
Consensus Inside

Tudor David
EPFL, Switzerland

tudor.david@epfl.ch

Rachid Guerraoui
EPFL, Switzerland

rachid.guerraoui@epfl.ch

Maysam Yabandeh
Twitter

myabandeh@twitter.com

ABSTRACT
Scaling to a large number of cores with non-uniform commu-
nication latency and unpredictable response time may call
for viewing a modern many-core architecture as a distributed
system. In this view, the cores replicate shared data and en-
sure consistency among replicas through a message-passing
based agreement protocol.

In this paper, we present the first in-depth study of message-
passing agreement on many-cores. In particular, we focus
on the possibility of such a protocol being non-blocking.
We highlight a number of optimizations that are specific to
the many-core environment and present 1Paxos, a new non-
blocking agreement protocol that takes up the challenges of
this environment.

1. INTRODUCTION
The consistency of cached data in many-core systems is usu-
ally guaranteed by the hardware. Although this approach
simplifies software design, a number of studies argued that
it does not always scale to a large number of cores [4,34,38].
In future systems with heterogeneous cores, or larger non-
uniform systems such as those using RDMA, hardware co-
herence may furthermore not even be present [4,13,35]. An
alternative approach has been recently proposed: view the
cores as nodes of a distributed system [4]. Accordingly, com-
munication is not implicit, but rather explicit through a
message passing layer. This approach discourages sharing.
But when this is unavoidable, e.g. specific application state
or configuration information need to be shared by multiple
cores, multiple local replicas of the data are created and
their consistency is ensured through an agreement protocol.

Barrelfish [4] pioneered this approach by implementing a
multikernel model where the kernel state is replicated on
several cores. These cores exchange messages to execute a
2PC-like (two-phase commit) protocol [28], which sits as a
middleware between the application and the OS and ensures

Figure 1: Non-uniform latency in inter-core communica-
tion; Cores C0 and C1 share the same last-level cache and
communicate much faster than Cores C0 and C3, which have
to go through the interconnect network.

the consistency of the replicated state among the kernels.1

2PC is known to be a blocking protocol, for it expects replies
from all the participants in order to perform updates, which
makes it vulnerable to even a single process being slow to
respond. On many-cores, this can easily be caused by an
unpredicted load or consecutive cache misses, especially in
a large scale system, which is the precise target of the dis-
tributed system vision of a many-core. Indeed, upon a cache
miss, loading the data from the memory takes around 100
ns,2 i.e., ∼10 times longer than loading data from cache.
If the data is swapped out to the hard disk by the virtual
memory manager, the core has to wait until the correspond-
ing memory page is swapped into the memory, which takes
around 8 ms, i.e., ∼800K slower than a cache access. The
process context switch latency is between 10 and 20 µs on
average and can take much longer because of page faults.
The inter-core latency is typically non-uniform in a large
scale system. As illustrated in Figure 1, the cores located
on the same CPU share the same last-level cache (LLC) and
hence can communicate much faster than the cores located
on different CPUs. On such an architecture, a blocking pro-
tocol (i.e., that needs responses from all the participants) is
thus problematic: any such delay increases the overall wait-
ing time.

Non-blocking agreement protocols, also called consensus

1We use the 2PC terminology here similarly to Baumann et
al. [4] (we could also have used the term primary-backup [3]):
in fact, 2PC is used in [4] solely in its agreement form,
and not in its full transaction commitment sense (with disk
storage etc.); it is this Barrelfish version of 2PC that we will
be referring to throughout this paper
2The memory access time is highly dependent on the mem-
ory architecture and can range from 50 ns to 150 ns.

protocols [15], constitute an appealing alternative. These
can progress with responses from a strict subset of repli-
cas [6, 31], ignoring the slowest ones. Particularly desir-
able is a message-passing consensus that tolerates ”crashes”3

as well as ”asynchrony”, namely arbitrary long delays in
the communication between the nodes. The combination
of the very notions of crashes and asynchrony models the
communication scheme underlying many-core systems with
non-uniform communication latency and unpredictably slow
cores [18] quite well. By assuming that the nodes could
be non-responsive for an arbitrarily long period of time, we
capture cores that are running slow because of contention
on shared resources, e.g., the CPU cycles, the cache, and
the hard disk (after a page fault) and prevent the protocol
from waiting for all of them.

A family of practical message-passing consensus protocols
has been recently developed with IP networks in mind
[8,22,24,27,32,33,36]. Multi-Paxos [27] is arguably the most
efficient such protocol; it has been implemented in a wide
variety of IP network settings [5,8,20,30]. Due to their non-
blocking nature, any of these protocols may at first glance
seem a good candidate for the many-core task at hand. How-
ever, a closer look reveals that none of them meet the very
requirements of the many-core context. Roughly speaking,
this is basically because, although it looks alike, a many-
core is not a genuine distributed system in the classical IP
sense: as we shown in Section 2.3, although Multi-Paxos de-
ployed in a local area network (LAN) scales well to hundreds
of clients, it saturates very quickly in a many-core setting,
with only a few clients.

With message passing inside a many-core, the cycles of the
sending/receiving core itself are taken as the transmission
delay of the message. The more message transmissions per
core are required by the agreement algorithm, the sooner
the cores’ processing power saturates. Since inter-core la-
tency, i.e., the message propagation delay, is much lower in
many-cores than in IP networks, a much higher rate of po-
tential throughput is induced, which in turn magnifies the
message transmission bottleneck for throughput scalability.
Besides the typically large number of messages transmitted
in agreement protocols, many such algorithms, e.g., Multi-
Paxos, require that a request goes through a specific node
that leads the agreement, making the message transmission
load at the leader the bottleneck of the system [5].

As our experiments in Section 3 show, the ratio of transmis-
sion delay to propagation delay (trns/prop) inside a many-
core is at least two orders of magnitude larger than in an
IP setting. In other words, the transmission delay is a
main contributor to the overall latency of the algorithms.
A slightly smaller number of messages processed in the fast
path of the algorithm has a high impact on the overall la-
tency experienced by the client processes. The algorithms
inside a many-core, including agreement algorithms, should
therefore be designed with the objective of minimizing the
number of messages produced. This is in contrast to the
common practice of algorithm design in IP networks, where
the main objective was to minimize the number of round

3The notion of ”crash” used here does not necessarily mean
the cores stopping any activities forever. It simply models
slow ones.

trip delays (i.e., propagation delays) in the fast path of the
algorithm. In addition, while in an IP setting the commu-
nication links are unreliable, this is currently not a problem
on many-cores, where link failures and network partitions
are not an issue.

Taking these observations into account, we designed and im-
plemented 1Paxos, a consensus protocol tailored to many-
cores. Very intuitively, 1Paxos reduces the agreement-
related traffic in general, and more specifically that of a
leader. A key insight underlying 1Paxos is the observa-
tion that the role of acceptor in Paxos-based protocols, i.e.,
to resolve conflicts among possibly multiple leaders, can be
played by a single node.4 We change the type of redundancy
used in the acceptor role of Paxos to reduce the number of
sent messages, thus enabling higher bandwidth and number
of agreements achieved per second in many-cores. Making
use of a single acceptor introduces some technical difficulties
(that we discuss in the paper), but otherwise leads to much
less traffic, yet without jeopardizing the consistency of the
system. In terms of availability, using three cores, 1Paxos
can progress even with one slow (or non-responsive) core,
just like in the Paxos family of protocols. With a higher
replication degree however, there is a trade-off: 1Paxos does
not progress as long as neither the leader nor the active ac-
ceptor are responding. This, we believe, is less problematic
in a many-core, where cores do not require manual recov-
ery to start operating again, but might respond relatively
slowly for a while, and network partitions do not appear
(which might happen in a WAN).

We consider various protocols and measure (1) their commit
latency and throughput; (2) their scalability with the num-
ber of cores; and (3) their performance when a core becomes
slow. We report on our evaluation on a machine with eight
2.1 GHz Six-Core AMD Opteron(tm) processors (48 cores
in total). Our implementation of these protocols was itself
technically challenging due to the lack of availability of an
efficient framework for message passing inside a many-core.

In short, our results show that 1Paxos scales significantly
better than Multi-Paxos and 2PC. Moreover, 1Paxos can
progress with slow cores and in the worst case scenario where
the leader is slow, 1Paxos replaces the leader and continues
with the same throughput, whereas a 2PC update blocks as
long as any node is not responding. Our results highlight
another trade-off: indeed, reading replicated data can be
performed faster with a blocking protocol, i.e. the read can
be executed locally. However, as soon as the workload con-
tains a small percentage of write operations 1Paxos becomes
more appealing. For more relaxed read consistency guaran-
tees, local reads may be performed even with non-blocking
protocols.

To summarize, the main contributions of this paper are as
follows:

1. We present the first in-depth study of agreement on
many-cores and investigate the challenges of imple-
menting message-passing consensus in this setting. We

4The presence of multiple leaders can typically be caused
by asynchrony: a new leader might be elected if the former
leader is non-responsive, even only temporarily.

support our analytic study with extensive evaluation
on a 48-core machine.

