

Control of Reaction Systems via Rate Estimation and Feedback Linearization

Diogo Rodrigues, Julien Billeter, Dominique Bonvin

Laboratoire d'Automatique Ecole Polytechnique Fédérale de Lausanne (EPFL)

> PSE-2015/ESCAPE-25 June 3, 2015

Outline

- Introduction
 - Decoupling dynamic effects
 - Controlling reaction systems
- Description of the reaction system
 - Mole and heat balance equations
 - Transformation to reaction-variant states
- Control problem
 - Estimation of reaction rates
 - Feedback linearization
 - Feedback control of the temperature
- Simulated CSTR
- Conclusions

Introduction

Decoupling dynamic effects

- Efficient control of reaction systems typically requires kinetic models, whose identification can be difficult and time consuming.
- One can infer reaction rates from measurements, without a kinetic model, if the rates are decoupled.¹
- Reaction variants/invariants decouple reaction rates, thereby facilitating analysis and control.²
- More generally, variant/invariant states can decouple dynamic effects via a linear transformation to vessel extents.³

¹Mhamdi, A.; Marquardt, W. In ADCHEM 2003, Hong Kong, China, 2004, pp 171-176.

²Asbjørnsen, O. A.; Fjeld, M. Chem. Eng. Sci. 1970, 25, 1627-1636.

³Rodrigues, D. et al. Comp. Chem. Eng. 2015, 73, 23-33.

Introduction

Controlling reaction systems

- Various control strategies for open reactors are based on reaction variants and extensive variables 4
- There is no systematic control method that takes advantage of multiple measurements, in particular without a kinetic model.
- The control of chemical reactors without kinetic models is possible, by
 - (i) estimating reaction rates from concentration and temperature via the concept of variants,
 - (ii) using feedback linearization and these estimated rates to effectively control the temperature by manipulating the exchanged heat.

⁴Georgakis, C. Chem. Eng. Sci. 1986, 41, 1471-1484; Farschman, C. A. et al. AIChE J. 1998, 44, 1841-1857.

Description of the reaction system

Mole and heat balance equations

- Open homogeneous reactor with S species, R independent reactions, p inlet streams and 1 outlet stream.
- The S-dimensional vector of numbers of moles n, and the heat energy $Q = mc_p(T - T_{ref})$ are state variables.
- Mole and heat balance equations:⁵

$$\underbrace{\begin{bmatrix} \dot{\mathbf{n}}(t) \\ \dot{Q}(t) \end{bmatrix}}_{\dot{\mathbf{z}}(t)} = \underbrace{\begin{bmatrix} \mathbf{N}^{\mathsf{T}} \\ (-\Delta \mathbf{H})^{\mathsf{T}} \end{bmatrix}}_{\mathcal{A}} \mathbf{r}_{v}(t) + \underbrace{\begin{bmatrix} \mathbf{0}_{S} \\ 1 \end{bmatrix}}_{\mathbf{b}} q_{ex}(t) + \underbrace{\begin{bmatrix} \mathbf{W}_{in} \\ \mathbf{T}_{in}^{\mathsf{T}} \end{bmatrix}}_{\mathcal{C}} \mathbf{u}_{in}(t) - \omega(t) \underbrace{\begin{bmatrix} \mathbf{n}(t) \\ Q(t) \end{bmatrix}}_{\mathbf{z}(t)}, \\
\mathbf{z}(0) = \mathbf{z}_{0}.$$

- Time-variant signals $\mathbf{r}_{v}(t)$ R reaction rates, $q_{ex}(t)$ exchanged heat power, $\mathbf{u}_{in}(t)$ p inlet flowrates, $\omega(t)$ inverse of residence time.
- Structural information N $(R \times S)$ stoichiometry, $\Delta H R$ heats of reaction, W_{in} $(S \times p)$ inlet composition, \check{T}_{in} p inlet specific heats.

 $W_{in}, \check{T}_{in}, u_{in}$

⁵Rodrigues, D. et al. Comp. Chem. Eng. 2015, 73, 23–33

Description of the reaction system

Transformation to reaction-variant states

• If rank (A) = R, there exists an $R \times (S+1)$ transformation matrix T such that $TA = \mathbf{I}_R$.

where
$$\mathcal{A} = \begin{bmatrix} \mathbf{N}^{\mathsf{T}} \\ (-\mathbf{\Delta}\mathbf{H})^{\mathsf{T}} \end{bmatrix}$$
.

