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Abstract 

Reinforced concrete (RC) flat slabs supported on columns are one of the most widely used 
structural systems for office and industrial buildings. In regions of medium to high seismic risk RC 
walls are typically added as lateral force resisting system and to increase the lateral stiffness and 
strength. Although slab-column systems are not expected to contribute to the lateral resistance of 
the structure due to their low stiffness, the slab-column connection have to have the capacity to 
follow the seismically induced lateral displacements of the building while maintaining the capacity 
to transfer the vertical loads from the slab to the columns. Otherwise, brittle punching failure of the 
slab occurs and the deformation capacity of the entire building is limited by the deformation 
capacity of the connection. The present paper presents a model for predicting the flexural 
behaviour of slab-column connections without transverse reinforcement when subjected to 
earthquake-induced deformations, considering both the load and the deformation of the slab. The 
model is based on the Critical Shear Crack Theory (CSCT) and presents a rational approach for 
predicting the transferred moment-rotation relationship of slab-column connections as well as the 
contribution of all resistance-providing mechanisms respecting equilibrium principles in both local 
and global level. The model proved to be accurate enough when compared with tests (monotonic 
and cyclic) found in the literature. 
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1 Introduction 

RC flat slabs supported on columns are one of the most popular structural systems for office and 
industrial buildings around the world, presenting several advantages (large open floor spaces, short 
construction times). Due to their low lateral stiffness, in seismic prone areas vertical spines (shear 
and/or core walls) are added to carry the largest portion of the horizontal loads generated during 
earthquakes and to increase the lateral stiffness and strength of the building. In this case, although 
the slab-column connections are not part of the lateral force resisting system, they must have the 
capacity to follow the seismically induced deformations of the building without losing their vertical 
load carrying capacity (Fig. 1a). Otherwise, brittle punching failure of the slab occurs and the 
deformation capacity of the connection determines the deformation capacity of the entire building. 

The main shortcoming of proposed mechanical models for punching of RC slab-column 
connections under imposed deformations (Broms, 2009) as well as design approaches in codes of 
practice (ACI 318, 2008; Eurocode 2, 2004) is the empirical estimation of the contribution of the 
resistance-providing mechanisms of the theory of elasticity (eccentric shear force, bending and 
torsional moment). Approaches in codes feature additional shortcomings such as the assumption of 
linearly distributed shear stresses on the critical perimeter and lack of methods for calculating the 
moment transferred to the connection. Moreover, current codes (e.g. ACI 318, 2008) adopt 



2 
 

empirical models for estimating the seismic drift capacity of slab-column connections (Pan and 
Moehle, 1989) which application is limited to slab-column configurations against which they were 
calibrated.  

 

 
  
Fig. 1   Seismically induced drift in slab-column connections: deformation state (a) at global level (reference 
building), and (b) local level (slab-column connection), where L is the span length and Hc is the distance 
between mid-height of columns below and above the connection   
 

To design and assess buildings with flat slabs and columns, the estimation of the moment-
rotation relationship of slab-column connections and the rotation capacity are obligatory. 
Moreover, as punching is a brittle local failure due to excessive shear stresses in the proximity of 
the slab-column connection, the need for a relationship between local rotations and global 
interstorey drift ψst becomes obvious (Fig. 1b). In addition the size effect, the gravity load effect, 
the influence of column size and the influence of the reinforcement ratio should be effectively 
captured by the moment-rotation relationship.  

This paper presents a mechanical model for predicting the flexural behaviour of slab-column 
connections subjected to earthquake-induced drifts, considering both the load and the deformation 
of the slab. The model is based on the Critical Shear Crack Theory (CSCT) which has been 
employed successfully for predicting the flexural behaviour of slab-column connections for gravity 
induced loads considering both the load and the deformation (ψv – see Fig. 1b) and which forms the 
basis of the punching shear equations of the FIB Model Code (2010). The extended model presents 
a rational approach for the relationship between transferred moment and rotation of slab-column 
connections due to the combination of lateral and vertical loads at local (ψcon – see Fig. 1b) and 
global (ψgl – see Fig. 1b) level, respecting equilibrium principles as well as the contribution of all 
resistance-providing mechanisms. The model is also compared against tests found in the literature 
and is shown to yield good predictions of the moment – interstorey drift relationship.  

