throughput compared to the

linearizable one. Therefore we ignore the sequentially consistent variant of this protocol.

II) Partitioned map

To exploit sequential consistency for partitioning solutions, one can think of two optimiza-

tions: (1) To make the clients return immediately after sending the update message to the

server (which applies to both PART_SIMPLE and PART_CACHING), and (2) to make the server to

return immediately after broadcasting invalidation messages to the clients who hold a cached

value of a key (which only applies to PART_CACHING). In case of having only one server, both

optimizations can be applied and resulting algorithms are sequentially consistent. However

since sequential consistency is not compositional, having more than one server can break se-

quential consistency in both cases as they are shown in Figures 3.17(a) and 3.17(b). In the first

case, consider the PART_SIMPLE or PART_CACHING in a scenario mentioned in Figure 3.17(a).

The issued update by client c1 on ke y2 arrives to the corresponding server after a long delay.

After returning from the first update, it issues another update on ke y1 to server s2. Afterwards
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s2

c1

c2

update(key2,newval)

lookup(key1) � newval
lookup(key2) � oldval

update(key1,newval)

s1

(a) Case 1: PART_SIMPLE

s2

c1

c2

update(key2,newval)

lookup(key1) � newval
lookup(key2) � oldval

update(key1,newval)

s1

(b) Case 2: PART_CACHING

Figure 3.17: Impossibility of exploiting sequential consistency for partitioning algorithms

client c2 issues a lookup on ke y1, which arrives at s2 after updating the local value of ke y1 to

newV al , as well as a lookup on ke y2 which arrives at s1 before updating the local value of

ke y2 to newV al . Since the first lookup on ke y1 returns new val and the second lookup on

ke y2 returns old val , it is not possible to create a global history of operations complying with

the returned values. In the second case, consider PART_CACHING in a scenario mentioned

in Figure 3.17(b). Assume server s2 needs to invalidate client c2 upon receiving an update

message on ke y2 from c1. Suppose it takes a long time for this invalidation message to arrive

at c2. Client c1 issues another update after the first one, which updates the value of ke y1

on server s1 to new val . Later client c2 issues a lookup on ke y1 to server s1, which returns

new val , while the second lookup on ke y2 is done from the local cache, since c2 has not yet

received the invalidation message from server s2. In this case also it is not possible to create a

valid global history of these operations.

To apply those optimizations to the partitioning algorithms with more than one server, one

might come up with solutions which need extra communication, the case we want to avoid.

Therefore these two optimizations can be applied only in the case of having one server. Even

in the case of having only one server, these optimizations in practice require some flow

control mechanisms to avoid buffers to overflow when updates and invalidations are sent

repeatedly to the servers and the clients. Implementing a flow control mechanism to avoid

buffer overflow can decrease the anticipated performance. We conclude that there is no

way to exploit sequential consistency for partitioning solutions to obtain a better maximum

throughput compared to their linearizable counterparts.

3.5 Evaluation

In this section, we first model the communication performance of a Tilera TILE-Gx processor.

Then we validate the model of our map algorithms on this platform. Finally, using this model,

we conduct a detailed study of the performance of the partitioning and replication algorithms

in a message-passing manycore. Throughout this section, we consider a map implemented

using a hash table. This is representative of most map implementations [19, 60].
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p0 N I0 N I1 p1

h
w
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w
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osend

L l

or ecv

send(m)

r ecv(m)

Figure 3.18: Point-to-point communication on the TILE-Gx for a 2-word message m (N I :
network interface)

3.5.1 Modeling TILE-Gx8036

We run experiments on a Tilera TILE-Gx8036 processor. We use it as a representative of current

message-passing manycore architectures [8]. Experiments are run with version 2.6.40.38-

MDE-4.1.0.148119 of Tilera’s custom Linux kernel. Applications are compiled using GCC 4.4.6

with O3 flag. To implement our algorithms, we use the User Dynamic Network (UDN). In our

experiments, we dedicate one queue to asynchronous messages: An interrupt in generated

each time a new message is available in this queue. Note that the TILE-Gx8036 processor

does not provide support for collective operations. Hence, we implement br oadcast and

mul ti cast as a set of send operations. Such an implementation will be later replaced by a

hardware-based broadcast service.

