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ABSTRACT 

In performance-based seismic design the global displacement capacity of structures is predicted on the 
basis of local engineering demand parameters and mechanical models that link local and global 
deformation quantities. Although unreinforced masonry (URM) is one of the most used construction 
materials for residential structures all over the world, the displacement capacity of in-plane loaded 
URM walls is still mainly estimated from empirical drift capacity models rather than mechanical 
relationships between local and global deformation capacities. 

In this article, we present an analytical model which links the top displacement of an URM wall 
to the applied in-plane shear load. In order to verify the model, we compare the predicted results to 
global and local deformation quantities from own URM wall tests. Comparison of global deformation 
quantities shows that we are able to predict the initial stiffness of the walls with the simple assumption 
of a no-tension material and a linear-elastic material in compression. For walls developing a diagonal 
shear failure or hybrid failure, the predicted force-displacement curve starts diverging from the 
experimental envelope with the formation of the first diagonal cracks. With comparison of local 
deformation quantities, e.g. curvature profiles and shear strain profiles, we show that this is due to the 
formation of a significant diagonal shear crack. 

INTRODUCTION 

In performance-based seismic design the global displacement capacity of structures is predicted on the 
basis of local performance levels and mechanical models that link local and global deformation 
quantities. Although unreinforced masonry (URM) is one of the most commonly used construction 
materials for residential structures all over the world, the displacement capacity of in-plane loaded 
URM walls is still mainly estimated from empirical drift capacity models (e.g. CEN, 2005) rather than 
mechanical relationships between local and global deformation capacities. Already some decades ago, 
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first models were developed which aimed at describing the force-displacement relationship of 
unreinforced masonry (URM) structures subjected to in-plane loading. Some are of analytical nature 
and develop a direct relationship between lateral force and top displacement. Examples of such models 
are for instance, the force-displacement relationship for leaning towers (Heyman, 1992) or the 
analytical force-displacement relationship for rocking walls developed by Benedetti and Steli (2008). 
Other models allow obtaining the force-displacement relationship with the help of computer software 
in form of macro-elements (e.g. Penna et al., 2013). 

All these models share the assumption that the masonry behaves linearly in compression and 
cannot transmit tension. Hence, for small lateral loads the wall behaves linear-elastically until the 
onset of decompression at the base of the wall when a horizontal crack starts opening up (Fig. 1, V ≤ 
Ve). In the following, the effective section reduces and the flexibility of the wall increases (Fig. 1, V > 
Ve). Considering the reduced area, the curvature and the shear strain are estimated and both quantities 
can be integrated in order to obtain flexural and shear displacement. Thus, the force-displacement 
relationship can be obtained. 

This article builds on the model by Benedetti and Steli (2008) and expands this in two principal 
points: (i) first, we account for the reduction of the compressed cross section also when computing the 
shear deformations; (ii) second, the model is extended for walls with boundary conditions different to 
those of cantilever walls or fixed-fixed conditions. 

 

A-A B-B

A-A: B-B:

Lateral force

V

Ve

First opening at the bottom joint 

when e ≥ L/6

→ Ve = Me/H0 = N/H0·L/6

V ≤ Ve V ≥ Ve

Top displacement u

a) b) c)

H0

M ≤ Me M ≥ Me

e 

L/6 

e 

M = V·H0

e = M/N

N N

σmin
σmin

σmax
σmax = 0

u u

hc

H

 

Figure 1. a) Force-displacement relationship for a no-tension material with linear-elastic behaviour in 
compression, b) behaviour before the onset of decompression and c) behaviour after decompression 

MODEL FOR THE FORCE-DISPLACEMENT BEHAVIOUR OF URM 
WALLS 

In Benedetti and Steli (2008) a model is developed which aims at describing the direct relationship 
between the top displacement and the applied lateral load of URM walls solicited mainly to flexural 
deformations. Based on the model by Benedetti and Steli (2008), in Petry and Beyer (2014a) a 
reviewed model is proposed which regards the deformation quantities due to shear and flexure 
separately and is thus able to account for the non-linearity of both deformation quantities. 
Furthermore, the model is extended for a variable shear span ratio. Hence, the following relationship is 
obtained between the applied lateral load and the displacement ufl due to flexural solicitation (Petry 
and Beyer, 2014a): 