2. We highlight fundamental differences between the net-
work inside the many-core and the IP network.

3. We introduce 1Paxos, a variant of Paxos that takes
up the challenges of the many-core environments by
reducing the number of processed messages for achiev-
ing an agreement.

The rest of the paper is organized as follows. Section 2 re-
calls the message-passing vision on many-core systems as
well as the design of basic blocking and non-blocking agree-
ment protocols. Section 3 describes the main network char-
acteristics of a many-core system, highlighting the differ-
ences with a LAN. Section 4 gives the key insight underlying
1Paxos. The detailed design of 1Paxos is presented in Sec-
tion 5. Section 6 presents our message-passing framework.
We present our experimental results in Section 7. Section 8
presents related work. Section 9 concludes the paper with
some final remarks. Appendix A presents the pseudo code of
1Paxos which is followed by the correctness proofs of 1Paxos
in Appendix B.

2. BACKGROUND
In this section we discuss consistency and the role of
message-passing agreement in the context of many-core sys-
tems. We also give a brief overview of 2PC [28], as an ex-
ample of a blocking agreement protocol and Paxos, as a way
of achieving non-blocking agreement.

2.1 Consistency in Many-core Systems
A major scalability bottleneck in many-core systems is in-
duced by the need to keep the cached data consistent among
multiple cores. The developers expect to have the same view
of data, independently of which core the processes are run-
ning on. However, two cores might have loaded the same
data into their caches or local memory, and changes into the
loaded data in one of the cores is not by default observable
by the others. This gap, between the centralized view of the
processor and the distributed implementation inside many-
core systems, is typically bridged by hardware techniques,
known as cache coherence protocols [17]. There are differ-
ent kinds of such protocols, but the essence is that after a
change into a memory address by a core, all cores that have
loaded the same address are notified about the change, be-
fore doing any computation on that data. In essence, the
hardware does not know which cores still need the data for
future use. For a large number of cores, this sometimes
implies long delays for change propagation and/or a large
number of synchronous inter-core message transmissions.

The alternative is to have the software keep the replicated
data consistent. This approach could be applied to both the
kernel and the user levels when state needs to be shared.
Barrelfish [4] applied this vision to the kernel design, ex-
hibiting good scalability. According to this approach, the
software handles the consistency of its own data by view-
ing the entire machine as a large distributed system whose
nodes represent the actual cores. If the software assigns two
separate cores to process the same data, each core gets its
own copy of the data, i.e., replica. It is then the software’s
responsibility to maintain the consistency of the replicas by
exchanging messages to run an agreement protocol among

the cores hosting the replicas. In Barrelfish [4], the capabil-
ity system is replicated on the cores and a 2PC protocol [28]
keeps the replicated state consistent among the kernels.

2.2 2PC
The 2PC (two-phase commit) protocol, as its name sug-
gests, has two phases. In the first phase, the coordinator
(the leader) sends a prepare message to the replicas. Each
replica locks its local copy of data and responds with an ack
message if it is not already locked by another coordinator.
The coordinator starts the second phase by broadcasting a
commit message to the replicas, but only if it receives an ack
from all of them. In this case, each replica executes the com-
mand of the commit message and releases its lock, which is
followed by a commit ack message back to the coordinator.
Otherwise, the coordinator broadcasts a rollback message to
the replicas. Upon receiving a rollback message, each replica
releases its lock if it is already acquired by the corresponding
ack message. As Section 7 will show, the many generated
messages required by 2PC limit its efficiency inside a many-
core.

In order to verify the impact of a highly loaded core on a
blocking protocol, we measure the throughput of 2PC when
the leader becomes slow, as well as the normal non-faulty
case. In this setup, five clients are sending requests to three
replicas. The experiment is run on a machine with four
2.4 GHz Dual-Core AMD Opteron(tm) processors (8 cores
in total). The replicas are assigned to Cores 0 to 2, Core
0 being the coordinator, and run 2PC between them. We
slow down Core 0 by running 8 CPU-intensive processes on
it; each process is a bash script that continuously multiplies
a number by itself. As expected, after Core 0 becomes slow,
only a few requests can commit and the throughput drops
to zero.

2.3 Consensus
Unlike 2PC, non-blocking agreement protocols, also called
consensus protocols [31], tolerate slow processes. They
require responses from only a majority of the nodes to
progress, thus tolerating the crash of a minority. Whereas
crashes are considered common in classical distributed sys-
tems, in a many-core environment, these model slow cores.
As we pointed out in the introduction, asynchrony, on the
other hand, models the tolerance to delayed messages. We
recall below the celebrated Paxos consensus protocol [27]
and its Multi-Paxos optimization, proposed in [27] and used
in [8].

Using the underlying Synod consensus protocol, it assigns a
total order to the commands issued by clients and guarantees
that all nodes execute the commands in the same order (the
term Paxos is often used to designate Synod as well).

Basic-Paxos. We now give a brief description of the origi-
nal Paxos protocol [22,27], which we call Basic-Paxos here-
after. The participant nodes in Basic-Paxos implement three
different roles: proposer, acceptor, and learner. The pro-
posers advocate the client commands, the acceptors resolve
the contention between multiple proposers, and the learn-
ers learn the chosen values. The leader orchestrating the
consensus is chosen among the proposers.

 10

 100

 1000

 10000

 100000

 1 10 100

T
h

ro
u

g
h

p
u

t
in

 o
p

/s

of clients

Multi-Paxos Multicore
Multi-Paxos LAN

Figure 2: The scalability of Multi-Paxos in LAN compared
to many-core systems.

The ultimate goal of Basic-Paxos is to assign totally ordered
instance numbers to client commands. To associate values
(client commands) with instance numbers, Basic-Paxos re-
quires two phases. In the first phase, a proposer attempts
to become the leader for a particular instance number by
broadcasting a prepare request message to the acceptors.
Upon receiving a prepare response message from a major-
ity of acceptors, the proposer becomes the leader of that
instance number. In the second phase, the leader proposes
a value to the acceptors and the acceptors broadcast the
corresponding message to all the learners. A learner learns
the proposal after receiving the message from a majority of
acceptors. All message transmissions related to a particular
order constitute a separate instance of Basic-Paxos.

Although each role can be implemented by a separate node,
usually a single node implements all three roles (Collapsed
Paxos).5 According to the liveness property of Basic-
Paxos [24] a value will be eventually chosen, given that
enough nodes are running. For example, in Collapsed-Paxos
deployed on 3 nodes, the liveness property holds as long as
2 of the 3 nodes are running. Basic-Paxos guarantees the
following two safety properties [27]: (i) non-triviality: only
proposed values can be learned; and (ii) consistency: two
different learners cannot learn two different values.

Multi-Paxos. After a proposer p takes the leadership posi-
tion for one instance in, it could be more efficient if p as-
sumes this position for the next Paxos instance in′ (in′ > in)
as well. The other proposers can still try to become leaders
when they suspect that the last leader has failed. Multi-
Paxos [22] is the version of Paxos that implements the men-
tioned optimization.

Multi-Paxos [27] is considered one of the most efficient pro-
tocols of the Paxos family; it has been implemented in a
wide variety of IP settings [5, 8, 20, 30]. Figure 2 depicts
the throughput of Multi-Paxos with three replicas in a local
area setting (LAN). By increasing the number of clients, the
overall throughput increases. As depicted in the figure, up
to a hundred clients the throughput increases (the scale on

5The advantage is avoiding messages between two roles that
are located on the same node.

the X axis in Figure 2 is logarithmic).

This is not the case in a many-core system: after the third
client, the throughput changes only marginally by adding
more clients to the system. This is because the processing
power of the cores gets saturated very quickly by the many
generated messages. In other words, although Multi-Paxos
performs well in IP networks, it has a very limited scalability
in many-core systems.

3. MANY-CORE: A NETWORK VIEW
Applying consensus protocols designed in an IP setting to a
many-core does not lead to efficient protocols according to
our experiences. The reason is that the characteristics of the
networks are different. Here, we measure the main network
characteristics of a many-core system, namely the transmis-
sion delay and the propagation delay, which we compare
to those of a LAN. By transmission delay, we refer to the
amount of time necessary to place a message on the propa-
gation medium, while by propagation delay we refer to the
time necessary from the moment the sender has written the
message, and until the receiver is notified of its arrival. Ana-
lyzing the differences, we conclude that reducing the number
of messages per core should be the main objective in the de-
sign of distributed protocols in many-cores.

In the first experiment, we measure the transmission delay
for a message on a many-core using our framework (pre-
sented in Section 6). To achieve this, we use a sender pro-
cess assigned to core 0 repeatedly issuing messages to an
unbounded queue. The average duration needed to send a
message approximates the transmission delay. The measure-
ments show a transmission delay of 0.5µs in the many-core
scenario.