Figure 3.18 describes how we model a point-to-point communication on the TILE-Gx proces-

sor. The figure illustrates the case of a 2-word message transmission using send and r ecv . This

model is solely based on our evaluations of the communication performance and is only valid

for small-sized messages. We do not claim that Figure 3.18 describes the way communication

are actually implemented in the processor.

We obtain value of the TILE-Gx model parameters using some microbenchmarks. The over-

head osend of a message of n words includes a fix cost of 8 cycles associated with issuing a

header packet, plus a variable cost of 1 cycles per word. The overhead or ecv is equal to 2 cycles

per word. The header packet is not received at the application level. The transmission delay L

between the sender and the receiver includes some fix overhead at the network engines on

both the sender and the receiver, plus the latency l associated with network traversal. The

fix overhead is 10 cycles in total. The latency l depends on the number of routers on the

path from the source to the destination: 1 cycle per router. However, on a 36-core mesh the

distance between processes has little impact on the performance. Thus, to simplify the study

we assume that l is constant and is equal to the average distance between cores, i.e., l = 6.

Note that there is no gap between two consecutive messages sent by the same core. Moreover

our measurements show that the cost of invoking an interrupt handler and restoring the

previous context account for 138 cycles. As previously mentioned, we implement br oadcast

56



3.5. Evaluation

Parameter \Platform TILE-Gx Intermediate Ideal

osend 8+|m| - -
or cv 2 · |m| - -

oar cv 138+or cv 4+or cv 4+or cv
obcast c ·osend - osend
omcast |l i st | ·osend - osend

Tr t t (send ,r cv) 2 · (osend +or cv +L) - -
Tr t t (send , ar cv) 2 · (osend +L)+oar cv +or cv - -

Tr t t (bcast , ar cv)
obcast +oar cv+

osend +or cv +2 ·L
- -

Tr t t (mcast , ar cv)
omcast +oar cv+

osend +or cv +2 ·L
- -

osel 17 if s = 2x , 90 otherwise - -
L 16 - -

Table 3.2: Parameters value in cycles (A "-" means that the value is the same as on TILE-Gx)

and mul ti cast operations as a sequence of send operations. When the round-trip time is

initiated with a collective operation, its duration corresponds to the time required to send all

messages plus the time to receive the answer to the last message sent. Finally, we implement

the server selection operation using the modul o operation. Its cost osel varies depending

whether the number of server is 2x (in this case modul o is implemented with a bit-wise AN D)

or not. The second column of Table 3.2 summarizes the value of the model parameters for the

TILE-Gx processor.

3.5.2 Model validation

To validate our model, we run our algorithms on the TILE-Gx processor and compare the

achieved throughput to the one predicted by the model. The experiment considers a hash

table with keys of 36 bytes and values of 8 bytes. The DJB hash function, which generates 4

bytes long hash-keys, is used: opr e = 156 cycles. The processes manipulate 100 keys, and so,

we assume that the hash table fits into the L1 cache of the cores. Also, in all experiments we

assume a collision free scenario. Thus, assuming that an access to the L1 cache is negligible,

we have olup = oupd = 0.

Threads are pinned to cores in ascending order: thread ti is pinned to core i . Note that the

size of the messages depends on the algorithms specification. For instance, in PART_SIMPLE,

update requests sent to a server include 4 words: the i d of the sender, the operation i d , the

hash-key, and the value. The answer is a one-word message containing simply the acknowl-

edgment. The messages size is taken into account for the modeling.

The results presented in Figure 3.19 assume a load of 90% of lookups (p = 0.9). Each point

is the average throughput of 6 runs, where in each run every core issues 10000 operations

repeatedly on the map. Client threads randomly choose the next operation to execute with

a uniform distribution. Keys are distributed among the servers uniformly. Similarly, clients

randomly select the key for the next operation with a uniform distribution, i.e., pm fke y (k) =
1/c. Figure 3.19(a) shows the variation of the throughput with PART_SIMPLE when the total
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Figure 3.19: Model validation on Tilera TILE-Gx processor (90% of lookup operations)

number of threads is 36 and when the number of server threads varies from 1 to 35. It compares

the performance obtained through experiments (dots) and predicted by the model (line). It

first shows that the model manages to precisely estimate the performance of the algorithm.

