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ABSTRACT

In performance-based seismic design the globalatisment capacity of structures is predicted on the
basis of local engineering demand parameters archanécal models that link local and global
deformation quantities. Although unreinforced magafRM) is one of the most used construction
materials for residential structures all over therla; the displacement capacity of in-plane loaded
URM walls is still mainly estimated from empiricdtift capacity models rather than mechanical
relationships between local and global deformatiapacities.

In this article, we present an analytical modelakHinks the top displacement of an URM wall
to the applied in-plane shear load. In order tafyghe model, we compare the predicted results to
global and local deformation quantities from ownNJRvall tests. Comparison of global deformation
quantities shows that we are able to predict thlistiffness of the walls with the simple assuiop
of a no-tension material and a linear-elastic nigtém compression. For walls developing a diagonal
shear failure or hybrid failure, the predicted fedtisplacement curve starts diverging from the
experimental envelope with the formation of thestfidiagonal cracks. With comparison of local
deformation quantities, e.g. curvature profiles ahdar strain profiles, we show that this is duth&
formation of a significant diagonal shear crack.

INTRODUCTION

In performance-based seismic design the globalatisment capacity of structures is predicted on the
basis of local performance levels and mechanicadlaisothat link local and global deformation
quantities. Although unreinforced masonry (URM)oise of the most commonly used construction
materials for residential structures all over therld; the displacement capacity of in-plane loaded
URM walls is still mainly estimated from empiriadift capacity models (e.g. CEN, 2005) rather than
mechanical relationships between local and glob&drdhation capacities. Already some decades ago,
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first models were developed which aimed at deswgibihe force-displacement relationship of
unreinforced masonry (URM) structures subjectedhiplane loading. Some are of analytical nature
and develop a direct relationship between latenalef and top displacement. Examples of such models
are for instance, the force-displacement relatignsbr leaning towers (Heyman, 1992) or the
analytical force-displacement relationship for riockwalls developed by Benedetti and Steli (2008).
Other models allow obtaining the force-displacenrefdtionship with the help of computer software
in form of macro-elements (e.g. Penna et al., 2013)

All these models share the assumption that the mnpdmehaves linearly in compression and
cannot transmit tension. Hence, for small lateoalds the wall behaves linear-elastically until the
onset of decompression at the base of the wall vahieorizontal crack starts opening up (FigVk
Ve). In the following, the effective section redu@esl the flexibility of the wall increases (Fig.\1>
Vo). Considering the reduced area, the curvaturettamdhear strain are estimated and both quantities
can be integrated in order to obtain flexural ahdas displacement. Thus, the force-displacement
relationship can be obtained.

This article builds on the model by Benedetti ateli$2008) and expands this in two principal
points: (i) first, we account for the reductiontbé compressed cross section also when computing th
shear deformations; (ii) second, the model is elgdrfor walls with boundary conditions different to
those of cantilever walls or fixed-fixed conditions
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Figure 1. a) Force-displacement relationship foodension material with linear-elastic behaviaur i
compression, b) behaviour before the onset of dpoession and ¢) behaviour after decompression

MODEL FOR THE FORCE-DISPLACEMENT BEHAVIOUR OF URM
WALLS

In Benedetti and Steli (2008) a model is developtth aims at describing the direct relationship
between the top displacement and the applied ldtzad of URM walls solicited mainly to flexural
deformations. Based on the model by Benedetti aei &008), in Petry and Beyer (2014a) a
reviewed model is proposed which regards the deftiom quantities due to shear and flexure
separately and is thus able to account for the limearity of both deformation quantities.
Furthermore, the model is extended for a variabémasspan ratio. Hence, the following relationsgip
obtained between the applied lateral load and thglatement; due to flexural solicitation (Petry
and Beyer, 2014a):

H?3 1
U, =V BZE(H—EJ forV < Ve )
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whereL, T andH are the length, thickness and height of the Vit the E-modulus, anid= L*T/12 is
the inertia.N is the applied axial load/ the shear load and the ratio between shear spp and
height of the walH. ugy is the flexural displacement at the onset of dguession Y = V).

When we consider a wall that is mainly subjectedlegural deformations, we assume that
damage to the wall is only introduced through flekudeformations. Nevertheless, the shear
deformations cannot be neglected and similar tdléxairal stiffness; the shear stiffness reducet wi
the reduction of the effective area. Hence, theustdeformation can be divided into two domains. In
the first domain, when the whole section of thelvugln compression (see Fig. {{,< V,), the shear
deformations are independent of the moment praofilthe wall and the shear displacement can be
described as follows:

5H
Ug, :VG6G—A fOI'VSVe (7)

whereG is the shear modulus aAd= TL the area of the full section.