To measure the propagation delay, we consider the following
experiment: we again use a sender and a receiving process
(which is placed on core 1), this time using a queue that can
only hold a single message. Therefore, the sender pauses
until it learns that the last message has been read. On
the receiver side, the process simply dequeues the requests
as they arrive, performing no further computation. In our
framework, the amount of processing required to receive a
message is very similar to that required to send it. There-
fore, we approximate the latency between two consecutive
messages being sent in this experiment using the following
formula: latency ' 2∗ trans+2∗prop, where the two trans-
mission delays account for sending and receiving the mes-
sage, and the two propagation delays account for the time
required (i) for the message to reach the receiver and (ii) for
the new value of the queue head pointer to propagate back
to the sender once the message is dequeued. The value we
measured for the latency in this experiment is 2.1µs. Hence,
using the value for the transmission delay obtained in the
previous experiment, we approximate the propagation delay
to 0.55µs. The ratio between the transmission delay and the
propagation delay is therefore very close to 1 in this case.

Even in a simplified setting, where the system of message
queues would not be necessary, a core sending a message
has to at least fetch the corresponding cache line before it
can write (which can be taken as the transmission delay),
after which the receiver has to in turn fetch it in order to

read [11]. This results in a similar trans/prop ratio to the
one observed above.

We perform similar experiments for the scenario where the
two participants are placed on different machines, and com-
municate via message passing over a LAN. To measure prop,
we modify the receiver in the 2nd experiment to immedi-
ately enqueue a reply after receiving a request. We therefore
measure the interval from the moment a request is sent and
until a reply is received. We can estimate this latency as
latency ' 4 ∗ trans+ 2 ∗ prop.

The measured transmission delay in the LAN scenario is
around 2 µs, while the propagation delay is around 135 µs.
Therefore, the ratio between the two is of about 0.015. How-
ever, network propagation delays are often unpredictable,
and the value of this ratio may become much smaller than
in this ideal case.

As the numbers presented above indicate, the ratio between
the transmission delay and the propagation delay is much
larger in the case of a many-core when compared to an IP
setting. In other words, the transmission delay is a main
contributor to the overall latency of the protocols. Even
a small reduction in the number of messages processed in
the fast path of the protocol has a high impact in the over-
all latency experienced by the client processes. Therefore,
the protocols inside a many-core, including consensus pro-
tocols, should be designed with the objective of minimizing
the number of messages produced.

4. RETHINKING PAXOS
In this section, we rethink the design of Paxos based on the
observations we made in Section 3: the number of processed
messaged per core should be minimized. To be able to do
so, we need to first analyze the internals of Paxos and see
which of the components could be changed to achieve the
targeted optimization. Based on this analysis, we devise a
new consensus protocol, 1Paxos, that reduces the number
of messages the leader has to process. A major specificity
of 1Paxos is the use of only one active acceptor at a time.
In the following, we first distill the different roles of classical
Paxos, including the acceptor. We then explain the rationale
behind the replication of each role before highlighting the
main insight of 1Paxos: in short, not replicating the role of
the acceptor.

4.1 The Roles in Paxos
There are three major roles in Paxos: (i) proposer, (ii) ac-
ceptor, and (iii) learner. The proposer role is to advocate
the client’s command. This is essential for the scalability of
the system. By relinquishing this task to the proposers, the
consensus is required among only a few nodes and is thus
more scalable with the number of clients. The learner is the
actual long-term memory of the system. When a Paxos in-
stance is completed successfully and its value learned, this
value is kept in the multiple available learners. The clients
can then read this value from each of the learners.

The acceptor is somehow the main safety-guard in Paxos.
If multiple proposers want to propose values for the same
Paxos instance, the acceptor is key to resolving the con-
tention between the competing proposers. Suppose some

acceptors accept value v0 from proposer P0 and, for some
reason, the Paxos instance does not complete successfully.
Now, to finish the instance, proposer P1 must first read the
accepted value by the acceptors (i.e. v0) and propose the
same value. It implies that the acceptors play the role of the
short-term memory for the system; they must remember a
few values during the short period of one Paxos instance.

4.2 Replication in Paxos
At the heart of the efficiency of 1Paxos lies the observa-
tion that replication can be used for different purposes. In
general, we have two types of replication: (i) replication of
service and (ii) replication of data. Replication of service in-
creases the availability of the system. In other words, when
a client requests for the service, we want to make sure that
there is at least one responding node, ready to receive the
client commands. The replication of data, however, is for
increasing the reliability of the system. In other words, it
decreases the chance of data loss by missing some nodes (af-
ter permanent failures). The roles in Paxos are replicated,
but each one for a different purpose.

The replication of the proposers is to increase availability, as
the proposers provide a service to the clients, i.e., advocating
their request. In contrast, the learners store the data of the
system, and the purpose of their replication is to enhance
reliability.6

The acceptor replication is partly for service availability and
partly for data reliability. The proposers start the consen-
sus procedure by contacting the acceptors. These require
the availability of the provided service. In addition, as men-
tioned before, there are a few data kept by the acceptors
such as the accepted value and the promised proposal num-
ber, which should be kept during the Paxos instance. How-
ever, this data is required only for the active Paxos instance,
and in the case of failure, we can think of some workaround
solutions. An important insight in the design of 1Paxos,
which will be explained later, comes from the following ob-
servation: the replication of the acceptor role is mainly for
availability, and if its availability is provided via other mech-
anisms, then the replication of the acceptor is no longer nec-
essary.

4.3 One Acceptor is Enough
In the following, by comparing 1Paxos with Multi-Paxos,
the most efficient variation of Paxos used in practical set-
tings [8], we explain why the design of 1Paxos is appropriate
in a many-core system. Figure 3 depicts message transmis-
sion in a collapsed Multi-Paxos setup that consists of three
nodes. The messages that cross the node boundary must be
included in the total number of messages.

A crucial parameter is the number of sent/received messages
by the leader node. The leader exchanges more messages
compared to the other nodes and hence, when it gets sat-
urated, the system cannot process more client commands.

6From performance perspective, one can take advantage of
replication to increase scalability as well. For example, Men-
cius [32] uses proposer replication to enhance the scalability.
Moreover, if the application does not demand the very last
state of the system, its read traffic can be directly serviced
from either of the replicated learners.

Figure 3: The reduced number of messages in 1Paxos com-
pared to collapsed Multi-Paxos deployed on three nodes.
The dotted box represents the node boundary. P, A, and
L represent the proposer, acceptor, and learner roles, re-
spectively. The grayed acceptors and consequently the com-
munications to/from them are eliminated in 1Paxos.

As depicted in Figure 3, reducing the number of acceptors
to one decreases the number of messages processed by the
leader.

As we explained earlier, the availability of the acceptor role
can be provided in different ways. One approach, which is
taken by Multi-Paxos, is the replication of the acceptor. A
side-effect of this approach is the increase in the number of
exchanged messages between acceptors and other roles. An
alternative approach is to rely on backup acceptors, and re-
place the failed (or suspected to be failed) acceptor with a
new fresh one. The backup acceptors do not participate in
the normal execution of the protocol and do not, hence, in-
crease the message complexity of the protocol. This idea is
the main insight underlying 1Paxos, which reduces the num-
ber of produced messages by a factor of two. This is however
not the only concept that separates it from Multi-Paxos: al-
though the use of backup acceptors addresses the problem
of the acceptor availability and yet provides better perfor-
mance, it poses the non-trivial problem of the reliability of
acceptor’s data, which we discuss now.

Recall that the acceptors also keep a few data, which is
necessary during the short-term period of a single Paxos
instance to address the possible contention between multiple
proposers. Missing this data, by switching from the active
acceptor to a fresh backup acceptor in the middle of a Paxos
instance, can violate system consistency. For instance, if the
active acceptor promises not to take any proposal number
less than pn, then a fresh new acceptor would not be aware of
this promise and might accept proposal numbers less than
pn. Nevertheless, if the proposers get properly notified of
this data loss, they can safely restart the Paxos instance
without risking consistency. For example, upon receipt of
the failure notification of the active acceptor, the proposers
know that the promised sequence number by the previous
acceptor is no longer held.

We explain in Section 5 that, if we assume that the leader
and the active acceptor nodes do not fail at the same time,
then there exists a procedure through which the leader
can safely notify the other proposers of the active acceptor
switch. This is the same assumption that is already made
by Paxos in the common setup that consists of three nodes

implementing three proposer, three learner, and one accep-
tor roles. By carefully placing the proposer and acceptor
roles in a way that the leader and the active acceptor are
separated, we can make the assumption that the leader and
the active acceptor do not fail at the same time. This as-
sumption cannot be violated unless two of the three physical
nodes fail. In this case, we would be left with one node which
is less than the minimum required nodes for Multi-Paxos to
progress (min > total/2).

5. 1PAXOS: THE PROTOCOL
In this section, we detail our protocol, 1Paxos. As mentioned
in Section 4, the main idea is to use only one active acceptor
and ensure availability via backup acceptors. Care must be
taken to preserve the reliability of the acceptor’s data when
the active acceptor is replaced. We start this section by
describing the communication scheme underlying 1Paxos in
the failure-free case where messages are received in a timely
fashion. We then discuss the backup cases executed when
the cores are faulty.

5.1 The Failure-free Case
The roles in 1Paxos and the interaction between them for
the failure-free case is depicted in Figure 3.