The hiccups that can be observed are due to the cost of the modul o function used for server

selection, and correspond to cases where the number of servers is 2x . Both the experiments

and the model show that the optimal configuration in this case is with 2 servers.

Figure 3.19(b) presents the maximum throughput of the different algorithms when varying

the total number of threads. To obtain this graph, for each case we run the same test as

described by Figure 3.19(a), and we take the best configuration. This figure shows that we

manage to correctly model the performance trends of the algorithms executing on the TILE-

Gx processor. Also, it shows that the throughput obtained with the model is always higher

than the experimental one. This is expected since the model ignores some computational

costs (e.g., operations on private variables) related to the implementation of the algorithms.

Additionally, the model considers the maximum overlapping Oc between idle periods and

interrupts handling, which is most probably less during experiments. Hence, the model

provides an upper bound on the performance of the algorithms, which is at the same time

not far from the actual performance. PART_CACHING is the algorithm for which the difference

between the model and the experiments is the highest. But even in this case, the difference is

at most 12%. Finally, note that in this experiment PART_SIMPLE always outperforms the other

solutions. This might be due to the high cost of interrupt handling as well as non-efficient

broadcast service, which penalizes the other algorithms. Hence these results could not be

generalized.
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3.5.3 Analysis of the map algorithms

Analytical modeling helps us to do the comparative study of different algorithms under differ-

ent settings and loads, e.g. where the target platform has different architectural features or the

load distributions are not uniform. Moreover it helps us to concretely understand the perfor-

mance bottlenecks of different algorithms. Using our model, we analyze the performance of

partitioning and replication algorithms under different settings. To assess the performance on

current and future platforms, we consider two features, not provided by the TILE-Gx processor,

that can be blamed for the poor performance of applying the replication paradigm.

The first feature is non-efficient broadcast service on Tile-Gx. Due to the lack of a hardware-

based broadcast service on this platform, broadcasting to n participants consumes cpu time

of n sends and n receives. Note that even the most efficient software implementation of

broadcast on top of send and receive primitives, leads to the consumption of the mentioned

amount of cpu time 5. Some recent architectures implement the broadcast service in hardware,

e.g. Kalray MPPA [4], Adapteva Epiphany [1] and Picochip DSP [7]. To model this feature on

these platforms, we assume that the overhead of br oadcast and mul ti cast is the same as

the overhead of a send , which would be the ideal case. Second, even if interrupt handling

on the TILE-Gx is rather efficient, its overhead remains high compared to other cpu costs.

Solutions have been proposed to save and restore an execution context very efficiently using

different architectural and compilation techniques [88, 111, 37, 95]: More specifically in [88],

a solution with a constant 4 cycles cost is presented. Hence the second feature we consider is

efficient interrupt handling with a cost of only 4 cycles.

In order to assess the affect of the mentioned features on the comparative performance of

different algorithms, we incrementally define two platforms which do not suffer from them.

First we define an intermediate platform that has the same characteristics as the TILE-Gx

processor but provides efficient asynchronous receives (see Table 3.2, intermediate platform).

Second we define an ideal platform that has the same characteristics as the intermediate

platform but also provides hardware-based broadcast service (see Table 3.2, ideal platform).

Considering a hash table implementation of a map, we compare the algorithms on the men-

tioned three platforms for different ratio of lookup operations. We assume a collision free

scenario in order to not to deal with other orthogonal issues. First under the same consistency

criteria, i.e. linearizability, we compare the performance of different algorithms on the three

platforms for a given use case, i.e., we fix the cost of the hash function and the cost of accessing

the hash table. Second, we study how the cost of the hash function and of the hash table ac-

cesses impact the performance. Third, we focus on the PART_CACHING algorithm and analyze

how the probability distribution of client access to the keys affects its performance. Fourth,

we study how weakening the consistency criteria to sequential consistency could be in favor

of replication. Fifth, we assess the effects of colocating clients and servers on the same core on

5When broadcast is implemented using asynchronous communication, the throughput of the system is inde-
pendent from the broadcast algorithm [84].
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Figure 3.20: Performance on the three platforms (opr e = 12, oop = 11)

the performance of the algorithms. Finally we calculate how non-uniform load distribution

on the servers can impair the maximum obtainable throughput.