 

 
3 1

2 3fl

H
u V

EI
α = ⋅ − 
 

    for V ≤ Ve (1) 



3  S. Petry and K. Beyer          
 
 

 
 
 

( ) ( ) ( ) ( ) ( )
22 2 3

,

3 3 1 2
1 1

3 1 3 1 3 1
e e e

fl e fl
e

V V MV
u u V H V

V V V V

α α α α α θ α ψ
α α α

  − −    = ⋅ − ⋅ + ⋅ + ⋅ + ⋅ − + +        − − −      
 

   for V > Ve (2) 
 

with 
 

 ( ) ( )
22

6
9

N
V

ETLV
θ µ η= − −   (3) 

 ( )
3

2

2 2
4 2 ln

3 39

N
V

ETV
ψ µ η µ  = − − +  

  
  (4) 

 
2

L N

L N H V
µ

α
⋅=

⋅ − ⋅
  (5) 

 
2

H V

L N H V

αη
α
⋅=

⋅ − ⋅
  (6) 

 
where L, T and H are the length, thickness and height of the wall. E is the E-modulus, and I = L3T/12 is 
the inertia. N is the applied axial load, V the shear load and α the ratio between shear span H0 and 
height of the wall H. ue,fl is the flexural displacement at the onset of decompression (V = Ve). 

When we consider a wall that is mainly subjected to flexural deformations, we assume that 
damage to the wall is only introduced through flexural deformations. Nevertheless, the shear 
deformations cannot be neglected and similar to the flexural stiffness; the shear stiffness reduces with 
the reduction of the effective area. Hence, the shear deformation can be divided into two domains. In 
the first domain, when the whole section of the wall is in compression (see Fig. 1, V ≤ Ve), the shear 
deformations are independent of the moment profile of the wall and the shear displacement can be 
described as follows: 

 

 5

6sh
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u V
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= ⋅      for V ≤ Ve (7) 

 
where G is the shear modulus and A = TL the area of the full section. 

When the bottom joint starts opening, the effective area through which the shear stress is 
transferred reduces. Thus, the deformability increases and the following force-shear displacement 
relationship is obtained:  
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where ue,sh is the shear displacement at the onset of decompression (V = Ve). 

The total displacement utot is obtained as sum of both deformation quantities: 
 
 flot shtu u u+=   (11) 
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EXPERIMENTS ON FIVE URM WALLS FOR COMPARISON 

In order to investigate the influence of the boundary conditions on URM walls, we tested six walls 
under a cyclic quasi-static lateral force in in-plane direction in the structural laboratory of the EPF 
Lausanne, Switzerland. All walls were identical to each other with the dimensions of L x H x T = 2.01 
x 2.25 x 0.20 m and the tests varied between each other by means of the applied boundary conditions, 
hence, axial stress ratio σ0/fu and shear span ratio α = H0/H. For the first five walls the axial stress ratio 
was kept constant at σ0/fu = 0.09, 0.18 or 0.26 respectively, where σ0 is the applied mean axial stress 
and fu the compression strength of the masonry, while the shear span was kept constant at H0 = 0.5, 
0.75 to 1.5, respectively, times the wall height H. The applied boundary conditions for the first five 
specimens can be taken from Table 1. The boundary conditions for the last wall, PUP6, were 
particular and this wall is therefore not discussed herein this paper. The resulting failure mechanisms 
and drift capacity of all walls are summarized in Table 2. More information on the test programme and 
material properties can be taken from Petry and Beyer (2013; 2014b). During testing, we tracked with 
a set of cameras the displacement of four LEDs on each full brick of the masonry walls. Therefore, we 
were able to determine the local deformations, e.g., average strains in the bricks and deformations in 
the joints, and put these local measures in relationship to global displacement capacities. 

However, the results showed that despite what most codes assume (see Table 2), e.g., Eurocode 
8 – Part 3 (CEN, 2005), the displacement capacity is not constant for the same failure mode (Petry and 
Beyer, 2014b), but depends on the boundary conditions and other factors. In Petry and Beyer (2014c) 
we show that this is due to the fact that even though a clear failure mechanism can be associated to 
four out of the five walls, all walls developed damage patterns typical for flexural and shear 
solicitation. 