1. Proposer P decides to take the position of the leader. It
first obtains the Id of the active acceptor, A (we will explain
how we obtain this Id in the next subsection), and sends a
prepare request message including a proposal number, pn,
to acceptor A. By doing so, the proposer asks the acceptor
to recognize it as the leader.

2. If the proposal number, pn, is greater than all previ-
ous proposal numbers received by the acceptor, the acceptor
sends a prepare response message back to P . By doing so,
the acceptor promises not to accept any proposal number
smaller than pn. Notice that these two steps are necessary
only the first time a proposer contacts the acceptor. After
that, the proposer becomes leader and skips these two steps.

3. P then sends to A an accept request message including
proposal number pn as well as a proposed value.

4. When acceptor A receives the accept request message
corresponding to the proposal number to which it has given
its promise, it accepts the proposal and broadcasts a learn
message to all the learners.

5.2 Switching Acceptor
We consider the scenario in which the active acceptor A fails
(does not respond in a timely manner). When the active ac-
ceptor fails, the leader is the only node that is allowed to
replace it with another backup acceptor A′. This change,
however, must be confirmed by a majority of nodes. This is
necessary to avoid having multiple instances of active accep-
tors running in the system, compromising consistency. The
scenario is illustrated in Figure 4.

Obtaining the confirmation of a majority of the proposers
is a separate consensus problem that can be solved by any
Paxos-like protocol (a similar strategy of falling back to a
different protocol when needed has been used by Guerraoui

Figure 4: The interaction between nodes in 1Paxos to re-
place failed acceptor A with another backup acceptor A′. In
Step 1, the leader verifies that it is still known as the leader
by a majority of nodes. Then in Step 2, it announces the
change of the active acceptor. Finally in Step 3, it sends a
prepare request message to the new active acceptor A′.

et al. [16] in the context of BFT protocols). Although it is
possible to merge this consensus into the main operation of
1Paxos, for the sake of simplicity of presentation, we assume
that the consensus over the new active acceptor is achieved
by a separate basic implementation of Paxos, which here-
after is called PaxosUtility. Notice that the PaxosUtility in-
stance that handles consensus over the new active acceptor is
totally separate and independent from the 1Paxos protocol
that we are explaining here. Moreover, running PaxosUtility
does not require any extra nodes; it runs on the same nodes
as 1Paxos. Beside the Id of acceptor A′, the leader also
includes the uncommitted proposed values into the message
sent to the PaxosUtility. This is to cover the cases where ac-
ceptor A has received an accept request message with value
vin for instance number in, but the corresponding issued
learn message is not received by the other nodes yet. In
this way, it guarantees that the next leader will try to pro-
pose the same value as vin for instance number in. After
finishing the consensus over the active acceptor, the leader
switches from acceptor A to acceptor A′, i.e., the new active
acceptor. Because the acceptor node has changed, the leader
must start over with a prepare request message to take the
leadership of the new acceptor.

5.3 Switching Leader
In principle, every proposer could spontaneously try to take
the leadership position by sending a prepare request mes-
sage to the acceptors. In practice, this usually happens
when the current leader is non-responsive (i.e., fails). Simi-
larly, when the leader fails in 1Paxos, any proposer can try
to take its position by sending a prepare request message to
the active acceptor. Assume that proposer P ′ suspects the
failure of leader P and decides to become the leader. The
active acceptor Id, A, can be obtained by inquiring a major-
ity of the nodes. This is due to the fact that the last leader
does not use the new active acceptor unless it obtains agree-
ment from a majority of nodes. The sequence of exchanged
messages is depicted in Figure 5.

Care must be taken to ensure that, in the meanwhile, active
acceptor A is not replaced by the last leader. Otherwise,
we end up with two leaders which use two different active
acceptors. To this aim, proposer P ′ uses PaxosUtility to
start a consensus instance to announce its leadership po-
sition by assuming A as the active acceptor. Accordingly,
every leader must always check for this announcement be-
fore switching the active acceptor. If the leader observes this

Figure 5: The interaction between nodes in 1Paxos when
proposer P ′ takes the leadership position from leader P . In
Step 1, proposer P ′ inquires for the active acceptor Id. It
then announces itself as leader in Step 2. Finally in Step 3,
it sends a prepare request message to the active acceptor.

announcement, it must consider its position as relinquished.
This step is marked as Step 1 in Figure 4.

5.4 Switching both Leader and Acceptor
If the active acceptor fails, the leader is in charge of replacing
it with a fresh backup acceptor. On the other hand, if the
leader fails, then any proposer can safely take its position,
given that the active acceptor is still running. The only
remaining case to handle is when both the leader and the
active acceptor fail together.

As mentioned in Section 4, to handle this scenario we care-
fully assign the 1Paxos roles to the nodes in a way that
the leader and the active acceptor are located in 2 sepa-
rate nodes. Assume that we have N nodes available and
each node implements all the roles: proposer, acceptor, and
learner. 1Paxos has only one active acceptor, and hence we
have the option to pick the node that will also play the ac-
tive acceptor role. This deployment is depicted in Figure 3.
The idea is to assign the active acceptor and leader roles
to 2 separate nodes. In this way, the failure of the leader
and the active acceptor cannot occur together, unless 2 of
N nodes fail at the same time.

Notice that, in the usual setup of consensus, which consists
of three nodes, this failure scenario implies that two of the
three nodes have failed. On the other hand, (asynchronous)
consensus protocols, e.g., the Paxos family, cannot progress
with just one running node out of three. Consequently, we
can assume that if the failures of the leader and the active
acceptor occur at the same time, there is only one node
left. In this situation, neither Paxos family of protocols nor
1Paxos can progress.

It is worth noting that, for N > 3, the failure of the leader
and the active acceptor at the same time does not jeopar-
dize the consistency of the system. It only slows down the
progress of consensus until any of these two cores start re-
sponding again. In other words, while both the leader and
the active acceptor are not responding, it is the liveness of
the system that is affected, but not its safety. Neverthe-
less, the failure probability of two particular nodes, i.e. the
leader and the acceptor, is much less than failure probabil-
ity of two arbitrary nodes, which makes this failure scenario
very rare.7 The detailed pseudo code of 1Paxos as well as the

7For example, if the failure probability of a core is s, then
the failure probability of two particular cores is s2, and the

correctness proof is covered in a Appendix A and Appendix
B respectively.

6. MESSAGE PASSING FRAMEWORK
This section presents the architecture of QC-libtask, the
message-passing framework that we developed on top of an
inter-process shared memory communication in order to sup-
port our agreement protocols. A challenge here is to avoid
synchronization locks when writing into the communication
channels. Another challenge in the design of QC-libtask is
to prevent the operating system from being involved in the
message-passing process, since system calls induce expensive
context switches. Our framework is implemented at the user
level using standard C++ libraries, and hence is portable
to various operating systems, including Barrelfish [4]. For
the purpose of performance evaluation in this paper, simi-
larly to the approach taken by previous work [4], we imple-
ment a message-passing paradigm on top of shared memory.8

Changes made by a process into a shared memory address
are first applied to the cache of the core that is running the
process. Thanks to the cache coherence mechanism imple-
mented in hardware, the changes in the cache of the source
core are only propagated into the cache of the destination
core.

Notice that although our implementation transmits the uni-
cast messages via a cache coherence mechanism, it is still
faithful to the distributed vision of a many-core system, as
there are separate channels per pair of cores. In a centralized
implementation on top of a cache coherence mechanism, a
message would be written into the memory and read by all
the cores in the system, resembling a broadcast message. As
pointed out in [4], this approach does not scale with the num-
ber of cores, since it induces a burst of messages, whereas
in our distributed implementation, the software makes use
of its knowledge about the application internal to efficiently
decide to where and when each message must be sent. In the
following, we describe our messaging system and its integra-
tion into a user-level thread library for the efficient delivery
of messages.

6.1 Message Queuing
As mentioned above, we make use of the cache coherence
mechanism by writing/reading to a shared memory address,
created using the shm open system call. To implement asyn-
chronous message passing, we use more than one slot (seven
by default) for sending messages. The size of each slot is 128
bytes, which is twice the cache line size. Matching the cache
line size reduces the number of cache misses for transferring
the message. The multiple slots are wrapped into a queue.
As illustrated in Figure 6, there are two queues between each
two processes pi and pj : one for writing by pi and reading
by pj and the other for reading by pi and writing by pj .
Because of separate queues, there is no need for operating
system locks to access the queues, which makes the design
simple as well as efficient. Each queue has a head and a tail
pointer. The head pointer is moved by the reader and the

failure probability of two arbitrary cores is
(
N
2

)
.s2. Then for

N = 7, this failure scenario is 21 times less likely than the
failure of two arbitrary cores.
8We expect to have standard inter-core channels in upcom-
ing computer architectures [9].

Figure 6: Two separate queues between each pair of cores.

Figure 7: The architecture of QC-libtask.

tail by the writer. The reader process verifies the equality
of head and tail pointers to check for new messages.