• Apply \mathcal{T} to the balance equations and define $\mathbf{y}_r(t) := \mathcal{T} \mathbf{z}(t)$:

$$\dot{\mathbf{y}}_r(t) = \mathbf{r}_v(t) + (\mathcal{T}\mathbf{b}) \, q_{\mathrm{ex}}(t) + (\mathcal{T}\mathcal{C}) \, \mathbf{u}_{in}(t) - \omega(t) \, \mathbf{y}_r(t), \qquad \mathbf{y}_r(0) = \mathcal{T}\mathbf{z}_0.$$

• The transformed states \mathbf{y}_r are reaction variants, with each state $y_{r,i}$ $(i=1,\ldots,R)$ depending on the corresponding rate $r_{v,i}$.

⁶Asbjørnsen, O. A.; Fjeld, M. Chem. Eng. Sci. 1970, 25, 1627-1636.

Control problem

Objective and method

- **Objective:** control the heat Q (indirectly temperature) to the setpoint Q_s by manipulating q_{ex} .
- Method:

Control problem

Estimation of reaction rates

- Estimation of \mathbf{r}_v via differentiation of \mathbf{y}_r that is obtained by transformation of \mathbf{z} , and the knowledge of q_{ex} , \mathbf{u}_{in} and ω .
- Reformulate the dynamic equations of y_r:

$$\mathbf{r}_{v}(t) = \dot{\mathbf{y}}_{r}(t) - (\mathcal{T}\mathbf{b}) q_{ex}(t) - (\mathcal{T}\mathcal{C}) \mathbf{u}_{in}(t) + \omega(t) \mathbf{y}_{r}(t).$$

- The transformation \mathcal{T} requires that at least R elements of z be measured.
- Different transformations \mathcal{T} satisfy $\mathcal{T}\mathcal{A} = \mathbf{I}_R$, e.g. $\mathcal{T} = \mathcal{A}^{\dagger}$ (Moore-Penrose).
- With noisy measurements of \mathbf{z} , a maximum-likelihood estimator is obtained with $\mathcal{T} = (\mathcal{A}^\mathsf{T} \mathbf{\Sigma}^{-1} \mathcal{A})^{-1} \mathcal{A}^\mathsf{T} \mathbf{\Sigma}^{-1}$, where $\mathbf{\Sigma}$ is the variance-covariance matrix.

Feedback linearization

- Feedback linearization (linear, first-order relationship between v and Q).
- Define the new input v as the right-hand side of the heat balance equation:

$$\dot{Q}(t) = (-\Delta \mathbf{H})^{\mathsf{T}} \mathbf{r}_{\mathsf{v}}(t) + q_{\mathsf{ex}}(t) + \check{\mathbf{T}}_{in}^{\mathsf{T}} \mathbf{u}_{in}(t) - \omega(t) Q(t) \stackrel{!}{=} \mathbf{v}(t).$$

• The relationship between the new input v and q_{ex} is known:

$$q_{\text{ex}}(t) = \mathbf{v}(t) - (-\mathbf{\Delta}\mathbf{H})^{\mathsf{T}}\hat{\mathbf{r}}_{\mathbf{v}}(t) - \check{\mathbf{T}}_{in}^{\mathsf{T}}\mathbf{u}_{in}(t) + \omega(t)Q(t).$$

Control problem

Feedback control of the temperature

- Design of a feedback controller for the system $\dot{Q}(t) = v(t)$, using pole placement or loop shaping (closed-loop transfer function $\frac{Q(s)}{Q_s(s)} = 1$).
- The feedback controller using the control law

$$\mathbf{v}(t) = \dot{Q}_s(t) + \gamma \left(Q_s(t) - Q(t) \right)$$

forces the error $e(t):=Q_s(t)-Q(t)$ to converge exponentially to zero at a rate γ :

$$\dot{e}(t) = -\gamma e(t), \qquad e(0) = Q_s(0) - Q(0).$$

• The output of the feedback controller is v, which determines q_{ex} according to

$$q_{ex}(t) = \mathbf{v}(t) - (-\mathbf{\Delta}\mathbf{H})^{\mathsf{T}}\hat{\mathbf{r}}_{\mathbf{v}}(t) - \check{\mathbf{T}}_{in}^{\mathsf{T}}\mathbf{u}_{in}(t) + \omega(t)Q(t).$$

Control problem

Objective and method

- **Objective:** control the heat Q (indirectly temperature) to the setpoint Q_s by manipulating q_{ex} .
- Method:

