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SUMMARY

Angiopoietin-2 (ANG2/ANGPT2) is a context-depen-
dent TIE2 receptor agonist/antagonist and proan-
giogenic factor. Although ANG2 neutralization im-
proves tumor angiogenesis and growth inhibition
by vascular endothelial growth factor (VEGF)-A
signaling blockade, the mechanistic underpinnings
of such therapeutic benefits remain poorly explored.
We employed late-stage RIP1-Tag2 pancreatic
neuroendocrine tumors (PNETs) and MMTV-PyMT
mammary adenocarcinomas, which develop resis-
tance to VEGF receptor 2 (VEGFR2) blockade. We
found that VEGFR2 inhibition upregulated ANG2
and vascular TIE2 and enhanced infiltration by
TIE2-expressing macrophages in the PNETs. Dual
ANG2/VEGFR2 blockade suppressed revasculariza-
tion and progression in most of the PNETs, whereas
it had only minor additive effects in the mammary tu-
mors, which did not upregulate ANG2 upon VEGFR2
inhibition. ANG2/VEGFR2 blockade did not elicit
increased PNET invasion and metastasis, although
it exacerbated tumor hypoxia and hematopoietic
cell infiltration. These findings suggest that evasive
tumor resistance to anti-VEGFA therapy may involve
the adaptive enforcement of ANG2-TIE2 signaling,
which can be reversed by ANG2 neutralization.
INTRODUCTION

Tumor growth and progression depend on angiogenesis, the for-

mation and expansion of intratumoral blood vessels. Among the

positive regulators of tumor angiogenesis are the vascular endo-

thelial growth factor (VEGF)-A and its endothelial cell (EC)-spe-

cific tyrosine kinase receptor, VEGF receptor 2 (VEGFR2) (Chung

et al., 2010). However, preclinical studies in mice show that

several tumor models are refractory or rapidly develop resis-

tance to VEGFA/VEGFR2-targeting drugs (Bergers and Hana-

han, 2008; Vasudev and Reynolds, 2014). Although there is
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clinical evidence for bevacizumab—a monoclonal antibody

(moAb) that neutralizes human VEGFA—to decrease tumor

angiogenesis, edema, and/or disease burden when adminis-

tered as monotherapy (Van der Veldt et al., 2012; Willett et al.,

2004; Yang et al., 2003), the survival improvements, also in com-

bination with first-line anticancer drugs, are generally modest

(Vasudev and Reynolds, 2014). The failure of VEGF pathway in-

hibitors to induce durable antitumoral responses mirrors that of

other mechanism-targeted drugs (De Palma and Hanahan,

2012) and can be attributed to preexisting or induced compen-

satory proangiogenic signaling (Casanovas et al., 2005; Shojaei

et al., 2008), some of which are conveyed by stromal cells (Berg-

ers and Hanahan, 2008; De Palma and Lewis, 2013; Ferrara,

2010; Rivera et al., 2014). Furthermore, effective inhibition of

tumor angiogenesis by anti-VEGFA/VEGFR2 moAbs or kinase

inhibitors that also block the VEGFRs (e.g., sunitinib) may evoke

forms of tumor adaptation that circumvent the need of angiogen-

esis, such as cancer growth by increased local invasion and

blood vessel co-option (Bergers and Hanahan, 2008; Sennino

and McDonald, 2012).

The angiopoietin (ANG)-TIE2 system regulates vascular devel-

opment and maturation (Eklund and Saharinen, 2013). In the

resting vasculature, pericyte-derived ANG1 constitutively binds

the TIE2 receptor expressed on ECs to activate AKT signaling

and promote EC survival and quiescence. Although angiopoie-

tin-2 (ANG2/ANGPT2) can disrupt ANG1-TIE2 signaling,

increasing data indicate that it can also function as a TIE2

agonist, particularly when overexpressed and/or in the absence

of ANG1 (Daly et al., 2013; Gerald et al., 2013). In angiogenic tis-

sues like tumors, ECs secrete high levels of ANG2, which oper-

ates autocrinally and paracrinally as the main TIE2 ligand to

promote angiogenesis in concert with other proangiogenic fac-

tors, namely VEGFA (Eklund and Saharinen, 2013). ANG2, but

not ANG1, levels are elevated in the plasma of patients with can-

cer compared to healthy subjects; furthermore, higher circu-

lating ANG2 may correlate with a more advanced stage of the

disease and/or a worse prognosis in some cancer types (Helfrich

et al., 2009; Park et al., 2007). Although the mechanisms under-

lying the divergent vascular responses triggered by ANG1 and

ANG2 remain poorly defined, different oligomerization states of

ANG1 and ANG2may differentially regulate the subcellular local-

ization of TIE2 or its association with distinct cellular or matrix
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coreceptors (Eklund and Saharinen, 2013). Furthermore, ANG2

may modulate the proangiogenic functions of perivascular

TIE2-expressing macrophages (TEMs) (Mazzieri et al., 2011).