When the bottom joint starts opening, the effectarea through which the shear stress is
transferred reduces. Thus, the deformability ineeeaand the following force-shear displacement
relationship is obtained:

Uy = U, EECHVX(l—a)J iy (V) forV > Ve (8)
with
_ 5N (2
va (V)= 20 ©
LN
K lN-20n v (10)

whereueg, is the shear displacement at the onset of decasiprel/ = V).
The total displacement, is obtained as sum of both deformation quantities:

Ug = Uy TUg, (11)



EXPERIMENTSON FIVE URM WALLSFOR COMPARISON

In order to investigate the influence of the bougdaonditions on URM walls, we tested six walls
under a cyclic quasi-static lateral force in inf@adirection in the structural laboratory of theFEP
Lausanne, Switzerland. All walls were identicakxh other with the dimensionslok H x T = 2.01

x 2.25 x 0.20 m and the tests varied between etelr by means of the applied boundary conditions,
hence, axial stress ratm/f, and shear span ratio= Hy/H. For the first five walls the axial stress ratio
was kept constant aiy/f,= 0.09, 0.18 or 0.26 respectively, whexgis the applied mean axial stress
andf, the compression strength of the masonry, whilestiear span was kept constanHgt= 0.5,
0.75 to 1.5, respectively, times the wall heightThe applied boundary conditions for the firstefiv
specimens can be taken from Table 1. The boundamglitions for the last wall, PUP6, were
particular and this wall is therefore not discuskeckin this paper. The resulting failure mechasism
and drift capacity of all walls are summarized able 2. More information on the test programme and
material properties can be taken from Petry anceB€013; 2014b). During testing, we tracked with
a set of cameras the displacement of four LEDsaah éull brick of the masonry walls. Therefore, we
were able to determine the local deformations, exgrage strains in the bricks and deformations in
the joints, and put these local measures in relsiiip to global displacement capacities.

However, the results showed that despite what cats assume (see Table 2), e.g., Eurocode
8 — Part 3 (CEN, 2005), the displacement capasityot constant for the same failure mode (Petry and
Beyer, 2014b), but depends on the boundary comditemd other factors. In Petry and Beyer (2014c)
we show that this is due to the fact that even ghoa clear failure mechanism can be associated to
four out of the five walls, all walls developed dzge patterns typical for flexural and shear
solicitation.

Petry and Beyer (2014c) identify five different dage levels for each of the two typical failure
modes, diagonal shear and flexural rocking, arkltlese to different limit states of the globalder
displacement response of URM walls. The limit &tdf@r flexural deformation reach from LS-F1,
which represents the first appearance of a cradkenhorizontal joints and is associated to a first
reduction of the stiffness, to LS-F5 which is assteal to the collapse of the base zone and is thus
linked to the loss of axial load capacity. The timsiates for shear failure reach from LS-S1, which
represents the first appearance of a diagonal é¢raghknts and is associated with a first softenaig
the global force-displacement curve, to LS-S5, Whriepresents the state when the diagonal crushes
completely and the wall cannot sustain the apgiddl load any longer.

Table 1. Boundary conditions for PUP1-5 (Petry Bagler 2014c)

ooffu ; HyH 0.5 0.75 1.5
0.09 - PUP5
0.18 PUPL  PUP2  PUP3
0.26 - - PUP4

Table 2. Failure modes and ultimate drift capatitgdependency of the applied boundary conditions
(Petry and Beyer 2014c)

oo/fu; HyH 0.5 0.75 1.5
Diagonal shear
0.09
0.54 %
0.18 Diagonal shear Diagonal shear Flexural rocking
' 0.17 % 0.40 % 0.72 %
Hybrid
0.26 0.35 %
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PREDICTION OF THE FORCE-DISPLACEMENT RELATIONSHIP

In Fig. 2, the model from Petry and Beyer (2014s)used to predict the force-displacement
relationship of the URM walls from the PUP-seri€@mparison of the first loading envelopes with
the prediction of the model shows that the modetligts well the initial stiffness of all walls. Wine
the failure mode of the wall is dominated by flesduocking (PUP3 and PUP4), the mechanical model
can further predict the force-displacement relaiop until first significant damage is introduced t
the walls. However, if a significant diagonal sheaechanism develops, model and experimental
results start to diverge from an early stage onfandhe walls PUP1, PUP2 and PUP5 the model
overestimates the stiffness already before fisgaoinal cracks were visible.

In the following we show the different local defation measures and compare these to the
gquantities assumed in the model. These are thetieHereduction of contributing section in the base
section and deformation profiles (curvature andslsérains) measured in the compressed part of the
walls. Based on these local comparisons we digbessgalidity of the basic assumption on which the
model is based and thus its limitation and possibf@ovements.
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Figure 2. Force-displacement relationship for demsion material with linear-elastic behaviour in
compression



COMPARISON OF MODEL WITH EXPERIMENTSAT LOCAL LEVEL

The model developed in Benedetti and Steli (2008) Betry and Beyer (2014a) is based on the
assumption that masonry cannot transmit tensiogpepelicular to the bed joints. Hence, at the onfet o
decompression the horizontal joints open up andeau reduction of the contributing area. This
reduction of the contributing area can be exprebyecheans of the compression length, which varies
over the height of the wall. In Fig. 3 the measurethpression length ratig/L in the base section is
shown versus the moment in base.