6.2 Message Delivery
As explained above, a process that communicates with n
other processes must check for new messages from n sepa-
rate read queues. After reading a message, the correspond-
ing thread must be notified to process it. To implement this
efficiently, we make use of libtask [29], a user-level thread
library. By doing so, we reduce the cost of delivering the
message to that of a lightweight user-level context switch.
The architecture of our implementation is depicted in Fig-
ure 7. Upon reading a request from each queue, the re-
quested thread blocks and its reading destination is added
to the waiting list of the scheduler. The scheduler checks for
all waiting reads and, upon receiving a message, loads the
context of the corresponding reading thread. In other words,
the developer takes advantage of the simple blocking read
interface, while the back-end benefits from the asynchronous
message-passing implementation to gain performance.

Following the messaging standard in libtask, a replica waits
for the clients to connect (by netlisten function). After-
wards, the replica creates (i) the send and the receive queues
for future communications with the node and (ii) a thread
for reading the messages from the open connection. The
thread will block by calling fdread on the connection and
process the received message after the scheduler wakes it.
Note that while a user-level thread is blocked, the replica
could still progress by processing other messages in other
threads. Since we have implemented standard interfaces
provided by the library, the implemented protocols in our
framework can be easily ported to a network system with
no change. (The library already supports TCP and UDP
implementation of the messaging interfaces.)

7. EVALUATION
In this section, we report on the evaluation of 1Paxos, which
we compare with Multi-Paxos and 2PC. Multi-Paxos is ar-
guably the most efficient consensus protocol to date. As
pointed out earlier, 2PC is used here in the sense of [4], i.e.
in its agreement form (and not in its full transaction com-
mitment sense). We basically explore: (1) The improved

commit latency and throughput by using 1Paxos; (2) The
scalability of 1Paxos with the number of cores; and (3) The
performance of 1Paxos when a core becomes slow.

7.1 Experimental Setup
We made use of a machine with eight 2.1 GHz Six-Core
AMD Opteron(tm) processors (48 cores in total) and 32 GB
of RAM. The L1 cache size is 128 KB, the L2 cache is 512
KB, and each of the processors has a 6 MB L3 cache. The
machine runs Linux (Ubuntu 12.04 64 bit, kernel version
3.4.2).

In our experiments, we refer to the nodes having the repli-
cated data and participating in the agreement protocol as
servers, and to the nodes which make use of this service as
clients. It is shown by the many years of research in state
machine replication that to make agreement scalable, it must
only be achieved between a few servers and the other nodes
should behave like clients. We have applied the same lesson
by using three replicas in all protocols (we also present an
experiment showing the lack of scalability when increasing
the number of replicas), which are each assigned a separate
core from 0 to 2, via the taskset command, a simple assign-
ment that is fair to all the protocols. The clients are assigned
to cores 3 to 47. The clients start sending requests to the
replicas after receiving a message from the load manager
which is run on Core 47. There is no payload added to the
requests and responses. In all experiments, a client sends
a request to Core 0, waits for the commit ACK, and then
sends another request, until it finishes 100 requests. We run
each experiment three times and report the average values.

7.2 Latency
In this experiment, only one client is used, which is assigned
to Core 3. We measure the average commit latency experi-
enced by the client. The commit latency is the delay between
the times the client sends the request and receives the reply.
The throughput is the number of received replies per unit
of time.

1Paxos has the lowest latency (around 16 µs) whereas 2PC
has the highest (21.4 µs), because of the more message copy
operations induced by sending more messages. Although
both Multi-Paxos and 2PC transmit the same number of
messages per request, Multi-Paxos has a slightly better la-
tency (19.6 µs) since it progresses right after receiving the
response from a majority of nodes whereas 2PC has to wait
for all the responses to be received. The same pattern ap-
plies to throughput, since the higher the latency of each
commit is, the fewer requests will be sent by the client per
unit of time.

7.3 Scalability
We evaluate the scalability of the protocols by increasing the
number of clients from 1 to 45 (we have 48 cores in total).9

Figure 8 depicts the average commit latency vs. the total

9We avoided using the cores allocated to the replicas for
the client processes. That would make the analysis of the
results more complicated both because of the added load on
the replica cores and the lower latency between the clients
and the replicas.

0e+00

1e-04

2e-04

3e-04

4e-04

5e-04

6e-04

7e-04

8e-04

 0 40000 80000 120000 160000

L
a

te
n

c
y
 i
n

 s
e

c

Throughput in op/s

2PC
Multi-Paxos

1Paxos

Figure 8: The latency vs. throughput w.r.t the number of
clients in a 48-core machine.

achieved throughput by the clients. 1Paxos is the most scal-
able protocol, since the throughput improves by a factor of
two as the number of clients is increased from 1 to 13. Multi-
Paxos scales up to only two clients. Afterwards, by adding
more clients, the throughput improves slightly, while the la-
tency increases steeply. This makes its throughput stop at
68070 op/s with 6 clients, 52% of the maximum throughput
of 1Paxos. Similar to Multi-Paxos, 2PC throughput rises by
adding the first client and slightly improves up to 7 clients,
where the throughput is 48% of that of 1Paxos. As the
number of clients increases after the point that the cores are
saturated, all protocols suffer a small decrease in throughput
due to the imposed overhead.

7.4 Degree of Replication
This experiment explores the alternative to achieving agree-
ment among replicas, i.e., running the agreement protocol
directly between the clients. In other words, each client is
also a replica. Figure 9 plots the commit throughput as
a function of the number of nodes for the three modified
protocols 2PC-Joint, Multi-Paxos-Joint, and 1Paxos-Joint.
The initial leader is Core 0 for all three protocols and re-
mains unchanged during the experiment. To avoid the con-
tention between multiple concurrent agreement instances,
all the clients forward their commands to the leader, which
runs the agreement and returns the result back to the client.
After receiving a reply, a client waits 2 ms before issuing a
new request.

Figure 8 shows that the processing power of the replicas is
the bottleneck for scalability. As a result, after they become
saturated, increasing the rate of client commands would only
results into increased commit latency due to more buffer-
ing delay. Figure 9 shows that when the agreement is run
directly among clients, once the nodes become saturated,
the throughput actually decreases when more processes are
added: the number of messages per second the nodes process
remains constant, but because by adding nodes the number
of messages per consensus round increases, the throughput
in terms of commits decreases. This behavior is exhibited
by Multi-Paxos-Joint and 2PC-Joint, who reach the satu-
ration point around 20 nodes. In contrast, the low number
of messages transmitted in 1Paxos-Joint allows the through-
put to increase linearly up to 47 nodes, thus scaling much
better with the number of cores compared to the alterna-

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
in

 o
p

/s

Number of replicas

2PC-Joint
Multi-Paxos-Joint

1Paxos-Joint

Figure 9: The throughput w.r.t the number of replicas in a
48-core machine.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

P
ro

p
o

s
a

ls
/s

e
c

3 clients 5 clients

1Paxos - 0% read
2PC-Joint - 0% read

2PC-Joint - 10% read
2PC-Joint - 75% read

Figure 10: Throughput of 2PC-Joint, which is run directly
among the clients.

tives. Because of the lower number of message exchanges
per agreement, 1Paxos-Joint also provides a much lower la-
tency: as an example, with 15 processes, before the nodes
become saturated in any of the protocols, 1Paxos-Joint has
a commit latency of 32 µs, while Multi-Paxos-Joint requires
190 µs per client request and 2PC-Joint requires 125 µs.

7.5 Read Workload
In the Paxos family of protocols, messages are issued as a
result of each client command, which is the type of traffic
targeted by 1Paxos. In general, read requests also cause
Paxos protocol messages to be issued. This is because the
read requests often require the last updated data, which is
not necessarily updated in every learner, including the leader
node. Thus, the read traffic can be treated as normal client
command traffic.

2PC in particular could handle the read traffic more effi-
ciently if it is run directly between the clients, i.e., each
client is also a replica (2PC-Joint). In this way, a client can
locally service the read requests if it is not received in the
gap between two phases of 2PC. However, direct agreement
between the clients implies an increase in the number of
transferred messages with increase in the number of clients,
which negatively impacts the protocol scalability.

As depicted in Figure 10, without any read traffic, 2PC-Joint

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000

P
ro

p
o

s
a

ls
/s

e
c

Time in 10 ms

Slow Leader
No Failure

Figure 11: The changes in throughput achieved by 1Paxos
when the leader is slow.

throughput is much lower than 1Paxos’s. By adding more
read traffic, the throughput of 2PC-Joint improves: by 75%
read traffic, 2PC-Joint running between three clients keeps
up with 1Paxos. However, by adding a few more clients
the 2PC throughput quickly drops: by 75% read traffic, the
throughput of 2PC-Joint is much lower than that of 1Paxos.
This shows that the optimization for read workloads that
one could apply in 2PC is not scalable with the number of
nodes, and could not, hence, be employed in our application.