Petry and Beyer (2014c) identify five different damage levels for each of the two typical failure 
modes, diagonal shear and flexural rocking, and link these to different limit states of the global force-
displacement response of URM walls. The limit states for flexural deformation reach from LS-F1, 
which represents the first appearance of a crack in the horizontal joints and is associated to a first 
reduction of the stiffness, to LS-F5 which is associated to the collapse of the base zone and is thus 
linked to the loss of axial load capacity. The limit states for shear failure reach from LS-S1, which 
represents the first appearance of a diagonal crack in joints and is associated with a first softening of 
the global force-displacement curve, to LS-S5, which represents the state when the diagonal crushes 
completely and the wall cannot sustain the applied axial load any longer. 
 
Table 1. Boundary conditions for PUP1-5 (Petry and Beyer 2014c) 

σ0/fu ; H0/H 0.5 0.75 1.5 

0.09 - PUP5 - 

0.18 PUP1 PUP2 PUP3 

0.26 - - PUP4 

 
Table 2. Failure modes and ultimate drift capacity in dependency of the applied boundary conditions 
(Petry and Beyer 2014c) 

σ0/fu ; H0/H 0.5 0.75 1.5 

0.09 - 
Diagonal shear 

0.54 % 
- 

0.18 
Diagonal shear 

0.17 % 
Diagonal shear 

0.40 % 
Flexural rocking 

0.72 % 

0.26 - - 
Hybrid 
0.35 % 
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PREDICTION OF THE FORCE-DISPLACEMENT RELATIONSHIP 

In Fig. 2, the model from Petry and Beyer (2014a) is used to predict the force-displacement 
relationship of the URM walls from the PUP-series. Comparison of the first loading envelopes with 
the prediction of the model shows that the model predicts well the initial stiffness of all walls. When 
the failure mode of the wall is dominated by flexural rocking (PUP3 and PUP4), the mechanical model 
can further predict the force-displacement relationship until first significant damage is introduced to 
the walls. However, if a significant diagonal shear mechanism develops, model and experimental 
results start to diverge from an early stage on and for the walls PUP1, PUP2 and PUP5 the model 
overestimates the stiffness already before first diagonal cracks were visible. 

In the following we show the different local deformation measures and compare these to the 
quantities assumed in the model. These are the effective reduction of contributing section in the base 
section and deformation profiles (curvature and shear strains) measured in the compressed part of the 
walls. Based on these local comparisons we discuss the validity of the basic assumption on which the 
model is based and thus its limitation and possible improvements. 
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Figure 2. Force-displacement relationship for a no-tension material with linear-elastic behaviour in 
compression 
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COMPARISON OF MODEL WITH EXPERIMENTS AT LOCAL LEVEL 

The model developed in Benedetti and Steli (2008) and Petry and Beyer (2014a) is based on the 
assumption that masonry cannot transmit tension perpendicular to the bed joints. Hence, at the onset of 
decompression the horizontal joints open up and cause a reduction of the contributing area. This 
reduction of the contributing area can be expressed by means of the compression length, which varies 
over the height of the wall. In Fig. 3 the measured compression length ratio Lc/L in the base section is 
shown versus the moment in base. 

In the model the reduction of the compressed area is estimated assuming a plane remaining 
section and linear-elastic behaviour of the masonry in compression. Hence, the following equations 
are used for computing the compression length Lc: 
 
 cL L=      for V ≤ Ve (12) 

 3
2c

L M

N
L

 − 
 

=      for V > Ve (13) 

 
where L is the length of the wall, M the moment in the base section and N the applied axial load. 

From Fig. 3 it can be noted that the best match between model and experiment is obtained for 
the walls PUP3-5 where flexural deformations were largest. For PUP1 and PUP2 the moment demand 
is too small to develop significant cracks in the base joint. 
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Figure 3. Compressed portion Lc/L in base joint versus normalized based moment 2M/NL 
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Based on the reduced area, the model computes the flexural displacement from the double 
integration of the curvature and the shear displacement from the integration of the shear strain. In 
order to verify both quantities we compute curvature and shear strains from the deformation 
measurements of the walls and compare them to the assumed strain and curvature profiles. In Fig. 4 
the curvature profiles are plotted for the limit states LS-F3, LS-S1 and LS-S3 (see Fig. 1). The 
curvatures from experiments are obtained as outlined in Petry and Beyer (2014c), i.e., only the 
deformations of the compressed wall part are used to derive the curvatures from the experimental 
results.  