Comparison of the three platforms

Figure 3.20 shows the performance of the different linearizable algorithms as a function of

the total number of cores when the percentage of lookups is 90% and 99%, representative

loads of many map use-cases [49, 14]. The assumptions made in this evaluation are: i) keys

are integers and a simple shift-add hash function is used, i.e., opr e = 12; ii) the hash table is

small enough to fit into the L2 cache of one core, i.e., we assume that accesses to the hash

table cost one L2 access (oop = 11)6; iii) clients randomly select the key for the next operation

with a uniform distribution, i.e., pm fke y (k) = 1/c. Note that the uniform distribution can be

considered as a worst case for PART_CACHING since it implies that the probability that one

core issues many lookups on the same key is low. Later we see that a non-uniform key access

distribution can improve the performance of PART_CACHING. The two first assumptions are

representative of the use of maps in an operating system [60].

Three conclusions that can be drawn from Figure 3.20. First, if the ratio of lookups is not

very high, then partitioning approaches outperforms replication at scale on all platforms (see

Figures 3.20(a) to 3.20(c)). On the ideal platform, REP_LOCAL provides the best performance

6We prefer assuming L2 rather than L1, due to its bigger size.
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for 128 cores with 99% of lookups, but the minimum ratio of lookups for REP_LOCAL to be

the most efficient in this case is actually 98%. However its throughput reaches a plateau if the

total number of cores increases indefinitely. Second, on the TILE-Gx processor, partitioning

outperforms replication even if the ratio of lookups is very high (see Figures 3.20(a) and

3.20(d)). Replication can outperform partitioning on TILE-Gx only if the lookups are less than

0.1% of the total number of operations. Third, the effect of having broadcast in hardware is

much less than providing efficient asynchronous receives.

We explain now the shape of the curves with the partitioning algorithms. One can see plateau

in the throughput of PART_SIMPLE. This is due to the variable cost of the modulo function

used to select a server. At the beginning of a plateau, the optimal configuration requires 2x

servers. Then servers become the system bottleneck, and so, the number of servers should be

increased. However, adding one server dramatically increases the cost of the modulo function

and makes clients again the bottleneck. Hence, the maximum throughput remains constant

despite the increase of the number of cores because the number of servers remains 2x as long

as there are not enough clients to afford having a more costly modulo function. The same

phenomenon exists with PART_CACHING, but in this case it is even worse because adding more

clients increase the cost of updates on the server (more invalidation messages are needed on

average), leading to a performance decrease.

Impact of the computational costs

One might wonder if the results displayed in Figure 3.20 depend on the assumptions made on

the map. Figure 3.21 shows the performance of the linearizable algorithms for other values

of opr e and oop . To better assess the impact of these changes, we consider the ideal platform

because the relative cost of these parameters is then higher compared to the communication

costs. Additionally, we assume a load with 99% of lookups.

Figure 3.21(a) presents the performance when the hash function cost is 156 cycles, which is a

typical cost for a hash function operating on strings. A comparison with Figure 3.20(f) shows

that the maximum throughput of all algorithms decreases but that their relative performance

does not change. Figure 3.21(b) presents the performance when the cost of the operations

on the hash table is also increased to 88 cycles. It corresponds to the cost of an access to the

main memory. This setting is representative of an in-memory key-value store [6]. In this case,

the algorithms based on replication are mainly impacted because the cost of updating the

hash table is higher. As a result, compared to Figure 3.20(f) where REP_LOCAL was providing

the best results, PART_CACHING is now the most efficient algorithm. This is due to the fact

that replicated maps are not able to leverage the locality if map replicas are not cached. Note

that we do not present results for a configuration with a low hash function cost and a high

operation cost because we could not find any corresponding use case.
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Figure 3.21: Impact of the computational costs (ideal platform, 99% of lookups)

 0
 200
 400
 600
 800

 1000
 1200
 1400

 16  32  48  64  80  96 112 128

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Number of cores

Part-simple
Rep-remote

Rep-local
Rep-2pc

Part-caching

(a) Tilera, 90% of lookups

 0

 1000

 2000

 3000

 16  32  48  64  80  96 112 128

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Number of cores

(b) Ideal, 99% of lookups

Figure 3.22: Impact of the access pattern (opr e = 12, oop = 11)

Performance of PART_CACHING with non-uniform client key access

All evaluations until now assume a uniform distribution of the probability for clients to access

one key. This distribution has a negative impact on PART_CACHING since all clients may access

a key, which minimizes the probability of local lookups. Moreover, it is not representative

of many use cases where only on small number of clients issue most operations on a given

key. To evaluate the performance of PART_CACHING in such a scenario, we define another

distribution function where a fix number of clients cke y issue r % of the operations on a key.