ANG2blockade decreases angiogenesis and slows thegrowth

of several tumor models, often more prominently so when com-

bined with VEGFA/VEGFR2 inhibitors (Brown et al., 2010; Daly

et al., 2013; Hashizume et al., 2010; Holopainen et al., 2012;

Huang et al., 2011; Kienast et al., 2013; Leow et al., 2012; Maz-

zieri et al., 2011). However, it is unclear whether ANG2-TIE2

signaling may sustain VEGF-independent angiogenesis in tumor

models that are refractory or acquire resistance to VEGFA/

VEGFR2-targeted drugs. For example, late-stage pancreatic

neuroendocrine tumors (PNETs) that develop in RIP1-Tag2

mice revascularize following a transient response phase to

VEGFA signaling blockade, a phenomenon associated with the

compensatory upregulation of basic fibroblast growth factor 2

(FGF2) (Allen et al., 2011; Casanovas et al., 2005). Here, we em-

ployed twomouse tumormodels, RIP1-Tag2 PNETs andMMTV-

PyMT mammary adenocarcinomas, to investigate the putative

role of ANG2 in adaptive tumor resistance to VEGFR2 blockade.

RESULTS

Combined ANG2/VEGFR2 Inhibition Blocks
Revascularization andProgression of Late-Stage PNETs
in RIP1-Tag2 Mice
We first studied ANG2/VEGFR2 blockade in late-stage PNETs of

RIP1-Tag2 mice. We analyzed tumor growth and angiogenesis

on pancreatic sections by anti-SV40 large T antigen (TAg) immu-

nostaining (to identify TAg+ PNETs), anti-CD31/PECAM1 immu-

nostaining (to identify blood vessels), and/or after in vivo

fluorescein isothiocyanate (FITC)-lectin perfusion and direct

FITC visualization (to identify functional blood vessels).

We found that three consecutive doses (administered every

3.5 days) of either 0.5 or 1.0 mg of the anti-VEGFR2 moAb

DC101 (Prewett et al., 1999) effectively and comparably

decreased PNET vascularization by more than 60% in male

RIP1-Tag2 mice treated starting at 12 weeks of age (versus rat

immunoglobulin G [IgG] control [R.IgG]; Figure 1A). We therefore

selected 0.5 mg DC101 per mouse given biweekly as the lower

effective biological dose for further studies. We then treated

11.5- to 12.5-week-old male RIP1-Tag2 mice with biweekly in-

jections of DC101, 3.19.3 (an anti-ANG2 moAb; Brown et al.,

2010), the combination of the two (DC101 plus 3.19.3), or the

appropriate IgG controls (R.IgG for DC101, human IgG [H.IgG]

for 3.19.3, or the combination of the two [R plus H.IgG]), accord-

ing to an extended treatment schedule (seven to eight consecu-

tive doses for 3.5–4.0 weeks). We also treated a group of mice

with three doses of DC101 followed by four doses of DC101

plus 3.19.3. We euthanized the treated mice at 15.0–16.0 weeks

of age, which coincides with end-stage disease in this geneti-

cally engineered mouse model (GEMM) of cancer, or untreated

mice at 12 weeks of age, in order to obtain pancreata at the initi-

ation of therapy (t0).

The total pancreatic tumor area was similar in DC101 and con-

trol IgG-treated mice (Figures 1B and 1C), indicating unaltered

tumor progression under VEGFR2 blockade despite the initial

antiangiogenic response. Likewise, 3.19.3 monotherapy had
minimal effects on tumor progression. Conversely, DC101 plus

3.19.3-treated mice had a significantly smaller tumor area

compared to mice treated with monotherapies or control IgGs.

Of note, the pancreatic tumor area was indistinguishable from

that at t0, indicating that on average, DC101 plus 3.19.3-treated

PNETs had not progressed since the t0. The combination of

DC101 and 3.19.3 was effective also when it was started after

a short treatment schedule with DC101 monotherapy.

We thenanalyzed thepancreataby their grossappearanceand

found that those of DC101 plus 3.19.3-treatedmice had exceed-

ingly fewer hemorrhagic/vascularized tumors than those in the

other groups (Figures 1D and S1A). To investigate this further,

we analyzed tumor vascularization microscopically. Both

DC101 and 3.19.3 administered singly decreased, albeit moder-

ately, the relative CD31+ vascular area compared to control IgGs

(by �30% and 20%, respectively; Figure 1E). The relative

vascular area in DC101-treated tumors had therefore increased

compared to that at 1.5weeks posttreatment (Figure 1A), amani-

festation of adaptive resistance to antiangiogenic therapy (Casa-

novas et al., 2005). Of note, the combination of DC101 and 3.19.3

was much more effective than either alone and dramatically

abated theproportion of PNETswith relatively high vascular area.

The tumor blood vessels differed qualitatively among the

different treatment groups (Figure 1F). Control IgG-treated tu-

mors displayed a dense vascular network, made of highly

branched and heterogeneous vessels. Whereas DC101 did not

appreciably modify the morphology of the blood vessels, those

in 3.19.3-treated tumors were frequently more enlarged and

less branched than in control IgG or DC101-treated tumors.

