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ABSTRACT 

In several countries of moderated seismicity, with the re-evaluation of the seismic hazard most 

unreinforced masonry (URM) buildings with reinforced concrete slabs failed to satisfy the seismic 

design check. A possible seismically retrofit solution consists of adding RC walls to the existing 
structure or replacing selected critical URM walls with RC ones. Experimental and numerical studies 

have shown that this retrofit technique can be very effective since it modifies the global deformed 

shape of the structure, leading to an increase in the system’s displacement capacity. The paper 
proposes a Displacement-Based Design methodology for the retrofit of URM structures by replacing 

selected URM walls by RC walls. The methodology follows the Direct Displacement-Based Design 

(DBD) approach by Priestley et al. (2007) and is based in particular on the DBD procedure for frame-

wall buildings (Sullivan et al., 2005 and 2006). The design procedure consists of three main phases: (i) 
A preliminary design check of the URM building by means of the DBD approach. (ii) If the structure 

does not fulfil the design check and exhibits at the same time a dominant shear behaviour, replacing 

the critical URM wall or walls with RC ones leads to an improved system’s behaviour. (iii) In the final 
phase, the DBD design of the mixed RC-URM wall structure, in which both the URM and the RC 

walls are taken into account, is carried out. The design methodology is then investigated through non-

linear dynamic analyses of one case study. 

1. INTRODUCTION 

In recent years, several countries of moderate seismicity re-evaluated the seismic hazard and 

increased the acceleration and displacement design spectra. As a consequence, many residential 

buildings which have been constructed as unreinforced masonry (URM) structures with reinforced 
concrete slabs no longer fulfil the seismic design check and have to be retrofitted. A possible retrofit 

solution consists of adding RC walls to the existing structure or replacing selected URM walls with 

RC ones (Magenes, 2006). Recently, the authors have shown by means of experimental and numerical 
studies that this retrofit technique can be very effective since it modifies the global deformed shape of 

the structure, leading to an increase in the system’s displacement capacity (Paparo and Beyer, 2014a, 

b). This technique is particularly beneficial when the URM walls display a dominant shear response 

rather than a rocking behaviour. New buildings can be conceived directly as mixed RC-URM wall 
structures since they show an improved seismic behaviour when compared to buildings with URM 

                                                        
1 Doctoral assistant, Earthquake Engineering and Structural Dynamics (EESD), School of Architectural, Civil 

and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 

alessandro.paparo@epfl.ch 
2 Professor, Earthquake Engineering and Structural Dynamics (EESD), School of Architectural, Civil and 

Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 

katrin.beyer@epfl.ch 



2 

 

walls only. At the same time, URM walls have better thermal and insulation properties at a lower 

construction cost than edifices with RC walls only. 

The paper proposes a Displacement-Based Design methodology for the design of mixed RC-

URM wall structures and retrofit of URM buildings by replacing or adding selected URM walls by RC 
walls. The methodology follows the Direct Displacement-Based Design (DBD) approach by Priestley 

et al. (2007) and is, with regards to several aspects, based on the DBD procedure for frame-wall 

buildings (Sullivan et al., 2005 and 2006). The design procedure consists of three main phases: 
(i) A preliminary design check of the URM building by means of the DBD approach; 

(ii) If the structure does not fulfil the design check and exhibits at the same time a dominant 

shear behaviour, replacing the critical URM wall or walls with RC ones leads to an improved 
system’s behaviour. The objective is to develop in the structure the target displacement capacity 

for the smallest possible maximum storey drift demand. 

 (iii) In the final phase, the DBD design of the mixed RC-URM wall structure, in which both the 

URM walls and the RC walls are taken into account, is carried out. The shape of the 
displacement profile of the retrofitted structure is estimated using a simple mechanical model 

which represents the URM walls through an equivalent shear beam and the RC walls through an 

equivalent flexural cantilever. 
Sec. 2 briefly describes the main characteristics of the seismic behaviour of mixed RC-URM 

wall structures. The mechanical model representing the interaction between shear dominated walls 

coupled to flexural dominated ones is presented in Sec. 3. Sec. 4 and 5 introduce the concepts of the 
DBD approach and develop its application for mixed RC-URM wall structures. The algorithm is then 

applied to one case study and validated against non-linear dynamic analyses in Sec. 6. The article 

closes with a summary of the main findings and an outlook for future improvements. 