7.6 Throughput with Slow Cores
As described in Section 2, since 2PC is blocking, no requests
can commit after any replica including the leader is unavail-
able, and the throughput drops to zero. Here, we run an
experiment to see how 1Paxos tolerates faulty cores. Fig-
ure 11 plots the throughput of 1Paxos when the leader be-
comes slow, as well as the normal non-faulty case. The ex-
periment is run on a machine with four 2.4 GHz Dual-Core
AMD Opteron(tm) processors (8 cores in total). 5 clients are
sending requests to 3 replicas, from which the initial leader
is assigned to Core 0. We slow down Core 0 by running 8
CPU-intensive processes on it; each process is a bash script
that continuously multiplies a number by itself. Once the
clients detect the slow leader, they send their requests to
other nodes. After receiving the clients’ request, the non-
leader node tries to become leader in PaxosUtility. After
that, it sends the proposals to the active acceptor. During
the leader change process, the throughput drops to zero.

8. RELATED WORK
Barrelfish [4], an implementation of a multikernel model, pi-
oneered the idea that a many-core should be viewed as a
distributed system. Key information of the kernel is repli-
cated on several cores and a 2PC-like (i.e. blocking agree-
ment) protocol ensures the consistency of the replicas. Bar-
relfish exploits the cache hierarchy inside the processors to
efficiently broadcast messages via multicast trees. A slow
node in the multicast tree can however delay the propaga-
tion of the message to the rest of the nodes. This approach
contrasts with that of our 1Paxos consensus (a non-blocking
agreement) protocol, which is precisely designed to address
the problem of slow cores, and hence does not use any multi-
cast tree to broadcast messages to the replicas. (Otherwise,
an unresponsive core would cause all its child nodes under
the multicast tree to be unresponsive as well.)

Mencius [32] was derived from Multi-Paxos to distribute the
load of client commands among multiple leaders [25]. As-
suming a balanced load of client commands received by the
leaders, it partitions the space of Paxos instance numbers
among the leaders: each leader proposes the received client
commands only for its range of instance numbers. By doing
so, the leaders can, in total, process more aggregate com-
mands from clients. Yet, each leader still has to communi-
cate with all acceptors to make a proposal. If the load is not
balanced on the leaders, the loaded leader could forward
its traffic to the other under-loaded leaders, which causes
higher delays. The under-loaded leaders also have to skip
their share of the instance space, which would not help the
load balancing objective. In contrast, 1Paxos targets the
load on each leader individually, and is not limited by as-
suming a balanced load on the leaders. By reducing the
number of messages exchanged between servers (non-client
nodes), each leader in 1Paxos can process more client com-
mands. The main insight of 1Paxos can be applied to any
protocol of the Paxos family. In fact, we conducted experi-
ments of 1Paxos over an IP network and observed a factor
of 2.88 improvement over Multi-Paxos (similar to what is
depicted in Figure 2). Mencius could also benefit from the
main insight of 1Paxos and increase the system throughput
further. This would enable a Mencius leader to be assigned
to a single separate acceptor, and indeed increase the over-
all throughput. However, the exact conditions under which
1Paxos is preferable to Multi-Paxos or Mencius in an IP
network need to be further studied.

Some protocols of the Paxos family target the latency of
client commands [12, 23, 24]. In Basic-Paxos, each client
command takes four message delays between the servers.
Multi-Paxos, which has been successfully integrated into a
number of practical deployed [5,8,30] systems, behaves simi-
larly to Basic-Paxos for the first command, but requires only
two message delays between servers for the next commands.
This does not include the RTT delay between the client and
the leader. Fast Paxos [24], using more replicas (3f + 1),
saves the delay between the leader and the acceptors by al-
lowing the client to optimistically send the accept request
messages directly to the acceptors. Collisions between com-
mands from different clients can be resolved by spending
more steps. The average latency can be lower if the rate
of collisions is low. If collisions are frequent, classic Paxos
actually outperforms Fast Paxos [24].

In scenarios where the throughput of the system is a bottle-
neck, the number of client commands is very high, and the
probability of collisions increases accordingly. 1Paxos is de-
signed for high-throughput systems and reducing the num-
ber of consensus phases is not targeted by the protocol. Fast
Paxos cannot outperform the throughput of Multi-Paxos, as
the number of sent/received messages to/from each acceptor
does not change; although the leader-to-acceptor messages
of Multi-Paxos are eliminated in Fast Paxos, the messages
must be sent to more acceptors, 3f + 1. For f = 1, the mes-
sage/node is equal to six per command, which is the same
number as Multi-Paxos. BFT protocols [7, 10, 21] tolerate
not only crashes but also Byzantine faults: these include
arbitrary faults and malicious behavior. BFT protocols,
because of aiming stronger guarantees, are more expensive
than the widely deployed consensus protocols [5, 8, 30] (to

which 1Paxos belongs).

Since Paxos requires only a majority (f+1) of the replicas to
progress, in scenarios where all cores are responsive, f of the
nodes can be excluded from an execution. This observation
is leveraged by Cheap Paxos [33] to improve the through-
put. Yet, this optimization comes with liveness penalties.
For example, with 3 replicas r1, r2, and r3, if r1 fails and
afterward r2 fails, then the system cannot progress until r2
recovers. In other words, the recovery of r1 does not help
since r2 has the crucial last state of the system. In compar-
ison, 1Paxos can progress as long as any 2 of the 3 replicas
are responding. For example, in the above scenario, 1Paxos
progress as soon as either r1 or r2 starts responding. In this
sense, 1Paxos does not jeopardize the liveness of Paxos and
yet offers higher performance.

Vertical Paxos [26] addresses the scenario in which only
a subset of the available servers should be responsible for
replicating a particular piece of data. Vertical Paxos uses
so-called read and write quorums of acceptors, which must
intersect. Their sizes can be adjusted, but as the size of the
read quorums is reduced, the size of the write quorums must
be increased. At the expense of a somewhat lower degree of
fault tolerance with more than three replicas, 1Paxos allows
an arbitrary degree of replication using a single acceptor in
the entire process, thus requiring a lower number of message
exchanges.

The underlying message passing mechanisms in the con-
text of many-cores also represent an active area of research.
Barrelfish [4] uses unidirectional one-to-one message-passing
channels, avoiding unnecessary cache line sharing. Aublin et
al. [2] propose ZIMP, a one-to-many communication mecha-
nism for cache-coherent many-cores, addressing situations
in which messages need to be broadcast to multiple re-
ceivers. In addition, architectures such as Tilera proces-
sors [38] and the Intel SCC [37] expose interfaces to some
forms of hardware-implemented message passing, which ei-
ther complement or replace cache coherence. In QC-libtask,
we employ one-to-one communication in order to avoid scal-
ability limitations due to cache line sharing between a large
number of cores. By preventing threads from spinning un-
necessarily when waiting for messages, QC-libtask also pro-
vides efficient support for multiprogramming.

9. CONCLUDING REMARKS
It is important to note that our paper does not argue for a
message-passing vision of a many-core architecture, nor does
it argue against on-chip cache coherence protocols. In par-
ticular, we do not claim that consistency in a multi-core
architecture should be ensured in software through some
middleware agreement message-passing based layer rather
than in hardware through a cache coherence protocol. Both
approaches will be further studied and refined and might
very well coexist.

Considering situations where consistency is indeed ensured
in software using a message-passing agreement protocol, the
motivation of this paper was to carefully analyze such proto-
cols, and in particular explore the feasibility of making them
non-blocking. An efficient implementation of such protocols
could benefit a number of systems besides Barrelfish. These

include 0MQ [1] and Jetlang [19] for instance, which use mes-
sage passing to solve notoriously hard software engineering
problems that developers have to face when implementing
parallel applications, such as avoiding locks (and deadlocks).

Our 1Paxos protocol was specifically designed with a many-
core system in mind: basically, it transmits fewer messages
than alternative protocols, which reduces the load on the
cores. Roughly speaking, 1Paxos can be viewed as a Paxos-
like agreement protocol that uses only a single acceptor,
which is replaced only in case of non-responsiveness. Our
experimental results conveyed the fact that, on a many-core
system, non-blocking agreement achieved using 1Paxos out-
performs a similar approach based on Multi-Paxos, the most
efficient practical non-blocking agreement protocol to date,
and even a classical (blocking) 2PC-like protocol (as adopted
in [4]). 1Paxos might block if both the leader and the accep-
tor are not responsive during the exact same period. In this
scenario, which is arguably very rare, 1Paxos progresses af-
ter at least one of them starts responding. When using three
cores, 1Paxos and the Paxos family of protocols can tolerate
the same number of slow cores, i.e., exactly one.

While in this paper we focused on a traditional many-core,
1Paxos and similar protocols can be expected to become
even more useful in future architectures. First, as transistor
density continues to increase, their reliability is expected
to suffer [14]. This may lead to certain inconsistencies or
failures in hardware. Although in this paper we modeled
failures as delayed cores, 1Paxos can tolerate crashes as
well. In addition, hardware heterogeneity is expected to
increase in future architectures [4, 14]. In such a scenario,
not all the computing nodes are expected to be connected
through a cache coherent shared memory. For essential data
that is commonly accessed, 1Paxos would represent an ideal
candidate to ensure consistency. Moreover, the scale of
NUMA is increasing. For example, an emerging trend at
rack-scale level is the use of remote direct memory access
(RDMA) [13,35]. In this setting, multiple machines operate
on a common address space, but there is no cache coherence
protocol between them. 1Paxos could represent a solution
for ensuring coherence (where needed) at a software-level.