Remarkably, DC101 plus 3.19.3 produced large avascular tumor

areas (Figure S1B), suggesting that both inhibition of angiogen-

esis and vascular regression had occurred. In these tumors,

the blood vessels were mostly located at the tumor periphery,

were poorly branched, had a small diameter, and displayed

enhanced coverage by neural-glial 2 (NG2)+ pericytes compared

to those of control tumors (Figures 1G and 1H). The latter pheno-

type was possibly an anti-ANG2-mediated dominant effect

because 3.19.3 induced a similar phenotype, in agreement

with previous observations by Holopainen et al. (2012) and Maz-

zieri et al. (2011). Unlike DC101 monotherapy, both 3.19.3 and

DC101 plus 3.19.3 reduced the relative lectin+ area compared

to the controls (Figures 1I and S1C). The latter findings suggest

that DC101 preferentially inhibits or prunes immature (nonper-

fused) blood vessels, whereas 3.19.3, or its combination with

DC101, also targets more mature (perfused) blood vessels.

We obtained similar results in T and B cell-deficient Rag1�/�/
RIP1-Tag2 mice, indicating that the antiangiogenic effects of

ANG2/VEGFR2 blockade by 3.19.3 and DC101 are largely inde-

pendent of the adaptive immune system (Figures 1I and S1A).

Collectively, the aforementioned data indicate that ANG2

blockade effectively limits rebound angiogenesis following

VEGF signaling blockade in PNETs.

ANG2/VEGFR2 Blockade Increases PNET Hypoxia and
Hematopoietic-Cell Infiltration without Eliciting
Increased Invasion and Metastasis in RIP1-Tag2 Mice
Efficient angiogenesis inhibition and/or vascular pruning by anti-

angiogenic drugs may exacerbate tumor hypoxia (Bergers and
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Figure 1. ANG2/VEGFR2 Blockade Abates PNET Progression and Angiogenesis in RIP1-Tag2 Mice

(A) Relative lectin+ vascular area (mean ± SEM) in PNETs treated for 1.5 weeks as indicated: R.IgG (n = 5 mice), low-dose DC101 (n = 5), and high-dose DC101

(n = 4). Each dot represents one mouse, of which multiple tumors were analyzed. Statistical analysis was performed by unpaired two-tailed Student’s t test.

(B) Representative images of TAg (green) immunostaining and DAPI (blue) nuclear staining of whole-pancreatic sections from mice treated as indicated.

Scale bar, 3 mm.

(C) Total tumor area (mean ± SEM) in the largest pancreatic section of mice treated as indicated: t0 (n = 21 mice), R.IgG (n = 6), H.IgG (n = 7), R+H.IgG (n = 15),

DC101 (n = 9), 3.19.3 (n = 11), DC101+3.19.3 (n = 10), and DC101 followed by DC101+3.19.3 (n = 11). Each dot represents one mouse. Statistical analysis was

performed by one-way ANOVA with multiple comparison Fisher’s LSD test. n.s., not significant.

(D) Left: representative images of whole pancreata from mice treated as indicated. Right panel shows the number of hemorrhagic PNETs (mean ± SEM) in each

pancreas. Each dot represents one mouse. Statistical analysis was performed as in (C).

(legend continued on next page)
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Hanahan, 2008; Sennino and McDonald, 2012). Hypoxia was

uneven, albeit prevalently low, in control PNETs (Figure 2A),

consistent with adequate tumor perfusion by the rich vascular

network. DC101-treated tumors were more hypoxic than the

controls, but the degree of hypoxia was remarkably uneven,

ranging from nonhypoxic to highly hypoxic regions, the latter

often surrounding hemorrhagic/necrotic tumor areas. Consistent

with their poor vascularization, DC101 plus 3.19.3-treated tu-

mors were uniformly and highly hypoxic.

Previous studies have shown that antiangiogenesis-induced

hypoxia may increase tumor invasion and metastasis (Bergers

and Hanahan, 2008; Sennino and McDonald, 2012). We then

analyzed PNET invasiveness as previously described by Pàez-

Ribes et al. (2009). Although being highly hypoxic, DC101 plus

3.19.3-treated tumors did not display increased invasiveness

compared to the other experimental groups, as shown by the

similar frequency of noninvasive (IC0), microinvasive (IC1), and

widely invasive (IC2) PNETs (Figure 2B). Furthermore, we did

not detect obvious, treatment-dependent effects on the inci-

dence of liver micrometastases (Table S1; Figures S2A and

S2B). These observations suggest that angiogenesis inhibition

in DC101 plus 3.19.3-treated PNETs leads to a chronically hyp-

oxic tumor state, which impedes tumor growth but does not elicit

heightened invasion or metastasis.