2. FEATURES OF MIXED RC-URM WALL STRUCTRES  

URM walls have a dominant flexural or shear response depending on several parameters such as 

the vertical load ratio, the pier geometry or the coupling moment introduced by RC slabs or masonry 

spandrels. RC walls are designed to have a dominant flexural behaviour and a displacement capacity 
larger than that of URM walls.  

Under lateral loading, URM buildings with walls deforming primarily in shear lead to larger 

inter-storey drifts at the bottom storeys than at the top ones. RC structures composed by flexural walls 
will present larger inter-storey drifts at top storeys. At the height of the RC slabs, URM and RC walls 

need to displace by the same amount. Hence, the deformed shape of mixed RC-URM wall structures 

lies in between that of a building with RC and URM walls alone. As a consequence, for such mixed 
structures the damage in the URM walls is not concentrated in the first storey – as for URM buildings 

– but it also spreads to the storeys above (Paparo and Beyer, 2014b). 

Fig. 1 compares failure mechanisms of URM wall buildings where shear deformations prevail 

(a) and mixed RC-URM wall structures (b). The presence of the RC wall in the retrofitted 
configuration yields, for the same level of inter-storey drift δ

*
 at the ground floor, larger top 

displacements: Δ2 > Δ1. Consequently, the displacement capacity of mixed RC-URM wall structures is 

larger than that developed by buildings with URM walls only.  
Mixed RC-URM wall structures present similarities to structures with RC walls and frames. 

Slender wall elements, which display mainly flexural deformations, are coupled to frames, whose 

behaviour can be approximated by that of a shear beam. As a consequence, and similar to mixed RC-
URM wall structures, the deformed shape of coupled wall-frame buildings is different to that of walls 

or frames alone and tends to be rather linear over the height of the structure (Paulay and Priestley, 

1992). 
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Figure 1. Deformation capacity, for the same level of inter-storey drift δ*, of a URM wall structure (a) and a 

mixed RC-URM wall structure (b) 

3. BENDING-SHEAR CANTILEVER MODEL 

The interaction between walls with a dominant flexural behaviour coupled to ones which 
deform primarily in shear can be represented with a simple mechanical model. This consists of a pure 

bending cantilever which represents the totality of the RC walls and a pure shear cantilever which 

describes the totality of the URM walls. The two beams are continuously connected over the height by 
axially rigid links with zero moment capacity (Fig. 2a). Given EI the sum of the flexural stiffnesses of 

the concrete walls and GA the sum of shear stiffnesses of the masonry walls, the stiffness ratio α is 

obtained (Pozzati, 1980): 

 

 
EI

GA
H   (1)  

 

where H is the height of the building. If the external load q is constant over the height of the 

structure, the overturning moment OTM(x) has a parabolic shape and its maximum is at the base: 

OTM(x=0) = - qH
2
/2.  At any cross section at height x (Fig. 2a), the drift θ(x) can be calculated as the 

ratio between the shear carried by the shear cantilever, V1(x), divided by its shear stiffness GA, where 

v(x) is the horizontal displacement of the system: 
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The shear V1(x) is the derivative of the moment carried by the shear cantilever M1(x) with 

respect to x and its derivative can be written as: 
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Since at any cross section the ratio 
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curvature of the flexural one, it follows: 
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The general solution of Eq. 4 is: 
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where Mtp(x) is the particular solution which, for constant horizontal load q, is: 
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The two constants A and B of Eq. 5a are found by assigning two boundary conditions. In order 

to account for the formation of the plastic hinge at the base of the RC wall, the flexural cantilever is 
modelled with a pinned base condition. A base moment (MRC,base = βRC OTM(x=0)) corresponding to 

its yielding moment is then applied as force to the RC wall base hinge in addition to the externally 

applied horizontal load q. The parameter βRC describes the ratio between the base moment MRC,base 
provided by the flexural (RC) wall and OTM(x=0). The second constant can be derived using the static 

boundary condition that the top the moment of the flexural beam has to be equal to zero (M1(x=H) = 

0). The shears V1(x) and V2(x) are found as the derivate of the moments M1(x) and M2(x) with respect 

to x. Finally, the displacement Δi at each storey is calculated as the integral of the drift θ(x) between 
the base and the height of the storey hi:  
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Figure 2. Mechanical model: (a) Definition of the reference system and of the internal forces; (b) Displacement 

profile of a three storey mixed RC-URM wall structure: comparison between the mechanical model and the 

TREMURI model (Penna et al., 2013; Lagomarsino et al., 2013) at an average drift of 0.4%. 