Figure 3.22 shows the performance with cke y = 4 and r = 80. It considers TILE-Gx with 90%

of lookups and the ideal platform with 99% of lookups. In both cases, the performance

of PART_CACHING is greatly improved. In Figure 3.22(b), PART_CACHING even outperforms

REP_LOCAL.

Impact of weakening consistency criteria to sequential consistency

As we discussed earlier, unlike partitioning solutions, replication solutions are able to exploit

sequential consistency. As we saw earlier in comparing linearizable solutions, partitioning is

the best approach unless three conditions are met: (i) the percentage of lookups are extremely
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Figure 3.23: Impact of weakening consistency criteria (opr e = 12, oop = 11)

high; (ii) the cost of asynchronous receives are extremely low; and (iii) the map is located in the

cache system of the cores. Provided that these conditions are met, replication can outperform

partitioning. In order to understand up to which extent a weaker consistency criteria could

be in favor of replication, we compare the performance of REP_SC with other linearizable

solutions on the ideal platform, where opr e = 12, oop = 11, for both 90 and 99 percent of lookup

workload. As you see in Figure 3.23(a), with 90 percent of lookups operations REP_SC still

cannot beat partitioning solutions at scale, although it outperforms other replication solutions

as expected. However as you see in 3.23(b), with 99 percent of lookups REP_SC outperforms all

other solutions significantly. The threshold for percentage of lookup operations in which after

that REP_SC outperforms all other algorithm at all scales, is around 95%. This threshold for

REP_LOCAL is around 98%, which was mentioned earlier too. Therefore weakening consistency

criteria although improves the performance of replication, but still the three conditions are

necessary for replication to outperform partitioning, even though partitioning solutions are

not able to exploit sequential consistency in their favor.

Colocating clients and servers on the same core

Our evaluations are based on the assumption that clients and servers are located on different

cores. One can argue that placing clients and servers on the same core might lead to a better

maximum throughput. In this case a core, while playing the role of a server, can receive the

requests asynchronously. This strategy does not make sense on the TILE-Gx architecture since

the relative high cost of asynchronous receive is added to the critical path of all operations.

However considering the ideal platform, where the cost of asynchronous and synchronous

receives are in the same order, it is not clear how this strategy can affect the maximum

throughput. Therefore we use our model to obtain the maximum throughput in this case.

For the sake of simplicity, we consider the simple partitioning algorithm, PART_SIMPLE. To

obtain the maximum throughput of this algorithm, one can consider a total number of C

cores partitioned into two sets: the first set S1, with the size of C −S, are those who are purely

clients and the second set S2, with the size of S, are those who colocate clients and servers. To

compute the maximum throughput, we obtain the maximum throughput of each set and sum

63



Chapter 3. High-Performance Map

 0
 200
 400
 600
 800

 1000
 1200
 1400

 16  32  48  64  80  96 112 128

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Number of cores

no-coloc
coloc

(a) opr e = 12,oop = 11

 0

 100

 200

 300

 400

 500

 600

 16  32  48  64  80  96 112 128

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Number of cores

(b) opr e = 156,oop = 11

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 16  32  48  64  80  96 112 128

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Number of cores

(c) opr e = 156,oop = 88

Figure 3.24: Impact of colocating clients and servers on ideal platform (PART_SIMPLE)

them up. The maximum throughput of S1 is calculated in the same way as before:

T S1 = mi n
( C −S

p ·T c
l up + (1−p) ·T c

upd

,
S

p ·T s
lup + (1−p) ·T s

upd

)
(3.57)

Assuming that there is no request from the S1 to the S2, the obtainable throughput from S2 is

equal to:

T S2∗ = S

p · (T c
lup +T s

lup )+ (1−p) · (T c
upd +T s

upd )−Oc (3.58)