Vascular-targeted therapies may also enhance tumor infiltra-

tion by proangiogenic cells through both hypoxia-dependent

and -independent mechanisms (De Palma and Lewis, 2013; Fer-

rara, 2010; Rivera et al., 2014). We found that DC101 plus 3.19.3

increased tumor infiltration by CD45+ hematopoietic cells (Fig-

ures 2C and 2D)—the vast majority of which were macrophages

(Figure 2E)—compared to the other treatment groups. Because

the extent of tumor infiltration by CD45+ cells correlated with

tumor vascularization in both DC101 plus 3.19.3 and control

IgG-treated PNETs (Figure 2F), it is conceivable that therapy-

induced, de novo recruitment of hematopoietic cells/macro-

phages may have contributed to limit—at least to some

degree—the antiangiogenic and tumor-suppressive effects of

ANG2/VEGFR2 blockade in RIP1-Tag2 mice.

VEGFR2 Blockade Upregulates ANG2 and TIE2 in the
PNETs of RIP1-Tag2 Mice
We then sought to investigate the molecular events underlying

the synergistic antiangiogenic and antitumoral effects of

double ANG2/VEGFR2 blockade in the PNETs. To this aim, we

first dissected and classified individual tumors as either hemor-

rhagic/red (R) or nonhemorrhagic/whitish (W) based on their

appearance under a stereomicroscope. Virtually all the PNETs

in control IgG-treated mice and the vast majority in either
(E) Relative CD31+ vascular area (mean ± SEM) in PNETs treated as indicated: R.

(n = 5). In the left panel, each dot represents one mouse. In the right panel, each d

box indicates individual values greater than the mean value in R/H.IgG control g

(F and H) Representative images of CD31 (green) and NG2 (red) immunostain

bars, 100 mm.

(G) Relative area of pericyte (NG2+)-covered blood vessels in PNETs treated as

DC101+3.19.3 (n = 5). Each dot represents one mouse, of which multiple tumors

(I) Lectin+ area normalized to IgG control (ctrl; black bars) (mean values ± SEM) in

(n = 5), DC101+3.19.3, Rag1 knockout (KO) (n = 6), R.IgG (n = 2), H.IgG (n = 3), R+

were analyzed. Statistical analysis was performed as in (A).
DC101 or 3.19.3-treated mice were R. On the contrary, only a

small minority of the tumors were classified so in DC101 plus

3.19.3-treated mice (Figures 1D and S1A; data not shown).

Quantitative PCR (qPCR) analysis of the EC-specific gene VE-

Cadherin (Cdh5) showed that the R and W categories fairly

distinguished PNETs with relatively high and low abundance of

vascular ECs, respectively (Figure S3A).

We found that DC101-treated tumors had significantly upre-

gulated Angpt2 transcript levels specifically in the R samples

compared to the W samples or IgG-treated tumors (Figures 3A

and S3B), possibly through a hypoxia-mediated mechanism

(Figure S3C). When normalized to the mean vascular area frac-

tion (see Figure 1E), Angpt2 transcript levels were, on average,

�2.5 higher in the R DC101 than IgG-treated tumors (Figure 3A),

a finding confirmed by ELISA of ANG2 protein (Figure 3B). Of

note, circulating ANG2 levels did not increase in the plasma of

DC101-treatedmice (Figure S3D). We found that DC101 also up-

regulated Fgf2 in the R samples compared to IgG-treated tumors

(Figure S3E), as reported previously by Casanovas et al. (2005).

Whereas ANG2 is restricted to ECs (Goede et al., 2010), TIE2 is

expressed in tumors by both ECs and perivascularmacrophages

(Eklund and Saharinen, 2013; Mazzieri et al., 2011). When

normalized to mean vascular area fraction values, the qPCR

data showed a trend toward increased Tek transcript levels in

RDC101 versus control IgG-treated PNETs (Figure 3C). Because

ligand bioavailability and other ill-defined factors may control the

trafficking and turnover of the TIE2 receptor posttranscriptionally

(Eklund and Saharinen, 2013), we also analyzed TIE2 protein

expression in blood vessels and macrophages by immunostain-

ing. Although TIE2 expression was heterogeneous in the blood

vessels, the relative TIE2+ vascular area was significantly higher

in DC101-treated than control tumors (Figures 3D and 3E). More-

over, DC101 increased the proportion of TEMs among the total

CD45+ hematopoietic cells (Figures 3F and 3G), in agreement

with recent studies in other tumor models (Gabrusiewicz et al.,

2014). Taken together, these findings indicate that VEGFR2

blockade adaptively upregulated both ANG2 and TIE2 expres-

sion in late-stage PNETs, possibly to reinforce autocrine and/

or paracrine ANG2-TIE2 signaling in ECs and TEMs.

Minor Additive Effects of ANG2/VEGFR2 Blockade in the
Absence of ANG2 Upregulation in MMTV-PyMT
Mammary Tumors
Human breast cancers are poorly sensitive to anti-VEGFA ther-

apy (Vasudev and Reynolds, 2014). We then asked whether

ANG2 blockade could improve the antitumoral activity of

DC101 in MMTV-PyMT mammary adenocarcinomas growing

orthotopically in syngenic mice (Mazzieri et al., 2011). DC101
IgG (n = 4 mice), H.IgG (n = 5), DC101 (n = 5), 3.19.3 (n = 5), and DC101+3.19.3

ot represents a tumor image acquired at 2003magnification; the dashed blue

roups. Statistical analysis was performed as in (C).

ing and DAPI nuclear (blue) staining of PNETs treated as indicated. Scale

indicated: R.IgG (n = 4 mice), H.IgG (n = 5), DC101 (n = 5), 3.19.3 (n = 5), and

were analyzed. Statistical analysis was performed as in (C).