 
The mechanical model yields insights into the interaction of URM and RC walls. For instance, 

the inter-storey drift profile over the height can be evaluated. Pushover analyses carried out with 

 (a)  (b) 
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TREMURI (Penna et al., 2013; Lagomarsino et al., 2013) have confirmed that the mechanical model 

estimates well the displacement profile over the height of the structure (Fig. 2b).  

4. GENERAL DIRECT DISPLACEMENT-BASED DESIGN PROCEDURE 

The fundamentals of the Direct Displacement-Based Design procedure by Priestley et al. (2007) 

are illustrated in Fig. 3. A multi-degree-of-freedom (MDOF) structure is converted to a single-degree-

of-freedom (SDOF) system with an effective mass me and an effective height he (Fig. 3a). The bilinear 
envelop of the SDOF system is characterised by defining the yield displacement Δy and the design 

displacement Δd. This allows finding the displacement ductility demand μΔ (Fig. 3b). In the third step, 

the ductility demand μΔ is used to determine an equivalent viscous damping ratio (ξe), representing the 

combined elastic damping and the hysteretic energy absorbed by the structure during inelastic 
deformations (Fig. 3c). As can be seen, the equivalent viscous damping ξe depends on the level of 

ductility demand and the type of structural system. In the last part (Fig. 3d) the design displacement 

spectrum, reduced according to the equivalent viscous damping, is used to find the effective period of 
the structure Te which corresponds to the design displacement Δd defined in (Fig. 3b). From Te the 

effective stiffness of the structure and, subsequently, the design base shear force Vbase can be derived: 
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Figure 3. Fundamentals of Direct Displacement-Based Design (from Priestley, 1998) 
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5. PROPOSED DBD METHODOLOGY FOR MIXED RC-URM WALL BUILDINGS 

The fundamental DBD procedure described in Sec. 4 has been applied by Sullivan et al. (2005 

and 2006) to regular RC frame-wall buildings. Having in mind that the structural behaviour of mixed 
RC-URM wall structures is similar to the one of RC frame-wall buildings, the main scope of this paper 

is to extend the procedure developed by Sullivan et al. for designing mixed RC-URM wall structures.  

The procedure to convert the MDOF system to a SDOF system is the standard one adopted by 
DBD (Priestley et al., 2007) and is not repeated here. The conversion is based on the displacement 

profile which is here assumed to be linear over the height. At the end of the procedure this hypothesis 

will be counter-checked with the mechanical model described in Sec. 3. As it was observed in Paparo 

and Beyer (2014b), in mixed RC-URM wall structures the significant damage (SD) limit state - as well 
as the near collapse (NC) - is always controlled by the URM walls which fail for smaller drift demands 

than that of RC members. As a consequence, the drift limits assumed are the ones used for URM 

walls. In the following, the DBD process has been broken down into a step-by-step procedure: 

Step 1 – Preliminary design check of the URM wall building according to the DBD approach 

The design approach starts by considering a URM structure composed of URM walls connected 

at each storey by RC slabs. If the structure does not fulfil the DBD design check (Priestley et al., 2007) 
and exhibits at the same time a dominant shear behaviour, one or more URM walls can be replaced by 

RC ones. Once the base shear Vbase is known, the OTM demand (OTMdem) is found (he is the effective 

height of the SDOF system): 

 ebasedem
hVOTM    (10)  

 

Step 2 – Replacement/addition of RC walls  

The designer chooses the URM walls to be replaced by RC ones. No calculations are needed in 

this step. Note that neither the dimensions nor the strength of the RC walls are yet defined. Because of 

the assumption of the linear displacement profile over the height of the structure, the maximum roof 
displacement (Δtop) can be calculated as the design drift (δd) multiplied by the total height of the 

structure H. 

Step 3 – Estimation of the moment capacity of the mixed RC-URM wall structure (OTMcap) 

By means of a non-linear pushover analysis carried out up to the maximum roof displacement 
(Δtop), the moment at the base of the URM walls (MURM), as well as the moment due to the presence of 

the coupling beams (MCB) can be estimated. The moment capacity of the structure (OTMcap) is the sum 

of these two contributions (the contribution of the RC walls is not accounted here and will be 
calculated in Step 5 as the required strength of the RC walls): 

 

 CBURMcap
MMOTM    (11)  

 

Step 4 – Calculation of the equivalent viscous damping ξsys and the reduction factor R 

The equivalent viscous damping of the system ξsys is obtained by averaging the damping of the 

three different structural systems: 

 

