DATA RECONCILIATION USING THE CONCEPT OF EXTENTS

Sriniketh Srinivasan, Julien Billeter, Shankar Narasimhan and Dominique Bonvin

INTRODUCTION

- Measurements of concentrations made during the course of the reaction are vital for efficient reactor operation
- Process monitoring, control and optimization can be carried out using measurements by building first-principles kinetic models, data-driven models, or combining these two approaches

DATA RECONCILIATION VIA NUMBERS OF MOLES

The representation of a reaction system in terms of numbers of moles is given by a set of S differential equations:

$$\dot{\mathbf{n}}(t) \ = \mathbf{N}^{\mathrm{\scriptscriptstyle T}} \ V(t) \ \mathbf{r}(t) \ + \ \mathbf{W}_{\scriptscriptstyle in} \ \mathbf{u}_{\scriptscriptstyle in}(t) \ - \frac{u_{\scriptscriptstyle out}(t)}{m(t)} \mathbf{n}(t), \quad \mathbf{n}(0) = \mathbf{n}_0$$

- The redundancy in these S differential equations is expressed by algebraic constraints
- The number and nature of these constraints depend on the operating mode of the reactor

Table 1: Algebraic constraints under different operating modes

Operation	# constraints	Constraint derivation	Constraints
Batch	q = S - R	$\mathbf{P}^{\mathrm{T}}\left[\mathbf{N}^{\mathrm{T}}\right] = 0_{q \times R}$	$\mathbf{P}^{\mathrm{T}}\mathbf{n}(t) = \mathbf{P}^{\mathrm{T}}\mathbf{n}_{0}$
Fed-batch	q = S - R - p	$\mathbf{P}^{\mathrm{T}}\left[\mathbf{N}^{\mathrm{T}} \ \mathbf{W}_{in}\right] = 0_{q \times (R+p)}$	$\mathbf{P}^{\mathrm{T}}\mathbf{n}(t) = \mathbf{P}^{\mathrm{T}}\mathbf{n}_{0}$
Open	q = S - R - p - 1	$\mathbf{P}^{\mathrm{T}}\left[\mathbf{N}^{\mathrm{T}}\ \mathbf{W}_{in}\ \mathbf{n}_{0}\right] = 0_{q \times (R+p+1)}$	$\mathbf{P}^{\mathrm{T}}\mathbf{n}(t) = 0_q$

S: # species, R: # independent reactions, p: # independent flows

- Usually, due to noise, the measured numbers of moles $(\tilde{\mathbf{n}})$ violate the algebraic constraints
- The data reconciliation problem in terms of concentrations can be formulated as:

$$\begin{aligned} & \min_{\hat{\mathbf{n}}(t_i)} & & \left(\hat{\mathbf{n}}(t_i) - \hat{\mathbf{n}}(t_i) \right)^{\mathrm{T}} & \mathbf{W}(t_i) \left(\hat{\mathbf{n}}(t_i) - \hat{\mathbf{n}}(t_i) \right) \\ & \text{s.t.} & & \mathbf{P}^{\mathrm{T}} \, \hat{\mathbf{n}}(t_i) = \mathbf{0}_q, \\ & & & \hat{\mathbf{n}}(t_i) \geq \mathbf{0}_S \end{aligned}$$

Advantages: The DR problems for different time instants are decoupled, that is, the reconciled number of moles $(\hat{\mathbf{n}})$ can be estimated independently at each time instant

MOTIVATION

- Concentrations/numbers of moles measured are corrupted with noise, which reduces the quality of their information
- The aim is to reduce the **noise** in the concentration measurements using data reconciliation (DR) [1]
- An alternative procedure for data reconciliation via extents instead of concentrations is presented

DATA RECONCILIATION VIA EXTENTS

The numbers of moles can be converted into variant/invariant state variables called extents via a linear transformation [2,3]

$$\begin{bmatrix} \mathbf{x}_r(t) \\ \mathbf{x}_{in}(t) \\ x_{ic}(t) \\ \mathbf{x}_{iv}(t) \end{bmatrix} = \mathcal{T} \, \mathbf{n}(t) := \begin{bmatrix} \mathbf{R} \\ \mathbf{F} \\ \mathbf{i}^{\mathrm{T}} \\ \mathbf{Q} \end{bmatrix} \, \mathbf{n}(t),$$

$$\mathcal{T} = \begin{bmatrix} \mathbf{N}^{ \mathrm{\scriptscriptstyle T} } \ \mathbf{W}_{\scriptscriptstyle in} \ \mathbf{n}_0 \ \mathbf{P} \end{bmatrix}^{-1} \qquad \quad \mathbf{P}^{ \mathrm{\scriptscriptstyle T} } \begin{bmatrix} \mathbf{N}^{ \mathrm{\scriptscriptstyle T} } \ \mathbf{W}_{\scriptscriptstyle in} \ \mathbf{n}_0 \end{bmatrix} = \mathbf{0}_{q \times (R+p+1)}$$