PNETs treated as indicated: DC101 (n = 3 mice), 3.19.3 (n = 4), DC101+3.19.3

H.IgG (n = 11), and R+H.IgG, Rag1 KO (n = 5). For each mouse, multiple tumors
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Figure 2. ANG2/VEGFR2 Blockade Increases PNET Hypoxia and Hematopoietic-Cell Infiltration, but Not Local Invasion, in RIP1-Tag2 Mice

(A) Representative images of PNETs treated as indicated (R+H.IgG, n = 3 mice; DC101, n = 3; and DC101+3.19.3, n = 3) and stained with an anti-PIMO moAb

(brown) to reveal hypoxia. Scale bars, 1 mm (left images) and 200 mm (middle and right images). Exo, exocrine pancreatic tissue; Hy, hypoxia; He, hemorrhagic/

necrotic tissue. Asterisks indicate blood vessels/islands decorated unspecifically by the secondary Ab.

(B) Top panels present quantification of tumor invasion shown as the percentage (mean ± SEM) of IC0, IC1, and IC2 PNETs treated as indicated: R.IgG, H.IgG, or

R+H.IgG (IgG) (n = 13 mice, 115 tumors); DC101 (n = 5 mice, 44 tumors); 3.19.3 (n = 5 mice, 36 tumors); and DC101+3.19.3 (n = 5 mice, 46 tumors). No significant

differences were found by one-way ANOVA with multiple comparison Fisher’s LSD test. Bottom panels show representative images of IC0, IC1, and IC2 PNETs

stained as in Figure 1B. Scale bars, 200 mm.

(C) Lectin (green) and CD45 (red) immunostaining and DAPI nuclear (blue) staining of PNETs treated as indicated. Scale bars, 300 mm.

(D) Relative area of CD45+ cells in PNETs treated as indicated: R.IgG (n = 6 mice), H.IgG (n = 7), R+H.IgG (n = 3), DC101 (n = 9), 3.19.3 (n = 7), and DC101+3.19.3

(n = 5). Each dot represents onemouse, of whichmultiple tumors were analyzed. The data show two independent experiments combined. Statistical analysis was

performed as in Figure 1C.

(E) F4/80 (green) and CD45 (red) immunostaining of a representative PNET treated as indicated. Scale bar, 100 mm.

(F) Correlation between the relative lectin+ and CD45+ area in individual PNETs treated as indicated: R+H.IgG (n = 3 mice) and DC101+3.19.3 (n = 4). Each dot

represents one tumor. Statistical analysis was performed by Spearman’s rank correlation test.
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inhibited the growth and decreased angiogenesis of established

tumors more effectively than 3.19.3 (Figures 4A and 4B). How-

ever, evasive resistance to DC101 became apparent after an

initial response phase (Figure 4C). ANG2 blockade delayed the

emergence of evasive resistance to DC101 but did not produce

disease stabilization and hardly had additive antiangiogenic

effects compared to DC101 monotherapy (Figure 4D).

We then analyzed the expression of ANG2 and TIE2 in DC101-

treated tumors harvested at either early or late stages of the

resistance phase. Although VEGFR2 blockade increased Tek

transcript levels and the proportion of TIE2+ blood vessels in

the tumors (Figures S4A and S4B)—similar to the finding in

RIP1-Tag2 mice—it did not increase Angpt2/ANG2 transcript

and protein levels (Figures 4E and 4F). Overall, Angpt2 transcript

levels were significantly lower in the mammary carcinomas than

in the PNETs, both at baseline and after DC101 (Figure 4G).

Together, these observations suggest a direct association be-

tween the lack of upregulation of Angpt2/ANG2 levels by

DC101 and the lack of synergistic antiangiogenic/antitumoral

activities by ANG2/VEGFR2 blockade inMMTV-PyMTmammary

carcinomas.

Higher Intratumoral ANGPT2 Levels May Predict a
Worse Response to Bevacizumab-Containing
Antiangiogenic Therapy
The aforementioned data suggest that higher intratumoral levels

of ANG2 might predict a worse response to VEGFA-targeting

therapies, possibly also through routes that are independent of

an adaptive mechanism of upregulation. To explore this hypoth-

esis, we analyzed gene expressionmicroarray data from a phase

II trial of neoadjuvant bevacizumab and radiotherapy for resect-

able soft tissue sarcoma (Yoon et al., 2011). In that study, 50%of

the patients showed major or complete pathologic responses

(R80% tumor necrosis). We found that higher pretreatment

levels of ANGPT2 were, albeit weakly, associated with a poor

response to neoadjuvant therapy (Figure S4C). Because the

EC-specific genes CDH5 and KDR (VEGFR2) were not differen-

tially expressed in tumors with a good or bad response, the data

suggest that ANGPT2 may be a predictive biomarker of

response to bevacizumab in this tumor type.