 RCRCURMURMCBCBsys
    (12)  

 

where ξCB, ξRC and ξURM are the damping associated with coupling beams, RC walls and URM 

walls. ξCB, ξRC have to be chosen accordingly to the expected level of ductility and ξURM can be 

assumed equal to 15% (Priestley et al., 2007). The ratios of the base moments provided by the 
different structural systems can be evaluated by considering the OTM demand (OTMdem) found in Step 

1: 
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From the equivalent viscous damping ξsys, the reduction factor R, used to compute the spectrum 

for the desired ξe from the 5% damped displacement spectrum, is calculated: 
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Step 5 – Evaluation of the strength demand (OTMdem) and of the required strength of the RC walls 
(MRCreq) 

The effective period Te is found by entering the reduced displacement spectrum with the design 

displacement Δd. The effective stiffness Ke and the base shear Vbase are consequently determined 
accordingly to Eq. 8 and 9. Then the new overturning moment demand OTMdem is estimated by 

multiplying the base shear Vbase to the effective height he (Eq. 10).  The required strengths of the RC 

walls (MRCreq) can then be estimated: 

 capdemRCreq
OTMOTMM    (15)  

 

Step 6 – Calculation of the contra-flexure height of the RC walls (HCF) 

The contra-flexure height HCF of the RC walls can be estimated by imposing M2(x) (Eq. 5b) 

equal to zero. Pushover analyses carried out with the software TREMURI (Penna et al., 2013; 
Lagomarsino et al., 2013) have confirmed that the mechanical model estimates well the contra-flexure 

height HCF.  

Step 7 – Definition of the ductility of the RC walls (μΔRC) 

The designer chooses the level of ductility which the RC walls will undergo. Quasi-static and 

dynamic tests on mixed RC-URM wall structures (Paparo and Beyer, 2014a; Tondelli et al., 2013) 

have shown that the RC walls experience very small inelastic deformations when the URM walls 

failed. Hence it is reasonable to conceive that, at the design displacement, the RC walls exhibit 
displacement ductility μΔRC within the range of 1 and 2.  

Step 8 – Definition of the length of the RC walls (lRC) 

From Step 7 the yielding displacement at the effective height is known (Δyi = Δd/ μΔRC) and from 
Eq. 16a and 16b the yield curvature of the RC walls (φyRC) can be found: 
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Recalling the correlation between yield curvature and wall length, it is possible to define the 

design RC wall length (lRC): 

  

 
yRC

y
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l
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   (17)  

 

Step 9 – Cycles to find a stable solution 

Cycle Steps 3 to 8 until a stable solution is found. For instance the variation of the required 
strength of the RC walls (MRCreq) can be checked. 

Step 10 – Ascertain the displacement profile of the structure 

This DBD procedure relies on the assumption of a linear displacement profile over the height of 
the structure. To check this assumption the mechanical model described in Sec. 3 can be adopted. For 

instance, the profile over the height of the structure can be assumed linear if the ratio between the 

inter-storey drift of the first storey (δ1) and the inter-storey drift of the second one (δ2) is within the 
range of 0.80 and 1.20: 

 

  12.180.0

2
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  (18)  

 

If the ratio δ1/δ2 is not between 0.80 and 1.20, the designer have two options: (i) choose a 

different number of URM walls to be replaced by the RC ones and re-check the procedure from Step 2 
or (ii) change the level of ductility (μΔRC) of the RC walls defined in Step 7. 

6. CASE STUDY 

6.1. Description of the retrofit design  

The procedure described above was applied to retrofit one URM wall structure by replacing the 

central URM wall with a RC wall. Fig. 4a and 4b shows the plan before and after the retrofit design. 

The original structure consists of 5 four-storey URM walls coupled by RC slabs. The thickness of the 
walls is always 30 cm, and the URM wall’s length and height is always 300 cm. The total height of the 

structure is 1200 cm. Since two-dimensional simulations are carried out, RC beams 25x90 cm 

represent the slabs. The longitudinal reinforcement ratio of the RC beams is equal to 0.5%. The 
thickness of the RC beams is three times that of the walls (Priestley et al., 2007) and the free span is 

100 cm. The axial stress ratio σ0/fm at the base of the URM walls is around 0.05. All RC beams (and 

the RC wall in the retrofitted configuration) are designed such that the URM walls fail before any RC 

element. The total mass of the building is 143 t. The objective of the replacement of the central URM 
wall with one RC one is to avoid that deformations concentrate in the first storey and provide an 

almost linear displacement profile over the height of the building. The structure is located in a 

moderate seismicity area, with the input ground motion represented by a displacement spectrum with a 
corner period at 2 s and a corresponding corner displacement demand equal to 18.8 cm. 