Our QC-libtask message passing framework, as well as our
implementations of 1Paxos, 2PC and MultiPaxos are avail-
able at https://github.com/LPD-EPFL/consensusinside.

Acknowledgements. We wish to thanks the anonymous
reviewers for their insightful comments which helped im-
prove the paper. This work is supported by the Swiss Na-
tional Science Foundation (project number 147067).

10. REFERENCES
[1] 0mq. http://www.zeromq.org.

[2] P Aublin, S Mokhtar, Gilles Muller, and Vivien
Quéma. Zimp: Efficient intercore communications on
manycore machines. Technical report.

[3] Ö. Babaoğlu and S. Toueg. Distributed systems (2nd
ed.). chapter Non-blocking atomic commitment, pages
147–168. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 1993.

[4] A. Baumann, P. Barham, P.E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schupbach, and

A. Singhania. The Multikernel: A new OS architecture
for scalable multicore systems. SOSP 2009.

[5] M Burrows. The Chubby lock service for
loosely-coupled distributed systems. OSDI 2006.

[6] C. Cachin, R. Guerraoui, and L. Rodrigues.
Introduction to reliable and secure distributed
programming. Springer-Verlag New York Inc., 2011.

[7] M. Castro and B. Liskov. Practical Byzantine fault
tolerance and proactive recovery. TOCS,
20(4):398–461, 2002.

[8] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
Made Live: an Engineering Perspective. PODC 2007.

[9] N. Chatterjee, S.H. Pugsley, J. Spjut, and
R. Balasubramonian. Optimizing a Multi-Core
Processor for Message-Passing Workloads. UCAS-5
2009.

[10] J. A. Cowling, D. S. Myers, B. Liskov, R. Rodrigues,
and L Shrira. HQ Replication: A Hybrid Quorum
Protocol for Byzantine Fault Tolerance. OSDI 2006.

[11] T. David, R. Guerraoui, and V. Trigonakis.
Everything You Always Wanted to Know About
Synchronization but Were Afraid to Ask. SOSP 2013.

[12] D. Dobre, M. Majuntke, and N. Suri. CoReFP:
Contention-Resistant Fast Paxos for WANs. Technical
report, TU Darmstadt, 2006.

[13] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast Remote Memory. NSDI 2014.

[14] M. D. Hill et al. 21st Century Computer Architecture:
A community white paper. Technical report, 2012.

[15] M.J. Fischer, N.A. Lynch, and M.S. Paterson.
Impossibility of Distributed Consensus with One
Faulty Process. Journal of the ACM (JACM),
32(2):374–382, 1985.

[16] R. Guerraoui, V. Quema, and M. Vukolic. The next
700 BFT protocols. EuroSys 2008.

[17] J. Handy. The cache memory book. Morgan
Kaufmann, 1998.

[18] M. Herlihy. Wait-free synchronization. TOPLAS,
13(1):124–149, January 1991.

[19] Jetlang. http://code.google.com/p/jetlang/.

[20] J. P. John, E. Katz-Bassett, A. Krishnamurthy,
T. Anderson, and A. Venkataramani. Consensus
Routing: The Internet as a Distributed System. NSDI
2008.

[21] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: speculative byzantine fault
tolerance. ACM SIGOPS Operating Systems Review,
41(6):45–58, 2007.

[22] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4), 2001.

[23] L. Lamport. Generalized consensus and Paxos.
Technical report, MSR-TR-2005-33, Microsoft
Research, 2005.

[24] L. Lamport. Fast Paxos. Distributed Computing,
19(2):79–103, 2006.

[25] L. Lamport, A. Hydrie, and D. Achlioptas.
Multi-leader distributed system, November 21 2002.
US Patent App. 10/302,572.

[26] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos
and primary-backup replication. PODC 2009.

[27] Leslie Lamport. The part-time parliament. TOCS,

16(2), 1998.

[28] B. Lampson and H. Sturgis. Crash recovery in a
distributed data storage system. Xerox PARC, Palo
Alto, California, 1979.

[29] libtask. http://swtch.com/libtask/.

[30] X. Liu, W. Lin, A. Pan, and Z. Zhang. WiDS Checker:
Combating Bugs in Distributed Systems. NSDI 2007.

[31] N.A. Lynch. Distributed algorithms. Morgan
Kaufmann, 1996.

[32] Y. Mao, F. Junqueira, and K. Marzullo. Mencius:
Building Efficient Replicated State Machines for
WANs. OSDI 2008.

[33] M. Massa and L. Lamport. Cheap Paxos. DSN 2004.

[34] T.G. Mattson, R. Van der Wijngaart, and
M. Frumkin. Programming the Intel 80-core
network-on-a-chip terascale processor. SC 2008.

[35] S. Novakovic, B. Grot, A. Daglis, E. Bugnion, and
B. Falsafi. Scale-Out NUMA. ASPLOS 2014.

[36] F. Pedone, A. Schiper, P. Urban, and D. Cavin.
Solving agreement problems with weak ordering
oracles. In EDCC, volume 2485, pages 44–61. Springer
Berlin Heidelberg, 2002.

[37] Rob F. van der Wijngaart, Timothy G. Mattson, and
Werner Haas. Light-weight communications on intel’s
single-chip cloud computer processor. SIGOPS Oper.
Syst. Rev., 45(1):73–83, February 2011.

[38] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao,
B. Edwards, C. Ramey, M. Mattina, C.C. Miao, J.F.
Brown, and A. Agarwal. On-Chip Interconnection
Architecture of the Tile Processor. Micro, IEEE,
27(5):15–31, 2007.

1 Upon AcceptorFailure
2 if (!IamLeader) return;
3 (Pi,instance) = PaxosUtility.lastLeader();
4 if (Pi 6= me) //somebody thought I am dead
5 Aa = null; IamLeader = false;
6 return;
7 A′

a = selectAcceptor();
8 proposals = uncommitedProposals();
9 success = PaxosUtility.propose(instance,

10 AcceptorChange(A′
a,proposals));

11 if (!success) return;
12 Aa = A′

a;
13 IamLeader = false;
14

15 Upon LeaderFailure
16 propose();
17

18 proc propose()
19 if (IamLeader)
20 in = next uncommited instance number();
21 v = getAny(in);
22 sendto Aa accept request(in, pn, v);
23 else
24 YouMustBeFresh = true;
25 pn = new pn();
26 if (Aa == null)
27 (Aa,instance,proposals) =
28 PaxosUtility.lastActiveAcceptor();
29 success = PaxosUtility.propose(instance,
30 LeaderChange(me, Aa));
31 if (!success)
32 Aa = null; return;
33 registerProposals(proposals);
34 YouMustBeFresh = true;
35 sendto Aa prepare request(in, pn, YouMustBeFresh);
36

37 Upon Receive prepare response(Ai, pn, ap)
38 if (IamLeader || Ai 6= Aa) return;
39 IamLeader = true;
40 registerProposals(ap);
41 in = next uncommited instance number();
42 v = getAny(in);
43 sendto Aa accept request(pn, v);
44

45 Upon Receive prepare request(Pi, pn, YouMustBeFresh)
46 if (pn > hpn)
47 if (IamFresh != YouMustBeFresh)
48 return;
49 IamFresh = false;
50 hpn = pn;
51 sendto Pi prepare response(pn, ap);
52 else sendto Pi abandon(hpn);
53

54 Upon Receive accept request(Pi, in, pn, v)
55 if (pn 6= hpn)
56 sendto Pi abandon();
57 else if (ap[in] 6= null)
58 multicast L learn(in, ap[in]);
59 else
60 ap[in] = (pn, v);
61 multicast L Learn(pn, accepted);

Figure 12: 1Paxos Algorithm

APPENDIX
A. APPENDIX: 1Paxos
The pseudo code for our 1Paxos algorithm, explained in
Section 5, is presented in Figure 12. If the proposer rec-
ognizes itself as the leader of the active acceptor, Variable
IamLeader is set. The leader does not need to send a
prepare request message to the acceptor and starts directly

with the accept request message using the last promised pro-
posal number. Variable Aa refers to the active acceptor
Id; ap is the map structure keeping the accepted proposals;
IamFresh indicates that the acceptor has adopted no leader
yet. The highest proposal number is stored in Variable hpn.
Initially the highest proposal number is equal to -∞. Proce-
dure init, presented in Figure 13, initializes the mentioned
variables. As for the rest of the variables, pn is the proposal
number, in is the Paxos instance number, v is the value
(proposed or accepted), P is the list of the proposers, L is
the list of learners, me is the node Id, and YouMustBeFresh
indicates that the proposer expects to be the first proposer
that contacts the acceptor.

Upon a failure of the active acceptor, the leader first checks
whether the others still believe him as the leader or not.
If not, one other proposer has taken its position (probably
because of a false leader failure alarm). In this case, it re-
linquishes the leadership position and return. Otherwise, it
calls selectAcceptor function to select a new acceptor which
is located on a separate node than the leader node. The
leader then announces the change of the active acceptor,
AcceptorChange, through PaxosUtility. It also attaches the
uncommitted proposed values to the AcceptorChange entry.
The failure of this step indicates that another item is cho-
sen for the current instance of PaxosUtility. In this case, the
leader returns from this procedure to try again later. In case
of success, however, the leader resets Variable IamLeader
because it has to start from the first phase of Paxos with
the new active acceptor.