DISCUSSION

In this study, we report that (1) evasive resistance to antiangio-

genic therapy by VEGFA signaling blockade in RIP1-Tag2 PNETs

is associated with the adaptive upregulation ofAngpt2/ANG2, (2)

combined ANG2/VEGFR2 blockade blunts rebound angiogen-
Figure 3. VEGFR2 Blockade Upregulates ANG2 and TIE2 in the PNETs

(A and C) qPCR-based gene expression analysis of Angpt2 (A) or Tek (C) in PNET

indicate the mean fold change (±SEM) over the reference sample (control IgG) an

Each dot represents one tumor. Statistical analysis was performed by unpaired

(B) ELISA-based ANG2 protein levels in PNETs treated as indicated. Data are sh

resents one tumor. Statistical analysis was performed as in (A).

(D) CD31 (green) and TIE2 (red) immunostaining and DAPI nuclear (blue) staining

(E and G) Relative area of TIE2+ blood vessels (E) or hematopoietic cells (G) in P

tumors were analyzed. Statistical analysis was performed as in (A).

(F) CD45 (green) and TIE2 (red) immunostaining of a PNET treated as indicated. T

Arrows indicate TEMs. Scale bar, 100 mm.
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esis and blocks tumor progression in the vast majority of the

PNETs, and (3) the lack of adaptive upregulation of Angpt2/

ANG2 may lie behind the lack of synergy between VEGFA and

ANG2 signaling blockade in MMTV-PyMT mammary carci-

nomas. Our analysis of published microarray data (Yoon et al.,

2011), although limited, further indicates that higher intratumoral

levels of ANGPT2 in nontreated human sarcomas may predict a

poor response to bevacizumab-containing neoadjuvant therapy,

thus suggesting that elevated ANG2may curb tumor responsive-

ness to VEGF neutralization also through a primary resistance/

refractoriness mechanism (Bergers and Hanahan, 2008).

Together with our findings in mouse tumor models, the afore-

mentioned clinical data may motivate the selection of patients

that are more likely to respond to bevacizumab-containing neo-

adjuvant therapy based on low intratumoral ANG2 levels.

Whereas intratumoral Angpt2/ANG2 levels were upregulated,

its circulating levels did not increase in DC101-treated RIP1-

Tag2 mice, possibly because of the overall low tumor burden

in this GEMM of cancer. Recent studies have shown that higher

pretreatment levels of plasma/serum ANG2 predict an unfavor-

able clinical outcome in patients with metastatic colorectal

cancer (CRC) treated by bevacizumab in combination with

chemotherapy (Goede et al., 2010; Kim et al., 2013). However,

these studies did not stratify patients according to disease

burden. We found that circulating levels of ANG2 increase pro-

portionally with the tumor burden in transgenic MMTV-PyMT

mice (data not shown), in agreement with findings in patients

with melanoma (Helfrich et al., 2009). Thus, lower circulating

ANG2 levels might mirror a lower disease burden, which may

associate with a more favorable clinical outcome in metastatic

CRC (Goede et al., 2010; Kim et al., 2013). It remains to be

seen whether intratumoral ANG2 levels could predict tumor

response to bevacizumab-containing therapies in CRC and,

possibly, other cancer types.

A recent study has shown that ANG2 can activate the TIE2 re-

ceptor on ECs to protect them from the antiangiogenic effects of

VEGF inhibition (Daly et al., 2013). Our findings in RIP1-Tag2

mice not only support those of Daly et al. (2013) but also put for-

ward the concept that VEGFA signaling blockademay adaptively

enforce ANG2-TIE2 signaling to promote VEGF-independent

tumor angiogenesis. Although it is unclear why MMTV-PyMT

mammary carcinomas did not upregulate ANG2 in response to

VEGFR2 blockade, it is tempting to speculate that transient

vascular pruning and increased tumor hypoxia may have en-

forced ANG2 transcription and secretion from the remaining

blood vessels in the PNETs, thus rescuing angiogenesis. Consis-

tent with this scenario and previous data (Oh et al., 1999), we
of RIP1-Tag2 Mice

s treated as indicated (control IgG includes R.IgG, H.IgG, and R+H.IgG). Data

d are shown before or after normalization to mean CD31+ area fraction values.

two-tailed Student’s t test.

own after normalization to mean vascular area fraction values. Each dot rep-

of PNETs treated as indicated. Scale bar, 200 mm.

NETs treated as indicated. Each dot represents one mouse, of which multiple

he bottom-right panel shows enlargement of the inset in the bottom-left panel.



Figure 4. ANG2/VEGFR2 Blockade Does Not Upregulate Angpt2/ANG2 and Has Minor Additive Effects in MMTV-PyMT Mammary Tumors

(A) Left panel shows volume (mean ± SEM) of orthotopic MMTV-PyMT tumors treated as indicated: R.IgG (n = 5), H.IgG (n = 4), DC101 (n = 4), and 3.19.3 (n = 4).