Physical description

- Acetoacetylation of pyrrole in a homogeneous CSTR:⁷
 - S = 4 species (A: pyrrole; B: diketene).
 - R=2 reactions (A + B \rightarrow 2-acetoacetylpyrrole, 2B \rightarrow dehydroacetic acid).
 - p = 2 inlets (of A and B).
 - 1 outlet (flowrate adjusted to keep constant volume).
 - Constant heat capacity mc_p.
 - Heat exchange only with the jacket.
- Reaction rates are complex and unknown.
- The system is initially at a steady state corresponding to \bar{q}_{ex} and $\bar{\mathbf{u}}_{in} = \begin{bmatrix} \bar{u}_{in,A} \\ \bar{u}_{in,B} \end{bmatrix}$.

Control objective:

Reject effect on the temperature T of 15 kg min⁻¹ step disturbance in $u_{in,B}$ (with $\bar{u}_{in,B}=15$ kg min⁻¹) by manipulating $q_{\rm ex}$.

⁷Ruppen, D. et al. Comp. Chem. Eng. 1998, 22, 185–189.

Data treatment

- Following values are assumed to be known:
 - Stoichiometry N.
 - Heats of reaction ΔH.
 - Inlet composition W_{in}.
 - Inlet specific enthalpies $\check{\mathbf{T}}_{in}$.
- Measurements of z, $q_{\rm ex}$, ${\bf u}_{in}$ and ω are available at the sampling time $h_{\rm s}=0.4$ s.
- Standard deviation of added measurement noise
 - n: 0.5% (relative to maximum value for each species).
 - Q: 0.5 K.
- Savitzky-Golay differentiation filter (of order 1 and window size q = 25) is used.⁸

FL control with convergence rate $\gamma = 5 \text{ min}^{-1}$. Pl control with gain $K_p = 5 \text{ min}^{-1}$ and integral time constant $\tau_l = 0.2 \text{ min}$.

⁸Savitzky, A.; Golay, M. Anal. Chem. 1964, 36, 1627-1639.

Results (without measurement noise)

Figure 1: (a): Temperature for FL control and Pl control, with the setpoint shown by the dashed line; (b): Exchanged heat power and, insets, estimated (solid lines) and true (dashed lines) reaction rates.

Results (with measurement noise)

Figure 1: (c): Temperature for FL control and Pl control, with the setpoint shown by the dashed line; (d): Exchanged heat power and, insets, estimated (solid lines) and true (dashed lines) reaction rates.

Discussion

Pros:

The feedback-linearization scheme rejects the disturbance more quickly than the PI controller, because feedback linearization generates first-order dynamics between v and Q, whereas PI control needs to deal with (R+p+1)-order dynamics between $q_{\rm ex}$ and Q.

Cons:

If the standard deviation of the concentration measurement noise is too large⁹, the estimated reaction rates are either too imprecise (due to differentiation of z) or delayed (due to a larger window size q), and the advantage of feedback linearization over PI control becomes less clear.

⁹ In this example, about 1% of the maximum for each species.

Conclusions

- Control of the heat Q (and indirectly of the temperature T) by manipulating the exchanged heat power q_{ex} in an open homogeneous reactor is implemented without a kinetic model.
- Straightforward extension to control of reactant concentrations by manipulating the inlet flowrates.
- The proposed control scheme includes
 - estimation of reaction rates via differentiation of reaction variants that are computed from measured states,
 - feedback linearization using the estimated reaction rates, thereby simplifying control design significantly.
- This approach implementing feedback linearization allows tracking a trajectory by forcing an exponential decay of the control error.
- In the case of low measurement noise, feedback-linearization control can outperform PI control for the purpose of disturbance rejection.

Conclusions

- Good performance for the case of frequent and precise concentration measurements.
- The control approach requires at least as many measured states as there are reaction rates (rank(A) = R).
- Parameters of the feedback-linearization controller are mostly determined by readily available information – stoichiometry, heats of reaction, inlet composition/specific heat, and inlet/outlet flow rates.
- Two controller parameters need to be tuned to guarantee closed-loop stability:
 - The exponential convergence rate γ .
 - The parameter(s) of the differentiation filter used for rate estimation.

Take-home message:

Control of reaction systems without kinetic models is made possible by decoupling the dynamic effects and estimating the reaction rates.

References

Asbjørnsen, O. A.; Fjeld, M. Chem. Eng. Sci. 1970, 25, 1627–1636.

Farschman, C. A.; Viswanath, K. P.; Ydstie, B. E. AIChE J. 1998, 44, 1841-1857.