The RC wall was designed to respond elastically for the selected seismic intensity (μΔRC = 1). 

Also the RC beams responded elastically (this feature was checked at each iteration of the design 
process through pushover analyses carried out with TREMURI). At the end of the design procedure, 

the mechanical model ascertained that the ratio δ1/δ2 resulted equal to around 0.95. This means that the 

assumed displacement profile is correct (see Eq. 18).  

The key outputs from the DBD are listed in Table 1. Since both RC wall and coupling beams 
respond elastically, around 80% of the OTMdem is provided by elastically responding (RC) members. 

As a consequence, the equivalent viscous damping ξe is rather small.  
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Figure 4. Retrofit design of one masonry structure: (a) Original URM wall building. (b) Retrofitted 

configuration. All dimensions in cm. 

 

Table 1. Key design outputs from DBD 

Maximum drift δ 0.4 % 

Total base shear Vbase 646 kN 

Overturning moment demand OTMdem 5820 kNm 

Required moment capacity of the RC wall MRC 1082 kNm 

Effective period Te 0.51 s 

Mean longitudinal reinforcement ratio in the RC wall ρRC  0.38% 

Length of the RC wall lRC 1.67 m 

OTMdem provided by the coupling beams βRC 0.19 

OTMdem provided by the URM walls βURM 0.19 

OTMdem provided by the RC wall βCB 0.62 

Equivalent viscous damping ξe 0.069 

 

6.2. Modelling and analysis 

To assess the retrofit design, the case study was modelled and analysed through inelastic time 

history analyses (ITHA) performed with TREMURI (Penna et al., 2013; Lagomarsino et al., 2013). In 
the software, each structural member (walls and beams) is modelled as single elements which are then 

assembled to an equivalent frame (equivalent frame approach). The macro-element developed by 

Penna et al. (2013) is used to describe the behaviour of masonry walls. The non-linear macro-element 
model is representative of a whole masonry panel and allows for the representation of the two main in-

plane failure mechanisms (i.e. shear and bending-rocking). The macro-element is divided into three 

parts: a central body in which shear deformations occur and the two extremities where the bending-
rocking behaviour is concentrated. For the shear-damage behaviour, the model accounts for non-linear 

plastic deformations in the pre-peak response, as well as non-linear plastic deformations in the post 

peak response with stiffness and strength degradation. The bending rocking behaviour is represented 

by no-tension springs in the two extremities of the panel. Non-linear elastic deformations, 
corresponding to the partialisation of the section, are accounted for. The macro-element takes also into 

account the effect of the limited compressive strength of the masonry. Timoshenko beams, 

characterized by Takeda model law and plasticity concentrated at the extremities, represent RC 
members. For further details of the software, the reader is referred to Penna et al. (2013) and 

Lagomarsino et al. (2013).  

Concerning the material properties adopted and the construction of the equivalent frame model, 
the indications presented in Paparo and Beyer (2014b) were followed. Table 2 provides the assumed 

material properties. Ee is a reduced Young’s modulus which accounts for cracking of the RC walls. 

The reduction is taken into account by considering the effective stiffness EIe as proposed by Priestley 

et al. (2007): 

 (a)  (b) 
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where MN is the nominal yielding moment, calculated considering the axial force acting at the 

base of the wall before applying the horizontal load, and Φy is the nominal yielding curvature, which is 
equal to Cεy/lRC. C is a constant depending on the geometrical properties of the section; εy is the 

yielding strain of the longitudinal reinforcing bars and lRC is the length of the wall. 

The model was subjected to a suite of 5 artificial spectro-compatible accelerorgrams. Details of 
the records are shown in Fig. 5. The accelerograms were scaled to a PGA equal to 0.25 g to match the 

design displacement spectrum adopted in the design procedure.  

A Rayleigh viscous damping is implemented in the TREMURI program. The damping matrix C 

for a MDOF system can be written as: 
 

 KaMaC
21

   (19)  

 
Where M and K are the mass and the linear stiffness matrices of the structure when the initial 

tangent stiffness is used. The coefficients a1 and a2 are defined to give a damping of 5% at the first 

elastic period (T1) and at the secant period (Te). 