In the model the curvature is computed assuming plane sections remaining plane and a linear-
elastically behaviour in compression. Hence,  
 

 
3

12M

ETL
χ =      for V ≤ Ve (14) 

 2

2

c

N

ETL
χ =      for V > Ve (15) 

 
where L and T are the length and thickness of the wall, E is the E-modulus of the masonry, Lc the 
length of the compression zone computed with Eq. (13) and M the moment of the corresponding 
section (note that the moment changes with the height). 

Comparison of the curvature obtained from experimental results with the curvature obtained 
from the model shows that the best match is obtained for walls PUP3 and PUP4 (see Fig. 4). Both 
walls developed a significant flexural behaviour (e.g. Fig. 2, LS-F3) before a significant diagonal 
shear crack developed. In Petry and Beyer (2014c) we observed that this opening of a significant 
diagonal crack (LS-S3) in the wall causes the wall to separate into two triangles. Hence, the 
assumption that plane sections remain plane does not hold any longer and significant differences 
between experimental results can be observed. This separation of the wall into two triangles introduces 
also a softening in the walls which is not captured by the model (see Fig. 2). 

In Fig. 5 the shear strain profiles are estimated for the limit states LS-F3, LS-S1 and LS-S3 (see 
Fig. 2). The shear strains from experiments are obtained as average of the shear strains in one section 
of the strains computed between two layers of bricks. For the same reason as previously stated only 
the strains measured in the part of the wall which is in compression are used for the curvature. In the 
model the following relationship between shear force and shear strains is used:  

 

 5

6

V

GTL
γ =      for V ≤ Ve (16) 

 5

6 c

V

GTL
γ =      for V > Ve (17) 

 
where L and T are the length and thickness of the wall and G the shear modulus of the masonry. It is 
estimated at 40% of E. 

In Fig. 5 the same tendency is observed as for the curvature. While for the walls dominated by a 
flexural behaviour the model gives a good estimate for the shear strains, e.g., PUP3 and PUP4, for the 
other walls the shear strains are considerably underestimated. As stated previously, the opening of a 
significant diagonal shear crack (LS-F3) provokes the wall to separate in two independent triangles. 
These two triangles are more flexible than an equivalent rectangular wall. 
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Figure 4. Curvature profiles for the limits states LS-S1, LS-S3 and LS-F3 
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Figure 5. Shear strain profiles for the limits states LS-S1, LS-S3 and LS-F3 
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CONCLUSIONS 

In this article, we present an analytical model which links the top displacement of an unreinforced 
masonry (URM) wall to the applied in-plane shear load. In order to verify the model, we compare the 
predicted results to own URM wall tests. We tested several identical URM walls under different 
constant axial load N and shear span ratios H0/H, while applying a quasi-static cyclic horizontal load 
(test units PUP1-5). During testing, we tracked with a set of cameras the displacement of four LEDs 
on each full brick of the masonry walls. Therefore, we were able to determine the local deformations, 
e.g., average strains in the bricks and deformations in the joints, and put these local measures in 
relationship to global displacement capacities. Comparison of global deformation quantities shows that 
we are able to predict the initial stiffness of the walls with the simple assumption of a no-tension 
material and a linear-elastic material in compression. When the failure mode of the wall is dominated 
by flexural rocking, the mechanical model can further predict the force-displacement capacity until 
significant damage is introduced to the walls. For walls developing a diagonal shear failure or hybrid 
failure, the predicted force-displacement curve starts diverging from the experimental envelope with 
the formation of the first diagonal cracks. This is due to the fact that once diagonal cracks start 
forming in the centre of the wall, the assumption of a plane remaining sections does no longer hold. 
The diagonal crack provokes the wall to separate into two triangles and thus, softens the wall. 

Therefore, we are currently working on the herein presented model in order to improve it in two 
aspects. First, we are developing a failure criterion in order to link local deformation limits in the toe 
and in the centre crack of the wall to the global displacement capacity; second we are working on the 
implementation of a model, which can account for the opening of the diagonal shear crack in order to 
model the softening observed during the experiments and shear failure. 
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