However this throughput cannot be obtained from S2, since a portion of each cpu time during

one second is devoted to serve the requests which were received from the cores in S1
7. This

means that T S2 = (1−L ) ·T S2∗, where L is the portion of cpu time of each core in S2, is

devoted to serve the requests received from the cores in S1. L can be calculated from T S1 as

follows:

L =
T S1 · (p ·T s

lup + (1−p) ·T s
upd

)

S
(3.59)

Considering the above formula, we obtained the maximum achievable throughput of PART_SIMPLE

with colocating clients and server in Figure 3.24. Considering all three use cases, the perfor-

mance improvement is at most 20 percent. Analysis of other algorithms show that their

performance improvement by colocating clients and servers does not exceed 20 percent.

7For simplicity, this calculation assumes the idle time during each request issued by the clients in S2, cannot be
used to serve the requests issued from the clients in S1. The exact formula will be much more complex.
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Non-uniform load distribution on the servers

In calculating throughput of all algorithms, we assumed that the clients uniformly access

the servers. However non-uniform distribution of the keys among servers can affect the

maximum obtainable throughput. This non-uniform distribution can be due to different

reasons depending on the implementation of the map. For example if the map is implemented

using a hash table, a non-uniform hash function can create non-uniform load on different

servers. Another example is a name service to track different services in a factored operating

system, implemented using a table. If some services are accessed more often than the others, it

can also create a non-uniform load among the servers. We calculate the maximum obtainable

throughput of our algorithms for a non-uniform load on the servers, given an arbitrary load

distribution among them.

If we consider an arbitrary load among s servers, it can clearly affect the throughput of the

system when the servers are the bottleneck. However in case that the clients are the bottleneck,

the throughput of the system remains as before. Consider an arbitrary load where server si

is accessed with the probability of pi , where
∑s

i=1 pi = 1. Now assume that the server(s) with

maximum load is(are) accessed with the probability of pmax . Therefore the load on any other

server is a fraction of pmax such that pi = pmax ·ki where 0 ≤ ki ≤ 1. Since the server with the

maximum load would be the bottleneck for the throughput of the servers, the total throughput

of the servers is equal to:

T s =
s∑

i=1
ki ·

1

p ·T s
lup + (1−p) ·T s

upd

(3.60)

Clearly the uniform distribution leads to the highest server throughput (ki = 1). The negative

effects of non-uniform distribution threatens partitioning solutions more than the replication

ones, since replication algorithms are less sensitive, if not non-sensitive, to the changes in the

distribution of the load on the servers.

3.5.4 Discussion

Results show that the only situation where replication could be used to implement a high

throughput linearizable map on a message-passing processor is when the percentage of

lookups is extremely high, the processor provides features such as highly efficient interrupt

handling and the map is located in the cache system of the cores. In this case, REP_LOCAL

could be efficient but the REP_REMOTE approach is not interesting because of the high cost of

its lookup operation.

Althought the map algorithms designed for shared memory architectures mostly ensure

linearizability [49], to assess the effects of weakening the consistency criteria, we also study

the case of sequential consistency. Replicated maps are able to exploit sequential consistency
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by removing the synchronization between lookups and updates. On the contrary partitioned

maps are not able to exploit sequential consistency, mainly because sequential consistency

is not compositional. Evaluations show that replication still needs the same conditions as

with the case of linearizability to outperform partitioning. Study of even weaker consistency

criteria [107], using a similar methodology, can complement this study.

Clients and servers can be colocated on the same core. This configuration avoids dedicating

resources to play the server role. On the TILE-Gx, this is not a desirable choice since a costly

asynchronous receive will be involved in every request sent to the servers. Evaluations on the

ideal platform show that, despite efficient asynchronous receives, this colocation only leads to

a negligible performance gain. The main reason is that in the best configurations, the number

of servers that can be colocated with the clients is small.

Client can access the servers non-uniformly, e.g. when the map is implemented using a hash

table with a non-uniform hash function. This non-uniformity decreases the throughput of the

servers, and consequently of the overall map (except for REP_2PC). Moreover a non-uniform

access of the clients to different keys increases the throughput of the PART_CACHING algorithm,

by increasing the probability of local lookups and decreasing the number of invalidations. For

a given distribution of the client accesses among servers and the key accesses among clients,

throughput of the maps can be quantified using our model. Evaluations considering realistic

load distributions based on real case scenarios can be an interesting extension of this work.