 
Table 2. Adopted material properties for the simulations 

Materials Material properties  Model parameters 

URM members Equivalent friction μ* [-] 0.19 

 Equivalent cohesion c* [MPa] 0.06 

 Masonry compressive strength fm [MPa] 6.30 

 E-modulus of masonry panels subjected to 
compression orthogonal to bed-joints 

Emx [GPa] 5.10 

 Masonry shear modulus Gm [GPa] 0.54 

 Non-linear shear deformation parameter Gct [-] 1 

 Softening parameter β [-] 0.1 

RC members RC member’s Young’s modulus Ec [GPa] Ee (1
st storey & beams) 

18 (above storeys) 

 RC member’s shear modulus Gc [GPa] Ee/2.4 (1st storey & beams) 
7.5 (above storeys) 

 Reinforcing bars yielding tensile strength fy [MPa] 550 

 
 

 

 

Figure 5. Acceleration (a) and displacement (b) spectra of the considered accelerograms for ξ=5% 

 

 (a)  (b) 
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Figure 6. Time-History response for the case study. (a) Displacement profiles; (b) Hysteretic behaviour of the 

structure subjected to record 5 

Comparing the design displacement profile with the actual displacement response (Fig. 6a), 
very good agreement was found. The displacement profile indeed is almost linear over the height of 

the structure, as it was assumed in the design. Also the average maximum displacement is well 

estimated. Fig. 6b shows the hysteretic behaviour of the RC wall for the structure subjected to record 
5. EQ5 was selected since the displacement profile from this record is the closest to the average 

displacement profile from ITHA. It is possible to appreciate that the RC does not undergo plastic 

deformations, as it was defined during the design. Furthermore, the sum of the base shear absorbed by 

the URM walls is plotted, showing the large energy dissipated by the URM walls. This feature is 
typical of masonry walls with shear response and guarantee that they did feature shear (and no 

rocking-bending) behaviour.  

7. CONCLUSIONS AND OUTLOOK 

After the re-evaluation of the seismic hazard, in several countries of moderate seismicity, most 

unreinforced masonry (URM) buildings with reinforced concrete slabs failed to satisfy the seismic 

design check. A possible seismically retrofit solution consists of adding RC walls to the existing 
structure or replacing selected critical URM walls with RC ones. Experimental and numerical studies 

have shown that this retrofit technique can be very effective since it modifies the global deformed 

shape of the structure, leading to an increase in the system’s displacement capacity. New buildings can 
be conceived directly as mixed RC-URM wall structures since they show an improved seismic 

behaviour when compared to buildings with URM walls only. At the same time, URM walls have 

better thermal and insulation properties at a lower construction cost than edifices with RC walls only. 

The paper proposed a Displacement-Based Design methodology for the retrofit of URM 
structures by replacing selected URM walls by RC walls. The methodology follows the Direct 

Displacement-Based Design (DBD) approach by Priestley et al. (2007) and is based in particular on 

the DBD procedure for frame-wall buildings (Sullivan et al., 2006).  The design procedure consists of 
three main phases: (i) A preliminary design check of the URM building by means of the DBD 

approach. (ii) If the structure does not fulfil the design check and exhibits at the same time a dominant 

shear behaviour, replacing the critical URM wall or walls with RC ones leads to an improved system’s 
behaviour. (iii) In the final phase, the DBD design of the mixed RC-URM wall structure, in which 

both the URM and the RC walls are taken into account, is carried out. The shape of the displacement 

profile of the retrofitted structure is estimated using a simple mechanical model which represents the 

URM walls through an equivalent shear beam and the RC walls through an equivalent flexural 
cantilever. 

The methodology has been checked by designing a case study and comparing its structural 

performance through ITHA. Five artificial spectro-compatible accelerorgrams were used. The design 
procedure effectively controlled the horizontal deformations and the insertion of the RC wall 

prevented a concentration of deformations at the lowest storey of the structure, typical feature for 

 (a)  (b) 
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URM wall buildings. In addition, the retrofitted configuration exhibited a displacement profile almost 

linear over the height of the structure, as it was assumed in the design. Also the choice that the RC 

wall responded elastically was respected. 

Future studies will propose mechanical models for the estimation of the contribution to the 
overturning moment from the RC beams (MCB) and the URM walls (MURM) as, for the moment, these 

quantities are estimated through non-linear pushover analyses. In addition, application of the design 

methodology to a wider range of case studies will be necessary for further validations of the 
procedure. Structures raging form 3 to 5 storeys will be designed and gauged through ITHA. Also 

configurations with URM walls with different lengths will be investigated. 
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