In the model the reduction of the compressed agessiimated assuming a plane remaining
section and lineaglastic behaviour of the masonry in compressioandé, the following equations
are used for computing the compression lehgth

L. =L forV<Ve (12)

C

_4fL_ M
L _3(2 Nj forV > Ve (13)

whereL is the length of the walM the moment in the base section &htthe applied axial load.

From Fig. 3 it can be noted that the best matctvdset model and experiment is obtained for
the walls PUP3-5 where flexural deformations wargést. For PUP1 and PUP2 the moment demand
is too small to develop significant cracks in thesd joint.
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Figure 3. Compressed portibg'L in base joint versus normalized based momitiNg



Based on the reduced area, the model computedekardl displacement from the double
integration of the curvature and the shear dispieed from the integration of the shear strain. In
order to verify both quantities we compute curvatand shear strains from the deformation
measurements of the walls and compare them tosheneed strain and curvature profiles. In Fig. 4
the curvature profiles are plotted for the limiatss LSF3, LS-S1 and LS-S3 (see Fig. 1). The
curvatures from experiments are obtained as odtlimePetry and Beyer (2014c), i.e., only the
deformations of the compressed wall part are ueedetive the curvatures from the experimental
results.

In the model the curvature is computed assumingeptections remaining plane and a linear-
elastically behaviour in compression. Hence,

12M
2N

whereL andT are the length and thickness of the wallis the E-modulus of the masonty, the
length of the compression zone computed with E§) @indM the moment of the corresponding
section (note that the moment changes with thehheig

Comparison of the curvature obtained from expertaleresults with the curvature obtained
from the model shows that the best match is obdafoe walls PUP3 and PUP4 (see Fig. 4). Both
walls developed a significant flexural behaviourg(eFig. 2, LS-F3) before a significant diagonal
shear crack developed. In Petry and Beyer (2014cphserved that this opening of a significant
diagonal crack (LS-S3) in the wall causes the wtallseparate into two triangles. Hence, the
assumption that plane sections remain plane dote$aid any longer and significant differences
between experimental results can be observed.sEpigration of the wall into two triangles introdsice
also a softening in the walls which is not captusgdhe model (see Fig. 2).

In Fig. 5 the shear strain profiles are estimatedte limit states LS-F3, LS-S1 and LS-S3 (see
Fig. 2). The shear strains from experiments araiobtl as average of the shear strains in one Bectio
of the strains computed between two layers of Bri€lor the same reason as previously stated only
the strains measured in the part of the wall widcim compression are used for the curvature. én th
model the following relationship between shearéaod shear strains is used:

5v

;/=6C’;°‘T’L forV > Ve (17)

whereL andT are the length and thickness of the wall @hthe shear modulus of the masonry. It is
estimated at 40% .

In Fig. 5 the same tendency is observed as focuheature. While for the walls dominated by a
flexural behaviour the model gives a good estiniatehe shear strains, e.g., PUP3 and PUP4, for the
other walls the shear strains are considerably nestimmated. As stated previously, the opening of a
significant diagonal shear crack (LS-F3) provoles wall to separate in two independent triangles.
These two triangles are more flexible than an eajait rectangular wall.
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CONCLUSIONS

In this article, we present an analytical model aihiinks the top displacement of an unreinforced
masonry (URM) wall to the applied-plane shear load. In order to verify the model,compare the
predicted results to own URM wall tests. We testederal identical URM walls under different
constant axial loafl and shear span ratiék/H, while applying a quasi-static cyclic horizontaad
(test units PUP1-5). During testing, we trackechveitset of cameras the displacement of four LEDs
on each full brick of the masonry walls. Therefaxe, were able to determine the local deformations,
e.g., average strains in the bricks and deformatianthe joints, and put these local measures in
relationship to global displacement capacities. Gamnson of global deformation quantities shows that
we are able to predict the initial stiffness of thalls with the simple assumption of a no-tension
material and a linear-elastic material in comp@ssiVhen the failure mode of the wall is dominated
by flexural rocking, the mechanical model can fartipredict the force-displacement capacity until
significant damage is introduced to the walls. Wwalls developing a diagonal shear failure or hybrid
failure, the predicted force-displacement curvetstdiverging from the experimental envelope with
the formation of the first diagonal cracks. Thisdige to the fact that once diagonal cracks start
forming in the centre of the wall, the assumptidraglane remaining sections does no longer hold.
The diagonal crack provokes the wall to separdtetimo triangles and thus, softens the wall.

Therefore, we are currently working on the heregspnted model in order to improve it in two
aspects. First, we are developing a failure cotein order to link local deformation limits in thee
and in the centre crack of the wall to the globiaplhcement capacity; second we are working on the
implementation of a model, which can account fer dpening of the diagonal shear crack in order to
model the softening observed during the experimamiisshear failure.
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