We considered the TILE-Gx, a general purpose message-passing manycore, as the baseline

for our evaluations. We believe that our conclusions remain valid on similar architectures

since: (i) TILE-Gx provides efficient inter-core communication; (ii) using our model we could

consider cases where broadcast operations and asynchronous receives are very efficient. Still,

using our model, one can directly do a comparison on other architectures. One exception is

the architectures with one-sided communication primitives, e.g. Intel SCC [52]. The main

reason is that inter-core communication in these architectures involves some synchronization

costs [83] which are not included in our model.

3.6 Related Work

This chapter uses performance modeling to compare different algorithms. A few recent studies

have proposed performance models for other manycore architectures [83, 89]. Our approach

is similar to the one used in these papers. They all cover the same communication scenarios

as the LogP model [34] (or its extensions) that is commonly used in message-passing systems.

The main difference is that the underlying communication system considered in these studies

are different from the one of this chapter: [83] models RMA-based communication and targets

the Intel SCC processor; [89] models point-to-point communication on top of cache-coherent

shared memory and targets the Intel Xeon Phi processor.

The implementation of scalable data structure in message-passing manycore is an impor-
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tant research topic for message-passing-based operating systems[16, 109, 42]. The Barrelfish

operating system [16] considers the operating system as a distributed system of cores, com-

municating using message passing, where the state is replicated instead of shared. Hence any

potentially shared data structure is considered as if it is a local replica. Consistency among

the replicas is maintained by exchanging explicit messages. The authors claim to improve

scalability by applying replication is based on reducing the traffic on the interconnect, mem-

ory contention, synchronization overhead and access latencies. On the other hand, use of a

client-server approach on chip level, is on the rise. The Fos [109] operating system applies

a model, where the operating system is factored into function specific services, where each

service is provided by a set of cores, so called fleets. Cores communicate with fleets using

only messages. Fleets behave similar to Internet servers, which allowed them to scale up to

millions of machines, but instead of web pages they provide traditional kernel operations and

data structures. Fleets can internally apply different techniques, e.g. partitioning, to improve

their performance. As an interesting use-case, the implementation of a naming service for

the FOS operating system has been studied in [18]. The naming service is based on a hash

map which is made scalable using replication. The replication algorithm used is this study is

similar to REP_2PC but is not compared to other approaches. Partitioning and replication were

both originally proposed as a mean to scale the operating system in the Tornado project [42].

The Tornado project targets NUMA machines where remote memory accesses are an order of

magnitude more costly than local accesses. Since Tornado was designed for shared-memory

processors, message-passing was emulated in software with a high cost for software-based

multicast operations. We compared partitioning and replication in the context of modern

message-passing manycore chips, which provide completely different trade-offs regarding

communication performance compared to [42].

Optimization of in-memory key-value stores for manycore is an area where our results could

be applied [19, 78]. The authors of [19] and [78] both propose a partitioning approach similar

to the PART_SIMPLE algorithm. The solution proposed in [78] is based on message-passing

emulated on top of shared memory whereas [19] takes advantage of hardware message-passing

provided by Tilera. This chapter complements these studies by providing a comparison

between partitioning and replication.
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4 Conclusion

Manycore architectures, in which a large number of general-purpose processing cores are

fabricated into a single chip, provide a high level of parallel processing power while their

energy consumption is considerably lower than their multi-chip counterparts. Although

shared-memory programming is the classical paradigm to program manycore environments,

there are several claims that taking into account the full life cycle of software, the message-

passing programming model has numerous advantages. This already led to modern manycore

chips with message-passing support in hardware. These platforms can be seen in two ways:

(i) as a HPC cluster programmed by highly trained scientists using MPI libraries; or (ii) as a

mainstream computing platform requiring a global operating system to abstract away the

architectural complexities from the ordinary programmer. Each approach faces with the

performance bottlenecks caused by MPI communication primitives and kernel data structures

respectively. This thesis studies the mentioned bottlenecks in the context of high-performance

broadcast communication primitive and map data structure on modern message-passing

manycores in two different chapters.