Right panel shows tumor weight (fold change versus R.IgG, ±SEM) at the end of the experiment. Statistical analysis was performed by unpaired two-tailed

Student’s t test versus the IgG control.

(legend continued on next page)
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found that hypoxia upregulated Angpt2 transcription in cultured

ECs. Other cues may regulate ANG2 expression, possibly in

concert with hypoxia. For example, the FOXO transcription

factors can promote ANGPT2 transcription in human ECs in

response to low AKT signaling (Daly et al., 2006). VEGFA acti-

vates the phosphatidylinositol 3-kinase/AKT pathway in ECs

(Claesson-Welsh and Welsh, 2013), so attenuation of AKT

signaling by VEGFR2 blockade may activate Angpt2 transcrip-

tion via enhanced FOXO activity, restore AKT signaling, and pro-

mote EC survival via autocrine activation of the TIE2 receptor

(Daly et al., 2013).

Tumor blood vessels typically display variegated TIE2 expres-

sion (Fathers et al., 2005; Felcht et al., 2012). Our finding of

increased TIE2 expression in the blood vessels of DC101-treated

tumors is intriguing. There is evidence for VEGFA signaling to

directly inhibit TIE2 expression in ECs (Felcht et al., 2012), so

its interception may enhance TIE2 expression. Furthermore, un-

der the selective pressure of DC101, the growth of blood vessels

that express higher TIE2 levels may be favored due to enhanced

prosurvival signaling conveyed by the TIE2 receptor. Although

we could not reliably assess TIE2 phosphorylation in tumor ly-

sates (data not shown), DC101-treated PNETs upregulated the

expression of both ANG2 and TIE2 in the tumor ECs, possibly re-

inforcing TIE2 signal transduction. On the other hand, the mam-

mary tumors expressed lower ANG2, and DC101 did not in-

crease its levels, hence hindering the ability of TIE2-expressing

vessels to convey prosurvival and proangiogenic signals.

Late-stage RIP1-Tag2 PNETs develop resistance to VEGFA

signaling blockade (Bergers and Hanahan, 2008). In agreement

with previous studies by Casanovas et al. (2005), we found that

a short treatment trial with DC101 substantially decreased the

PNET vascular area, but consistent with the development of

resistance, the tumors subsequently revascularized. It should

be emphasized that, in our studies, we dosed DC101 at 0.5 mg/

mouse (40 mg/kg/week), which is lower than the maximal effec-

tive (and tolerated) dose of 0.8–1.0mg employed in other studies

(Casanovas et al., 2005; Pàez-Ribes et al., 2009). Because 0.5

and 1.0mgDC101 similarly and effectively inhibited PNET angio-

genesis after a short treatment trial, 0.5 mg per mouse given

biweekly might represent the optimal biological dose of DC101

in RIP1-Tag2 mice. Incidentally, the recommended effective

dose of ramucirumab—a clinically approved DC101-related

H.IgG1 moAb that blocks VEGFR2 (Spratlin et al., 2010)—is

several times lower than that employed in our preclinical studies.

Whereas there is consensus that high doses of the multikinase

inhibitor sunitinib may increase tumor invasion and metastasis,
(B) Relative CD31+ vascular area (mean ± SEM) of the tumors in (A). Each dot repr

was performed as in (A).

(C) Volume (mean ± SEM) of tumors treated as indicated: R+H.IgG (n = 6), DC10

sentative experiment of two performed is shown.

(D) Relative CD31+ vascular area (mean ±SEM) in tumors treated as indicated and

multiple images were analyzed. The data combine two independent experiments

Statistical analysis was performed as in (A).

(E and F) qPCR-based gene expression analysis of Angpt2 (E) or ELISA-based A

reference sample (R+H.IgG, for qPCR) and are shown before or after normalization

combine two independent experiments; tumors were analyzed either at early or la

(G) qPCR-based gene expression analysis of Angpt2 in PNETs (IgG, n = 16; DC10

after normalization to IgG in RIP1-Tag2 mice. Data are shown before normalizati
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at least in mouse models of cancer (Blagoev et al., 2013; Chung

et al., 2012; Ebos et al., 2009; Pàez-Ribes et al., 2009; Singh

et al., 2012), the effects of specific VEGFA/VEGFR2 inhibition

have been inconsistent (Chung et al., 2012; Pàez-Ribes et al.,

2009; Sennino et al., 2012; Singh et al., 2012). Our findings indi-

cate that, at a biweekly dose of 0.5 mg/mouse, DC101 does not

aggravate PNET invasion and liver metastasis in RIP1-Tag2

mice. Furthermore, dual ANG2/VEGFR2 blockade blunted

PNET (re)vascularization, increased hypoxia, but did not in-

crease tumor invasion or metastasis in this mouse model. The

anti-ANG2 moAb 3.19.3 potently suppresses spontaneous tu-

mor metastasis in various mouse models of cancer (Holopainen

et al., 2012; Mazzieri et al., 2011), so it is conceivable that ANG2

blockade retains its antimetastatic activity also in combination

with other anticancer treatments. Because ANG2 blockade limits

the proangiogenic functions of TEMs (Mazzieri et al., 2011), it is

likely that the antitumoral activity of double ANG2/VEGFR2

blockade in PNETs also entails direct inhibitory effects on these

perivascular macrophages.