The system representation in terms of extents is given by a set of R + p + 1 differential equations and q algebraic constraints

$$\dot{\mathbf{x}}_r(t) = V(t)\mathbf{r}(t) - \frac{u_{out}(t)}{m(t)}\mathbf{x}_r(t) \qquad \mathbf{x}_r(0) = \mathbf{0}_{I}$$

$$\dot{\mathbf{x}}_{in}(t) = \mathbf{u}_{in}(t) - \frac{u_{out}(t)}{m(t)} \mathbf{x}_{in}(t)$$
 $\mathbf{x}_{in}(0) = \mathbf{0}$

$$\dot{x}_{ic}(t) = -\frac{u_{out}(t)}{m(t)} x_{ic}(t)$$
 $x_{ic}(0) = 1$ $\mathbf{x}_{iv}(t) = \mathbf{0}_q$

The numbers of moles can be reconstructed from extents as:

$$\mathbf{n}(t) = \mathbf{N}^{\mathrm{T}} \mathbf{x}_r(t) + \mathbf{W}_{in} \mathbf{x}_{in}(t) + \mathbf{n}_0 \, x_{ic}(t)$$

The data reconciliation problem in terms of extents can then be formulated as:

$$\begin{aligned} \min_{\substack{\hat{\mathbf{x}}_{ir}(t_1), \dots, \hat{\mathbf{x}}_{ir}(t_H) \\ \hat{\mathbf{x}}_{is}(t_1), \dots, \hat{\mathbf{x}}_{ir}(t_H)}} & \sum_{i=1}^{H} \left(\tilde{\mathbf{n}}(t_i) - \hat{\mathbf{n}}(t_i) \right)^{\mathrm{T}} \mathbf{W}(t_i) \left(\tilde{\mathbf{n}}(t_i) - \hat{\mathbf{n}}(t_i) \right) \\ \text{s.t.} & \hat{x}_{ic}(t_i), \dots, \hat{x}_{ic}(t_H) \\ & \text{s.t.} & \hat{x}_{ic}(t_i) - \hat{x}_{ic}(t_{i-1}) \leq 0 \quad \forall i > 1, \\ & \hat{\mathbf{n}}(t_i) \geq \mathbf{0}_S, \quad \hat{\mathbf{x}}_r(t_i) \geq \mathbf{0}_R, \quad \hat{\mathbf{x}}_{in}(t_i) \geq \mathbf{0}_p, \quad \hat{x}_{ic}(t_i) \geq 0 \end{aligned}$$

Advantages: Monotonicity constraints can be imposed on the DR problem. In the absense of an outlet stream, all extents are monotonically increasing.

SIMULATED EXAMPLE

Let us consider the acetoacetylation of pyrrole, a reaction system with four reactions, operated in a batch reactor in the presence of a catalyst (K)

R1:	Α	+	В	\rightarrow	$^{\rm C}$	$r_1 = k_1 c_A c_B c_K$
R2:	В	+	В	\rightarrow	D	$r_2 = k_2 c_B^2 c_K$
R3:			В	\rightarrow	\mathbf{E}	$r_3 = k_3 c_B$
R4:	C	+	В	\rightarrow	F	$r_A = k_A c_C c_B c_K$

Each concentration is corrupted with additive independent zero-mean Gaussian noise of standard deviation corresponding to 10% of its maximum concentration

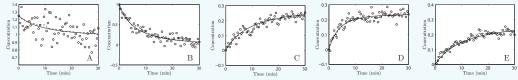


Figure 1: Simulated (-), measured (0) and extent-based reconciled (...) concentrations of the species A to E

Table 2: Residual sums of squares between the true and the reconciled concentrations

Species	Measurements	Data reconciliation			
	Weasurements	via concentrations	via extents		
A	0.9164	0.0332	0.0108		
В	0.4615	0.1317	0.0355		
C	0.0316	0.0332	0.0109		
D	0.0392	0.0268	0.0062		
E	0.0162	0.0155	0.0115		

HTM - Systems and Control Group

www.che.iitm.ac.in/scg

MSB 149, IIT Madras, Chennai, India

CONCLUSIONS

- Formulating the reconciliation problem in terms of extents allows exploiting additional monotonicity constraints
- Future work: Extend the DR formulation to the extents of reaction and of mass transfer in the context of open heterogeneous reaction systems

REFERENCES

- S. Narasimhan and C. Jordache., Data Reconciliation and Gross Error Detection, Elsevier, 1999.
- D. Rodrigues, S. Srinivasan, J. Billeter and D. Bonvin., Variant and invariant states for reaction systems, Comp & Chem. Eng., 73: 23-33, 2015
- S. Srinivasan, J. Billeter and D. Bonvin., Extent-based incremental identification of reaction systems using concentration and calorimetric measurements, Chem. Eng. J. 208, 785 - 793, 2012