In one chapter, we proposed OC-Bcast as a pipelined k-ary tree broadcast algorithm based

on one-sided communication. It is designed to leverage the inherent parallelism of on-chip

RMA in manycores. Experiments on the SCC show that OC-Bcast outperforms the state-of-

the-art broadcast algorithms on this platform. OC-Bcast provides around 3 times better peak

throughput and improves latency by at least 27%. These performance gains are mainly due to

a limited number of off-chip data movements on the critical path of the operation: one-sided

operations allow to take full advantage of the on-chip MPBs.

In the other chapter, we studied the implementation of strongly-consistent maps in message-

passing manycores. Using a communication model we compare the performance of parti-

tioned and replicated maps under different settings. A Tilera TILE-Gx8036 processor is used

to validate the model and serves as a baseline for the evaluations. The results show that

replication can outperform partitioning only if handling interrupts is highly efficient, update

operations are rare and map replicas are located in the cache system of the cores.
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Chapter 4. Conclusion

This thesis clearly shows that hardware-specific features should be taken into account to design

efficient algorithms for manycore architectures. Moreover, it highlights the importance of

analytical modeling for concrete understanding of complex phenomenons as well as predicting

behaviour of algorithms beyond existing platforms. Immediate extensions of this thesis

include the followings:

• Studying other MPI collectives in similar architectures with on-chip RMA: in this the-

sis, we took advantage of RMA access to the on-chip message-passing buffers of the

cores to implement a high-performance broadcast. However other collective operations

involving one-to-many messaging components can benefit from similar techniques.

Examples of such collectives include: barriers, scatter and all-to-all operations. Provid-

ing an RMA-aware library to run communication-heavy macrobenchmarks on similar

architectures can highlight the benefits of our approach at a higher level.

• Taking into account topology information: in our analysis, we ignored the hop laten-

cies among cores assuming the same distance between each pair. This simplifying

assumption is rather realistic: in platforms which are considered in this thesis, the

difference between the latency of sending a message to the furthest core compared to

the neighboring core is at most 30%. However by increasing the number of cores, topol-

ogy information and actual hop distances introduce interesting optimization problems

regarding creation of broadcast trees as well as placement of the servers with respect to

the clients.

• Considering realistic distribution of key accesses and server loads: to compare replication

and partitioning, we assumed a uniform distribution of client accesses to the servers

and to the different keys. However in real world scenarios, uniform accesses might

not be the case. One such scenario is when a map is implemented using a hash table

with a non-uniform hash function. Another scenario can happen when certain keys are

accessed only by a certain number of clients, e.g. in the context of a name service in

which some services are accessed only by certain cores. Such distributions can affect the

map performance in both positive and negative ways. Although for a given distribution,

throughput of the map can be quantified using our model but evaluations considering

realistic scenarios, e.g. access patterns inside manycore operating systems, can lead to

more concrete results.

• Studying map implementations under weak consistency criteria: to compare partition-

ing and replication, we considered strong consistency criteria, e.g. linearizability and

sequential consistency. However such a criteria might be heavier than what is actually

needed, a case already true for many internet-scale services. On a chip scale, such a

relaxation is already applied in implementation of some proposed name services for

manycore operating systems. Weakening consistency can be in favor of both parti-

tioning and replication, provided that they are fundamentally able to exploit such a

relaxation. Systematic study of weak consistency criteria, similarly to the approach of

this thesis for strong consistency, can complement this work.
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• Studying abstract data types which are not naturally partitionable: in this work, we

compared replication and partitioning in the context of a map data structure. However

advantages of partitioning can diminish in the case of an abstract data type in which its

individual items are not independent from each other, e.g. trees. In the case of a tree,

parent-child relationships must be kept among different partitions using additional

protocols. For such data types, provided that read operations are frequent enough,

replication might outperform partitioning in a broader domain.

And at the end, comparing communication primitives and data structures based on the

message-passing programming model with their counterparts based on the shared-memory

programming model seems to be an interesting long-term research direction. These com-

parisons can be facilitated using architectures in which direct hardware support for both

programming models is provided (e.g. Tilera TILE) and might lead to interesting hybrid

solutions which take advantage of both programming models.
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