Several ANG2-specific moAbs have been developed that are

currently being evaluated in clinical trials (Eroglu et al., 2013;

Gerald et al., 2013). Randomized trials of the ANG1/ANG2 bis-

pecific peptibody AMG-386 (trebananib), in combination with

chemotherapy or other antiangiogenic agents, have shown vary-

ing results (Eroglu et al., 2013: Monk et al., 2014; Peeters et al.,

2013; Rini et al., 2012). Clinical studies employing ANG2-spe-

cific inhibitors are yet to be reported, and given the opposing

roles of ANG1 and ANG2 in tumor angiogenesis, the clinical re-

sponses may differ from those obtained using bispecific inhibi-

tors. ANG2 is increasingly recognized as an important molecular

determinant for cancer cell metastasis (Holopainen et al., 2012;

Mazzieri et al., 2011; Minami et al., 2013; Rigamonti and De

Palma, 2013), so combined ANG2 and VEGFA signaling inhibi-

tion may represent a dual angioinhibitory and antimetastatic

strategy that could increase the efficacy and safety of antiangio-

genic therapy in cancer types that switch from a VEGF to an

ANG2-dependent mode of angiogenesis.

EXPERIMENTAL PROCEDURES

Detailed methods are provided as Supplemental Experimental Procedures.

Mouse Tumor Models

FVB mice were purchased from Charles River Laboratories. Breeding pairs of

transgenic C57Bl6/6J/RIP1-Tag2, C57Bl6/6J/Rag1�/�/RIP1-Tag2, and FVB/

MMTV-PyMT mice were donated by Douglas Hanahan and Joerg Huelsken

(ISREC, EPFL). Male mice heterozygous for the oncogene were bred with
esents one tumor, of which multiple images were analyzed. Statistical analysis

1+H.IgG (n = 5), 3.19.3+R.IgG (n = 6), and DC101+3.19.3 (n = 6). One repre-

analyzed during the resistance phase. Each dot represents one tumor, of which

; tumors were analyzed either at early or late stages of the resistance phase.

NG2 protein analysis (F). Data indicate the mean fold change (±SEM) over the

to mean CD31+ area fraction values. Each dot represents one tumor. The data

te stages of the resistance phase. Statistical analysis was performed as in (A).

1, n = 15) and MMTV-PyMT carcinomas (R+H.IgG, n = 4; DC101, n = 5), shown

on to CD31+ area fraction values. Statistical analysis was performed as in (A).



wild-type females. Pups were genotyped for the SV40 large TAg (RIP1-Tag2

mice) or the Polyoma virus middle TAg (MMTV-PyMT mice) by Transnetyx

(http://www.transnetyx.com). Starting from 12 weeks of age, RIP1-Tag2

mice were maintained on a sucrose-enriched diet and monitored daily. An

orthotopic MMTV-PyMT tumor model was obtained by implanting dispersed

tumor-derived cells from 14- to 15-week-old transgenic MMTV-PyMT mice

in the fourth mammary fat pad of syngeneic (FVB) mice. All procedures were

performed according to protocols approved by the Veterinary Authorities of

the Canton Vaud according to the Swiss Law (licenses 2574 and 2577).

moAbs and Mouse Trials

All moAbs were provided by MedImmune and were screened for endotoxin

content and activity before administration. We used the following moAbs: rat

anti-mouse VEGFR2 IgG1 (DC101) at 20 mg/kg (Prewett et al., 1999); control

R.IgGs at 20 mg/kg; human anti-mouse ANG2 IgG2 (3.19.3) at 10 mg/kg

(Brown et al., 2010); control H.IgGs at 10 mg/kg; or their combination. The tu-

mors (MMTV-PyMT model), pancreata, livers, and plasma (RIP1-Tag2 model)

were harvested at necropsy for analysis, including (1) staining of tissue sec-

tions and analysis of vascularization, hypoxia, tumor invasion, and metastasis;

(2) gene expression by qPCR; and (3) ELISA. In some experiments, before

euthanasia, the mice received a systemic injection of FITC-labeled lectin (to

reveal perfused blood vessels) or pimonidazole (to reveal hypoxic tissue).

Statistical Analysis

Unless indicated otherwise, values are expressed as mean ± SEM. Statistical

analyses were performed by one-way ANOVA with multiple comparison

Fisher’s least significant difference (LSD) test or unpaired two-tailed Student’s

t test, as indicated in each figure panel. Detailed information is available in

the Supplemental Experimental Procedures. Differences were considered

statistically significant as follows: * = 0.01 % p < 0.05; ** = 0.001 % p < 0.01;

*** = p < 0.001.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2014.06.059.
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