2 Mechanical model for seismically induced drifts 

The theoretical background of the proposed model is presented hereafter along with the 
modifications comparing to the CSCT. The load is assumed to be transferred to the column through 
an inclined compression strut. The presence of a critical shear crack that propagates along this strut 
reduces the shear strength of the connection (Muttoni, 2008). Therefore, the slab is divided into n 
sector elements and the region inside the shear crack. The difference comparing to the CSCT is the 
fact that the state of rotations is not the same for all the sector elements. Consequently torsional 
moments and moments due to eccentric shear force are introduced in the connection. The kinematic 
assumption and curvature distributions are demonstrated in Fig. 2. The equilibrium principles on 
the local level are illustrated in Fig. 3. The half of the slab where the transferred moment increases 
the deflection of the slab due to vertical loads is denoted as “negative slab half” (negative moment 
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due to seismic loading), whereas the other half where tension in the bottom reinforcement may 
appear is denoted as “positive slab half” (positive moment due to seismic loading).  
 

(a) (b) 
 
Fig. 2   Proposed mechanical model: (a) kinematic assumption for the rotations of the sector elements 
(negative slab half), and (b) distribution of radial and tangential curvatures along the diameter of the isolated 
slab element (for upwards deflection of the positive slab half) 

 

(a) (b) 
 
Fig. 3   Internal forces acting on the slab region: (a) outside the shear crack (negative slab half), and (c) 
inside the shear crack  
 
The additional assumptions that are made concerning the calculation of the moment-rotation 
relationship according to the proposed model are the following: 

1) The rotation of the slab is assumed to follow a sinusoidal law with maximum value ψmax at 
90° (tip of the negative slab half - Fig. 2a) and minimum value ψmin at 270° from the 
bending axis, as it is described in the following equation (angle φ measured from the 
bending axis): 

 






 sin

22
)( minmaxminmax

 
(1) 

2) No torsional moments are developed in the faces of the sector elements (rigid bodies). 
3) The tangential moments are equal to the radial ones in the region inside the critical shear 

crack (Fig. 2c). 
4) The radius r0 of the critical shear crack is equal to the eccentricity e. 
5) The quadrilinear moment-curvature diagram that is assumed for concentric punching 

(Muttoni, 2008) is also adopted as the envelope for the extended model. 
The mathematical expressions are presented hereafter. Mtan(φ-Δφ/2) and Mtan(φ+Δφ/2) are the 

integrals of the tangential moments at the faces of each sector element (Fig. 2b). Subsequently 
these moments will be referred to as Mtan

- and Mtan
+, respectively, and are determined directly as a 

function of the assumed rotation, using the following formula (quadrilinear moment-curvature 
relationship): 
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where EI0 and EI1 are the stiffnesses before and after cracking, mcr and mR are the cracking moment 
and moment capacity respectively per unit width, χTS is the curvature due to the tension stiffening 
effect, and r0, ry, r1, rcr and rs are the radii of the critical shear crack, of the yielded zone, of the zone 
in which cracking is stabilized, of the cracked zone and of the circular isolated slab element 
respectively. The operator x is x for x  0 and 0 for x < 0. These parameters are the same as in 
CSCT (Muttoni, 2008). The only parameter that is updated for the case of seismically induced 
deformations is the radius r0 of the critical shear crack (assumption 4) to take into account the fact 
that the shear force becomes less determinant as eccentricity increases. Therefore, the integral of 
the radial moment for a sector element at angle φ at r = r0 is: 

  0rr r)(m)(M  (3) 

where mr(φ) is the radial moment per unit width at r = r0 as function of the radial curvature 
(Muttoni, 2008).  

If φi is the angle formed by the axis of bending and the bisector of the ith sector element, the 
shear force that can be carried from the compression strut of this sector element is derived by 
moment equilibrium in the tangential direction with respect to the centre of the column with radius 
rc: 
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The total shear force acting on the connection for the load step k is:  
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The moment equilibrium in the radial direction gives the torsional moment that is carried by the 
connection for the ith sector element: 
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The different external loads acting on different sector elements provoke different moments for each 
load step k. The moment due to flexure (around the axis of the transferred moment) for the ith 
sector element is: 
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(7) 

The component of the torsional moment Mtor.r(φi) that is parallel to the transferred moment for the 
ith sector element is: 

 
)cos()

2
cos()](M)(M[)(M iitanitanik.tor 


   (8) 

The difference of compression forces of the strut along the shear crack between anti-diametric 
sector elements provokes moment due to shear force difference and radial moment difference (Fig. 
2d). The component that is parallel to the bending axis is denoted as Mecc and can be calculated 
using the following formula: 
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Therefore, the total moment acting on the connection (parallel to the transferred moment) for the 
load step k is: 
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The total moment acting perpendicularly to the transferred moment is equal to zero (Mk. = 0) and 
therefore global equilibrium is satisfied. The eccentricity calculated at load step k is: 

 
kkk V/Me   (11) 