Upon failure of the current leader, a proposer tries to take its
position by calling Procedure propose. The procedure then
obtains the active acceptor Id and sends a prepare request
message to it.

Procedure propose proposes a value for the next uncommit-
ted instance number. If the node is already the leader, it
directly sends an accept request message to the active ac-
ceptor. Otherwise, it sends a prepare request message to
the active acceptor, in accordance with the first phase of
the Paxos algorithm. If the active acceptor Id is unknown
to the proposer, it must be obtained via PaxosUtility. The
lastActiveAcceptor method checks the sequence of commit-
ted entries looking for the last AcceptorChange entry; this
entry contains the active acceptor Id. Next, the proposer
adds a LeaderChange entry via PaxosUtility. The failure of
this step indicates that another item is chosen for the cur-
rent instance of PaxosUtility. In this case, the procedure
resets the value of Aa and returns. We assume that the im-
plementation retries the failed attempt via timers or some
other mechanisms. In the case of success, before sending the
prepare request message, it first registers the proposed val-
ues which have been recorded with the last AcceptorChange
entry. If the acceptor is supposed to be a fresh backup ac-
ceptor, it also sets Variable YouMustBeFresh which is sent
by the message.

Upon receipt of the prepare request message from Proposer
Pi, the acceptor verifies the highest proposal number hpn
to be less than the requested proposal number, pn. Oth-
erwise, it sends an abandon message back to Proposer Pi.
If Variable IamFresh is set but Variable YouMustBeFresh

1 proc init()
2 IamLeader = false; Aa = null;
3 ap = emptyMap(); hpn = −∞
4 IamFresh = true;
5

6 proc getAny(in, ap)
7 v = proposed[in];
8 if (v 6= null) return v;
9 v = nextClientRequest();

10 proposed[in] = v;
11 return v;
12

13 proc registerProposals(proposals)
14 foreach p in ap
15 proposed[p.in] = p.v;

Figure 13: The implementation of Procedures init, getAny,
and registerProposals, in 1Paxos Algorithm

is not, it indicates that the proposer expected the acceptor
to be already adopted by the last leader. However, due to
the acceptor reset, the acceptor has lost its data, including
hpn and ap. This check avoids the cases where the active
acceptor silently reboots before the leader switch. In this
case, the last leader should switch the rebooted acceptor.

Upon receipt of the prepare response message from the ac-
tive acceptor, the proposer claims the leadership position
by setting Variable IamLeader. The getAny method, pre-
sented in Figure 13, picks a value to be accepted for the
instance in. The picked value can be any given value, unless
there is already a proposed but uncommitted value for the
instance in. This case can occur in change of the active ac-
ceptor, when some proposed values are not committed yet
by the previous active acceptor. If any proposal matches
the instance number in, to avoid inconsistency, the proposer
picks the same previously proposed value. It then sends an
accept request message to the active acceptor.

Upon receipt of the accept request message from the leader,
the acceptor first checks for the proposal number. Also, it
checks that there is no proposal accepted corresponding to
the instance number, i.e., ap[in]. Otherwise, it broadcasts
the learn message of the accepted proposal again to cover
the cases that the lost learn message has motivated the pro-
poser to retry. It then stores the proposal in the accepted
proposal map, ap[in]. Afterwards, the accepted proposal is
broadcasted to all the learners accordingly.

B. APPENDIX: PROOF OF CORRECT-
NESS

Here, we prove the correctness of the algorithm presented in
Appendix A. We first prove some properties for the entries
in PaxosUtility, which we then use to prove that no two dif-
ferent values would be accepted for the same instance num-
ber. The proof for the simple case where there is no change
in the active acceptor nor the leader node, is trivial and sim-
ilar to the proofs of Paxos. Here, we focus on the complex
cases where the algorithm switches the leader and the active
acceptor.

PaxosUtility contains entries for changing the active ac-
ceptor, i.e. AcceptorChange, and entries for changing the
leader, i.e. LeaderChange. We define the Global leader and

Global acceptor as follows:

definition: In the sequence of PaxosUtility entries, the node
which has inserted the last LeaderChange entry is the Global
leader. Similarly, the active acceptor announced by the last
AcceptorChange message, represents the Global acceptor.
We use GLi to represent the ith Global leader and GAi

to represent the ith Global acceptor.

Lemma 1 : An AcceptorChange entry is inserted only by the
Global leader.

Lemma 1 is guaranteed by lines 3..13 of Figure 12. In Line 4
the leader verifies that it is still the Global leader. It also
keeps the index of the last empty instance number, instance.
Later in Line 10, it proposes the AcceptorChange message
for that instance number. The failure of this phase implies
that another node has inserted something in the meanwhile.
In this case, the handler returns to retry the procedure later
from scratch. Therefore, the AcceptorChange message is
inserted only by the Global leader.

According to Lemma 1, the Global acceptor represents the
active acceptor which the Global leader is working with.

Now we prove by induction that the same value will always
be accepted for a particular instance number. The first step
is to show that a Global leader does not propose two differ-
ent values for the same instance number when it switches
between the acceptors. Hereafter, we use the pair (v,i) to
represent the value v and instance number i of a given ac-
cept request messages.

Lemma 2a: Suppose that GLl has issued two accept request
messages, (va,ia) and (va+1,ia+1), to two consecutive Global
acceptors GAa and GAa+1, respectively. If ia = ia+1, then
va = va+1.

Lemma 2a is directly followed by the implementation of
the Procedure getAny in Figure 13. There, the leader first
checks the history of the proposed values. If any value has
already been proposed for the requested instance number,
then the procedure returns the same value. Hence, as long
as the Global leader is not changed, the proposed value for
a particular instance number will be always the same.

The next step is to show that an acceptor accepts the same
proposals from two consecutive Global leaders.

Lemma 2b: Suppose that the active acceptor GAa accepts
two accept request messages, (vl,il) and (vl+1,il+1), from
two consecutive Global leaders GLl and GLl+1, respectively.
If il = il+1, then vl = vl+1.

Node GLl+1 becomes the Global leader only after success-
fully inserting a LeaderChange entry via PaxosUtility. In
the algorithm presented in Figure 12, this happens only at
Line 30 inside the Procedure propose. It also implies that
the value of Variable Iamleader is false (Line 25). GLl+1

will not start proposing values unless the value of Variable
Iamleader changes to true (Line 21). Line 41 is the only
location where the value of this variable is changed to true
upon receipt of a prepare response message. It indicates

that the active acceptor has received the prepare request
message, approved the proposal number, and responded by
the prepare response message which is also piggybacked by
all the previous accepted proposals, ap. The received ac-
cepted proposals are registered by the leader (Line 42). The
registered values will be later used for all the next proposals
in Procedure getAny. In other words, the GLl+1 will propose
the same values which acceptor GAa has already accepted.

Similar to Basic-Paxos, GAa will reject all the other po-
tential issued accept request messages by GLl after send-
ing the prepare response message to GLl+1. On the other
hand, as we showed above, if GAa has accepted any value
from GLl for a particular instance number, it will not receive
any different value from GLl+1 for that sequence number.
Consequently, GAa always accept the same values from two
consecutive Global leaders.

Having Lemma 2a and Lemma 2b, now we present the cor-
rectness proof of the algorithm.

(*) Suppose that two acceptors GAa and GAa′ accept two
accept request messages, (va,ia) and (va′ ,ia′), received from
the Global leaders GLl and GLl′ , respectively, where l′ ≥ l
and a′ ≥ a. If ia = ia′ , then va = va′ .

The proof is by induction on the size of sequence of entries
in the PaxosUtility utility. Assume that property (*) holds
when PaxosUtility has k entries. We prove that it still holds
when PaxosUtility has k + 1 entries.

Recall that the entries in the PaxosUtility utility are either
AcceptorChange or LeaderChange. If the k + 1th entry is
AcceptorChange, based on Lemma 1 it is inserted by the
last Global leader. Thus, the GL is the same and the GA
changes. This is the case in Lemma 2a for which we proved
that no two values will be proposed for the same instance
number. If the k+1th entry is LeaderChange, we can assume
that GA is the same during this change. This is provided by
the Lines 29..30 in Figure 12, where the new leader takes the
same active acceptor as was taken by the last leader. This
case is covered by Lemma 2b for which we proved that no
two values will be accepted for the same instance number.
Consequently, if we assume that no two values are accepted
for the same instance number in the first k entries of Paxo-
sUtility utility, this also holds for the first k + 1 entries.

Now, to complete the proof, we need to show that the theory
holds for k = 2. We can make it hold by an initialization
process. At the start up, the node with the smallest Id can
insert two entries for LeaderChange and AcceptorChange to
announce itself as the Global leader and its active acceptor
as the Global acceptor. Because, no change in the roles
happens in the initial case, neither for the leader nor for the
active acceptor, then the theory directly holds for this case.