Georgakis, C. Chem. Eng. Sci. 1986, 41, 1471-1484.

Mhamdi, A.; Marquardt, W. In ADCHEM 2003, Hong Kong, China, 2004, pp 171-176.

Rodrigues, D.; Srinivasan, S.; Billeter, J.; Bonvin, D. Comp. Chem. Eng. 2015, 73, 23–33.

Ruppen, D.; Bonvin, D.; Rippin, D. W. T. Comp. Chem. Eng. 1998, 22, 185-189.

Savitzky, A.; Golay, M. Anal. Chem. 1964, 36, 1627-1639.

Thank you for your attention!

Appendix: estimation of reaction rates (1/2)

- Let us approximate the derivative $\dot{\mathbf{y}}_r(t)$ using the first-order differentiation Savitzky-Golay filter, denoted as $\mathcal{D}_q(\mathbf{y}_r,t)$, where
 - q is the window size expressed in number of samples on $[t \Delta t, t]$,
 - h_s is the sampling time,
- Since \mathbf{y}_r is Lipschitz continuous, $\mathcal{D}_q(\mathbf{y}_r,t)$ can be reformulated as

$$\mathcal{D}_q(\mathbf{y}_r,t) = \sum_{k=0}^{q-2} b_{k+1} \int_k^{k+1} \dot{\mathbf{y}}_r(t_{\xi}) d\xi$$

with
$$b_{k+1}=rac{6(q-1-k)(k+1)}{q(q^2-1)}>0$$
, such that $\sum_{k=0}^{q-2}b_{k+1}=1$, and $t_\xi:=t-\Delta t+\xi\,h_s$.

• One also knows that $\dot{\mathbf{y}}_r(t) = \mathbf{r}_v(t) + (\mathcal{T}\mathbf{b}) \, q_{\mathrm{ex}}(t) + (\mathcal{T}\mathcal{C}) \, \mathbf{u}_{\mathrm{in}}(t) - \omega(t) \, \mathbf{y}_r(t)$.

Appendix: estimation of reaction rates (2/2)

• Replacing $\dot{\mathbf{y}}_r$ by its expression:

$$\mathcal{D}_{q}(\mathbf{y}_{r},t) = \sum_{k=0}^{q-2} b_{k+1} \int_{k}^{k+1} \left(\mathbf{r}_{v}(t_{\xi}) + (\mathcal{T}\mathbf{b}) \, q_{\mathsf{ex}}(t_{\xi}) + (\mathcal{T}\mathcal{C}) \, \mathbf{u}_{\mathsf{in}}(t_{\xi}) - \omega(t_{\xi}) \mathbf{y}_{r}(t_{\xi}) \right) d\xi$$

$$\stackrel{A1,A2}{\approx} \mathbf{r}_{v}(t) + \sum_{k=0}^{q-2} b_{k+1} \left((\mathcal{T}\mathbf{b}) \, q_{\mathsf{ex}}(t_{k}) + (\mathcal{T}\mathcal{C}) \, \mathbf{u}_{\mathsf{in}}(t_{k}) - \omega(t_{k}) \, \mathbf{y}_{r}(t_{k}) \right),$$

where $t_k := t - \Delta t + k h_s$.

A1: $\mathbf{r}_{v}(t)$ approximately constant on $[t - \Delta t, t]$.

A2: $q_{\rm ex}(t)$, $\mathbf{u}_{\rm in}(t)$ and $\omega(t)\,\mathbf{y}_{\rm r}(t)$ approximately constant on each $[t_k,t_{k+1}[$.

• Defining the operator $W_q(f,t) := \sum_{k=0}^{q-2} b_{k+1} f(t_k)$ for any function f(t), rearranging for $\mathbf{r}_v(t)$ and using measured quantities ($\tilde{\cdot}$):

$$\hat{\mathbf{r}}_{v}(t) = \mathcal{D}_{q}(\tilde{\mathbf{y}}_{r},t) - (\mathcal{T}\mathbf{b})\,\mathcal{W}_{q}(\tilde{q}_{\mathsf{ex}},t) - (\mathcal{T}\mathcal{C})\,\mathcal{W}_{q}(\tilde{\mathbf{u}}_{\mathsf{in}},t) + \mathcal{W}_{q}(\tilde{\omega}\,\tilde{\mathbf{y}}_{r},t)$$

• This approximates $\mathbf{r}_{v}(t)$ for measured quantities and is used to compute $q_{ex}(t)$.