To obtain the relationship characterizing the flexural behaviour an iterative procedure should 
be adopted. The maximum rotation ψmax is iterated so as to obtain the points that form the curve 
(denoted as load steps k) and the minimum rotation ψmin is calculated to satisfy local and global 
equilibrium. For constant eccentricity e the global equilibrium is satisfied when ek ≈ e so the load-
rotation curve is obtained and the radius r0 of the shear crack is constant (assumption 4) throughout 
the iterative calculations. For constant shear force V acting to the connection the iterative process 
for each load step terminates when Vk ≈ V so the moment-rotation curve is obtained and the radius 
r0 of the shear crack is adapted at each load step.  

3 Comparison with experiments 

The presented model is evaluated on the basis of experiments found in the literature, conducted 
either by monotonic application of loads (e.g. Krüger, 1999) or by quasi-static cyclic moment 
introduction (e.g. Pan and Moehle, 1989). The state of column deformations that inherently 
influences the rigid body rotations in the region inside the shear crack was taken into account 
depending on the test setup configuration. 
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Fig. 4   Influence of reinforcement ratio for monotonic tests under constant vertical load (Ghali et al, 1976): 
(a) 0.5%, and (b) 1.0% 
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Fig. 5   Comparison with monotonic tests under constant eccentricity: (a) Krüger (1999), and (b) Hawkins et 
al. (1989) 

 
The model predictions show satisfactory agreement with the experimentally observed behaviour of 
slab-column connections subjected to monotonically increasing transferred moments, either under 
constant vertical load (Ghali et al., 1976), or under constant eccentricity (Krüger, 1999; Hawkins et 
al., 1989). The influence of the reinforcement ratio is effectively captured (Fig. 4). It should be 
noted that the iterative procedure ends either when the slab reaches the global mechanism (Fig. 4a) 
or when the radius of the critical shear crack r0 exceeds the dimensions of the tested specimen 
(border effect - Fig. 4b). For the experiments carried out by Hawkins et al. (1989) an 
underestimation of the initial stiffness is observed (Fig. 5b). However, the softening of the flexural 
response under the effect of increasing eccentricity due to the formation of a wider critical shear 
crack in the negative slab half (Tassinari, 2011) is captured by the proposed model.     

Concerning the cyclic behaviour, the presented model adopts a monotonic moment-curvature 
relationship for both directions of loading. Therefore, the influence of degradation due to cyclic 
loading to the moment-rotation relationship is neglected. 
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Fig. 6   Influence of reinforcement ratio for cyclic tests (Marzouk et al., 2001) 
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Fig. 7   Gravity load effect for cyclic tests: (a) Bu and Polak (2009), and (b) Robertson and Johnson (2006) 

 
The model predicts accurately enough the moment-rotation relationship also for the cyclic 

tests found in the literature. It is capable to accurately predict the effect of reinforcement ratio also 
for cyclic tests (Marzouk et al., 2001) as well as the gravity load effect (Bu and Polak, 1989; 
Robertson and Johnson, 2006). Moreover, as can be seen from Fig. 6 and Fig. 7, the tested 
specimens did not exhibit any significant sign of degradation due to cyclic loading. Therefore the 
aforementioned assumption seems to be realistic.  

4 Conclusions and Outlook 

      A mechanical model to describe the flexural behaviour of RC slab-column connections under 
seismically induced deformations is presented. The model is based on the CSCT and can 
effectively uncouple the contribution of the various resisting mechanisms (flexure, eccentric shear 
force and torsion) when a slab-column connection is subjected to earthquake-induced deformations. 
      The model predicts accurately enough the moment-rotation relationship for tests found in the 
literature, conducted either by monotonically or cyclically increasing loading. The presented model 
can capture the influence of the reinforcement ratio and the effect of eccentricity for monotonic 
tests. Moreover, the gravity load effect as well as the influence of the reinforcement ratio are 
captured for cyclic tests. 
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     When comparing experimental and predicted curves no significant sign of degradation due to 
cyclic loading appeared to exist for moment-rotation relationships. The results of an ongoing 
experimental campaign will provide more insight into the behaviour of slab-column connections 
when subjected to cyclic loading by comparing it to the behavior of slab-column connections 
subjected to monotonically increasing loading. Moreover, it is anticipated that these new tests will 
offer a better understanding of the contribution of resistance-providing mechanisms and of the 
parameters that are influencing the failure criterion. Other aspects, such as the column size effect, 
will also be investigated. 
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